Linux 2.6.25.3
[linux/fpc-iii.git] / arch / x86 / mach-voyager / voyager_smp.c
blob3cc8eb2f36a995ad57252be8310ece8fcd32327a
1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * linux/arch/i386/kernel/voyager_smp.c
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/bootmem.h>
22 #include <linux/completion.h>
23 #include <asm/desc.h>
24 #include <asm/voyager.h>
25 #include <asm/vic.h>
26 #include <asm/mtrr.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlbflush.h>
29 #include <asm/arch_hooks.h>
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
36 {[0 ... NR_CPUS-1] = ~0UL };
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39 * indexed physically */
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
41 EXPORT_PER_CPU_SYMBOL(cpu_info);
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
58 /* Total count of live CPUs, used in process.c to display
59 * the CPU information and in irq.c for the per CPU irq
60 * activity count. Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
63 /* Have we found an SMP box - used by time.c to do the profiling
64 interrupt for timeslicing; do not set to 1 until the per CPU timer
65 interrupt is active */
66 int smp_found_config = 0;
68 /* Used for the invalidate map that's also checked in the spinlock */
69 static volatile unsigned long smp_invalidate_needed;
71 /* Bitmask of currently online CPUs - used by setup.c for
72 /proc/cpuinfo, visible externally but still physical */
73 cpumask_t cpu_online_map = CPU_MASK_NONE;
74 EXPORT_SYMBOL(cpu_online_map);
76 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
77 * by scheduler but indexed physically */
78 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
80 /* The internal functions */
81 static void send_CPI(__u32 cpuset, __u8 cpi);
82 static void ack_CPI(__u8 cpi);
83 static int ack_QIC_CPI(__u8 cpi);
84 static void ack_special_QIC_CPI(__u8 cpi);
85 static void ack_VIC_CPI(__u8 cpi);
86 static void send_CPI_allbutself(__u8 cpi);
87 static void mask_vic_irq(unsigned int irq);
88 static void unmask_vic_irq(unsigned int irq);
89 static unsigned int startup_vic_irq(unsigned int irq);
90 static void enable_local_vic_irq(unsigned int irq);
91 static void disable_local_vic_irq(unsigned int irq);
92 static void before_handle_vic_irq(unsigned int irq);
93 static void after_handle_vic_irq(unsigned int irq);
94 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
95 static void ack_vic_irq(unsigned int irq);
96 static void vic_enable_cpi(void);
97 static void do_boot_cpu(__u8 cpuid);
98 static void do_quad_bootstrap(void);
100 int hard_smp_processor_id(void);
101 int safe_smp_processor_id(void);
103 /* Inline functions */
104 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
106 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
107 (smp_processor_id() << 16) + cpi;
110 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
112 int cpu;
114 for_each_online_cpu(cpu) {
115 if (cpuset & (1 << cpu)) {
116 #ifdef VOYAGER_DEBUG
117 if (!cpu_isset(cpu, cpu_online_map))
118 VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
119 "cpu_online_map\n",
120 hard_smp_processor_id(), cpi, cpu));
121 #endif
122 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
127 static inline void wrapper_smp_local_timer_interrupt(void)
129 irq_enter();
130 smp_local_timer_interrupt();
131 irq_exit();
134 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
136 if (voyager_quad_processors & (1 << cpu))
137 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
138 else
139 send_CPI(1 << cpu, cpi);
142 static inline void send_CPI_allbutself(__u8 cpi)
144 __u8 cpu = smp_processor_id();
145 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
146 send_CPI(mask, cpi);
149 static inline int is_cpu_quad(void)
151 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
152 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
155 static inline int is_cpu_extended(void)
157 __u8 cpu = hard_smp_processor_id();
159 return (voyager_extended_vic_processors & (1 << cpu));
162 static inline int is_cpu_vic_boot(void)
164 __u8 cpu = hard_smp_processor_id();
166 return (voyager_extended_vic_processors
167 & voyager_allowed_boot_processors & (1 << cpu));
170 static inline void ack_CPI(__u8 cpi)
172 switch (cpi) {
173 case VIC_CPU_BOOT_CPI:
174 if (is_cpu_quad() && !is_cpu_vic_boot())
175 ack_QIC_CPI(cpi);
176 else
177 ack_VIC_CPI(cpi);
178 break;
179 case VIC_SYS_INT:
180 case VIC_CMN_INT:
181 /* These are slightly strange. Even on the Quad card,
182 * They are vectored as VIC CPIs */
183 if (is_cpu_quad())
184 ack_special_QIC_CPI(cpi);
185 else
186 ack_VIC_CPI(cpi);
187 break;
188 default:
189 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
190 break;
194 /* local variables */
196 /* The VIC IRQ descriptors -- these look almost identical to the
197 * 8259 IRQs except that masks and things must be kept per processor
199 static struct irq_chip vic_chip = {
200 .name = "VIC",
201 .startup = startup_vic_irq,
202 .mask = mask_vic_irq,
203 .unmask = unmask_vic_irq,
204 .set_affinity = set_vic_irq_affinity,
207 /* used to count up as CPUs are brought on line (starts at 0) */
208 static int cpucount = 0;
210 /* steal a page from the bottom of memory for the trampoline and
211 * squirrel its address away here. This will be in kernel virtual
212 * space */
213 static __u32 trampoline_base;
215 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
216 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
217 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
218 static DEFINE_PER_CPU(int, prof_counter) = 1;
220 /* the map used to check if a CPU has booted */
221 static __u32 cpu_booted_map;
223 /* the synchronize flag used to hold all secondary CPUs spinning in
224 * a tight loop until the boot sequence is ready for them */
225 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
227 /* This is for the new dynamic CPU boot code */
228 cpumask_t cpu_callin_map = CPU_MASK_NONE;
229 cpumask_t cpu_callout_map = CPU_MASK_NONE;
230 cpumask_t cpu_possible_map = CPU_MASK_NONE;
231 EXPORT_SYMBOL(cpu_possible_map);
233 /* The per processor IRQ masks (these are usually kept in sync) */
234 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
236 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
237 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
239 /* Lock for enable/disable of VIC interrupts */
240 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
242 /* The boot processor is correctly set up in PC mode when it
243 * comes up, but the secondaries need their master/slave 8259
244 * pairs initializing correctly */
246 /* Interrupt counters (per cpu) and total - used to try to
247 * even up the interrupt handling routines */
248 static long vic_intr_total = 0;
249 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
250 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
252 /* Since we can only use CPI0, we fake all the other CPIs */
253 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
255 /* debugging routine to read the isr of the cpu's pic */
256 static inline __u16 vic_read_isr(void)
258 __u16 isr;
260 outb(0x0b, 0xa0);
261 isr = inb(0xa0) << 8;
262 outb(0x0b, 0x20);
263 isr |= inb(0x20);
265 return isr;
268 static __init void qic_setup(void)
270 if (!is_cpu_quad()) {
271 /* not a quad, no setup */
272 return;
274 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
275 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
277 if (is_cpu_extended()) {
278 /* the QIC duplicate of the VIC base register */
279 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
280 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
282 /* FIXME: should set up the QIC timer and memory parity
283 * error vectors here */
287 static __init void vic_setup_pic(void)
289 outb(1, VIC_REDIRECT_REGISTER_1);
290 /* clear the claim registers for dynamic routing */
291 outb(0, VIC_CLAIM_REGISTER_0);
292 outb(0, VIC_CLAIM_REGISTER_1);
294 outb(0, VIC_PRIORITY_REGISTER);
295 /* Set the Primary and Secondary Microchannel vector
296 * bases to be the same as the ordinary interrupts
298 * FIXME: This would be more efficient using separate
299 * vectors. */
300 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
301 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
302 /* Now initiallise the master PIC belonging to this CPU by
303 * sending the four ICWs */
305 /* ICW1: level triggered, ICW4 needed */
306 outb(0x19, 0x20);
308 /* ICW2: vector base */
309 outb(FIRST_EXTERNAL_VECTOR, 0x21);
311 /* ICW3: slave at line 2 */
312 outb(0x04, 0x21);
314 /* ICW4: 8086 mode */
315 outb(0x01, 0x21);
317 /* now the same for the slave PIC */
319 /* ICW1: level trigger, ICW4 needed */
320 outb(0x19, 0xA0);
322 /* ICW2: slave vector base */
323 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
325 /* ICW3: slave ID */
326 outb(0x02, 0xA1);
328 /* ICW4: 8086 mode */
329 outb(0x01, 0xA1);
332 static void do_quad_bootstrap(void)
334 if (is_cpu_quad() && is_cpu_vic_boot()) {
335 int i;
336 unsigned long flags;
337 __u8 cpuid = hard_smp_processor_id();
339 local_irq_save(flags);
341 for (i = 0; i < 4; i++) {
342 /* FIXME: this would be >>3 &0x7 on the 32 way */
343 if (((cpuid >> 2) & 0x03) == i)
344 /* don't lower our own mask! */
345 continue;
347 /* masquerade as local Quad CPU */
348 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
349 /* enable the startup CPI */
350 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
351 /* restore cpu id */
352 outb(0, QIC_PROCESSOR_ID);
354 local_irq_restore(flags);
358 /* Set up all the basic stuff: read the SMP config and make all the
359 * SMP information reflect only the boot cpu. All others will be
360 * brought on-line later. */
361 void __init find_smp_config(void)
363 int i;
365 boot_cpu_id = hard_smp_processor_id();
367 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
369 /* initialize the CPU structures (moved from smp_boot_cpus) */
370 for (i = 0; i < NR_CPUS; i++) {
371 cpu_irq_affinity[i] = ~0;
373 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
375 /* The boot CPU must be extended */
376 voyager_extended_vic_processors = 1 << boot_cpu_id;
377 /* initially, all of the first 8 CPUs can boot */
378 voyager_allowed_boot_processors = 0xff;
379 /* set up everything for just this CPU, we can alter
380 * this as we start the other CPUs later */
381 /* now get the CPU disposition from the extended CMOS */
382 cpus_addr(phys_cpu_present_map)[0] =
383 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
384 cpus_addr(phys_cpu_present_map)[0] |=
385 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
386 cpus_addr(phys_cpu_present_map)[0] |=
387 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
388 2) << 16;
389 cpus_addr(phys_cpu_present_map)[0] |=
390 voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
391 3) << 24;
392 cpu_possible_map = phys_cpu_present_map;
393 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
394 cpus_addr(phys_cpu_present_map)[0]);
395 /* Here we set up the VIC to enable SMP */
396 /* enable the CPIs by writing the base vector to their register */
397 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
398 outb(1, VIC_REDIRECT_REGISTER_1);
399 /* set the claim registers for static routing --- Boot CPU gets
400 * all interrupts untill all other CPUs started */
401 outb(0xff, VIC_CLAIM_REGISTER_0);
402 outb(0xff, VIC_CLAIM_REGISTER_1);
403 /* Set the Primary and Secondary Microchannel vector
404 * bases to be the same as the ordinary interrupts
406 * FIXME: This would be more efficient using separate
407 * vectors. */
408 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
409 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
411 /* Finally tell the firmware that we're driving */
412 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
413 VOYAGER_SUS_IN_CONTROL_PORT);
415 current_thread_info()->cpu = boot_cpu_id;
416 x86_write_percpu(cpu_number, boot_cpu_id);
420 * The bootstrap kernel entry code has set these up. Save them
421 * for a given CPU, id is physical */
422 void __init smp_store_cpu_info(int id)
424 struct cpuinfo_x86 *c = &cpu_data(id);
426 *c = boot_cpu_data;
428 identify_secondary_cpu(c);
431 /* set up the trampoline and return the physical address of the code */
432 static __u32 __init setup_trampoline(void)
434 /* these two are global symbols in trampoline.S */
435 extern const __u8 trampoline_end[];
436 extern const __u8 trampoline_data[];
438 memcpy((__u8 *) trampoline_base, trampoline_data,
439 trampoline_end - trampoline_data);
440 return virt_to_phys((__u8 *) trampoline_base);
443 /* Routine initially called when a non-boot CPU is brought online */
444 static void __init start_secondary(void *unused)
446 __u8 cpuid = hard_smp_processor_id();
448 cpu_init();
450 /* OK, we're in the routine */
451 ack_CPI(VIC_CPU_BOOT_CPI);
453 /* setup the 8259 master slave pair belonging to this CPU ---
454 * we won't actually receive any until the boot CPU
455 * relinquishes it's static routing mask */
456 vic_setup_pic();
458 qic_setup();
460 if (is_cpu_quad() && !is_cpu_vic_boot()) {
461 /* clear the boot CPI */
462 __u8 dummy;
464 dummy =
465 voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
466 printk("read dummy %d\n", dummy);
469 /* lower the mask to receive CPIs */
470 vic_enable_cpi();
472 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
474 /* enable interrupts */
475 local_irq_enable();
477 /* get our bogomips */
478 calibrate_delay();
480 /* save our processor parameters */
481 smp_store_cpu_info(cpuid);
483 /* if we're a quad, we may need to bootstrap other CPUs */
484 do_quad_bootstrap();
486 /* FIXME: this is rather a poor hack to prevent the CPU
487 * activating softirqs while it's supposed to be waiting for
488 * permission to proceed. Without this, the new per CPU stuff
489 * in the softirqs will fail */
490 local_irq_disable();
491 cpu_set(cpuid, cpu_callin_map);
493 /* signal that we're done */
494 cpu_booted_map = 1;
496 while (!cpu_isset(cpuid, smp_commenced_mask))
497 rep_nop();
498 local_irq_enable();
500 local_flush_tlb();
502 cpu_set(cpuid, cpu_online_map);
503 wmb();
504 cpu_idle();
507 /* Routine to kick start the given CPU and wait for it to report ready
508 * (or timeout in startup). When this routine returns, the requested
509 * CPU is either fully running and configured or known to be dead.
511 * We call this routine sequentially 1 CPU at a time, so no need for
512 * locking */
514 static void __init do_boot_cpu(__u8 cpu)
516 struct task_struct *idle;
517 int timeout;
518 unsigned long flags;
519 int quad_boot = (1 << cpu) & voyager_quad_processors
520 & ~(voyager_extended_vic_processors
521 & voyager_allowed_boot_processors);
523 /* This is an area in head.S which was used to set up the
524 * initial kernel stack. We need to alter this to give the
525 * booting CPU a new stack (taken from its idle process) */
526 extern struct {
527 __u8 *sp;
528 unsigned short ss;
529 } stack_start;
530 /* This is the format of the CPI IDT gate (in real mode) which
531 * we're hijacking to boot the CPU */
532 union IDTFormat {
533 struct seg {
534 __u16 Offset;
535 __u16 Segment;
536 } idt;
537 __u32 val;
538 } hijack_source;
540 __u32 *hijack_vector;
541 __u32 start_phys_address = setup_trampoline();
543 /* There's a clever trick to this: The linux trampoline is
544 * compiled to begin at absolute location zero, so make the
545 * address zero but have the data segment selector compensate
546 * for the actual address */
547 hijack_source.idt.Offset = start_phys_address & 0x000F;
548 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
550 cpucount++;
551 alternatives_smp_switch(1);
553 idle = fork_idle(cpu);
554 if (IS_ERR(idle))
555 panic("failed fork for CPU%d", cpu);
556 idle->thread.ip = (unsigned long)start_secondary;
557 /* init_tasks (in sched.c) is indexed logically */
558 stack_start.sp = (void *)idle->thread.sp;
560 init_gdt(cpu);
561 per_cpu(current_task, cpu) = idle;
562 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
563 irq_ctx_init(cpu);
565 /* Note: Don't modify initial ss override */
566 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
567 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
568 hijack_source.idt.Offset, stack_start.sp));
570 /* init lowmem identity mapping */
571 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
572 min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
573 flush_tlb_all();
575 if (quad_boot) {
576 printk("CPU %d: non extended Quad boot\n", cpu);
577 hijack_vector =
578 (__u32 *)
579 phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
580 *hijack_vector = hijack_source.val;
581 } else {
582 printk("CPU%d: extended VIC boot\n", cpu);
583 hijack_vector =
584 (__u32 *)
585 phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
586 *hijack_vector = hijack_source.val;
587 /* VIC errata, may also receive interrupt at this address */
588 hijack_vector =
589 (__u32 *)
590 phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
591 VIC_DEFAULT_CPI_BASE) * 4);
592 *hijack_vector = hijack_source.val;
594 /* All non-boot CPUs start with interrupts fully masked. Need
595 * to lower the mask of the CPI we're about to send. We do
596 * this in the VIC by masquerading as the processor we're
597 * about to boot and lowering its interrupt mask */
598 local_irq_save(flags);
599 if (quad_boot) {
600 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
601 } else {
602 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
603 /* here we're altering registers belonging to `cpu' */
605 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
606 /* now go back to our original identity */
607 outb(boot_cpu_id, VIC_PROCESSOR_ID);
609 /* and boot the CPU */
611 send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
613 cpu_booted_map = 0;
614 local_irq_restore(flags);
616 /* now wait for it to become ready (or timeout) */
617 for (timeout = 0; timeout < 50000; timeout++) {
618 if (cpu_booted_map)
619 break;
620 udelay(100);
622 /* reset the page table */
623 zap_low_mappings();
625 if (cpu_booted_map) {
626 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
627 cpu, smp_processor_id()));
629 printk("CPU%d: ", cpu);
630 print_cpu_info(&cpu_data(cpu));
631 wmb();
632 cpu_set(cpu, cpu_callout_map);
633 cpu_set(cpu, cpu_present_map);
634 } else {
635 printk("CPU%d FAILED TO BOOT: ", cpu);
636 if (*
637 ((volatile unsigned char *)phys_to_virt(start_phys_address))
638 == 0xA5)
639 printk("Stuck.\n");
640 else
641 printk("Not responding.\n");
643 cpucount--;
647 void __init smp_boot_cpus(void)
649 int i;
651 /* CAT BUS initialisation must be done after the memory */
652 /* FIXME: The L4 has a catbus too, it just needs to be
653 * accessed in a totally different way */
654 if (voyager_level == 5) {
655 voyager_cat_init();
657 /* now that the cat has probed the Voyager System Bus, sanity
658 * check the cpu map */
659 if (((voyager_quad_processors | voyager_extended_vic_processors)
660 & cpus_addr(phys_cpu_present_map)[0]) !=
661 cpus_addr(phys_cpu_present_map)[0]) {
662 /* should panic */
663 printk("\n\n***WARNING*** "
664 "Sanity check of CPU present map FAILED\n");
666 } else if (voyager_level == 4)
667 voyager_extended_vic_processors =
668 cpus_addr(phys_cpu_present_map)[0];
670 /* this sets up the idle task to run on the current cpu */
671 voyager_extended_cpus = 1;
672 /* Remove the global_irq_holder setting, it triggers a BUG() on
673 * schedule at the moment */
674 //global_irq_holder = boot_cpu_id;
676 /* FIXME: Need to do something about this but currently only works
677 * on CPUs with a tsc which none of mine have.
678 smp_tune_scheduling();
680 smp_store_cpu_info(boot_cpu_id);
681 printk("CPU%d: ", boot_cpu_id);
682 print_cpu_info(&cpu_data(boot_cpu_id));
684 if (is_cpu_quad()) {
685 /* booting on a Quad CPU */
686 printk("VOYAGER SMP: Boot CPU is Quad\n");
687 qic_setup();
688 do_quad_bootstrap();
691 /* enable our own CPIs */
692 vic_enable_cpi();
694 cpu_set(boot_cpu_id, cpu_online_map);
695 cpu_set(boot_cpu_id, cpu_callout_map);
697 /* loop over all the extended VIC CPUs and boot them. The
698 * Quad CPUs must be bootstrapped by their extended VIC cpu */
699 for (i = 0; i < NR_CPUS; i++) {
700 if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
701 continue;
702 do_boot_cpu(i);
703 /* This udelay seems to be needed for the Quad boots
704 * don't remove unless you know what you're doing */
705 udelay(1000);
707 /* we could compute the total bogomips here, but why bother?,
708 * Code added from smpboot.c */
710 unsigned long bogosum = 0;
711 for (i = 0; i < NR_CPUS; i++)
712 if (cpu_isset(i, cpu_online_map))
713 bogosum += cpu_data(i).loops_per_jiffy;
714 printk(KERN_INFO "Total of %d processors activated "
715 "(%lu.%02lu BogoMIPS).\n",
716 cpucount + 1, bogosum / (500000 / HZ),
717 (bogosum / (5000 / HZ)) % 100);
719 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
720 printk("VOYAGER: Extended (interrupt handling CPUs): "
721 "%d, non-extended: %d\n", voyager_extended_cpus,
722 num_booting_cpus() - voyager_extended_cpus);
723 /* that's it, switch to symmetric mode */
724 outb(0, VIC_PRIORITY_REGISTER);
725 outb(0, VIC_CLAIM_REGISTER_0);
726 outb(0, VIC_CLAIM_REGISTER_1);
728 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
731 /* Reload the secondary CPUs task structure (this function does not
732 * return ) */
733 void __init initialize_secondary(void)
735 #if 0
736 // AC kernels only
737 set_current(hard_get_current());
738 #endif
741 * We don't actually need to load the full TSS,
742 * basically just the stack pointer and the eip.
745 asm volatile ("movl %0,%%esp\n\t"
746 "jmp *%1"::"r" (current->thread.sp),
747 "r"(current->thread.ip));
750 /* handle a Voyager SYS_INT -- If we don't, the base board will
751 * panic the system.
753 * System interrupts occur because some problem was detected on the
754 * various busses. To find out what you have to probe all the
755 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
756 void smp_vic_sys_interrupt(struct pt_regs *regs)
758 ack_CPI(VIC_SYS_INT);
759 printk("Voyager SYSTEM INTERRUPT\n");
762 /* Handle a voyager CMN_INT; These interrupts occur either because of
763 * a system status change or because a single bit memory error
764 * occurred. FIXME: At the moment, ignore all this. */
765 void smp_vic_cmn_interrupt(struct pt_regs *regs)
767 static __u8 in_cmn_int = 0;
768 static DEFINE_SPINLOCK(cmn_int_lock);
770 /* common ints are broadcast, so make sure we only do this once */
771 _raw_spin_lock(&cmn_int_lock);
772 if (in_cmn_int)
773 goto unlock_end;
775 in_cmn_int++;
776 _raw_spin_unlock(&cmn_int_lock);
778 VDEBUG(("Voyager COMMON INTERRUPT\n"));
780 if (voyager_level == 5)
781 voyager_cat_do_common_interrupt();
783 _raw_spin_lock(&cmn_int_lock);
784 in_cmn_int = 0;
785 unlock_end:
786 _raw_spin_unlock(&cmn_int_lock);
787 ack_CPI(VIC_CMN_INT);
791 * Reschedule call back. Nothing to do, all the work is done
792 * automatically when we return from the interrupt. */
793 static void smp_reschedule_interrupt(void)
795 /* do nothing */
798 static struct mm_struct *flush_mm;
799 static unsigned long flush_va;
800 static DEFINE_SPINLOCK(tlbstate_lock);
803 * We cannot call mmdrop() because we are in interrupt context,
804 * instead update mm->cpu_vm_mask.
806 * We need to reload %cr3 since the page tables may be going
807 * away from under us..
809 static inline void voyager_leave_mm(unsigned long cpu)
811 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
812 BUG();
813 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
814 load_cr3(swapper_pg_dir);
818 * Invalidate call-back
820 static void smp_invalidate_interrupt(void)
822 __u8 cpu = smp_processor_id();
824 if (!test_bit(cpu, &smp_invalidate_needed))
825 return;
826 /* This will flood messages. Don't uncomment unless you see
827 * Problems with cross cpu invalidation
828 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
829 smp_processor_id()));
832 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
833 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
834 if (flush_va == TLB_FLUSH_ALL)
835 local_flush_tlb();
836 else
837 __flush_tlb_one(flush_va);
838 } else
839 voyager_leave_mm(cpu);
841 smp_mb__before_clear_bit();
842 clear_bit(cpu, &smp_invalidate_needed);
843 smp_mb__after_clear_bit();
846 /* All the new flush operations for 2.4 */
848 /* This routine is called with a physical cpu mask */
849 static void
850 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
851 unsigned long va)
853 int stuck = 50000;
855 if (!cpumask)
856 BUG();
857 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
858 BUG();
859 if (cpumask & (1 << smp_processor_id()))
860 BUG();
861 if (!mm)
862 BUG();
864 spin_lock(&tlbstate_lock);
866 flush_mm = mm;
867 flush_va = va;
868 atomic_set_mask(cpumask, &smp_invalidate_needed);
870 * We have to send the CPI only to
871 * CPUs affected.
873 send_CPI(cpumask, VIC_INVALIDATE_CPI);
875 while (smp_invalidate_needed) {
876 mb();
877 if (--stuck == 0) {
878 printk("***WARNING*** Stuck doing invalidate CPI "
879 "(CPU%d)\n", smp_processor_id());
880 break;
884 /* Uncomment only to debug invalidation problems
885 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
888 flush_mm = NULL;
889 flush_va = 0;
890 spin_unlock(&tlbstate_lock);
893 void flush_tlb_current_task(void)
895 struct mm_struct *mm = current->mm;
896 unsigned long cpu_mask;
898 preempt_disable();
900 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
901 local_flush_tlb();
902 if (cpu_mask)
903 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
905 preempt_enable();
908 void flush_tlb_mm(struct mm_struct *mm)
910 unsigned long cpu_mask;
912 preempt_disable();
914 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
916 if (current->active_mm == mm) {
917 if (current->mm)
918 local_flush_tlb();
919 else
920 voyager_leave_mm(smp_processor_id());
922 if (cpu_mask)
923 voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
925 preempt_enable();
928 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
930 struct mm_struct *mm = vma->vm_mm;
931 unsigned long cpu_mask;
933 preempt_disable();
935 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
936 if (current->active_mm == mm) {
937 if (current->mm)
938 __flush_tlb_one(va);
939 else
940 voyager_leave_mm(smp_processor_id());
943 if (cpu_mask)
944 voyager_flush_tlb_others(cpu_mask, mm, va);
946 preempt_enable();
949 EXPORT_SYMBOL(flush_tlb_page);
951 /* enable the requested IRQs */
952 static void smp_enable_irq_interrupt(void)
954 __u8 irq;
955 __u8 cpu = get_cpu();
957 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
958 vic_irq_enable_mask[cpu]));
960 spin_lock(&vic_irq_lock);
961 for (irq = 0; irq < 16; irq++) {
962 if (vic_irq_enable_mask[cpu] & (1 << irq))
963 enable_local_vic_irq(irq);
965 vic_irq_enable_mask[cpu] = 0;
966 spin_unlock(&vic_irq_lock);
968 put_cpu_no_resched();
972 * CPU halt call-back
974 static void smp_stop_cpu_function(void *dummy)
976 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
977 cpu_clear(smp_processor_id(), cpu_online_map);
978 local_irq_disable();
979 for (;;)
980 halt();
983 static DEFINE_SPINLOCK(call_lock);
985 struct call_data_struct {
986 void (*func) (void *info);
987 void *info;
988 volatile unsigned long started;
989 volatile unsigned long finished;
990 int wait;
993 static struct call_data_struct *call_data;
995 /* execute a thread on a new CPU. The function to be called must be
996 * previously set up. This is used to schedule a function for
997 * execution on all CPUs - set up the function then broadcast a
998 * function_interrupt CPI to come here on each CPU */
999 static void smp_call_function_interrupt(void)
1001 void (*func) (void *info) = call_data->func;
1002 void *info = call_data->info;
1003 /* must take copy of wait because call_data may be replaced
1004 * unless the function is waiting for us to finish */
1005 int wait = call_data->wait;
1006 __u8 cpu = smp_processor_id();
1009 * Notify initiating CPU that I've grabbed the data and am
1010 * about to execute the function
1012 mb();
1013 if (!test_and_clear_bit(cpu, &call_data->started)) {
1014 /* If the bit wasn't set, this could be a replay */
1015 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion"
1016 " with no call pending\n", cpu);
1017 return;
1020 * At this point the info structure may be out of scope unless wait==1
1022 irq_enter();
1023 (*func) (info);
1024 __get_cpu_var(irq_stat).irq_call_count++;
1025 irq_exit();
1026 if (wait) {
1027 mb();
1028 clear_bit(cpu, &call_data->finished);
1032 static int
1033 voyager_smp_call_function_mask(cpumask_t cpumask,
1034 void (*func) (void *info), void *info, int wait)
1036 struct call_data_struct data;
1037 u32 mask = cpus_addr(cpumask)[0];
1039 mask &= ~(1 << smp_processor_id());
1041 if (!mask)
1042 return 0;
1044 /* Can deadlock when called with interrupts disabled */
1045 WARN_ON(irqs_disabled());
1047 data.func = func;
1048 data.info = info;
1049 data.started = mask;
1050 data.wait = wait;
1051 if (wait)
1052 data.finished = mask;
1054 spin_lock(&call_lock);
1055 call_data = &data;
1056 wmb();
1057 /* Send a message to all other CPUs and wait for them to respond */
1058 send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1060 /* Wait for response */
1061 while (data.started)
1062 barrier();
1064 if (wait)
1065 while (data.finished)
1066 barrier();
1068 spin_unlock(&call_lock);
1070 return 0;
1073 /* Sorry about the name. In an APIC based system, the APICs
1074 * themselves are programmed to send a timer interrupt. This is used
1075 * by linux to reschedule the processor. Voyager doesn't have this,
1076 * so we use the system clock to interrupt one processor, which in
1077 * turn, broadcasts a timer CPI to all the others --- we receive that
1078 * CPI here. We don't use this actually for counting so losing
1079 * ticks doesn't matter
1081 * FIXME: For those CPUs which actually have a local APIC, we could
1082 * try to use it to trigger this interrupt instead of having to
1083 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1084 * no local APIC, so I can't do this
1086 * This function is currently a placeholder and is unused in the code */
1087 void smp_apic_timer_interrupt(struct pt_regs *regs)
1089 struct pt_regs *old_regs = set_irq_regs(regs);
1090 wrapper_smp_local_timer_interrupt();
1091 set_irq_regs(old_regs);
1094 /* All of the QUAD interrupt GATES */
1095 void smp_qic_timer_interrupt(struct pt_regs *regs)
1097 struct pt_regs *old_regs = set_irq_regs(regs);
1098 ack_QIC_CPI(QIC_TIMER_CPI);
1099 wrapper_smp_local_timer_interrupt();
1100 set_irq_regs(old_regs);
1103 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1105 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1106 smp_invalidate_interrupt();
1109 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1111 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1112 smp_reschedule_interrupt();
1115 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1117 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1118 smp_enable_irq_interrupt();
1121 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1123 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1124 smp_call_function_interrupt();
1127 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1129 struct pt_regs *old_regs = set_irq_regs(regs);
1130 __u8 cpu = smp_processor_id();
1132 if (is_cpu_quad())
1133 ack_QIC_CPI(VIC_CPI_LEVEL0);
1134 else
1135 ack_VIC_CPI(VIC_CPI_LEVEL0);
1137 if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1138 wrapper_smp_local_timer_interrupt();
1139 if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1140 smp_invalidate_interrupt();
1141 if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1142 smp_reschedule_interrupt();
1143 if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1144 smp_enable_irq_interrupt();
1145 if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1146 smp_call_function_interrupt();
1147 set_irq_regs(old_regs);
1150 static void do_flush_tlb_all(void *info)
1152 unsigned long cpu = smp_processor_id();
1154 __flush_tlb_all();
1155 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1156 voyager_leave_mm(cpu);
1159 /* flush the TLB of every active CPU in the system */
1160 void flush_tlb_all(void)
1162 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1165 /* used to set up the trampoline for other CPUs when the memory manager
1166 * is sorted out */
1167 void __init smp_alloc_memory(void)
1169 trampoline_base = (__u32) alloc_bootmem_low_pages(PAGE_SIZE);
1170 if (__pa(trampoline_base) >= 0x93000)
1171 BUG();
1174 /* send a reschedule CPI to one CPU by physical CPU number*/
1175 static void voyager_smp_send_reschedule(int cpu)
1177 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1180 int hard_smp_processor_id(void)
1182 __u8 i;
1183 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1184 if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1185 return cpumask & 0x1F;
1187 for (i = 0; i < 8; i++) {
1188 if (cpumask & (1 << i))
1189 return i;
1191 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1192 return 0;
1195 int safe_smp_processor_id(void)
1197 return hard_smp_processor_id();
1200 /* broadcast a halt to all other CPUs */
1201 static void voyager_smp_send_stop(void)
1203 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1206 /* this function is triggered in time.c when a clock tick fires
1207 * we need to re-broadcast the tick to all CPUs */
1208 void smp_vic_timer_interrupt(void)
1210 send_CPI_allbutself(VIC_TIMER_CPI);
1211 smp_local_timer_interrupt();
1214 /* local (per CPU) timer interrupt. It does both profiling and
1215 * process statistics/rescheduling.
1217 * We do profiling in every local tick, statistics/rescheduling
1218 * happen only every 'profiling multiplier' ticks. The default
1219 * multiplier is 1 and it can be changed by writing the new multiplier
1220 * value into /proc/profile.
1222 void smp_local_timer_interrupt(void)
1224 int cpu = smp_processor_id();
1225 long weight;
1227 profile_tick(CPU_PROFILING);
1228 if (--per_cpu(prof_counter, cpu) <= 0) {
1230 * The multiplier may have changed since the last time we got
1231 * to this point as a result of the user writing to
1232 * /proc/profile. In this case we need to adjust the APIC
1233 * timer accordingly.
1235 * Interrupts are already masked off at this point.
1237 per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1238 if (per_cpu(prof_counter, cpu) !=
1239 per_cpu(prof_old_multiplier, cpu)) {
1240 /* FIXME: need to update the vic timer tick here */
1241 per_cpu(prof_old_multiplier, cpu) =
1242 per_cpu(prof_counter, cpu);
1245 update_process_times(user_mode_vm(get_irq_regs()));
1248 if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1249 /* only extended VIC processors participate in
1250 * interrupt distribution */
1251 return;
1254 * We take the 'long' return path, and there every subsystem
1255 * grabs the appropriate locks (kernel lock/ irq lock).
1257 * we might want to decouple profiling from the 'long path',
1258 * and do the profiling totally in assembly.
1260 * Currently this isn't too much of an issue (performance wise),
1261 * we can take more than 100K local irqs per second on a 100 MHz P5.
1264 if ((++vic_tick[cpu] & 0x7) != 0)
1265 return;
1266 /* get here every 16 ticks (about every 1/6 of a second) */
1268 /* Change our priority to give someone else a chance at getting
1269 * the IRQ. The algorithm goes like this:
1271 * In the VIC, the dynamically routed interrupt is always
1272 * handled by the lowest priority eligible (i.e. receiving
1273 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1274 * lowest processor number gets it.
1276 * The priority of a CPU is controlled by a special per-CPU
1277 * VIC priority register which is 3 bits wide 0 being lowest
1278 * and 7 highest priority..
1280 * Therefore we subtract the average number of interrupts from
1281 * the number we've fielded. If this number is negative, we
1282 * lower the activity count and if it is positive, we raise
1283 * it.
1285 * I'm afraid this still leads to odd looking interrupt counts:
1286 * the totals are all roughly equal, but the individual ones
1287 * look rather skewed.
1289 * FIXME: This algorithm is total crap when mixed with SMP
1290 * affinity code since we now try to even up the interrupt
1291 * counts when an affinity binding is keeping them on a
1292 * particular CPU*/
1293 weight = (vic_intr_count[cpu] * voyager_extended_cpus
1294 - vic_intr_total) >> 4;
1295 weight += 4;
1296 if (weight > 7)
1297 weight = 7;
1298 if (weight < 0)
1299 weight = 0;
1301 outb((__u8) weight, VIC_PRIORITY_REGISTER);
1303 #ifdef VOYAGER_DEBUG
1304 if ((vic_tick[cpu] & 0xFFF) == 0) {
1305 /* print this message roughly every 25 secs */
1306 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1307 cpu, vic_tick[cpu], weight);
1309 #endif
1312 /* setup the profiling timer */
1313 int setup_profiling_timer(unsigned int multiplier)
1315 int i;
1317 if ((!multiplier))
1318 return -EINVAL;
1321 * Set the new multiplier for each CPU. CPUs don't start using the
1322 * new values until the next timer interrupt in which they do process
1323 * accounting.
1325 for (i = 0; i < NR_CPUS; ++i)
1326 per_cpu(prof_multiplier, i) = multiplier;
1328 return 0;
1331 /* This is a bit of a mess, but forced on us by the genirq changes
1332 * there's no genirq handler that really does what voyager wants
1333 * so hack it up with the simple IRQ handler */
1334 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1336 before_handle_vic_irq(irq);
1337 handle_simple_irq(irq, desc);
1338 after_handle_vic_irq(irq);
1341 /* The CPIs are handled in the per cpu 8259s, so they must be
1342 * enabled to be received: FIX: enabling the CPIs in the early
1343 * boot sequence interferes with bug checking; enable them later
1344 * on in smp_init */
1345 #define VIC_SET_GATE(cpi, vector) \
1346 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1347 #define QIC_SET_GATE(cpi, vector) \
1348 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1350 void __init smp_intr_init(void)
1352 int i;
1354 /* initialize the per cpu irq mask to all disabled */
1355 for (i = 0; i < NR_CPUS; i++)
1356 vic_irq_mask[i] = 0xFFFF;
1358 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1360 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1361 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1363 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1364 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1365 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1366 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1367 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1369 /* now put the VIC descriptor into the first 48 IRQs
1371 * This is for later: first 16 correspond to PC IRQs; next 16
1372 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1373 for (i = 0; i < 48; i++)
1374 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1377 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1378 * processor to receive CPI */
1379 static void send_CPI(__u32 cpuset, __u8 cpi)
1381 int cpu;
1382 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1384 if (cpi < VIC_START_FAKE_CPI) {
1385 /* fake CPI are only used for booting, so send to the
1386 * extended quads as well---Quads must be VIC booted */
1387 outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1388 return;
1390 if (quad_cpuset)
1391 send_QIC_CPI(quad_cpuset, cpi);
1392 cpuset &= ~quad_cpuset;
1393 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1394 if (cpuset == 0)
1395 return;
1396 for_each_online_cpu(cpu) {
1397 if (cpuset & (1 << cpu))
1398 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1400 if (cpuset)
1401 outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1404 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1405 * set the cache line to shared by reading it.
1407 * DON'T make this inline otherwise the cache line read will be
1408 * optimised away
1409 * */
1410 static int ack_QIC_CPI(__u8 cpi)
1412 __u8 cpu = hard_smp_processor_id();
1414 cpi &= 7;
1416 outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1417 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1420 static void ack_special_QIC_CPI(__u8 cpi)
1422 switch (cpi) {
1423 case VIC_CMN_INT:
1424 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1425 break;
1426 case VIC_SYS_INT:
1427 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1428 break;
1430 /* also clear at the VIC, just in case (nop for non-extended proc) */
1431 ack_VIC_CPI(cpi);
1434 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1435 static void ack_VIC_CPI(__u8 cpi)
1437 #ifdef VOYAGER_DEBUG
1438 unsigned long flags;
1439 __u16 isr;
1440 __u8 cpu = smp_processor_id();
1442 local_irq_save(flags);
1443 isr = vic_read_isr();
1444 if ((isr & (1 << (cpi & 7))) == 0) {
1445 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1447 #endif
1448 /* send specific EOI; the two system interrupts have
1449 * bit 4 set for a separate vector but behave as the
1450 * corresponding 3 bit intr */
1451 outb_p(0x60 | (cpi & 7), 0x20);
1453 #ifdef VOYAGER_DEBUG
1454 if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1455 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1457 local_irq_restore(flags);
1458 #endif
1461 /* cribbed with thanks from irq.c */
1462 #define __byte(x,y) (((unsigned char *)&(y))[x])
1463 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1464 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1466 static unsigned int startup_vic_irq(unsigned int irq)
1468 unmask_vic_irq(irq);
1470 return 0;
1473 /* The enable and disable routines. This is where we run into
1474 * conflicting architectural philosophy. Fundamentally, the voyager
1475 * architecture does not expect to have to disable interrupts globally
1476 * (the IRQ controllers belong to each CPU). The processor masquerade
1477 * which is used to start the system shouldn't be used in a running OS
1478 * since it will cause great confusion if two separate CPUs drive to
1479 * the same IRQ controller (I know, I've tried it).
1481 * The solution is a variant on the NCR lazy SPL design:
1483 * 1) To disable an interrupt, do nothing (other than set the
1484 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1486 * 2) If the interrupt dares to come in, raise the local mask against
1487 * it (this will result in all the CPU masks being raised
1488 * eventually).
1490 * 3) To enable the interrupt, lower the mask on the local CPU and
1491 * broadcast an Interrupt enable CPI which causes all other CPUs to
1492 * adjust their masks accordingly. */
1494 static void unmask_vic_irq(unsigned int irq)
1496 /* linux doesn't to processor-irq affinity, so enable on
1497 * all CPUs we know about */
1498 int cpu = smp_processor_id(), real_cpu;
1499 __u16 mask = (1 << irq);
1500 __u32 processorList = 0;
1501 unsigned long flags;
1503 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1504 irq, cpu, cpu_irq_affinity[cpu]));
1505 spin_lock_irqsave(&vic_irq_lock, flags);
1506 for_each_online_cpu(real_cpu) {
1507 if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1508 continue;
1509 if (!(cpu_irq_affinity[real_cpu] & mask)) {
1510 /* irq has no affinity for this CPU, ignore */
1511 continue;
1513 if (real_cpu == cpu) {
1514 enable_local_vic_irq(irq);
1515 } else if (vic_irq_mask[real_cpu] & mask) {
1516 vic_irq_enable_mask[real_cpu] |= mask;
1517 processorList |= (1 << real_cpu);
1520 spin_unlock_irqrestore(&vic_irq_lock, flags);
1521 if (processorList)
1522 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1525 static void mask_vic_irq(unsigned int irq)
1527 /* lazy disable, do nothing */
1530 static void enable_local_vic_irq(unsigned int irq)
1532 __u8 cpu = smp_processor_id();
1533 __u16 mask = ~(1 << irq);
1534 __u16 old_mask = vic_irq_mask[cpu];
1536 vic_irq_mask[cpu] &= mask;
1537 if (vic_irq_mask[cpu] == old_mask)
1538 return;
1540 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1541 irq, cpu));
1543 if (irq & 8) {
1544 outb_p(cached_A1(cpu), 0xA1);
1545 (void)inb_p(0xA1);
1546 } else {
1547 outb_p(cached_21(cpu), 0x21);
1548 (void)inb_p(0x21);
1552 static void disable_local_vic_irq(unsigned int irq)
1554 __u8 cpu = smp_processor_id();
1555 __u16 mask = (1 << irq);
1556 __u16 old_mask = vic_irq_mask[cpu];
1558 if (irq == 7)
1559 return;
1561 vic_irq_mask[cpu] |= mask;
1562 if (old_mask == vic_irq_mask[cpu])
1563 return;
1565 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1566 irq, cpu));
1568 if (irq & 8) {
1569 outb_p(cached_A1(cpu), 0xA1);
1570 (void)inb_p(0xA1);
1571 } else {
1572 outb_p(cached_21(cpu), 0x21);
1573 (void)inb_p(0x21);
1577 /* The VIC is level triggered, so the ack can only be issued after the
1578 * interrupt completes. However, we do Voyager lazy interrupt
1579 * handling here: It is an extremely expensive operation to mask an
1580 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1581 * this interrupt actually comes in, then we mask and ack here to push
1582 * the interrupt off to another CPU */
1583 static void before_handle_vic_irq(unsigned int irq)
1585 irq_desc_t *desc = irq_desc + irq;
1586 __u8 cpu = smp_processor_id();
1588 _raw_spin_lock(&vic_irq_lock);
1589 vic_intr_total++;
1590 vic_intr_count[cpu]++;
1592 if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1593 /* The irq is not in our affinity mask, push it off
1594 * onto another CPU */
1595 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1596 "on cpu %d\n", irq, cpu));
1597 disable_local_vic_irq(irq);
1598 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1599 * actually calling the interrupt routine */
1600 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1601 } else if (desc->status & IRQ_DISABLED) {
1602 /* Damn, the interrupt actually arrived, do the lazy
1603 * disable thing. The interrupt routine in irq.c will
1604 * not handle a IRQ_DISABLED interrupt, so nothing more
1605 * need be done here */
1606 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1607 irq, cpu));
1608 disable_local_vic_irq(irq);
1609 desc->status |= IRQ_REPLAY;
1610 } else {
1611 desc->status &= ~IRQ_REPLAY;
1614 _raw_spin_unlock(&vic_irq_lock);
1617 /* Finish the VIC interrupt: basically mask */
1618 static void after_handle_vic_irq(unsigned int irq)
1620 irq_desc_t *desc = irq_desc + irq;
1622 _raw_spin_lock(&vic_irq_lock);
1624 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1625 #ifdef VOYAGER_DEBUG
1626 __u16 isr;
1627 #endif
1629 desc->status = status;
1630 if ((status & IRQ_DISABLED))
1631 disable_local_vic_irq(irq);
1632 #ifdef VOYAGER_DEBUG
1633 /* DEBUG: before we ack, check what's in progress */
1634 isr = vic_read_isr();
1635 if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1636 int i;
1637 __u8 cpu = smp_processor_id();
1638 __u8 real_cpu;
1639 int mask; /* Um... initialize me??? --RR */
1641 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1642 cpu, irq);
1643 for_each_possible_cpu(real_cpu, mask) {
1645 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1646 VIC_PROCESSOR_ID);
1647 isr = vic_read_isr();
1648 if (isr & (1 << irq)) {
1649 printk
1650 ("VOYAGER SMP: CPU%d ack irq %d\n",
1651 real_cpu, irq);
1652 ack_vic_irq(irq);
1654 outb(cpu, VIC_PROCESSOR_ID);
1657 #endif /* VOYAGER_DEBUG */
1658 /* as soon as we ack, the interrupt is eligible for
1659 * receipt by another CPU so everything must be in
1660 * order here */
1661 ack_vic_irq(irq);
1662 if (status & IRQ_REPLAY) {
1663 /* replay is set if we disable the interrupt
1664 * in the before_handle_vic_irq() routine, so
1665 * clear the in progress bit here to allow the
1666 * next CPU to handle this correctly */
1667 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1669 #ifdef VOYAGER_DEBUG
1670 isr = vic_read_isr();
1671 if ((isr & (1 << irq)) != 0)
1672 printk("VOYAGER SMP: after_handle_vic_irq() after "
1673 "ack irq=%d, isr=0x%x\n", irq, isr);
1674 #endif /* VOYAGER_DEBUG */
1676 _raw_spin_unlock(&vic_irq_lock);
1678 /* All code after this point is out of the main path - the IRQ
1679 * may be intercepted by another CPU if reasserted */
1682 /* Linux processor - interrupt affinity manipulations.
1684 * For each processor, we maintain a 32 bit irq affinity mask.
1685 * Initially it is set to all 1's so every processor accepts every
1686 * interrupt. In this call, we change the processor's affinity mask:
1688 * Change from enable to disable:
1690 * If the interrupt ever comes in to the processor, we will disable it
1691 * and ack it to push it off to another CPU, so just accept the mask here.
1693 * Change from disable to enable:
1695 * change the mask and then do an interrupt enable CPI to re-enable on
1696 * the selected processors */
1698 void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1700 /* Only extended processors handle interrupts */
1701 unsigned long real_mask;
1702 unsigned long irq_mask = 1 << irq;
1703 int cpu;
1705 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1707 if (cpus_addr(mask)[0] == 0)
1708 /* can't have no CPUs to accept the interrupt -- extremely
1709 * bad things will happen */
1710 return;
1712 if (irq == 0)
1713 /* can't change the affinity of the timer IRQ. This
1714 * is due to the constraint in the voyager
1715 * architecture that the CPI also comes in on and IRQ
1716 * line and we have chosen IRQ0 for this. If you
1717 * raise the mask on this interrupt, the processor
1718 * will no-longer be able to accept VIC CPIs */
1719 return;
1721 if (irq >= 32)
1722 /* You can only have 32 interrupts in a voyager system
1723 * (and 32 only if you have a secondary microchannel
1724 * bus) */
1725 return;
1727 for_each_online_cpu(cpu) {
1728 unsigned long cpu_mask = 1 << cpu;
1730 if (cpu_mask & real_mask) {
1731 /* enable the interrupt for this cpu */
1732 cpu_irq_affinity[cpu] |= irq_mask;
1733 } else {
1734 /* disable the interrupt for this cpu */
1735 cpu_irq_affinity[cpu] &= ~irq_mask;
1738 /* this is magic, we now have the correct affinity maps, so
1739 * enable the interrupt. This will send an enable CPI to
1740 * those CPUs who need to enable it in their local masks,
1741 * causing them to correct for the new affinity . If the
1742 * interrupt is currently globally disabled, it will simply be
1743 * disabled again as it comes in (voyager lazy disable). If
1744 * the affinity map is tightened to disable the interrupt on a
1745 * cpu, it will be pushed off when it comes in */
1746 unmask_vic_irq(irq);
1749 static void ack_vic_irq(unsigned int irq)
1751 if (irq & 8) {
1752 outb(0x62, 0x20); /* Specific EOI to cascade */
1753 outb(0x60 | (irq & 7), 0xA0);
1754 } else {
1755 outb(0x60 | (irq & 7), 0x20);
1759 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1760 * but are not vectored by it. This means that the 8259 mask must be
1761 * lowered to receive them */
1762 static __init void vic_enable_cpi(void)
1764 __u8 cpu = smp_processor_id();
1766 /* just take a copy of the current mask (nop for boot cpu) */
1767 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1769 enable_local_vic_irq(VIC_CPI_LEVEL0);
1770 enable_local_vic_irq(VIC_CPI_LEVEL1);
1771 /* for sys int and cmn int */
1772 enable_local_vic_irq(7);
1774 if (is_cpu_quad()) {
1775 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1776 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1777 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1778 cpu, QIC_CPI_ENABLE));
1781 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1782 cpu, vic_irq_mask[cpu]));
1785 void voyager_smp_dump()
1787 int old_cpu = smp_processor_id(), cpu;
1789 /* dump the interrupt masks of each processor */
1790 for_each_online_cpu(cpu) {
1791 __u16 imr, isr, irr;
1792 unsigned long flags;
1794 local_irq_save(flags);
1795 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1796 imr = (inb(0xa1) << 8) | inb(0x21);
1797 outb(0x0a, 0xa0);
1798 irr = inb(0xa0) << 8;
1799 outb(0x0a, 0x20);
1800 irr |= inb(0x20);
1801 outb(0x0b, 0xa0);
1802 isr = inb(0xa0) << 8;
1803 outb(0x0b, 0x20);
1804 isr |= inb(0x20);
1805 outb(old_cpu, VIC_PROCESSOR_ID);
1806 local_irq_restore(flags);
1807 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1808 cpu, vic_irq_mask[cpu], imr, irr, isr);
1809 #if 0
1810 /* These lines are put in to try to unstick an un ack'd irq */
1811 if (isr != 0) {
1812 int irq;
1813 for (irq = 0; irq < 16; irq++) {
1814 if (isr & (1 << irq)) {
1815 printk("\tCPU%d: ack irq %d\n",
1816 cpu, irq);
1817 local_irq_save(flags);
1818 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1819 VIC_PROCESSOR_ID);
1820 ack_vic_irq(irq);
1821 outb(old_cpu, VIC_PROCESSOR_ID);
1822 local_irq_restore(flags);
1826 #endif
1830 void smp_voyager_power_off(void *dummy)
1832 if (smp_processor_id() == boot_cpu_id)
1833 voyager_power_off();
1834 else
1835 smp_stop_cpu_function(NULL);
1838 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1840 /* FIXME: ignore max_cpus for now */
1841 smp_boot_cpus();
1844 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1846 init_gdt(smp_processor_id());
1847 switch_to_new_gdt();
1849 cpu_set(smp_processor_id(), cpu_online_map);
1850 cpu_set(smp_processor_id(), cpu_callout_map);
1851 cpu_set(smp_processor_id(), cpu_possible_map);
1852 cpu_set(smp_processor_id(), cpu_present_map);
1855 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1857 /* This only works at boot for x86. See "rewrite" above. */
1858 if (cpu_isset(cpu, smp_commenced_mask))
1859 return -ENOSYS;
1861 /* In case one didn't come up */
1862 if (!cpu_isset(cpu, cpu_callin_map))
1863 return -EIO;
1864 /* Unleash the CPU! */
1865 cpu_set(cpu, smp_commenced_mask);
1866 while (!cpu_isset(cpu, cpu_online_map))
1867 mb();
1868 return 0;
1871 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1873 zap_low_mappings();
1876 void __init smp_setup_processor_id(void)
1878 current_thread_info()->cpu = hard_smp_processor_id();
1879 x86_write_percpu(cpu_number, hard_smp_processor_id());
1882 struct smp_ops smp_ops = {
1883 .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1884 .smp_prepare_cpus = voyager_smp_prepare_cpus,
1885 .cpu_up = voyager_cpu_up,
1886 .smp_cpus_done = voyager_smp_cpus_done,
1888 .smp_send_stop = voyager_smp_send_stop,
1889 .smp_send_reschedule = voyager_smp_send_reschedule,
1890 .smp_call_function_mask = voyager_smp_call_function_mask,