1 #ifndef _ASM_IA64_BITOPS_H
2 #define _ASM_IA64_BITOPS_H
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
16 #include <linux/compiler.h>
17 #include <linux/types.h>
18 #include <asm/intrinsics.h>
21 * set_bit - Atomically set a bit in memory
23 * @addr: the address to start counting from
25 * This function is atomic and may not be reordered. See __set_bit()
26 * if you do not require the atomic guarantees.
27 * Note that @nr may be almost arbitrarily large; this function is not
28 * restricted to acting on a single-word quantity.
30 * The address must be (at least) "long" aligned.
31 * Note that there are driver (e.g., eepro100) which use these operations to
32 * operate on hw-defined data-structures, so we can't easily change these
33 * operations to force a bigger alignment.
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 static __inline__
void
38 set_bit (int nr
, volatile void *addr
)
44 m
= (volatile __u32
*) addr
+ (nr
>> 5);
50 } while (cmpxchg_acq(m
, old
, new) != old
);
54 * __set_bit - Set a bit in memory
56 * @addr: the address to start counting from
58 * Unlike set_bit(), this function is non-atomic and may be reordered.
59 * If it's called on the same region of memory simultaneously, the effect
60 * may be that only one operation succeeds.
62 static __inline__
void
63 __set_bit (int nr
, volatile void *addr
)
65 *((__u32
*) addr
+ (nr
>> 5)) |= (1 << (nr
& 31));
69 * clear_bit() has "acquire" semantics.
71 #define smp_mb__before_clear_bit() smp_mb()
72 #define smp_mb__after_clear_bit() do { /* skip */; } while (0)
75 * clear_bit - Clears a bit in memory
77 * @addr: Address to start counting from
79 * clear_bit() is atomic and may not be reordered. However, it does
80 * not contain a memory barrier, so if it is used for locking purposes,
81 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
82 * in order to ensure changes are visible on other processors.
84 static __inline__
void
85 clear_bit (int nr
, volatile void *addr
)
91 m
= (volatile __u32
*) addr
+ (nr
>> 5);
92 mask
= ~(1 << (nr
& 31));
97 } while (cmpxchg_acq(m
, old
, new) != old
);
101 * clear_bit_unlock - Clears a bit in memory with release
103 * @addr: Address to start counting from
105 * clear_bit_unlock() is atomic and may not be reordered. It does
106 * contain a memory barrier suitable for unlock type operations.
108 static __inline__
void
109 clear_bit_unlock (int nr
, volatile void *addr
)
111 __u32 mask
, old
, new;
113 CMPXCHG_BUGCHECK_DECL
115 m
= (volatile __u32
*) addr
+ (nr
>> 5);
116 mask
= ~(1 << (nr
& 31));
121 } while (cmpxchg_rel(m
, old
, new) != old
);
125 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
127 * @addr: Address to start counting from
129 * Similarly to clear_bit_unlock, the implementation uses a store
130 * with release semantics. See also __raw_spin_unlock().
132 static __inline__
void
133 __clear_bit_unlock(int nr
, void *addr
)
135 __u32
* const m
= (__u32
*) addr
+ (nr
>> 5);
136 __u32
const new = *m
& ~(1 << (nr
& 31));
138 ia64_st4_rel_nta(m
, new);
142 * __clear_bit - Clears a bit in memory (non-atomic version)
143 * @nr: the bit to clear
144 * @addr: the address to start counting from
146 * Unlike clear_bit(), this function is non-atomic and may be reordered.
147 * If it's called on the same region of memory simultaneously, the effect
148 * may be that only one operation succeeds.
150 static __inline__
void
151 __clear_bit (int nr
, volatile void *addr
)
153 *((__u32
*) addr
+ (nr
>> 5)) &= ~(1 << (nr
& 31));
157 * change_bit - Toggle a bit in memory
159 * @addr: Address to start counting from
161 * change_bit() is atomic and may not be reordered.
162 * Note that @nr may be almost arbitrarily large; this function is not
163 * restricted to acting on a single-word quantity.
165 static __inline__
void
166 change_bit (int nr
, volatile void *addr
)
170 CMPXCHG_BUGCHECK_DECL
172 m
= (volatile __u32
*) addr
+ (nr
>> 5);
173 bit
= (1 << (nr
& 31));
178 } while (cmpxchg_acq(m
, old
, new) != old
);
182 * __change_bit - Toggle a bit in memory
183 * @nr: the bit to toggle
184 * @addr: the address to start counting from
186 * Unlike change_bit(), this function is non-atomic and may be reordered.
187 * If it's called on the same region of memory simultaneously, the effect
188 * may be that only one operation succeeds.
190 static __inline__
void
191 __change_bit (int nr
, volatile void *addr
)
193 *((__u32
*) addr
+ (nr
>> 5)) ^= (1 << (nr
& 31));
197 * test_and_set_bit - Set a bit and return its old value
199 * @addr: Address to count from
201 * This operation is atomic and cannot be reordered.
202 * It also implies the acquisition side of the memory barrier.
204 static __inline__
int
205 test_and_set_bit (int nr
, volatile void *addr
)
209 CMPXCHG_BUGCHECK_DECL
211 m
= (volatile __u32
*) addr
+ (nr
>> 5);
212 bit
= 1 << (nr
& 31);
217 } while (cmpxchg_acq(m
, old
, new) != old
);
218 return (old
& bit
) != 0;
222 * test_and_set_bit_lock - Set a bit and return its old value for lock
224 * @addr: Address to count from
226 * This is the same as test_and_set_bit on ia64
228 #define test_and_set_bit_lock test_and_set_bit
231 * __test_and_set_bit - Set a bit and return its old value
233 * @addr: Address to count from
235 * This operation is non-atomic and can be reordered.
236 * If two examples of this operation race, one can appear to succeed
237 * but actually fail. You must protect multiple accesses with a lock.
239 static __inline__
int
240 __test_and_set_bit (int nr
, volatile void *addr
)
242 __u32
*p
= (__u32
*) addr
+ (nr
>> 5);
243 __u32 m
= 1 << (nr
& 31);
244 int oldbitset
= (*p
& m
) != 0;
251 * test_and_clear_bit - Clear a bit and return its old value
253 * @addr: Address to count from
255 * This operation is atomic and cannot be reordered.
256 * It also implies the acquisition side of the memory barrier.
258 static __inline__
int
259 test_and_clear_bit (int nr
, volatile void *addr
)
261 __u32 mask
, old
, new;
263 CMPXCHG_BUGCHECK_DECL
265 m
= (volatile __u32
*) addr
+ (nr
>> 5);
266 mask
= ~(1 << (nr
& 31));
271 } while (cmpxchg_acq(m
, old
, new) != old
);
272 return (old
& ~mask
) != 0;
276 * __test_and_clear_bit - Clear a bit and return its old value
278 * @addr: Address to count from
280 * This operation is non-atomic and can be reordered.
281 * If two examples of this operation race, one can appear to succeed
282 * but actually fail. You must protect multiple accesses with a lock.
284 static __inline__
int
285 __test_and_clear_bit(int nr
, volatile void * addr
)
287 __u32
*p
= (__u32
*) addr
+ (nr
>> 5);
288 __u32 m
= 1 << (nr
& 31);
289 int oldbitset
= *p
& m
;
296 * test_and_change_bit - Change a bit and return its old value
298 * @addr: Address to count from
300 * This operation is atomic and cannot be reordered.
301 * It also implies the acquisition side of the memory barrier.
303 static __inline__
int
304 test_and_change_bit (int nr
, volatile void *addr
)
308 CMPXCHG_BUGCHECK_DECL
310 m
= (volatile __u32
*) addr
+ (nr
>> 5);
311 bit
= (1 << (nr
& 31));
316 } while (cmpxchg_acq(m
, old
, new) != old
);
317 return (old
& bit
) != 0;
321 * __test_and_change_bit - Change a bit and return its old value
323 * @addr: Address to count from
325 * This operation is non-atomic and can be reordered.
327 static __inline__
int
328 __test_and_change_bit (int nr
, void *addr
)
330 __u32 old
, bit
= (1 << (nr
& 31));
331 __u32
*m
= (__u32
*) addr
+ (nr
>> 5);
335 return (old
& bit
) != 0;
338 static __inline__
int
339 test_bit (int nr
, const volatile void *addr
)
341 return 1 & (((const volatile __u32
*) addr
)[nr
>> 5] >> (nr
& 31));
345 * ffz - find the first zero bit in a long word
346 * @x: The long word to find the bit in
348 * Returns the bit-number (0..63) of the first (least significant) zero bit.
349 * Undefined if no zero exists, so code should check against ~0UL first...
351 static inline unsigned long
352 ffz (unsigned long x
)
354 unsigned long result
;
356 result
= ia64_popcnt(x
& (~x
- 1));
361 * __ffs - find first bit in word.
362 * @x: The word to search
364 * Undefined if no bit exists, so code should check against 0 first.
366 static __inline__
unsigned long
367 __ffs (unsigned long x
)
369 unsigned long result
;
371 result
= ia64_popcnt((x
-1) & ~x
);
378 * Return bit number of last (most-significant) bit set. Undefined
379 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
381 static inline unsigned long
382 ia64_fls (unsigned long x
)
387 exp
= ia64_getf_exp(d
);
392 * Find the last (most significant) bit set. Returns 0 for x==0 and
393 * bits are numbered from 1..32 (e.g., fls(9) == 4).
398 unsigned long x
= t
& 0xffffffffu
;
407 return ia64_popcnt(x
);
410 #include <asm-generic/bitops/fls64.h>
413 * ffs: find first bit set. This is defined the same way as the libc and
414 * compiler builtin ffs routines, therefore differs in spirit from the above
415 * ffz (man ffs): it operates on "int" values only and the result value is the
416 * bit number + 1. ffs(0) is defined to return zero.
418 #define ffs(x) __builtin_ffs(x)
421 * hweightN: returns the hamming weight (i.e. the number
422 * of bits set) of a N-bit word
424 static __inline__
unsigned long
425 hweight64 (unsigned long x
)
427 unsigned long result
;
428 result
= ia64_popcnt(x
);
432 #define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful)
433 #define hweight16(x) (unsigned int) hweight64((x) & 0xfffful)
434 #define hweight8(x) (unsigned int) hweight64((x) & 0xfful)
436 #endif /* __KERNEL__ */
438 #include <asm-generic/bitops/find.h>
442 #include <asm-generic/bitops/ext2-non-atomic.h>
444 #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
445 #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
447 #include <asm-generic/bitops/minix.h>
448 #include <asm-generic/bitops/sched.h>
450 #endif /* __KERNEL__ */
452 #endif /* _ASM_IA64_BITOPS_H */