Linux 2.6.25.3
[linux/fpc-iii.git] / arch / x86 / xen / enlighten.c
blob27ee26aedf941d98e2cdaf5e8fa90ba1a7ee5930
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
29 #include <xen/interface/xen.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/interface/vcpu.h>
32 #include <xen/interface/sched.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
36 #include <asm/paravirt.h>
37 #include <asm/page.h>
38 #include <asm/xen/hypercall.h>
39 #include <asm/xen/hypervisor.h>
40 #include <asm/fixmap.h>
41 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/desc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/reboot.h>
48 #include "xen-ops.h"
49 #include "mmu.h"
50 #include "multicalls.h"
52 EXPORT_SYMBOL_GPL(hypercall_page);
54 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
55 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58 * Note about cr3 (pagetable base) values:
60 * xen_cr3 contains the current logical cr3 value; it contains the
61 * last set cr3. This may not be the current effective cr3, because
62 * its update may be being lazily deferred. However, a vcpu looking
63 * at its own cr3 can use this value knowing that it everything will
64 * be self-consistent.
66 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
67 * hypercall to set the vcpu cr3 is complete (so it may be a little
68 * out of date, but it will never be set early). If one vcpu is
69 * looking at another vcpu's cr3 value, it should use this variable.
71 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
72 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
74 struct start_info *xen_start_info;
75 EXPORT_SYMBOL_GPL(xen_start_info);
77 static /* __initdata */ struct shared_info dummy_shared_info;
80 * Point at some empty memory to start with. We map the real shared_info
81 * page as soon as fixmap is up and running.
83 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
86 * Flag to determine whether vcpu info placement is available on all
87 * VCPUs. We assume it is to start with, and then set it to zero on
88 * the first failure. This is because it can succeed on some VCPUs
89 * and not others, since it can involve hypervisor memory allocation,
90 * or because the guest failed to guarantee all the appropriate
91 * constraints on all VCPUs (ie buffer can't cross a page boundary).
93 * Note that any particular CPU may be using a placed vcpu structure,
94 * but we can only optimise if the all are.
96 * 0: not available, 1: available
98 static int have_vcpu_info_placement = 1;
100 static void __init xen_vcpu_setup(int cpu)
102 struct vcpu_register_vcpu_info info;
103 int err;
104 struct vcpu_info *vcpup;
106 BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
107 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
109 if (!have_vcpu_info_placement)
110 return; /* already tested, not available */
112 vcpup = &per_cpu(xen_vcpu_info, cpu);
114 info.mfn = virt_to_mfn(vcpup);
115 info.offset = offset_in_page(vcpup);
117 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
118 cpu, vcpup, info.mfn, info.offset);
120 /* Check to see if the hypervisor will put the vcpu_info
121 structure where we want it, which allows direct access via
122 a percpu-variable. */
123 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
125 if (err) {
126 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
127 have_vcpu_info_placement = 0;
128 } else {
129 /* This cpu is using the registered vcpu info, even if
130 later ones fail to. */
131 per_cpu(xen_vcpu, cpu) = vcpup;
133 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
134 cpu, vcpup);
138 static void __init xen_banner(void)
140 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
141 pv_info.name);
142 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
145 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
146 unsigned int *cx, unsigned int *dx)
148 unsigned maskedx = ~0;
151 * Mask out inconvenient features, to try and disable as many
152 * unsupported kernel subsystems as possible.
154 if (*ax == 1)
155 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
156 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
157 (1 << X86_FEATURE_SEP) | /* disable SEP */
158 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
160 asm(XEN_EMULATE_PREFIX "cpuid"
161 : "=a" (*ax),
162 "=b" (*bx),
163 "=c" (*cx),
164 "=d" (*dx)
165 : "0" (*ax), "2" (*cx));
166 *dx &= maskedx;
169 static void xen_set_debugreg(int reg, unsigned long val)
171 HYPERVISOR_set_debugreg(reg, val);
174 static unsigned long xen_get_debugreg(int reg)
176 return HYPERVISOR_get_debugreg(reg);
179 static unsigned long xen_save_fl(void)
181 struct vcpu_info *vcpu;
182 unsigned long flags;
184 vcpu = x86_read_percpu(xen_vcpu);
186 /* flag has opposite sense of mask */
187 flags = !vcpu->evtchn_upcall_mask;
189 /* convert to IF type flag
190 -0 -> 0x00000000
191 -1 -> 0xffffffff
193 return (-flags) & X86_EFLAGS_IF;
196 static void xen_restore_fl(unsigned long flags)
198 struct vcpu_info *vcpu;
200 /* convert from IF type flag */
201 flags = !(flags & X86_EFLAGS_IF);
203 /* There's a one instruction preempt window here. We need to
204 make sure we're don't switch CPUs between getting the vcpu
205 pointer and updating the mask. */
206 preempt_disable();
207 vcpu = x86_read_percpu(xen_vcpu);
208 vcpu->evtchn_upcall_mask = flags;
209 preempt_enable_no_resched();
211 /* Doesn't matter if we get preempted here, because any
212 pending event will get dealt with anyway. */
214 if (flags == 0) {
215 preempt_check_resched();
216 barrier(); /* unmask then check (avoid races) */
217 if (unlikely(vcpu->evtchn_upcall_pending))
218 force_evtchn_callback();
222 static void xen_irq_disable(void)
224 /* There's a one instruction preempt window here. We need to
225 make sure we're don't switch CPUs between getting the vcpu
226 pointer and updating the mask. */
227 preempt_disable();
228 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
229 preempt_enable_no_resched();
232 static void xen_irq_enable(void)
234 struct vcpu_info *vcpu;
236 /* There's a one instruction preempt window here. We need to
237 make sure we're don't switch CPUs between getting the vcpu
238 pointer and updating the mask. */
239 preempt_disable();
240 vcpu = x86_read_percpu(xen_vcpu);
241 vcpu->evtchn_upcall_mask = 0;
242 preempt_enable_no_resched();
244 /* Doesn't matter if we get preempted here, because any
245 pending event will get dealt with anyway. */
247 barrier(); /* unmask then check (avoid races) */
248 if (unlikely(vcpu->evtchn_upcall_pending))
249 force_evtchn_callback();
252 static void xen_safe_halt(void)
254 /* Blocking includes an implicit local_irq_enable(). */
255 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
256 BUG();
259 static void xen_halt(void)
261 if (irqs_disabled())
262 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
263 else
264 xen_safe_halt();
267 static void xen_leave_lazy(void)
269 paravirt_leave_lazy(paravirt_get_lazy_mode());
270 xen_mc_flush();
273 static unsigned long xen_store_tr(void)
275 return 0;
278 static void xen_set_ldt(const void *addr, unsigned entries)
280 struct mmuext_op *op;
281 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
283 op = mcs.args;
284 op->cmd = MMUEXT_SET_LDT;
285 op->arg1.linear_addr = (unsigned long)addr;
286 op->arg2.nr_ents = entries;
288 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
290 xen_mc_issue(PARAVIRT_LAZY_CPU);
293 static void xen_load_gdt(const struct desc_ptr *dtr)
295 unsigned long *frames;
296 unsigned long va = dtr->address;
297 unsigned int size = dtr->size + 1;
298 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
299 int f;
300 struct multicall_space mcs;
302 /* A GDT can be up to 64k in size, which corresponds to 8192
303 8-byte entries, or 16 4k pages.. */
305 BUG_ON(size > 65536);
306 BUG_ON(va & ~PAGE_MASK);
308 mcs = xen_mc_entry(sizeof(*frames) * pages);
309 frames = mcs.args;
311 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
312 frames[f] = virt_to_mfn(va);
313 make_lowmem_page_readonly((void *)va);
316 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
318 xen_mc_issue(PARAVIRT_LAZY_CPU);
321 static void load_TLS_descriptor(struct thread_struct *t,
322 unsigned int cpu, unsigned int i)
324 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
325 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
326 struct multicall_space mc = __xen_mc_entry(0);
328 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
331 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
333 xen_mc_batch();
335 load_TLS_descriptor(t, cpu, 0);
336 load_TLS_descriptor(t, cpu, 1);
337 load_TLS_descriptor(t, cpu, 2);
339 xen_mc_issue(PARAVIRT_LAZY_CPU);
342 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
343 * it means we're in a context switch, and %gs has just been
344 * saved. This means we can zero it out to prevent faults on
345 * exit from the hypervisor if the next process has no %gs.
346 * Either way, it has been saved, and the new value will get
347 * loaded properly. This will go away as soon as Xen has been
348 * modified to not save/restore %gs for normal hypercalls.
350 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
351 loadsegment(gs, 0);
354 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
355 const void *ptr)
357 unsigned long lp = (unsigned long)&dt[entrynum];
358 xmaddr_t mach_lp = virt_to_machine(lp);
359 u64 entry = *(u64 *)ptr;
361 preempt_disable();
363 xen_mc_flush();
364 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
365 BUG();
367 preempt_enable();
370 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
371 struct trap_info *info)
373 u8 type, dpl;
375 type = (high >> 8) & 0x1f;
376 dpl = (high >> 13) & 3;
378 if (type != 0xf && type != 0xe)
379 return 0;
381 info->vector = vector;
382 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
383 info->cs = low >> 16;
384 info->flags = dpl;
385 /* interrupt gates clear IF */
386 if (type == 0xe)
387 info->flags |= 4;
389 return 1;
392 /* Locations of each CPU's IDT */
393 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
395 /* Set an IDT entry. If the entry is part of the current IDT, then
396 also update Xen. */
397 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
399 unsigned long p = (unsigned long)&dt[entrynum];
400 unsigned long start, end;
402 preempt_disable();
404 start = __get_cpu_var(idt_desc).address;
405 end = start + __get_cpu_var(idt_desc).size + 1;
407 xen_mc_flush();
409 native_write_idt_entry(dt, entrynum, g);
411 if (p >= start && (p + 8) <= end) {
412 struct trap_info info[2];
413 u32 *desc = (u32 *)g;
415 info[1].address = 0;
417 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
418 if (HYPERVISOR_set_trap_table(info))
419 BUG();
422 preempt_enable();
425 static void xen_convert_trap_info(const struct desc_ptr *desc,
426 struct trap_info *traps)
428 unsigned in, out, count;
430 count = (desc->size+1) / 8;
431 BUG_ON(count > 256);
433 for (in = out = 0; in < count; in++) {
434 const u32 *entry = (u32 *)(desc->address + in * 8);
436 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
437 out++;
439 traps[out].address = 0;
442 void xen_copy_trap_info(struct trap_info *traps)
444 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
446 xen_convert_trap_info(desc, traps);
449 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
450 hold a spinlock to protect the static traps[] array (static because
451 it avoids allocation, and saves stack space). */
452 static void xen_load_idt(const struct desc_ptr *desc)
454 static DEFINE_SPINLOCK(lock);
455 static struct trap_info traps[257];
457 spin_lock(&lock);
459 __get_cpu_var(idt_desc) = *desc;
461 xen_convert_trap_info(desc, traps);
463 xen_mc_flush();
464 if (HYPERVISOR_set_trap_table(traps))
465 BUG();
467 spin_unlock(&lock);
470 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
471 they're handled differently. */
472 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
473 const void *desc, int type)
475 preempt_disable();
477 switch (type) {
478 case DESC_LDT:
479 case DESC_TSS:
480 /* ignore */
481 break;
483 default: {
484 xmaddr_t maddr = virt_to_machine(&dt[entry]);
486 xen_mc_flush();
487 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
488 BUG();
493 preempt_enable();
496 static void xen_load_sp0(struct tss_struct *tss,
497 struct thread_struct *thread)
499 struct multicall_space mcs = xen_mc_entry(0);
500 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
501 xen_mc_issue(PARAVIRT_LAZY_CPU);
504 static void xen_set_iopl_mask(unsigned mask)
506 struct physdev_set_iopl set_iopl;
508 /* Force the change at ring 0. */
509 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
510 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
513 static void xen_io_delay(void)
517 #ifdef CONFIG_X86_LOCAL_APIC
518 static u32 xen_apic_read(unsigned long reg)
520 return 0;
523 static void xen_apic_write(unsigned long reg, u32 val)
525 /* Warn to see if there's any stray references */
526 WARN_ON(1);
528 #endif
530 static void xen_flush_tlb(void)
532 struct mmuext_op *op;
533 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
535 op = mcs.args;
536 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
537 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
539 xen_mc_issue(PARAVIRT_LAZY_MMU);
542 static void xen_flush_tlb_single(unsigned long addr)
544 struct mmuext_op *op;
545 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
547 op = mcs.args;
548 op->cmd = MMUEXT_INVLPG_LOCAL;
549 op->arg1.linear_addr = addr & PAGE_MASK;
550 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
552 xen_mc_issue(PARAVIRT_LAZY_MMU);
555 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
556 unsigned long va)
558 struct {
559 struct mmuext_op op;
560 cpumask_t mask;
561 } *args;
562 cpumask_t cpumask = *cpus;
563 struct multicall_space mcs;
566 * A couple of (to be removed) sanity checks:
568 * - current CPU must not be in mask
569 * - mask must exist :)
571 BUG_ON(cpus_empty(cpumask));
572 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
573 BUG_ON(!mm);
575 /* If a CPU which we ran on has gone down, OK. */
576 cpus_and(cpumask, cpumask, cpu_online_map);
577 if (cpus_empty(cpumask))
578 return;
580 mcs = xen_mc_entry(sizeof(*args));
581 args = mcs.args;
582 args->mask = cpumask;
583 args->op.arg2.vcpumask = &args->mask;
585 if (va == TLB_FLUSH_ALL) {
586 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
587 } else {
588 args->op.cmd = MMUEXT_INVLPG_MULTI;
589 args->op.arg1.linear_addr = va;
592 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
594 xen_mc_issue(PARAVIRT_LAZY_MMU);
597 static void xen_write_cr2(unsigned long cr2)
599 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
602 static unsigned long xen_read_cr2(void)
604 return x86_read_percpu(xen_vcpu)->arch.cr2;
607 static unsigned long xen_read_cr2_direct(void)
609 return x86_read_percpu(xen_vcpu_info.arch.cr2);
612 static void xen_write_cr4(unsigned long cr4)
614 /* Just ignore cr4 changes; Xen doesn't allow us to do
615 anything anyway. */
618 static unsigned long xen_read_cr3(void)
620 return x86_read_percpu(xen_cr3);
623 static void set_current_cr3(void *v)
625 x86_write_percpu(xen_current_cr3, (unsigned long)v);
628 static void xen_write_cr3(unsigned long cr3)
630 struct mmuext_op *op;
631 struct multicall_space mcs;
632 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
634 BUG_ON(preemptible());
636 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
638 /* Update while interrupts are disabled, so its atomic with
639 respect to ipis */
640 x86_write_percpu(xen_cr3, cr3);
642 op = mcs.args;
643 op->cmd = MMUEXT_NEW_BASEPTR;
644 op->arg1.mfn = mfn;
646 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
648 /* Update xen_update_cr3 once the batch has actually
649 been submitted. */
650 xen_mc_callback(set_current_cr3, (void *)cr3);
652 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
655 /* Early in boot, while setting up the initial pagetable, assume
656 everything is pinned. */
657 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
659 BUG_ON(mem_map); /* should only be used early */
660 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
663 /* Early release_pt assumes that all pts are pinned, since there's
664 only init_mm and anything attached to that is pinned. */
665 static void xen_release_pt_init(u32 pfn)
667 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
670 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
672 struct mmuext_op op;
673 op.cmd = cmd;
674 op.arg1.mfn = pfn_to_mfn(pfn);
675 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
676 BUG();
679 /* This needs to make sure the new pte page is pinned iff its being
680 attached to a pinned pagetable. */
681 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
683 struct page *page = pfn_to_page(pfn);
685 if (PagePinned(virt_to_page(mm->pgd))) {
686 SetPagePinned(page);
688 if (!PageHighMem(page)) {
689 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
690 if (level == PT_PTE)
691 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
692 } else
693 /* make sure there are no stray mappings of
694 this page */
695 kmap_flush_unused();
699 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
701 xen_alloc_ptpage(mm, pfn, PT_PTE);
704 static void xen_alloc_pd(struct mm_struct *mm, u32 pfn)
706 xen_alloc_ptpage(mm, pfn, PT_PMD);
709 /* This should never happen until we're OK to use struct page */
710 static void xen_release_ptpage(u32 pfn, unsigned level)
712 struct page *page = pfn_to_page(pfn);
714 if (PagePinned(page)) {
715 if (!PageHighMem(page)) {
716 if (level == PT_PTE)
717 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
718 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
720 ClearPagePinned(page);
724 static void xen_release_pt(u32 pfn)
726 xen_release_ptpage(pfn, PT_PTE);
729 static void xen_release_pd(u32 pfn)
731 xen_release_ptpage(pfn, PT_PMD);
734 #ifdef CONFIG_HIGHPTE
735 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
737 pgprot_t prot = PAGE_KERNEL;
739 if (PagePinned(page))
740 prot = PAGE_KERNEL_RO;
742 if (0 && PageHighMem(page))
743 printk("mapping highpte %lx type %d prot %s\n",
744 page_to_pfn(page), type,
745 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
747 return kmap_atomic_prot(page, type, prot);
749 #endif
751 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
753 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
754 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
755 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
756 pte_val_ma(pte));
758 return pte;
761 /* Init-time set_pte while constructing initial pagetables, which
762 doesn't allow RO pagetable pages to be remapped RW */
763 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
765 pte = mask_rw_pte(ptep, pte);
767 xen_set_pte(ptep, pte);
770 static __init void xen_pagetable_setup_start(pgd_t *base)
772 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
774 /* special set_pte for pagetable initialization */
775 pv_mmu_ops.set_pte = xen_set_pte_init;
777 init_mm.pgd = base;
779 * copy top-level of Xen-supplied pagetable into place. For
780 * !PAE we can use this as-is, but for PAE it is a stand-in
781 * while we copy the pmd pages.
783 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
785 if (PTRS_PER_PMD > 1) {
786 int i;
788 * For PAE, need to allocate new pmds, rather than
789 * share Xen's, since Xen doesn't like pmd's being
790 * shared between address spaces.
792 for (i = 0; i < PTRS_PER_PGD; i++) {
793 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
794 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
796 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
797 PAGE_SIZE);
799 make_lowmem_page_readonly(pmd);
801 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
802 } else
803 pgd_clear(&base[i]);
807 /* make sure zero_page is mapped RO so we can use it in pagetables */
808 make_lowmem_page_readonly(empty_zero_page);
809 make_lowmem_page_readonly(base);
811 * Switch to new pagetable. This is done before
812 * pagetable_init has done anything so that the new pages
813 * added to the table can be prepared properly for Xen.
815 xen_write_cr3(__pa(base));
817 /* Unpin initial Xen pagetable */
818 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
819 PFN_DOWN(__pa(xen_start_info->pt_base)));
822 static __init void setup_shared_info(void)
824 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
825 unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
828 * Create a mapping for the shared info page.
829 * Should be set_fixmap(), but shared_info is a machine
830 * address with no corresponding pseudo-phys address.
832 set_pte_mfn(addr,
833 PFN_DOWN(xen_start_info->shared_info),
834 PAGE_KERNEL);
836 HYPERVISOR_shared_info = (struct shared_info *)addr;
837 } else
838 HYPERVISOR_shared_info =
839 (struct shared_info *)__va(xen_start_info->shared_info);
841 #ifndef CONFIG_SMP
842 /* In UP this is as good a place as any to set up shared info */
843 xen_setup_vcpu_info_placement();
844 #endif
847 static __init void xen_pagetable_setup_done(pgd_t *base)
849 /* This will work as long as patching hasn't happened yet
850 (which it hasn't) */
851 pv_mmu_ops.alloc_pt = xen_alloc_pt;
852 pv_mmu_ops.alloc_pd = xen_alloc_pd;
853 pv_mmu_ops.release_pt = xen_release_pt;
854 pv_mmu_ops.release_pd = xen_release_pd;
855 pv_mmu_ops.set_pte = xen_set_pte;
857 setup_shared_info();
859 /* Actually pin the pagetable down, but we can't set PG_pinned
860 yet because the page structures don't exist yet. */
862 unsigned level;
864 #ifdef CONFIG_X86_PAE
865 level = MMUEXT_PIN_L3_TABLE;
866 #else
867 level = MMUEXT_PIN_L2_TABLE;
868 #endif
870 pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
874 /* This is called once we have the cpu_possible_map */
875 void __init xen_setup_vcpu_info_placement(void)
877 int cpu;
879 for_each_possible_cpu(cpu)
880 xen_vcpu_setup(cpu);
882 /* xen_vcpu_setup managed to place the vcpu_info within the
883 percpu area for all cpus, so make use of it */
884 if (have_vcpu_info_placement) {
885 printk(KERN_INFO "Xen: using vcpu_info placement\n");
887 pv_irq_ops.save_fl = xen_save_fl_direct;
888 pv_irq_ops.restore_fl = xen_restore_fl_direct;
889 pv_irq_ops.irq_disable = xen_irq_disable_direct;
890 pv_irq_ops.irq_enable = xen_irq_enable_direct;
891 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
892 pv_cpu_ops.iret = xen_iret_direct;
896 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
897 unsigned long addr, unsigned len)
899 char *start, *end, *reloc;
900 unsigned ret;
902 start = end = reloc = NULL;
904 #define SITE(op, x) \
905 case PARAVIRT_PATCH(op.x): \
906 if (have_vcpu_info_placement) { \
907 start = (char *)xen_##x##_direct; \
908 end = xen_##x##_direct_end; \
909 reloc = xen_##x##_direct_reloc; \
911 goto patch_site
913 switch (type) {
914 SITE(pv_irq_ops, irq_enable);
915 SITE(pv_irq_ops, irq_disable);
916 SITE(pv_irq_ops, save_fl);
917 SITE(pv_irq_ops, restore_fl);
918 #undef SITE
920 patch_site:
921 if (start == NULL || (end-start) > len)
922 goto default_patch;
924 ret = paravirt_patch_insns(insnbuf, len, start, end);
926 /* Note: because reloc is assigned from something that
927 appears to be an array, gcc assumes it's non-null,
928 but doesn't know its relationship with start and
929 end. */
930 if (reloc > start && reloc < end) {
931 int reloc_off = reloc - start;
932 long *relocp = (long *)(insnbuf + reloc_off);
933 long delta = start - (char *)addr;
935 *relocp += delta;
937 break;
939 default_patch:
940 default:
941 ret = paravirt_patch_default(type, clobbers, insnbuf,
942 addr, len);
943 break;
946 return ret;
949 static const struct pv_info xen_info __initdata = {
950 .paravirt_enabled = 1,
951 .shared_kernel_pmd = 0,
953 .name = "Xen",
956 static const struct pv_init_ops xen_init_ops __initdata = {
957 .patch = xen_patch,
959 .banner = xen_banner,
960 .memory_setup = xen_memory_setup,
961 .arch_setup = xen_arch_setup,
962 .post_allocator_init = xen_mark_init_mm_pinned,
965 static const struct pv_time_ops xen_time_ops __initdata = {
966 .time_init = xen_time_init,
968 .set_wallclock = xen_set_wallclock,
969 .get_wallclock = xen_get_wallclock,
970 .get_cpu_khz = xen_cpu_khz,
971 .sched_clock = xen_sched_clock,
974 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
975 .cpuid = xen_cpuid,
977 .set_debugreg = xen_set_debugreg,
978 .get_debugreg = xen_get_debugreg,
980 .clts = native_clts,
982 .read_cr0 = native_read_cr0,
983 .write_cr0 = native_write_cr0,
985 .read_cr4 = native_read_cr4,
986 .read_cr4_safe = native_read_cr4_safe,
987 .write_cr4 = xen_write_cr4,
989 .wbinvd = native_wbinvd,
991 .read_msr = native_read_msr_safe,
992 .write_msr = native_write_msr_safe,
993 .read_tsc = native_read_tsc,
994 .read_pmc = native_read_pmc,
996 .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
997 .irq_enable_syscall_ret = NULL, /* never called */
999 .load_tr_desc = paravirt_nop,
1000 .set_ldt = xen_set_ldt,
1001 .load_gdt = xen_load_gdt,
1002 .load_idt = xen_load_idt,
1003 .load_tls = xen_load_tls,
1005 .store_gdt = native_store_gdt,
1006 .store_idt = native_store_idt,
1007 .store_tr = xen_store_tr,
1009 .write_ldt_entry = xen_write_ldt_entry,
1010 .write_gdt_entry = xen_write_gdt_entry,
1011 .write_idt_entry = xen_write_idt_entry,
1012 .load_sp0 = xen_load_sp0,
1014 .set_iopl_mask = xen_set_iopl_mask,
1015 .io_delay = xen_io_delay,
1017 .lazy_mode = {
1018 .enter = paravirt_enter_lazy_cpu,
1019 .leave = xen_leave_lazy,
1023 static const struct pv_irq_ops xen_irq_ops __initdata = {
1024 .init_IRQ = xen_init_IRQ,
1025 .save_fl = xen_save_fl,
1026 .restore_fl = xen_restore_fl,
1027 .irq_disable = xen_irq_disable,
1028 .irq_enable = xen_irq_enable,
1029 .safe_halt = xen_safe_halt,
1030 .halt = xen_halt,
1033 static const struct pv_apic_ops xen_apic_ops __initdata = {
1034 #ifdef CONFIG_X86_LOCAL_APIC
1035 .apic_write = xen_apic_write,
1036 .apic_write_atomic = xen_apic_write,
1037 .apic_read = xen_apic_read,
1038 .setup_boot_clock = paravirt_nop,
1039 .setup_secondary_clock = paravirt_nop,
1040 .startup_ipi_hook = paravirt_nop,
1041 #endif
1044 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1045 .pagetable_setup_start = xen_pagetable_setup_start,
1046 .pagetable_setup_done = xen_pagetable_setup_done,
1048 .read_cr2 = xen_read_cr2,
1049 .write_cr2 = xen_write_cr2,
1051 .read_cr3 = xen_read_cr3,
1052 .write_cr3 = xen_write_cr3,
1054 .flush_tlb_user = xen_flush_tlb,
1055 .flush_tlb_kernel = xen_flush_tlb,
1056 .flush_tlb_single = xen_flush_tlb_single,
1057 .flush_tlb_others = xen_flush_tlb_others,
1059 .pte_update = paravirt_nop,
1060 .pte_update_defer = paravirt_nop,
1062 .alloc_pt = xen_alloc_pt_init,
1063 .release_pt = xen_release_pt_init,
1064 .alloc_pd = xen_alloc_pt_init,
1065 .alloc_pd_clone = paravirt_nop,
1066 .release_pd = xen_release_pt_init,
1068 #ifdef CONFIG_HIGHPTE
1069 .kmap_atomic_pte = xen_kmap_atomic_pte,
1070 #endif
1072 .set_pte = NULL, /* see xen_pagetable_setup_* */
1073 .set_pte_at = xen_set_pte_at,
1074 .set_pmd = xen_set_pmd,
1076 .pte_val = xen_pte_val,
1077 .pgd_val = xen_pgd_val,
1079 .make_pte = xen_make_pte,
1080 .make_pgd = xen_make_pgd,
1082 #ifdef CONFIG_X86_PAE
1083 .set_pte_atomic = xen_set_pte_atomic,
1084 .set_pte_present = xen_set_pte_at,
1085 .set_pud = xen_set_pud,
1086 .pte_clear = xen_pte_clear,
1087 .pmd_clear = xen_pmd_clear,
1089 .make_pmd = xen_make_pmd,
1090 .pmd_val = xen_pmd_val,
1091 #endif /* PAE */
1093 .activate_mm = xen_activate_mm,
1094 .dup_mmap = xen_dup_mmap,
1095 .exit_mmap = xen_exit_mmap,
1097 .lazy_mode = {
1098 .enter = paravirt_enter_lazy_mmu,
1099 .leave = xen_leave_lazy,
1103 #ifdef CONFIG_SMP
1104 static const struct smp_ops xen_smp_ops __initdata = {
1105 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1106 .smp_prepare_cpus = xen_smp_prepare_cpus,
1107 .cpu_up = xen_cpu_up,
1108 .smp_cpus_done = xen_smp_cpus_done,
1110 .smp_send_stop = xen_smp_send_stop,
1111 .smp_send_reschedule = xen_smp_send_reschedule,
1112 .smp_call_function_mask = xen_smp_call_function_mask,
1114 #endif /* CONFIG_SMP */
1116 static void xen_reboot(int reason)
1118 #ifdef CONFIG_SMP
1119 smp_send_stop();
1120 #endif
1122 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1123 BUG();
1126 static void xen_restart(char *msg)
1128 xen_reboot(SHUTDOWN_reboot);
1131 static void xen_emergency_restart(void)
1133 xen_reboot(SHUTDOWN_reboot);
1136 static void xen_machine_halt(void)
1138 xen_reboot(SHUTDOWN_poweroff);
1141 static void xen_crash_shutdown(struct pt_regs *regs)
1143 xen_reboot(SHUTDOWN_crash);
1146 static const struct machine_ops __initdata xen_machine_ops = {
1147 .restart = xen_restart,
1148 .halt = xen_machine_halt,
1149 .power_off = xen_machine_halt,
1150 .shutdown = xen_machine_halt,
1151 .crash_shutdown = xen_crash_shutdown,
1152 .emergency_restart = xen_emergency_restart,
1156 static void __init xen_reserve_top(void)
1158 unsigned long top = HYPERVISOR_VIRT_START;
1159 struct xen_platform_parameters pp;
1161 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1162 top = pp.virt_start;
1164 reserve_top_address(-top + 2 * PAGE_SIZE);
1167 /* First C function to be called on Xen boot */
1168 asmlinkage void __init xen_start_kernel(void)
1170 pgd_t *pgd;
1172 if (!xen_start_info)
1173 return;
1175 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1177 /* Install Xen paravirt ops */
1178 pv_info = xen_info;
1179 pv_init_ops = xen_init_ops;
1180 pv_time_ops = xen_time_ops;
1181 pv_cpu_ops = xen_cpu_ops;
1182 pv_irq_ops = xen_irq_ops;
1183 pv_apic_ops = xen_apic_ops;
1184 pv_mmu_ops = xen_mmu_ops;
1186 machine_ops = xen_machine_ops;
1188 #ifdef CONFIG_SMP
1189 smp_ops = xen_smp_ops;
1190 #endif
1192 xen_setup_features();
1194 /* Get mfn list */
1195 if (!xen_feature(XENFEAT_auto_translated_physmap))
1196 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1198 pgd = (pgd_t *)xen_start_info->pt_base;
1200 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1202 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1204 /* keep using Xen gdt for now; no urgent need to change it */
1206 x86_write_percpu(xen_cr3, __pa(pgd));
1207 x86_write_percpu(xen_current_cr3, __pa(pgd));
1209 /* Don't do the full vcpu_info placement stuff until we have a
1210 possible map and a non-dummy shared_info. */
1211 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1213 pv_info.kernel_rpl = 1;
1214 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1215 pv_info.kernel_rpl = 0;
1217 /* set the limit of our address space */
1218 xen_reserve_top();
1220 /* set up basic CPUID stuff */
1221 cpu_detect(&new_cpu_data);
1222 new_cpu_data.hard_math = 1;
1223 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1225 /* Poke various useful things into boot_params */
1226 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1227 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1228 ? __pa(xen_start_info->mod_start) : 0;
1229 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1231 /* Start the world */
1232 start_kernel();