Linux 2.6.25.3
[linux/fpc-iii.git] / arch / x86 / kernel / process_32.c
blob43930e73f6571869436c8558e5b2576103a590a0
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <stdarg.h>
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/desc.h>
48 #include <asm/vm86.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
53 #include <linux/err.h>
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61 static int hlt_counter;
63 unsigned long boot_option_idle_override = 0;
64 EXPORT_SYMBOL(boot_option_idle_override);
66 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67 EXPORT_PER_CPU_SYMBOL(current_task);
69 DEFINE_PER_CPU(int, cpu_number);
70 EXPORT_PER_CPU_SYMBOL(cpu_number);
73 * Return saved PC of a blocked thread.
75 unsigned long thread_saved_pc(struct task_struct *tsk)
77 return ((unsigned long *)tsk->thread.sp)[3];
81 * Powermanagement idle function, if any..
83 void (*pm_idle)(void);
84 EXPORT_SYMBOL(pm_idle);
86 void disable_hlt(void)
88 hlt_counter++;
91 EXPORT_SYMBOL(disable_hlt);
93 void enable_hlt(void)
95 hlt_counter--;
98 EXPORT_SYMBOL(enable_hlt);
101 * We use this if we don't have any better
102 * idle routine..
104 void default_idle(void)
106 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
107 current_thread_info()->status &= ~TS_POLLING;
109 * TS_POLLING-cleared state must be visible before we
110 * test NEED_RESCHED:
112 smp_mb();
114 local_irq_disable();
115 if (!need_resched()) {
116 ktime_t t0, t1;
117 u64 t0n, t1n;
119 t0 = ktime_get();
120 t0n = ktime_to_ns(t0);
121 safe_halt(); /* enables interrupts racelessly */
122 local_irq_disable();
123 t1 = ktime_get();
124 t1n = ktime_to_ns(t1);
125 sched_clock_idle_wakeup_event(t1n - t0n);
127 local_irq_enable();
128 current_thread_info()->status |= TS_POLLING;
129 } else {
130 /* loop is done by the caller */
131 cpu_relax();
134 #ifdef CONFIG_APM_MODULE
135 EXPORT_SYMBOL(default_idle);
136 #endif
139 * On SMP it's slightly faster (but much more power-consuming!)
140 * to poll the ->work.need_resched flag instead of waiting for the
141 * cross-CPU IPI to arrive. Use this option with caution.
143 static void poll_idle(void)
145 cpu_relax();
148 #ifdef CONFIG_HOTPLUG_CPU
149 #include <asm/nmi.h>
150 /* We don't actually take CPU down, just spin without interrupts. */
151 static inline void play_dead(void)
153 /* This must be done before dead CPU ack */
154 cpu_exit_clear();
155 wbinvd();
156 mb();
157 /* Ack it */
158 __get_cpu_var(cpu_state) = CPU_DEAD;
161 * With physical CPU hotplug, we should halt the cpu
163 local_irq_disable();
164 while (1)
165 halt();
167 #else
168 static inline void play_dead(void)
170 BUG();
172 #endif /* CONFIG_HOTPLUG_CPU */
175 * The idle thread. There's no useful work to be
176 * done, so just try to conserve power and have a
177 * low exit latency (ie sit in a loop waiting for
178 * somebody to say that they'd like to reschedule)
180 void cpu_idle(void)
182 int cpu = smp_processor_id();
184 current_thread_info()->status |= TS_POLLING;
186 /* endless idle loop with no priority at all */
187 while (1) {
188 tick_nohz_stop_sched_tick();
189 while (!need_resched()) {
190 void (*idle)(void);
192 check_pgt_cache();
193 rmb();
194 idle = pm_idle;
196 if (rcu_pending(cpu))
197 rcu_check_callbacks(cpu, 0);
199 if (!idle)
200 idle = default_idle;
202 if (cpu_is_offline(cpu))
203 play_dead();
205 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
206 idle();
208 tick_nohz_restart_sched_tick();
209 preempt_enable_no_resched();
210 schedule();
211 preempt_disable();
215 static void do_nothing(void *unused)
220 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
221 * pm_idle and update to new pm_idle value. Required while changing pm_idle
222 * handler on SMP systems.
224 * Caller must have changed pm_idle to the new value before the call. Old
225 * pm_idle value will not be used by any CPU after the return of this function.
227 void cpu_idle_wait(void)
229 smp_mb();
230 /* kick all the CPUs so that they exit out of pm_idle */
231 smp_call_function(do_nothing, NULL, 0, 1);
233 EXPORT_SYMBOL_GPL(cpu_idle_wait);
236 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
237 * which can obviate IPI to trigger checking of need_resched.
238 * We execute MONITOR against need_resched and enter optimized wait state
239 * through MWAIT. Whenever someone changes need_resched, we would be woken
240 * up from MWAIT (without an IPI).
242 * New with Core Duo processors, MWAIT can take some hints based on CPU
243 * capability.
245 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
247 if (!need_resched()) {
248 __monitor((void *)&current_thread_info()->flags, 0, 0);
249 smp_mb();
250 if (!need_resched())
251 __mwait(ax, cx);
255 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
256 static void mwait_idle(void)
258 local_irq_enable();
259 mwait_idle_with_hints(0, 0);
262 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
264 if (force_mwait)
265 return 1;
266 /* Any C1 states supported? */
267 return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
270 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
272 static int selected;
274 if (selected)
275 return;
276 #ifdef CONFIG_X86_SMP
277 if (pm_idle == poll_idle && smp_num_siblings > 1) {
278 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
279 " performance may degrade.\n");
281 #endif
282 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
284 * Skip, if setup has overridden idle.
285 * One CPU supports mwait => All CPUs supports mwait
287 if (!pm_idle) {
288 printk(KERN_INFO "using mwait in idle threads.\n");
289 pm_idle = mwait_idle;
292 selected = 1;
295 static int __init idle_setup(char *str)
297 if (!strcmp(str, "poll")) {
298 printk("using polling idle threads.\n");
299 pm_idle = poll_idle;
300 } else if (!strcmp(str, "mwait"))
301 force_mwait = 1;
302 else
303 return -1;
305 boot_option_idle_override = 1;
306 return 0;
308 early_param("idle", idle_setup);
310 void __show_registers(struct pt_regs *regs, int all)
312 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
313 unsigned long d0, d1, d2, d3, d6, d7;
314 unsigned long sp;
315 unsigned short ss, gs;
317 if (user_mode_vm(regs)) {
318 sp = regs->sp;
319 ss = regs->ss & 0xffff;
320 savesegment(gs, gs);
321 } else {
322 sp = (unsigned long) (&regs->sp);
323 savesegment(ss, ss);
324 savesegment(gs, gs);
327 printk("\n");
328 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
329 task_pid_nr(current), current->comm,
330 print_tainted(), init_utsname()->release,
331 (int)strcspn(init_utsname()->version, " "),
332 init_utsname()->version);
334 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
335 0xffff & regs->cs, regs->ip, regs->flags,
336 smp_processor_id());
337 print_symbol("EIP is at %s\n", regs->ip);
339 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
340 regs->ax, regs->bx, regs->cx, regs->dx);
341 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
342 regs->si, regs->di, regs->bp, sp);
343 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
344 regs->ds & 0xffff, regs->es & 0xffff,
345 regs->fs & 0xffff, gs, ss);
347 if (!all)
348 return;
350 cr0 = read_cr0();
351 cr2 = read_cr2();
352 cr3 = read_cr3();
353 cr4 = read_cr4_safe();
354 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
355 cr0, cr2, cr3, cr4);
357 get_debugreg(d0, 0);
358 get_debugreg(d1, 1);
359 get_debugreg(d2, 2);
360 get_debugreg(d3, 3);
361 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
362 d0, d1, d2, d3);
364 get_debugreg(d6, 6);
365 get_debugreg(d7, 7);
366 printk("DR6: %08lx DR7: %08lx\n",
367 d6, d7);
370 void show_regs(struct pt_regs *regs)
372 __show_registers(regs, 1);
373 show_trace(NULL, regs, &regs->sp, regs->bp);
377 * This gets run with %bx containing the
378 * function to call, and %dx containing
379 * the "args".
381 extern void kernel_thread_helper(void);
384 * Create a kernel thread
386 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
388 struct pt_regs regs;
390 memset(&regs, 0, sizeof(regs));
392 regs.bx = (unsigned long) fn;
393 regs.dx = (unsigned long) arg;
395 regs.ds = __USER_DS;
396 regs.es = __USER_DS;
397 regs.fs = __KERNEL_PERCPU;
398 regs.orig_ax = -1;
399 regs.ip = (unsigned long) kernel_thread_helper;
400 regs.cs = __KERNEL_CS | get_kernel_rpl();
401 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
403 /* Ok, create the new process.. */
404 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
406 EXPORT_SYMBOL(kernel_thread);
409 * Free current thread data structures etc..
411 void exit_thread(void)
413 /* The process may have allocated an io port bitmap... nuke it. */
414 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
415 struct task_struct *tsk = current;
416 struct thread_struct *t = &tsk->thread;
417 int cpu = get_cpu();
418 struct tss_struct *tss = &per_cpu(init_tss, cpu);
420 kfree(t->io_bitmap_ptr);
421 t->io_bitmap_ptr = NULL;
422 clear_thread_flag(TIF_IO_BITMAP);
424 * Careful, clear this in the TSS too:
426 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
427 t->io_bitmap_max = 0;
428 tss->io_bitmap_owner = NULL;
429 tss->io_bitmap_max = 0;
430 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
431 put_cpu();
435 void flush_thread(void)
437 struct task_struct *tsk = current;
439 tsk->thread.debugreg0 = 0;
440 tsk->thread.debugreg1 = 0;
441 tsk->thread.debugreg2 = 0;
442 tsk->thread.debugreg3 = 0;
443 tsk->thread.debugreg6 = 0;
444 tsk->thread.debugreg7 = 0;
445 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
446 clear_tsk_thread_flag(tsk, TIF_DEBUG);
448 * Forget coprocessor state..
450 clear_fpu(tsk);
451 clear_used_math();
454 void release_thread(struct task_struct *dead_task)
456 BUG_ON(dead_task->mm);
457 release_vm86_irqs(dead_task);
461 * This gets called before we allocate a new thread and copy
462 * the current task into it.
464 void prepare_to_copy(struct task_struct *tsk)
466 unlazy_fpu(tsk);
469 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
470 unsigned long unused,
471 struct task_struct * p, struct pt_regs * regs)
473 struct pt_regs * childregs;
474 struct task_struct *tsk;
475 int err;
477 childregs = task_pt_regs(p);
478 *childregs = *regs;
479 childregs->ax = 0;
480 childregs->sp = sp;
482 p->thread.sp = (unsigned long) childregs;
483 p->thread.sp0 = (unsigned long) (childregs+1);
485 p->thread.ip = (unsigned long) ret_from_fork;
487 savesegment(gs, p->thread.gs);
489 tsk = current;
490 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
491 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
492 IO_BITMAP_BYTES, GFP_KERNEL);
493 if (!p->thread.io_bitmap_ptr) {
494 p->thread.io_bitmap_max = 0;
495 return -ENOMEM;
497 set_tsk_thread_flag(p, TIF_IO_BITMAP);
500 err = 0;
503 * Set a new TLS for the child thread?
505 if (clone_flags & CLONE_SETTLS)
506 err = do_set_thread_area(p, -1,
507 (struct user_desc __user *)childregs->si, 0);
509 if (err && p->thread.io_bitmap_ptr) {
510 kfree(p->thread.io_bitmap_ptr);
511 p->thread.io_bitmap_max = 0;
513 return err;
516 #ifdef CONFIG_SECCOMP
517 static void hard_disable_TSC(void)
519 write_cr4(read_cr4() | X86_CR4_TSD);
521 void disable_TSC(void)
523 preempt_disable();
524 if (!test_and_set_thread_flag(TIF_NOTSC))
526 * Must flip the CPU state synchronously with
527 * TIF_NOTSC in the current running context.
529 hard_disable_TSC();
530 preempt_enable();
532 static void hard_enable_TSC(void)
534 write_cr4(read_cr4() & ~X86_CR4_TSD);
536 #endif /* CONFIG_SECCOMP */
538 static noinline void
539 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
540 struct tss_struct *tss)
542 struct thread_struct *prev, *next;
543 unsigned long debugctl;
545 prev = &prev_p->thread;
546 next = &next_p->thread;
548 debugctl = prev->debugctlmsr;
549 if (next->ds_area_msr != prev->ds_area_msr) {
550 /* we clear debugctl to make sure DS
551 * is not in use when we change it */
552 debugctl = 0;
553 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
554 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
557 if (next->debugctlmsr != debugctl)
558 wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
560 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
561 set_debugreg(next->debugreg0, 0);
562 set_debugreg(next->debugreg1, 1);
563 set_debugreg(next->debugreg2, 2);
564 set_debugreg(next->debugreg3, 3);
565 /* no 4 and 5 */
566 set_debugreg(next->debugreg6, 6);
567 set_debugreg(next->debugreg7, 7);
570 #ifdef CONFIG_SECCOMP
571 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
572 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
573 /* prev and next are different */
574 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
575 hard_disable_TSC();
576 else
577 hard_enable_TSC();
579 #endif
581 #ifdef X86_BTS
582 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
583 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
585 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
586 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
587 #endif
590 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
592 * Disable the bitmap via an invalid offset. We still cache
593 * the previous bitmap owner and the IO bitmap contents:
595 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
596 return;
599 if (likely(next == tss->io_bitmap_owner)) {
601 * Previous owner of the bitmap (hence the bitmap content)
602 * matches the next task, we dont have to do anything but
603 * to set a valid offset in the TSS:
605 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
606 return;
609 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
610 * and we let the task to get a GPF in case an I/O instruction
611 * is performed. The handler of the GPF will verify that the
612 * faulting task has a valid I/O bitmap and, it true, does the
613 * real copy and restart the instruction. This will save us
614 * redundant copies when the currently switched task does not
615 * perform any I/O during its timeslice.
617 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
621 * switch_to(x,yn) should switch tasks from x to y.
623 * We fsave/fwait so that an exception goes off at the right time
624 * (as a call from the fsave or fwait in effect) rather than to
625 * the wrong process. Lazy FP saving no longer makes any sense
626 * with modern CPU's, and this simplifies a lot of things (SMP
627 * and UP become the same).
629 * NOTE! We used to use the x86 hardware context switching. The
630 * reason for not using it any more becomes apparent when you
631 * try to recover gracefully from saved state that is no longer
632 * valid (stale segment register values in particular). With the
633 * hardware task-switch, there is no way to fix up bad state in
634 * a reasonable manner.
636 * The fact that Intel documents the hardware task-switching to
637 * be slow is a fairly red herring - this code is not noticeably
638 * faster. However, there _is_ some room for improvement here,
639 * so the performance issues may eventually be a valid point.
640 * More important, however, is the fact that this allows us much
641 * more flexibility.
643 * The return value (in %ax) will be the "prev" task after
644 * the task-switch, and shows up in ret_from_fork in entry.S,
645 * for example.
647 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
649 struct thread_struct *prev = &prev_p->thread,
650 *next = &next_p->thread;
651 int cpu = smp_processor_id();
652 struct tss_struct *tss = &per_cpu(init_tss, cpu);
654 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
656 __unlazy_fpu(prev_p);
659 /* we're going to use this soon, after a few expensive things */
660 if (next_p->fpu_counter > 5)
661 prefetch(&next->i387.fxsave);
664 * Reload esp0.
666 load_sp0(tss, next);
669 * Save away %gs. No need to save %fs, as it was saved on the
670 * stack on entry. No need to save %es and %ds, as those are
671 * always kernel segments while inside the kernel. Doing this
672 * before setting the new TLS descriptors avoids the situation
673 * where we temporarily have non-reloadable segments in %fs
674 * and %gs. This could be an issue if the NMI handler ever
675 * used %fs or %gs (it does not today), or if the kernel is
676 * running inside of a hypervisor layer.
678 savesegment(gs, prev->gs);
681 * Load the per-thread Thread-Local Storage descriptor.
683 load_TLS(next, cpu);
686 * Restore IOPL if needed. In normal use, the flags restore
687 * in the switch assembly will handle this. But if the kernel
688 * is running virtualized at a non-zero CPL, the popf will
689 * not restore flags, so it must be done in a separate step.
691 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
692 set_iopl_mask(next->iopl);
695 * Now maybe handle debug registers and/or IO bitmaps
697 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
698 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
699 __switch_to_xtra(prev_p, next_p, tss);
702 * Leave lazy mode, flushing any hypercalls made here.
703 * This must be done before restoring TLS segments so
704 * the GDT and LDT are properly updated, and must be
705 * done before math_state_restore, so the TS bit is up
706 * to date.
708 arch_leave_lazy_cpu_mode();
710 /* If the task has used fpu the last 5 timeslices, just do a full
711 * restore of the math state immediately to avoid the trap; the
712 * chances of needing FPU soon are obviously high now
714 if (next_p->fpu_counter > 5)
715 math_state_restore();
718 * Restore %gs if needed (which is common)
720 if (prev->gs | next->gs)
721 loadsegment(gs, next->gs);
723 x86_write_percpu(current_task, next_p);
725 return prev_p;
728 asmlinkage int sys_fork(struct pt_regs regs)
730 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
733 asmlinkage int sys_clone(struct pt_regs regs)
735 unsigned long clone_flags;
736 unsigned long newsp;
737 int __user *parent_tidptr, *child_tidptr;
739 clone_flags = regs.bx;
740 newsp = regs.cx;
741 parent_tidptr = (int __user *)regs.dx;
742 child_tidptr = (int __user *)regs.di;
743 if (!newsp)
744 newsp = regs.sp;
745 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
749 * This is trivial, and on the face of it looks like it
750 * could equally well be done in user mode.
752 * Not so, for quite unobvious reasons - register pressure.
753 * In user mode vfork() cannot have a stack frame, and if
754 * done by calling the "clone()" system call directly, you
755 * do not have enough call-clobbered registers to hold all
756 * the information you need.
758 asmlinkage int sys_vfork(struct pt_regs regs)
760 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
764 * sys_execve() executes a new program.
766 asmlinkage int sys_execve(struct pt_regs regs)
768 int error;
769 char * filename;
771 filename = getname((char __user *) regs.bx);
772 error = PTR_ERR(filename);
773 if (IS_ERR(filename))
774 goto out;
775 error = do_execve(filename,
776 (char __user * __user *) regs.cx,
777 (char __user * __user *) regs.dx,
778 &regs);
779 if (error == 0) {
780 /* Make sure we don't return using sysenter.. */
781 set_thread_flag(TIF_IRET);
783 putname(filename);
784 out:
785 return error;
788 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
789 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
791 unsigned long get_wchan(struct task_struct *p)
793 unsigned long bp, sp, ip;
794 unsigned long stack_page;
795 int count = 0;
796 if (!p || p == current || p->state == TASK_RUNNING)
797 return 0;
798 stack_page = (unsigned long)task_stack_page(p);
799 sp = p->thread.sp;
800 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
801 return 0;
802 /* include/asm-i386/system.h:switch_to() pushes bp last. */
803 bp = *(unsigned long *) sp;
804 do {
805 if (bp < stack_page || bp > top_ebp+stack_page)
806 return 0;
807 ip = *(unsigned long *) (bp+4);
808 if (!in_sched_functions(ip))
809 return ip;
810 bp = *(unsigned long *) bp;
811 } while (count++ < 16);
812 return 0;
815 unsigned long arch_align_stack(unsigned long sp)
817 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
818 sp -= get_random_int() % 8192;
819 return sp & ~0xf;
822 unsigned long arch_randomize_brk(struct mm_struct *mm)
824 unsigned long range_end = mm->brk + 0x02000000;
825 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;