Linux 2.6.25.3
[linux/fpc-iii.git] / include / asm-ia64 / sn / sn_sal.h
blob676b31a08c61dc8fd366d1147b8572080fca4e65
1 #ifndef _ASM_IA64_SN_SN_SAL_H
2 #define _ASM_IA64_SN_SN_SAL_H
4 /*
5 * System Abstraction Layer definitions for IA64
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
11 * Copyright (c) 2000-2006 Silicon Graphics, Inc. All rights reserved.
15 #include <asm/sal.h>
16 #include <asm/sn/sn_cpuid.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/geo.h>
19 #include <asm/sn/nodepda.h>
20 #include <asm/sn/shub_mmr.h>
22 // SGI Specific Calls
23 #define SN_SAL_POD_MODE 0x02000001
24 #define SN_SAL_SYSTEM_RESET 0x02000002
25 #define SN_SAL_PROBE 0x02000003
26 #define SN_SAL_GET_MASTER_NASID 0x02000004
27 #define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
28 #define SN_SAL_LOG_CE 0x02000006
29 #define SN_SAL_REGISTER_CE 0x02000007
30 #define SN_SAL_GET_PARTITION_ADDR 0x02000009
31 #define SN_SAL_XP_ADDR_REGION 0x0200000f
32 #define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
33 #define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
34 #define SN_SAL_PRINT_ERROR 0x02000012
35 #define SN_SAL_REGISTER_PMI_HANDLER 0x02000014
36 #define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37 #define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
38 #define SN_SAL_GET_SAPIC_INFO 0x0200001d
39 #define SN_SAL_GET_SN_INFO 0x0200001e
40 #define SN_SAL_CONSOLE_PUTC 0x02000021
41 #define SN_SAL_CONSOLE_GETC 0x02000022
42 #define SN_SAL_CONSOLE_PUTS 0x02000023
43 #define SN_SAL_CONSOLE_GETS 0x02000024
44 #define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45 #define SN_SAL_CONSOLE_POLL 0x02000026
46 #define SN_SAL_CONSOLE_INTR 0x02000027
47 #define SN_SAL_CONSOLE_PUTB 0x02000028
48 #define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49 #define SN_SAL_CONSOLE_READC 0x0200002b
50 #define SN_SAL_SYSCTL_OP 0x02000030
51 #define SN_SAL_SYSCTL_MODID_GET 0x02000031
52 #define SN_SAL_SYSCTL_GET 0x02000032
53 #define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
54 #define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
55 #define SN_SAL_SYSCTL_SLAB_GET 0x02000036
56 #define SN_SAL_BUS_CONFIG 0x02000037
57 #define SN_SAL_SYS_SERIAL_GET 0x02000038
58 #define SN_SAL_PARTITION_SERIAL_GET 0x02000039
59 #define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
60 #define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
61 #define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
62 #define SN_SAL_COHERENCE 0x0200003d
63 #define SN_SAL_MEMPROTECT 0x0200003e
64 #define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
66 #define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
67 #define SN_SAL_IROUTER_OP 0x02000043
68 #define SN_SAL_SYSCTL_EVENT 0x02000044
69 #define SN_SAL_IOIF_INTERRUPT 0x0200004a
70 #define SN_SAL_HWPERF_OP 0x02000050 // lock
71 #define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
72 #define SN_SAL_IOIF_PCI_SAFE 0x02000052
73 #define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
74 #define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
75 #define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
76 #define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
77 #define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
78 #define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058 // deprecated
79 #define SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST 0x0200005a
81 #define SN_SAL_IOIF_INIT 0x0200005f
82 #define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
83 #define SN_SAL_BTE_RECOVER 0x02000061
84 #define SN_SAL_RESERVED_DO_NOT_USE 0x02000062
85 #define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000064
87 #define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
88 #define SN_SAL_SET_OS_FEATURE_SET 0x02000066
89 #define SN_SAL_INJECT_ERROR 0x02000067
90 #define SN_SAL_SET_CPU_NUMBER 0x02000068
92 #define SN_SAL_KERNEL_LAUNCH_EVENT 0x02000069
95 * Service-specific constants
98 /* Console interrupt manipulation */
99 /* action codes */
100 #define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
101 #define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
102 #define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
103 /* interrupt specification & status return codes */
104 #define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
105 #define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
107 /* interrupt handling */
108 #define SAL_INTR_ALLOC 1
109 #define SAL_INTR_FREE 2
110 #define SAL_INTR_REDIRECT 3
113 * operations available on the generic SN_SAL_SYSCTL_OP
114 * runtime service
116 #define SAL_SYSCTL_OP_IOBOARD 0x0001 /* retrieve board type */
117 #define SAL_SYSCTL_OP_TIO_JLCK_RST 0x0002 /* issue TIO clock reset */
120 * IRouter (i.e. generalized system controller) operations
122 #define SAL_IROUTER_OPEN 0 /* open a subchannel */
123 #define SAL_IROUTER_CLOSE 1 /* close a subchannel */
124 #define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
125 #define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
126 #define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
127 * an open subchannel
129 #define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
130 #define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
131 #define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
133 /* IRouter interrupt mask bits */
134 #define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
135 #define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
138 * Error Handling Features
140 #define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
141 #define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
142 #define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
143 #define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
146 * SAL Error Codes
148 #define SALRET_MORE_PASSES 1
149 #define SALRET_OK 0
150 #define SALRET_NOT_IMPLEMENTED (-1)
151 #define SALRET_INVALID_ARG (-2)
152 #define SALRET_ERROR (-3)
154 #define SN_SAL_FAKE_PROM 0x02009999
157 * sn_sal_revision - get the SGI SAL revision number
159 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
160 * This routine simply extracts the major and minor values and
161 * presents them in a u32 format.
163 * For example, version 4.05 would be represented at 0x0405.
165 static inline u32
166 sn_sal_rev(void)
168 struct ia64_sal_systab *systab = __va(efi.sal_systab);
170 return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
174 * Returns the master console nasid, if the call fails, return an illegal
175 * value.
177 static inline u64
178 ia64_sn_get_console_nasid(void)
180 struct ia64_sal_retval ret_stuff;
182 ret_stuff.status = 0;
183 ret_stuff.v0 = 0;
184 ret_stuff.v1 = 0;
185 ret_stuff.v2 = 0;
186 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
188 if (ret_stuff.status < 0)
189 return ret_stuff.status;
191 /* Master console nasid is in 'v0' */
192 return ret_stuff.v0;
196 * Returns the master baseio nasid, if the call fails, return an illegal
197 * value.
199 static inline u64
200 ia64_sn_get_master_baseio_nasid(void)
202 struct ia64_sal_retval ret_stuff;
204 ret_stuff.status = 0;
205 ret_stuff.v0 = 0;
206 ret_stuff.v1 = 0;
207 ret_stuff.v2 = 0;
208 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
210 if (ret_stuff.status < 0)
211 return ret_stuff.status;
213 /* Master baseio nasid is in 'v0' */
214 return ret_stuff.v0;
217 static inline void *
218 ia64_sn_get_klconfig_addr(nasid_t nasid)
220 struct ia64_sal_retval ret_stuff;
222 ret_stuff.status = 0;
223 ret_stuff.v0 = 0;
224 ret_stuff.v1 = 0;
225 ret_stuff.v2 = 0;
226 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
227 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
231 * Returns the next console character.
233 static inline u64
234 ia64_sn_console_getc(int *ch)
236 struct ia64_sal_retval ret_stuff;
238 ret_stuff.status = 0;
239 ret_stuff.v0 = 0;
240 ret_stuff.v1 = 0;
241 ret_stuff.v2 = 0;
242 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
244 /* character is in 'v0' */
245 *ch = (int)ret_stuff.v0;
247 return ret_stuff.status;
251 * Read a character from the SAL console device, after a previous interrupt
252 * or poll operation has given us to know that a character is available
253 * to be read.
255 static inline u64
256 ia64_sn_console_readc(void)
258 struct ia64_sal_retval ret_stuff;
260 ret_stuff.status = 0;
261 ret_stuff.v0 = 0;
262 ret_stuff.v1 = 0;
263 ret_stuff.v2 = 0;
264 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
266 /* character is in 'v0' */
267 return ret_stuff.v0;
271 * Sends the given character to the console.
273 static inline u64
274 ia64_sn_console_putc(char ch)
276 struct ia64_sal_retval ret_stuff;
278 ret_stuff.status = 0;
279 ret_stuff.v0 = 0;
280 ret_stuff.v1 = 0;
281 ret_stuff.v2 = 0;
282 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
284 return ret_stuff.status;
288 * Sends the given buffer to the console.
290 static inline u64
291 ia64_sn_console_putb(const char *buf, int len)
293 struct ia64_sal_retval ret_stuff;
295 ret_stuff.status = 0;
296 ret_stuff.v0 = 0;
297 ret_stuff.v1 = 0;
298 ret_stuff.v2 = 0;
299 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
301 if ( ret_stuff.status == 0 ) {
302 return ret_stuff.v0;
304 return (u64)0;
308 * Print a platform error record
310 static inline u64
311 ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
313 struct ia64_sal_retval ret_stuff;
315 ret_stuff.status = 0;
316 ret_stuff.v0 = 0;
317 ret_stuff.v1 = 0;
318 ret_stuff.v2 = 0;
319 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
321 return ret_stuff.status;
325 * Check for Platform errors
327 static inline u64
328 ia64_sn_plat_cpei_handler(void)
330 struct ia64_sal_retval ret_stuff;
332 ret_stuff.status = 0;
333 ret_stuff.v0 = 0;
334 ret_stuff.v1 = 0;
335 ret_stuff.v2 = 0;
336 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
338 return ret_stuff.status;
342 * Set Error Handling Features (Obsolete)
344 static inline u64
345 ia64_sn_plat_set_error_handling_features(void)
347 struct ia64_sal_retval ret_stuff;
349 ret_stuff.status = 0;
350 ret_stuff.v0 = 0;
351 ret_stuff.v1 = 0;
352 ret_stuff.v2 = 0;
353 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
354 SAL_ERR_FEAT_LOG_SBES,
355 0, 0, 0, 0, 0, 0);
357 return ret_stuff.status;
361 * Checks for console input.
363 static inline u64
364 ia64_sn_console_check(int *result)
366 struct ia64_sal_retval ret_stuff;
368 ret_stuff.status = 0;
369 ret_stuff.v0 = 0;
370 ret_stuff.v1 = 0;
371 ret_stuff.v2 = 0;
372 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
374 /* result is in 'v0' */
375 *result = (int)ret_stuff.v0;
377 return ret_stuff.status;
381 * Checks console interrupt status
383 static inline u64
384 ia64_sn_console_intr_status(void)
386 struct ia64_sal_retval ret_stuff;
388 ret_stuff.status = 0;
389 ret_stuff.v0 = 0;
390 ret_stuff.v1 = 0;
391 ret_stuff.v2 = 0;
392 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
393 0, SAL_CONSOLE_INTR_STATUS,
394 0, 0, 0, 0, 0);
396 if (ret_stuff.status == 0) {
397 return ret_stuff.v0;
400 return 0;
404 * Enable an interrupt on the SAL console device.
406 static inline void
407 ia64_sn_console_intr_enable(u64 intr)
409 struct ia64_sal_retval ret_stuff;
411 ret_stuff.status = 0;
412 ret_stuff.v0 = 0;
413 ret_stuff.v1 = 0;
414 ret_stuff.v2 = 0;
415 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
416 intr, SAL_CONSOLE_INTR_ON,
417 0, 0, 0, 0, 0);
421 * Disable an interrupt on the SAL console device.
423 static inline void
424 ia64_sn_console_intr_disable(u64 intr)
426 struct ia64_sal_retval ret_stuff;
428 ret_stuff.status = 0;
429 ret_stuff.v0 = 0;
430 ret_stuff.v1 = 0;
431 ret_stuff.v2 = 0;
432 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
433 intr, SAL_CONSOLE_INTR_OFF,
434 0, 0, 0, 0, 0);
438 * Sends a character buffer to the console asynchronously.
440 static inline u64
441 ia64_sn_console_xmit_chars(char *buf, int len)
443 struct ia64_sal_retval ret_stuff;
445 ret_stuff.status = 0;
446 ret_stuff.v0 = 0;
447 ret_stuff.v1 = 0;
448 ret_stuff.v2 = 0;
449 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
450 (u64)buf, (u64)len,
451 0, 0, 0, 0, 0);
453 if (ret_stuff.status == 0) {
454 return ret_stuff.v0;
457 return 0;
461 * Returns the iobrick module Id
463 static inline u64
464 ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
466 struct ia64_sal_retval ret_stuff;
468 ret_stuff.status = 0;
469 ret_stuff.v0 = 0;
470 ret_stuff.v1 = 0;
471 ret_stuff.v2 = 0;
472 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
474 /* result is in 'v0' */
475 *result = (int)ret_stuff.v0;
477 return ret_stuff.status;
481 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
483 * SN_SAL_POD_MODE actually takes an argument, but it's always
484 * 0 when we call it from the kernel, so we don't have to expose
485 * it to the caller.
487 static inline u64
488 ia64_sn_pod_mode(void)
490 struct ia64_sal_retval isrv;
491 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
492 if (isrv.status)
493 return 0;
494 return isrv.v0;
498 * ia64_sn_probe_mem - read from memory safely
499 * @addr: address to probe
500 * @size: number bytes to read (1,2,4,8)
501 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
503 * Call into the SAL to do a memory read. If the read generates a machine
504 * check, this routine will recover gracefully and return -1 to the caller.
505 * @addr is usually a kernel virtual address in uncached space (i.e. the
506 * address starts with 0xc), but if called in physical mode, @addr should
507 * be a physical address.
509 * Return values:
510 * 0 - probe successful
511 * 1 - probe failed (generated MCA)
512 * 2 - Bad arg
513 * <0 - PAL error
515 static inline u64
516 ia64_sn_probe_mem(long addr, long size, void *data_ptr)
518 struct ia64_sal_retval isrv;
520 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
522 if (data_ptr) {
523 switch (size) {
524 case 1:
525 *((u8*)data_ptr) = (u8)isrv.v0;
526 break;
527 case 2:
528 *((u16*)data_ptr) = (u16)isrv.v0;
529 break;
530 case 4:
531 *((u32*)data_ptr) = (u32)isrv.v0;
532 break;
533 case 8:
534 *((u64*)data_ptr) = (u64)isrv.v0;
535 break;
536 default:
537 isrv.status = 2;
540 return isrv.status;
544 * Retrieve the system serial number as an ASCII string.
546 static inline u64
547 ia64_sn_sys_serial_get(char *buf)
549 struct ia64_sal_retval ret_stuff;
550 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
551 return ret_stuff.status;
554 extern char sn_system_serial_number_string[];
555 extern u64 sn_partition_serial_number;
557 static inline char *
558 sn_system_serial_number(void) {
559 if (sn_system_serial_number_string[0]) {
560 return(sn_system_serial_number_string);
561 } else {
562 ia64_sn_sys_serial_get(sn_system_serial_number_string);
563 return(sn_system_serial_number_string);
569 * Returns a unique id number for this system and partition (suitable for
570 * use with license managers), based in part on the system serial number.
572 static inline u64
573 ia64_sn_partition_serial_get(void)
575 struct ia64_sal_retval ret_stuff;
576 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
577 0, 0, 0, 0, 0, 0);
578 if (ret_stuff.status != 0)
579 return 0;
580 return ret_stuff.v0;
583 static inline u64
584 sn_partition_serial_number_val(void) {
585 if (unlikely(sn_partition_serial_number == 0)) {
586 sn_partition_serial_number = ia64_sn_partition_serial_get();
588 return sn_partition_serial_number;
592 * Returns the partition id of the nasid passed in as an argument,
593 * or INVALID_PARTID if the partition id cannot be retrieved.
595 static inline partid_t
596 ia64_sn_sysctl_partition_get(nasid_t nasid)
598 struct ia64_sal_retval ret_stuff;
599 SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
600 0, 0, 0, 0, 0, 0);
601 if (ret_stuff.status != 0)
602 return -1;
603 return ((partid_t)ret_stuff.v0);
607 * Returns the physical address of the partition's reserved page through
608 * an iterative number of calls.
610 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
611 * set to the nasid of the partition whose reserved page's address is
612 * being sought.
613 * On subsequent calls, pass the values, that were passed back on the
614 * previous call.
616 * While the return status equals SALRET_MORE_PASSES, keep calling
617 * this function after first copying 'len' bytes starting at 'addr'
618 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
619 * be the physical address of the partition's reserved page. If the
620 * return status equals neither of these, an error as occurred.
622 static inline s64
623 sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
625 struct ia64_sal_retval rv;
626 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
627 *addr, buf, *len, 0, 0, 0);
628 *cookie = rv.v0;
629 *addr = rv.v1;
630 *len = rv.v2;
631 return rv.status;
635 * Register or unregister a physical address range being referenced across
636 * a partition boundary for which certain SAL errors should be scanned for,
637 * cleaned up and ignored. This is of value for kernel partitioning code only.
638 * Values for the operation argument:
639 * 1 = register this address range with SAL
640 * 0 = unregister this address range with SAL
642 * SAL maintains a reference count on an address range in case it is registered
643 * multiple times.
645 * On success, returns the reference count of the address range after the SAL
646 * call has performed the current registration/unregistration. Returns a
647 * negative value if an error occurred.
649 static inline int
650 sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
652 struct ia64_sal_retval ret_stuff;
653 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
654 (u64)operation, 0, 0, 0, 0);
655 return ret_stuff.status;
659 * Register or unregister an instruction range for which SAL errors should
660 * be ignored. If an error occurs while in the registered range, SAL jumps
661 * to return_addr after ignoring the error. Values for the operation argument:
662 * 1 = register this instruction range with SAL
663 * 0 = unregister this instruction range with SAL
665 * Returns 0 on success, or a negative value if an error occurred.
667 static inline int
668 sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
669 int virtual, int operation)
671 struct ia64_sal_retval ret_stuff;
672 u64 call;
673 if (virtual) {
674 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
675 } else {
676 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
678 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
679 (u64)1, 0, 0, 0);
680 return ret_stuff.status;
684 * Register or unregister a function to handle a PMI received by a CPU.
685 * Before calling the registered handler, SAL sets r1 to the value that
686 * was passed in as the global_pointer.
688 * If the handler pointer is NULL, then the currently registered handler
689 * will be unregistered.
691 * Returns 0 on success, or a negative value if an error occurred.
693 static inline int
694 sn_register_pmi_handler(u64 handler, u64 global_pointer)
696 struct ia64_sal_retval ret_stuff;
697 ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler,
698 global_pointer, 0, 0, 0, 0, 0);
699 return ret_stuff.status;
703 * Change or query the coherence domain for this partition. Each cpu-based
704 * nasid is represented by a bit in an array of 64-bit words:
705 * 0 = not in this partition's coherency domain
706 * 1 = in this partition's coherency domain
708 * It is not possible for the local system's nasids to be removed from
709 * the coherency domain. Purpose of the domain arguments:
710 * new_domain = set the coherence domain to the given nasids
711 * old_domain = return the current coherence domain
713 * Returns 0 on success, or a negative value if an error occurred.
715 static inline int
716 sn_change_coherence(u64 *new_domain, u64 *old_domain)
718 struct ia64_sal_retval ret_stuff;
719 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
720 (u64)old_domain, 0, 0, 0, 0, 0);
721 return ret_stuff.status;
725 * Change memory access protections for a physical address range.
726 * nasid_array is not used on Altix, but may be in future architectures.
727 * Available memory protection access classes are defined after the function.
729 static inline int
730 sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
732 struct ia64_sal_retval ret_stuff;
734 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
735 (u64)nasid_array, perms, 0, 0, 0);
736 return ret_stuff.status;
738 #define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
739 #define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
740 #define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
741 #define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
742 #define SN_MEMPROT_ACCESS_CLASS_6 0x084080
743 #define SN_MEMPROT_ACCESS_CLASS_7 0x021080
746 * Turns off system power.
748 static inline void
749 ia64_sn_power_down(void)
751 struct ia64_sal_retval ret_stuff;
752 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
753 while(1)
754 cpu_relax();
755 /* never returns */
759 * ia64_sn_fru_capture - tell the system controller to capture hw state
761 * This routine will call the SAL which will tell the system controller(s)
762 * to capture hw mmr information from each SHub in the system.
764 static inline u64
765 ia64_sn_fru_capture(void)
767 struct ia64_sal_retval isrv;
768 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
769 if (isrv.status)
770 return 0;
771 return isrv.v0;
775 * Performs an operation on a PCI bus or slot -- power up, power down
776 * or reset.
778 static inline u64
779 ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
780 u64 bus, char slot,
781 u64 action)
783 struct ia64_sal_retval rv = {0, 0, 0, 0};
785 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
786 bus, (u64) slot, 0, 0);
787 if (rv.status)
788 return rv.v0;
789 return 0;
794 * Open a subchannel for sending arbitrary data to the system
795 * controller network via the system controller device associated with
796 * 'nasid'. Return the subchannel number or a negative error code.
798 static inline int
799 ia64_sn_irtr_open(nasid_t nasid)
801 struct ia64_sal_retval rv;
802 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
803 0, 0, 0, 0, 0);
804 return (int) rv.v0;
808 * Close system controller subchannel 'subch' previously opened on 'nasid'.
810 static inline int
811 ia64_sn_irtr_close(nasid_t nasid, int subch)
813 struct ia64_sal_retval rv;
814 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
815 (u64) nasid, (u64) subch, 0, 0, 0, 0);
816 return (int) rv.status;
820 * Read data from system controller associated with 'nasid' on
821 * subchannel 'subch'. The buffer to be filled is pointed to by
822 * 'buf', and its capacity is in the integer pointed to by 'len'. The
823 * referent of 'len' is set to the number of bytes read by the SAL
824 * call. The return value is either SALRET_OK (for bytes read) or
825 * SALRET_ERROR (for error or "no data available").
827 static inline int
828 ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
830 struct ia64_sal_retval rv;
831 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
832 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
833 0, 0);
834 return (int) rv.status;
838 * Write data to the system controller network via the system
839 * controller associated with 'nasid' on suchannel 'subch'. The
840 * buffer to be written out is pointed to by 'buf', and 'len' is the
841 * number of bytes to be written. The return value is either the
842 * number of bytes written (which could be zero) or a negative error
843 * code.
845 static inline int
846 ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
848 struct ia64_sal_retval rv;
849 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
850 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
851 0, 0);
852 return (int) rv.v0;
856 * Check whether any interrupts are pending for the system controller
857 * associated with 'nasid' and its subchannel 'subch'. The return
858 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
859 * SAL_IROUTER_INTR_RECV).
861 static inline int
862 ia64_sn_irtr_intr(nasid_t nasid, int subch)
864 struct ia64_sal_retval rv;
865 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
866 (u64) nasid, (u64) subch, 0, 0, 0, 0);
867 return (int) rv.v0;
871 * Enable the interrupt indicated by the intr parameter (either
872 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
874 static inline int
875 ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
877 struct ia64_sal_retval rv;
878 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
879 (u64) nasid, (u64) subch, intr, 0, 0, 0);
880 return (int) rv.v0;
884 * Disable the interrupt indicated by the intr parameter (either
885 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
887 static inline int
888 ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
890 struct ia64_sal_retval rv;
891 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
892 (u64) nasid, (u64) subch, intr, 0, 0, 0);
893 return (int) rv.v0;
897 * Set up a node as the point of contact for system controller
898 * environmental event delivery.
900 static inline int
901 ia64_sn_sysctl_event_init(nasid_t nasid)
903 struct ia64_sal_retval rv;
904 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
905 0, 0, 0, 0, 0, 0);
906 return (int) rv.v0;
910 * Ask the system controller on the specified nasid to reset
911 * the CX corelet clock. Only valid on TIO nodes.
913 static inline int
914 ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
916 struct ia64_sal_retval rv;
917 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
918 nasid, 0, 0, 0, 0, 0);
919 if (rv.status != 0)
920 return (int)rv.status;
921 if (rv.v0 != 0)
922 return (int)rv.v0;
924 return 0;
928 * Get the associated ioboard type for a given nasid.
930 static inline s64
931 ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
933 struct ia64_sal_retval isrv;
934 SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
935 nasid, 0, 0, 0, 0, 0);
936 if (isrv.v0 != 0) {
937 *ioboard = isrv.v0;
938 return isrv.status;
940 if (isrv.v1 != 0) {
941 *ioboard = isrv.v1;
942 return isrv.status;
945 return isrv.status;
949 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
950 * @nasid: NASID of node to read
951 * @index: FIT entry index to be retrieved (0..n)
952 * @fitentry: 16 byte buffer where FIT entry will be stored.
953 * @banbuf: optional buffer for retrieving banner
954 * @banlen: length of banner buffer
956 * Access to the physical PROM chips needs to be serialized since reads and
957 * writes can't occur at the same time, so we need to call into the SAL when
958 * we want to look at the FIT entries on the chips.
960 * Returns:
961 * %SALRET_OK if ok
962 * %SALRET_INVALID_ARG if index too big
963 * %SALRET_NOT_IMPLEMENTED if running on older PROM
964 * ??? if nasid invalid OR banner buffer not large enough
966 static inline int
967 ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
968 u64 banlen)
970 struct ia64_sal_retval rv;
971 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
972 banbuf, banlen, 0, 0);
973 return (int) rv.status;
977 * Initialize the SAL components of the system controller
978 * communication driver; specifically pass in a sizable buffer that
979 * can be used for allocation of subchannel queues as new subchannels
980 * are opened. "buf" points to the buffer, and "len" specifies its
981 * length.
983 static inline int
984 ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
986 struct ia64_sal_retval rv;
987 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
988 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
989 return (int) rv.status;
993 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
995 * In:
996 * arg0 - SN_SAL_GET_SAPIC_INFO
997 * arg1 - sapicid (lid >> 16)
998 * Out:
999 * v0 - nasid
1000 * v1 - subnode
1001 * v2 - slice
1003 static inline u64
1004 ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
1006 struct ia64_sal_retval ret_stuff;
1008 ret_stuff.status = 0;
1009 ret_stuff.v0 = 0;
1010 ret_stuff.v1 = 0;
1011 ret_stuff.v2 = 0;
1012 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
1014 /***** BEGIN HACK - temp til old proms no longer supported ********/
1015 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1016 if (nasid) *nasid = sapicid & 0xfff;
1017 if (subnode) *subnode = (sapicid >> 13) & 1;
1018 if (slice) *slice = (sapicid >> 12) & 3;
1019 return 0;
1021 /***** END HACK *******/
1023 if (ret_stuff.status < 0)
1024 return ret_stuff.status;
1026 if (nasid) *nasid = (int) ret_stuff.v0;
1027 if (subnode) *subnode = (int) ret_stuff.v1;
1028 if (slice) *slice = (int) ret_stuff.v2;
1029 return 0;
1033 * Returns information about the HUB/SHUB.
1034 * In:
1035 * arg0 - SN_SAL_GET_SN_INFO
1036 * arg1 - 0 (other values reserved for future use)
1037 * Out:
1038 * v0
1039 * [7:0] - shub type (0=shub1, 1=shub2)
1040 * [15:8] - Log2 max number of nodes in entire system (includes
1041 * C-bricks, I-bricks, etc)
1042 * [23:16] - Log2 of nodes per sharing domain
1043 * [31:24] - partition ID
1044 * [39:32] - coherency_id
1045 * [47:40] - regionsize
1046 * v1
1047 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1048 * [23:15] - bit position of low nasid bit
1050 static inline u64
1051 ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1052 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1054 struct ia64_sal_retval ret_stuff;
1056 ret_stuff.status = 0;
1057 ret_stuff.v0 = 0;
1058 ret_stuff.v1 = 0;
1059 ret_stuff.v2 = 0;
1060 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1062 /***** BEGIN HACK - temp til old proms no longer supported ********/
1063 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1064 int nasid = get_sapicid() & 0xfff;
1065 #define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1066 #define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1067 if (shubtype) *shubtype = 0;
1068 if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1069 if (nasid_shift) *nasid_shift = 38;
1070 if (systemsize) *systemsize = 10;
1071 if (sharing_domain_size) *sharing_domain_size = 8;
1072 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1073 if (coher) *coher = nasid >> 9;
1074 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1075 SH_SHUB_ID_NODES_PER_BIT_SHFT;
1076 return 0;
1078 /***** END HACK *******/
1080 if (ret_stuff.status < 0)
1081 return ret_stuff.status;
1083 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1084 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1085 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1086 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1087 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1088 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1089 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1090 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1091 return 0;
1095 * This is the access point to the Altix PROM hardware performance
1096 * and status monitoring interface. For info on using this, see
1097 * include/asm-ia64/sn/sn2/sn_hwperf.h
1099 static inline int
1100 ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1101 u64 a3, u64 a4, int *v0)
1103 struct ia64_sal_retval rv;
1104 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1105 opcode, a0, a1, a2, a3, a4);
1106 if (v0)
1107 *v0 = (int) rv.v0;
1108 return (int) rv.status;
1111 static inline int
1112 ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1114 struct ia64_sal_retval rv;
1115 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1116 return (int) rv.status;
1120 * BTE error recovery is implemented in SAL
1122 static inline int
1123 ia64_sn_bte_recovery(nasid_t nasid)
1125 struct ia64_sal_retval rv;
1127 rv.status = 0;
1128 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
1129 if (rv.status == SALRET_NOT_IMPLEMENTED)
1130 return 0;
1131 return (int) rv.status;
1134 static inline int
1135 ia64_sn_is_fake_prom(void)
1137 struct ia64_sal_retval rv;
1138 SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1139 return (rv.status == 0);
1142 static inline int
1143 ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1145 struct ia64_sal_retval rv;
1147 SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1148 if (rv.status != 0)
1149 return rv.status;
1150 *feature_set = rv.v0;
1151 return 0;
1154 static inline int
1155 ia64_sn_set_os_feature(int feature)
1157 struct ia64_sal_retval rv;
1159 SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1160 return rv.status;
1163 static inline int
1164 sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
1166 struct ia64_sal_retval ret_stuff;
1168 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
1169 (u64)ecc, 0, 0, 0, 0);
1170 return ret_stuff.status;
1173 static inline int
1174 ia64_sn_set_cpu_number(int cpu)
1176 struct ia64_sal_retval rv;
1178 SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0);
1179 return rv.status;
1181 static inline int
1182 ia64_sn_kernel_launch_event(void)
1184 struct ia64_sal_retval rv;
1185 SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0);
1186 return rv.status;
1188 #endif /* _ASM_IA64_SN_SN_SAL_H */