1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache
*policy_cache
;
113 static struct kmem_cache
*sn_cache
;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone
= 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy
= {
123 .refcnt
= ATOMIC_INIT(1), /* never free it */
124 .mode
= MPOL_PREFERRED
,
125 .flags
= MPOL_F_LOCAL
,
128 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
130 struct mempolicy
*get_task_policy(struct task_struct
*p
)
132 struct mempolicy
*pol
= p
->mempolicy
;
138 node
= numa_node_id();
139 if (node
!= NUMA_NO_NODE
) {
140 pol
= &preferred_node_policy
[node
];
141 /* preferred_node_policy is not initialised early in boot */
146 return &default_policy
;
149 static const struct mempolicy_operations
{
150 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
151 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
152 } mpol_ops
[MPOL_MAX
];
154 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
156 return pol
->flags
& MPOL_MODE_FLAGS
;
159 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
160 const nodemask_t
*rel
)
163 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
164 nodes_onto(*ret
, tmp
, *rel
);
167 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
169 if (nodes_empty(*nodes
))
171 pol
->v
.nodes
= *nodes
;
175 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
178 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
179 else if (nodes_empty(*nodes
))
180 return -EINVAL
; /* no allowed nodes */
182 pol
->v
.preferred_node
= first_node(*nodes
);
186 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
188 if (nodes_empty(*nodes
))
190 pol
->v
.nodes
= *nodes
;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy
*pol
,
204 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 nodes_and(nsc
->mask1
,
213 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
216 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
217 nodes
= NULL
; /* explicit local allocation */
219 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
220 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
222 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
224 if (mpol_store_user_nodemask(pol
))
225 pol
->w
.user_nodemask
= *nodes
;
227 pol
->w
.cpuset_mems_allowed
=
228 cpuset_current_mems_allowed
;
232 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
234 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
245 struct mempolicy
*policy
;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
250 if (mode
== MPOL_DEFAULT
) {
251 if (nodes
&& !nodes_empty(*nodes
))
252 return ERR_PTR(-EINVAL
);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode
== MPOL_PREFERRED
) {
263 if (nodes_empty(*nodes
)) {
264 if (((flags
& MPOL_F_STATIC_NODES
) ||
265 (flags
& MPOL_F_RELATIVE_NODES
)))
266 return ERR_PTR(-EINVAL
);
268 } else if (mode
== MPOL_LOCAL
) {
269 if (!nodes_empty(*nodes
) ||
270 (flags
& MPOL_F_STATIC_NODES
) ||
271 (flags
& MPOL_F_RELATIVE_NODES
))
272 return ERR_PTR(-EINVAL
);
273 mode
= MPOL_PREFERRED
;
274 } else if (nodes_empty(*nodes
))
275 return ERR_PTR(-EINVAL
);
276 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
278 return ERR_PTR(-ENOMEM
);
279 atomic_set(&policy
->refcnt
, 1);
281 policy
->flags
= flags
;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy
*p
)
289 if (!atomic_dec_and_test(&p
->refcnt
))
291 kmem_cache_free(policy_cache
, p
);
294 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
298 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
302 if (pol
->flags
& MPOL_F_STATIC_NODES
)
303 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
304 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
305 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
307 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
309 pol
->w
.cpuset_mems_allowed
= *nodes
;
312 if (nodes_empty(tmp
))
318 static void mpol_rebind_preferred(struct mempolicy
*pol
,
319 const nodemask_t
*nodes
)
323 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
324 int node
= first_node(pol
->w
.user_nodemask
);
326 if (node_isset(node
, *nodes
)) {
327 pol
->v
.preferred_node
= node
;
328 pol
->flags
&= ~MPOL_F_LOCAL
;
330 pol
->flags
|= MPOL_F_LOCAL
;
331 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
332 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
333 pol
->v
.preferred_node
= first_node(tmp
);
334 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
335 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
336 pol
->w
.cpuset_mems_allowed
,
338 pol
->w
.cpuset_mems_allowed
= *nodes
;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
353 if (!mpol_store_user_nodemask(pol
) && !(pol
->flags
& MPOL_F_LOCAL
) &&
354 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
357 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
369 mpol_rebind_policy(tsk
->mempolicy
, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
380 struct vm_area_struct
*vma
;
382 down_write(&mm
->mmap_sem
);
383 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
384 mpol_rebind_policy(vma
->vm_policy
, new);
385 up_write(&mm
->mmap_sem
);
388 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
390 .rebind
= mpol_rebind_default
,
392 [MPOL_INTERLEAVE
] = {
393 .create
= mpol_new_interleave
,
394 .rebind
= mpol_rebind_nodemask
,
397 .create
= mpol_new_preferred
,
398 .rebind
= mpol_rebind_preferred
,
401 .create
= mpol_new_bind
,
402 .rebind
= mpol_rebind_nodemask
,
406 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
407 unsigned long flags
);
410 struct list_head
*pagelist
;
413 struct vm_area_struct
*prev
;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page
*page
,
423 struct queue_pages
*qp
)
425 int nid
= page_to_nid(page
);
426 unsigned long flags
= qp
->flags
;
428 return node_isset(nid
, *qp
->nmask
) == !(flags
& MPOL_MF_INVERT
);
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
441 static int queue_pages_pmd(pmd_t
*pmd
, spinlock_t
*ptl
, unsigned long addr
,
442 unsigned long end
, struct mm_walk
*walk
)
446 struct queue_pages
*qp
= walk
->private;
449 if (unlikely(is_pmd_migration_entry(*pmd
))) {
453 page
= pmd_page(*pmd
);
454 if (is_huge_zero_page(page
)) {
456 __split_huge_pmd(walk
->vma
, pmd
, addr
, false, NULL
);
460 if (!queue_pages_required(page
, qp
))
464 /* go to thp migration */
465 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
466 if (!vma_migratable(walk
->vma
)) {
471 migrate_page_add(page
, qp
->pagelist
, flags
);
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
484 * queue_pages_pte_range() has three possible return values:
485 * 0 - pages are placed on the right node or queued successfully.
486 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
488 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
489 * on a node that does not follow the policy.
491 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
492 unsigned long end
, struct mm_walk
*walk
)
494 struct vm_area_struct
*vma
= walk
->vma
;
496 struct queue_pages
*qp
= walk
->private;
497 unsigned long flags
= qp
->flags
;
499 bool has_unmovable
= false;
503 ptl
= pmd_trans_huge_lock(pmd
, vma
);
505 ret
= queue_pages_pmd(pmd
, ptl
, addr
, end
, walk
);
509 /* THP was split, fall through to pte walk */
511 if (pmd_trans_unstable(pmd
))
514 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
515 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
516 if (!pte_present(*pte
))
518 page
= vm_normal_page(vma
, addr
, *pte
);
522 * vm_normal_page() filters out zero pages, but there might
523 * still be PageReserved pages to skip, perhaps in a VDSO.
525 if (PageReserved(page
))
527 if (!queue_pages_required(page
, qp
))
529 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
530 /* MPOL_MF_STRICT must be specified if we get here */
531 if (!vma_migratable(vma
)) {
532 has_unmovable
= true;
535 migrate_page_add(page
, qp
->pagelist
, flags
);
539 pte_unmap_unlock(pte
- 1, ptl
);
545 return addr
!= end
? -EIO
: 0;
548 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
549 unsigned long addr
, unsigned long end
,
550 struct mm_walk
*walk
)
552 #ifdef CONFIG_HUGETLB_PAGE
553 struct queue_pages
*qp
= walk
->private;
554 unsigned long flags
= qp
->flags
;
559 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
560 entry
= huge_ptep_get(pte
);
561 if (!pte_present(entry
))
563 page
= pte_page(entry
);
564 if (!queue_pages_required(page
, qp
))
566 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
567 if (flags
& (MPOL_MF_MOVE_ALL
) ||
568 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
569 isolate_huge_page(page
, qp
->pagelist
);
578 #ifdef CONFIG_NUMA_BALANCING
580 * This is used to mark a range of virtual addresses to be inaccessible.
581 * These are later cleared by a NUMA hinting fault. Depending on these
582 * faults, pages may be migrated for better NUMA placement.
584 * This is assuming that NUMA faults are handled using PROT_NONE. If
585 * an architecture makes a different choice, it will need further
586 * changes to the core.
588 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
589 unsigned long addr
, unsigned long end
)
593 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
595 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
600 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
601 unsigned long addr
, unsigned long end
)
605 #endif /* CONFIG_NUMA_BALANCING */
607 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
608 struct mm_walk
*walk
)
610 struct vm_area_struct
*vma
= walk
->vma
;
611 struct queue_pages
*qp
= walk
->private;
612 unsigned long endvma
= vma
->vm_end
;
613 unsigned long flags
= qp
->flags
;
616 * Need check MPOL_MF_STRICT to return -EIO if possible
617 * regardless of vma_migratable
619 if (!vma_migratable(vma
) &&
620 !(flags
& MPOL_MF_STRICT
))
625 if (vma
->vm_start
> start
)
626 start
= vma
->vm_start
;
628 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
629 if (!vma
->vm_next
&& vma
->vm_end
< end
)
631 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
637 if (flags
& MPOL_MF_LAZY
) {
638 /* Similar to task_numa_work, skip inaccessible VMAs */
639 if (!is_vm_hugetlb_page(vma
) &&
640 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
641 !(vma
->vm_flags
& VM_MIXEDMAP
))
642 change_prot_numa(vma
, start
, endvma
);
646 /* queue pages from current vma */
647 if (flags
& MPOL_MF_VALID
)
653 * Walk through page tables and collect pages to be migrated.
655 * If pages found in a given range are on a set of nodes (determined by
656 * @nodes and @flags,) it's isolated and queued to the pagelist which is
657 * passed via @private.
659 * queue_pages_range() has three possible return values:
660 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
662 * 0 - queue pages successfully or no misplaced page.
663 * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified.
666 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
667 nodemask_t
*nodes
, unsigned long flags
,
668 struct list_head
*pagelist
)
670 struct queue_pages qp
= {
671 .pagelist
= pagelist
,
676 struct mm_walk queue_pages_walk
= {
677 .hugetlb_entry
= queue_pages_hugetlb
,
678 .pmd_entry
= queue_pages_pte_range
,
679 .test_walk
= queue_pages_test_walk
,
684 return walk_page_range(start
, end
, &queue_pages_walk
);
688 * Apply policy to a single VMA
689 * This must be called with the mmap_sem held for writing.
691 static int vma_replace_policy(struct vm_area_struct
*vma
,
692 struct mempolicy
*pol
)
695 struct mempolicy
*old
;
696 struct mempolicy
*new;
698 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
699 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
700 vma
->vm_ops
, vma
->vm_file
,
701 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
707 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
708 err
= vma
->vm_ops
->set_policy(vma
, new);
713 old
= vma
->vm_policy
;
714 vma
->vm_policy
= new; /* protected by mmap_sem */
723 /* Step 2: apply policy to a range and do splits. */
724 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
725 unsigned long end
, struct mempolicy
*new_pol
)
727 struct vm_area_struct
*next
;
728 struct vm_area_struct
*prev
;
729 struct vm_area_struct
*vma
;
732 unsigned long vmstart
;
735 vma
= find_vma(mm
, start
);
736 if (!vma
|| vma
->vm_start
> start
)
740 if (start
> vma
->vm_start
)
743 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
745 vmstart
= max(start
, vma
->vm_start
);
746 vmend
= min(end
, vma
->vm_end
);
748 if (mpol_equal(vma_policy(vma
), new_pol
))
751 pgoff
= vma
->vm_pgoff
+
752 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
753 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
754 vma
->anon_vma
, vma
->vm_file
, pgoff
,
755 new_pol
, vma
->vm_userfaultfd_ctx
);
759 if (mpol_equal(vma_policy(vma
), new_pol
))
761 /* vma_merge() joined vma && vma->next, case 8 */
764 if (vma
->vm_start
!= vmstart
) {
765 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
769 if (vma
->vm_end
!= vmend
) {
770 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
775 err
= vma_replace_policy(vma
, new_pol
);
784 /* Set the process memory policy */
785 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
788 struct mempolicy
*new, *old
;
789 NODEMASK_SCRATCH(scratch
);
795 new = mpol_new(mode
, flags
, nodes
);
802 ret
= mpol_set_nodemask(new, nodes
, scratch
);
804 task_unlock(current
);
808 old
= current
->mempolicy
;
809 current
->mempolicy
= new;
810 if (new && new->mode
== MPOL_INTERLEAVE
)
811 current
->il_prev
= MAX_NUMNODES
-1;
812 task_unlock(current
);
816 NODEMASK_SCRATCH_FREE(scratch
);
821 * Return nodemask for policy for get_mempolicy() query
823 * Called with task's alloc_lock held
825 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
828 if (p
== &default_policy
)
834 case MPOL_INTERLEAVE
:
838 if (!(p
->flags
& MPOL_F_LOCAL
))
839 node_set(p
->v
.preferred_node
, *nodes
);
840 /* else return empty node mask for local allocation */
847 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
853 err
= get_user_pages_locked(addr
& PAGE_MASK
, 1, 0, &p
, &locked
);
855 err
= page_to_nid(p
);
859 up_read(&mm
->mmap_sem
);
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
865 unsigned long addr
, unsigned long flags
)
868 struct mm_struct
*mm
= current
->mm
;
869 struct vm_area_struct
*vma
= NULL
;
870 struct mempolicy
*pol
= current
->mempolicy
, *pol_refcount
= NULL
;
873 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
876 if (flags
& MPOL_F_MEMS_ALLOWED
) {
877 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
879 *policy
= 0; /* just so it's initialized */
881 *nmask
= cpuset_current_mems_allowed
;
882 task_unlock(current
);
886 if (flags
& MPOL_F_ADDR
) {
888 * Do NOT fall back to task policy if the
889 * vma/shared policy at addr is NULL. We
890 * want to return MPOL_DEFAULT in this case.
892 down_read(&mm
->mmap_sem
);
893 vma
= find_vma_intersection(mm
, addr
, addr
+1);
895 up_read(&mm
->mmap_sem
);
898 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
899 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
901 pol
= vma
->vm_policy
;
906 pol
= &default_policy
; /* indicates default behavior */
908 if (flags
& MPOL_F_NODE
) {
909 if (flags
& MPOL_F_ADDR
) {
911 * Take a refcount on the mpol, lookup_node()
912 * wil drop the mmap_sem, so after calling
913 * lookup_node() only "pol" remains valid, "vma"
919 err
= lookup_node(mm
, addr
);
923 } else if (pol
== current
->mempolicy
&&
924 pol
->mode
== MPOL_INTERLEAVE
) {
925 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
931 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
934 * Internal mempolicy flags must be masked off before exposing
935 * the policy to userspace.
937 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
942 if (mpol_store_user_nodemask(pol
)) {
943 *nmask
= pol
->w
.user_nodemask
;
946 get_policy_nodemask(pol
, nmask
);
947 task_unlock(current
);
954 up_read(&mm
->mmap_sem
);
956 mpol_put(pol_refcount
);
960 #ifdef CONFIG_MIGRATION
962 * page migration, thp tail pages can be passed.
964 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
967 struct page
*head
= compound_head(page
);
969 * Avoid migrating a page that is shared with others.
971 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(head
) == 1) {
972 if (!isolate_lru_page(head
)) {
973 list_add_tail(&head
->lru
, pagelist
);
974 mod_node_page_state(page_pgdat(head
),
975 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
976 hpage_nr_pages(head
));
981 /* page allocation callback for NUMA node migration */
982 struct page
*alloc_new_node_page(struct page
*page
, unsigned long node
)
985 return alloc_huge_page_node(page_hstate(compound_head(page
)),
987 else if (PageTransHuge(page
)) {
990 thp
= alloc_pages_node(node
,
991 (GFP_TRANSHUGE
| __GFP_THISNODE
),
995 prep_transhuge_page(thp
);
998 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
1003 * Migrate pages from one node to a target node.
1004 * Returns error or the number of pages not migrated.
1006 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1010 LIST_HEAD(pagelist
);
1014 node_set(source
, nmask
);
1017 * This does not "check" the range but isolates all pages that
1018 * need migration. Between passing in the full user address
1019 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1021 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1022 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1023 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1025 if (!list_empty(&pagelist
)) {
1026 err
= migrate_pages(&pagelist
, alloc_new_node_page
, NULL
, dest
,
1027 MIGRATE_SYNC
, MR_SYSCALL
);
1029 putback_movable_pages(&pagelist
);
1036 * Move pages between the two nodesets so as to preserve the physical
1037 * layout as much as possible.
1039 * Returns the number of page that could not be moved.
1041 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1042 const nodemask_t
*to
, int flags
)
1048 err
= migrate_prep();
1052 down_read(&mm
->mmap_sem
);
1055 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1056 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1057 * bit in 'tmp', and return that <source, dest> pair for migration.
1058 * The pair of nodemasks 'to' and 'from' define the map.
1060 * If no pair of bits is found that way, fallback to picking some
1061 * pair of 'source' and 'dest' bits that are not the same. If the
1062 * 'source' and 'dest' bits are the same, this represents a node
1063 * that will be migrating to itself, so no pages need move.
1065 * If no bits are left in 'tmp', or if all remaining bits left
1066 * in 'tmp' correspond to the same bit in 'to', return false
1067 * (nothing left to migrate).
1069 * This lets us pick a pair of nodes to migrate between, such that
1070 * if possible the dest node is not already occupied by some other
1071 * source node, minimizing the risk of overloading the memory on a
1072 * node that would happen if we migrated incoming memory to a node
1073 * before migrating outgoing memory source that same node.
1075 * A single scan of tmp is sufficient. As we go, we remember the
1076 * most recent <s, d> pair that moved (s != d). If we find a pair
1077 * that not only moved, but what's better, moved to an empty slot
1078 * (d is not set in tmp), then we break out then, with that pair.
1079 * Otherwise when we finish scanning from_tmp, we at least have the
1080 * most recent <s, d> pair that moved. If we get all the way through
1081 * the scan of tmp without finding any node that moved, much less
1082 * moved to an empty node, then there is nothing left worth migrating.
1086 while (!nodes_empty(tmp
)) {
1088 int source
= NUMA_NO_NODE
;
1091 for_each_node_mask(s
, tmp
) {
1094 * do_migrate_pages() tries to maintain the relative
1095 * node relationship of the pages established between
1096 * threads and memory areas.
1098 * However if the number of source nodes is not equal to
1099 * the number of destination nodes we can not preserve
1100 * this node relative relationship. In that case, skip
1101 * copying memory from a node that is in the destination
1104 * Example: [2,3,4] -> [3,4,5] moves everything.
1105 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1108 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1109 (node_isset(s
, *to
)))
1112 d
= node_remap(s
, *from
, *to
);
1116 source
= s
; /* Node moved. Memorize */
1119 /* dest not in remaining from nodes? */
1120 if (!node_isset(dest
, tmp
))
1123 if (source
== NUMA_NO_NODE
)
1126 node_clear(source
, tmp
);
1127 err
= migrate_to_node(mm
, source
, dest
, flags
);
1133 up_read(&mm
->mmap_sem
);
1141 * Allocate a new page for page migration based on vma policy.
1142 * Start by assuming the page is mapped by the same vma as contains @start.
1143 * Search forward from there, if not. N.B., this assumes that the
1144 * list of pages handed to migrate_pages()--which is how we get here--
1145 * is in virtual address order.
1147 static struct page
*new_page(struct page
*page
, unsigned long start
)
1149 struct vm_area_struct
*vma
;
1150 unsigned long uninitialized_var(address
);
1152 vma
= find_vma(current
->mm
, start
);
1154 address
= page_address_in_vma(page
, vma
);
1155 if (address
!= -EFAULT
)
1160 if (PageHuge(page
)) {
1161 return alloc_huge_page_vma(page_hstate(compound_head(page
)),
1163 } else if (PageTransHuge(page
)) {
1166 thp
= alloc_hugepage_vma(GFP_TRANSHUGE
, vma
, address
,
1170 prep_transhuge_page(thp
);
1174 * if !vma, alloc_page_vma() will use task or system default policy
1176 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1181 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1182 unsigned long flags
)
1186 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1187 const nodemask_t
*to
, int flags
)
1192 static struct page
*new_page(struct page
*page
, unsigned long start
)
1198 static long do_mbind(unsigned long start
, unsigned long len
,
1199 unsigned short mode
, unsigned short mode_flags
,
1200 nodemask_t
*nmask
, unsigned long flags
)
1202 struct mm_struct
*mm
= current
->mm
;
1203 struct mempolicy
*new;
1207 LIST_HEAD(pagelist
);
1209 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1211 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1214 if (start
& ~PAGE_MASK
)
1217 if (mode
== MPOL_DEFAULT
)
1218 flags
&= ~MPOL_MF_STRICT
;
1220 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1228 new = mpol_new(mode
, mode_flags
, nmask
);
1230 return PTR_ERR(new);
1232 if (flags
& MPOL_MF_LAZY
)
1233 new->flags
|= MPOL_F_MOF
;
1236 * If we are using the default policy then operation
1237 * on discontinuous address spaces is okay after all
1240 flags
|= MPOL_MF_DISCONTIG_OK
;
1242 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1243 start
, start
+ len
, mode
, mode_flags
,
1244 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1246 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1248 err
= migrate_prep();
1253 NODEMASK_SCRATCH(scratch
);
1255 down_write(&mm
->mmap_sem
);
1257 err
= mpol_set_nodemask(new, nmask
, scratch
);
1258 task_unlock(current
);
1260 up_write(&mm
->mmap_sem
);
1263 NODEMASK_SCRATCH_FREE(scratch
);
1268 ret
= queue_pages_range(mm
, start
, end
, nmask
,
1269 flags
| MPOL_MF_INVERT
, &pagelist
);
1276 err
= mbind_range(mm
, start
, end
, new);
1281 if (!list_empty(&pagelist
)) {
1282 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1283 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1284 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1286 putback_movable_pages(&pagelist
);
1289 if ((ret
> 0) || (nr_failed
&& (flags
& MPOL_MF_STRICT
)))
1292 putback_movable_pages(&pagelist
);
1295 up_write(&mm
->mmap_sem
);
1302 * User space interface with variable sized bitmaps for nodelists.
1305 /* Copy a node mask from user space. */
1306 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1307 unsigned long maxnode
)
1311 unsigned long nlongs
;
1312 unsigned long endmask
;
1315 nodes_clear(*nodes
);
1316 if (maxnode
== 0 || !nmask
)
1318 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1321 nlongs
= BITS_TO_LONGS(maxnode
);
1322 if ((maxnode
% BITS_PER_LONG
) == 0)
1325 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1328 * When the user specified more nodes than supported just check
1329 * if the non supported part is all zero.
1331 * If maxnode have more longs than MAX_NUMNODES, check
1332 * the bits in that area first. And then go through to
1333 * check the rest bits which equal or bigger than MAX_NUMNODES.
1334 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1336 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1337 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1338 if (get_user(t
, nmask
+ k
))
1340 if (k
== nlongs
- 1) {
1346 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1350 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1351 unsigned long valid_mask
= endmask
;
1353 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1354 if (get_user(t
, nmask
+ nlongs
- 1))
1360 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1362 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1366 /* Copy a kernel node mask to user space */
1367 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1370 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1371 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1373 if (copy
> nbytes
) {
1374 if (copy
> PAGE_SIZE
)
1376 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1380 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1383 static long kernel_mbind(unsigned long start
, unsigned long len
,
1384 unsigned long mode
, const unsigned long __user
*nmask
,
1385 unsigned long maxnode
, unsigned int flags
)
1389 unsigned short mode_flags
;
1391 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1392 mode
&= ~MPOL_MODE_FLAGS
;
1393 if (mode
>= MPOL_MAX
)
1395 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1396 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1398 err
= get_nodes(&nodes
, nmask
, maxnode
);
1401 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1404 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1405 unsigned long, mode
, const unsigned long __user
*, nmask
,
1406 unsigned long, maxnode
, unsigned int, flags
)
1408 return kernel_mbind(start
, len
, mode
, nmask
, maxnode
, flags
);
1411 /* Set the process memory policy */
1412 static long kernel_set_mempolicy(int mode
, const unsigned long __user
*nmask
,
1413 unsigned long maxnode
)
1417 unsigned short flags
;
1419 flags
= mode
& MPOL_MODE_FLAGS
;
1420 mode
&= ~MPOL_MODE_FLAGS
;
1421 if ((unsigned int)mode
>= MPOL_MAX
)
1423 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1425 err
= get_nodes(&nodes
, nmask
, maxnode
);
1428 return do_set_mempolicy(mode
, flags
, &nodes
);
1431 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1432 unsigned long, maxnode
)
1434 return kernel_set_mempolicy(mode
, nmask
, maxnode
);
1437 static int kernel_migrate_pages(pid_t pid
, unsigned long maxnode
,
1438 const unsigned long __user
*old_nodes
,
1439 const unsigned long __user
*new_nodes
)
1441 struct mm_struct
*mm
= NULL
;
1442 struct task_struct
*task
;
1443 nodemask_t task_nodes
;
1447 NODEMASK_SCRATCH(scratch
);
1452 old
= &scratch
->mask1
;
1453 new = &scratch
->mask2
;
1455 err
= get_nodes(old
, old_nodes
, maxnode
);
1459 err
= get_nodes(new, new_nodes
, maxnode
);
1463 /* Find the mm_struct */
1465 task
= pid
? find_task_by_vpid(pid
) : current
;
1471 get_task_struct(task
);
1476 * Check if this process has the right to modify the specified process.
1477 * Use the regular "ptrace_may_access()" checks.
1479 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1486 task_nodes
= cpuset_mems_allowed(task
);
1487 /* Is the user allowed to access the target nodes? */
1488 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1493 task_nodes
= cpuset_mems_allowed(current
);
1494 nodes_and(*new, *new, task_nodes
);
1495 if (nodes_empty(*new))
1498 nodes_and(*new, *new, node_states
[N_MEMORY
]);
1499 if (nodes_empty(*new))
1502 err
= security_task_movememory(task
);
1506 mm
= get_task_mm(task
);
1507 put_task_struct(task
);
1514 err
= do_migrate_pages(mm
, old
, new,
1515 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1519 NODEMASK_SCRATCH_FREE(scratch
);
1524 put_task_struct(task
);
1529 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1530 const unsigned long __user
*, old_nodes
,
1531 const unsigned long __user
*, new_nodes
)
1533 return kernel_migrate_pages(pid
, maxnode
, old_nodes
, new_nodes
);
1537 /* Retrieve NUMA policy */
1538 static int kernel_get_mempolicy(int __user
*policy
,
1539 unsigned long __user
*nmask
,
1540 unsigned long maxnode
,
1542 unsigned long flags
)
1545 int uninitialized_var(pval
);
1548 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1551 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1556 if (policy
&& put_user(pval
, policy
))
1560 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1565 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1566 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1567 unsigned long, addr
, unsigned long, flags
)
1569 return kernel_get_mempolicy(policy
, nmask
, maxnode
, addr
, flags
);
1572 #ifdef CONFIG_COMPAT
1574 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1575 compat_ulong_t __user
*, nmask
,
1576 compat_ulong_t
, maxnode
,
1577 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1580 unsigned long __user
*nm
= NULL
;
1581 unsigned long nr_bits
, alloc_size
;
1582 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1584 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1585 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1588 nm
= compat_alloc_user_space(alloc_size
);
1590 err
= kernel_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1592 if (!err
&& nmask
) {
1593 unsigned long copy_size
;
1594 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1595 err
= copy_from_user(bm
, nm
, copy_size
);
1596 /* ensure entire bitmap is zeroed */
1597 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1598 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1604 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1605 compat_ulong_t
, maxnode
)
1607 unsigned long __user
*nm
= NULL
;
1608 unsigned long nr_bits
, alloc_size
;
1609 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1611 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1612 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1615 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1617 nm
= compat_alloc_user_space(alloc_size
);
1618 if (copy_to_user(nm
, bm
, alloc_size
))
1622 return kernel_set_mempolicy(mode
, nm
, nr_bits
+1);
1625 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1626 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1627 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1629 unsigned long __user
*nm
= NULL
;
1630 unsigned long nr_bits
, alloc_size
;
1633 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1634 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1637 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1639 nm
= compat_alloc_user_space(alloc_size
);
1640 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1644 return kernel_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1647 COMPAT_SYSCALL_DEFINE4(migrate_pages
, compat_pid_t
, pid
,
1648 compat_ulong_t
, maxnode
,
1649 const compat_ulong_t __user
*, old_nodes
,
1650 const compat_ulong_t __user
*, new_nodes
)
1652 unsigned long __user
*old
= NULL
;
1653 unsigned long __user
*new = NULL
;
1654 nodemask_t tmp_mask
;
1655 unsigned long nr_bits
;
1658 nr_bits
= min_t(unsigned long, maxnode
- 1, MAX_NUMNODES
);
1659 size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1661 if (compat_get_bitmap(nodes_addr(tmp_mask
), old_nodes
, nr_bits
))
1663 old
= compat_alloc_user_space(new_nodes
? size
* 2 : size
);
1665 new = old
+ size
/ sizeof(unsigned long);
1666 if (copy_to_user(old
, nodes_addr(tmp_mask
), size
))
1670 if (compat_get_bitmap(nodes_addr(tmp_mask
), new_nodes
, nr_bits
))
1673 new = compat_alloc_user_space(size
);
1674 if (copy_to_user(new, nodes_addr(tmp_mask
), size
))
1677 return kernel_migrate_pages(pid
, nr_bits
+ 1, old
, new);
1680 #endif /* CONFIG_COMPAT */
1682 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1685 struct mempolicy
*pol
= NULL
;
1688 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1689 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1690 } else if (vma
->vm_policy
) {
1691 pol
= vma
->vm_policy
;
1694 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1695 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1696 * count on these policies which will be dropped by
1697 * mpol_cond_put() later
1699 if (mpol_needs_cond_ref(pol
))
1708 * get_vma_policy(@vma, @addr)
1709 * @vma: virtual memory area whose policy is sought
1710 * @addr: address in @vma for shared policy lookup
1712 * Returns effective policy for a VMA at specified address.
1713 * Falls back to current->mempolicy or system default policy, as necessary.
1714 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1715 * count--added by the get_policy() vm_op, as appropriate--to protect against
1716 * freeing by another task. It is the caller's responsibility to free the
1717 * extra reference for shared policies.
1719 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1722 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1725 pol
= get_task_policy(current
);
1730 bool vma_policy_mof(struct vm_area_struct
*vma
)
1732 struct mempolicy
*pol
;
1734 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1737 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1738 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1745 pol
= vma
->vm_policy
;
1747 pol
= get_task_policy(current
);
1749 return pol
->flags
& MPOL_F_MOF
;
1752 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1754 enum zone_type dynamic_policy_zone
= policy_zone
;
1756 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1759 * if policy->v.nodes has movable memory only,
1760 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1762 * policy->v.nodes is intersect with node_states[N_MEMORY].
1763 * so if the following test faile, it implies
1764 * policy->v.nodes has movable memory only.
1766 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1767 dynamic_policy_zone
= ZONE_MOVABLE
;
1769 return zone
>= dynamic_policy_zone
;
1773 * Return a nodemask representing a mempolicy for filtering nodes for
1776 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1778 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1779 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1780 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1781 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1782 return &policy
->v
.nodes
;
1787 /* Return the node id preferred by the given mempolicy, or the given id */
1788 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
,
1791 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1792 nd
= policy
->v
.preferred_node
;
1795 * __GFP_THISNODE shouldn't even be used with the bind policy
1796 * because we might easily break the expectation to stay on the
1797 * requested node and not break the policy.
1799 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1805 /* Do dynamic interleaving for a process */
1806 static unsigned interleave_nodes(struct mempolicy
*policy
)
1809 struct task_struct
*me
= current
;
1811 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1812 if (next
< MAX_NUMNODES
)
1818 * Depending on the memory policy provide a node from which to allocate the
1821 unsigned int mempolicy_slab_node(void)
1823 struct mempolicy
*policy
;
1824 int node
= numa_mem_id();
1829 policy
= current
->mempolicy
;
1830 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1833 switch (policy
->mode
) {
1834 case MPOL_PREFERRED
:
1836 * handled MPOL_F_LOCAL above
1838 return policy
->v
.preferred_node
;
1840 case MPOL_INTERLEAVE
:
1841 return interleave_nodes(policy
);
1847 * Follow bind policy behavior and start allocation at the
1850 struct zonelist
*zonelist
;
1851 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1852 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1853 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1855 return z
->zone
? zone_to_nid(z
->zone
) : node
;
1864 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1865 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1866 * number of present nodes.
1868 static unsigned offset_il_node(struct mempolicy
*pol
, unsigned long n
)
1870 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1876 return numa_node_id();
1877 target
= (unsigned int)n
% nnodes
;
1878 nid
= first_node(pol
->v
.nodes
);
1879 for (i
= 0; i
< target
; i
++)
1880 nid
= next_node(nid
, pol
->v
.nodes
);
1884 /* Determine a node number for interleave */
1885 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1886 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1892 * for small pages, there is no difference between
1893 * shift and PAGE_SHIFT, so the bit-shift is safe.
1894 * for huge pages, since vm_pgoff is in units of small
1895 * pages, we need to shift off the always 0 bits to get
1898 BUG_ON(shift
< PAGE_SHIFT
);
1899 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1900 off
+= (addr
- vma
->vm_start
) >> shift
;
1901 return offset_il_node(pol
, off
);
1903 return interleave_nodes(pol
);
1906 #ifdef CONFIG_HUGETLBFS
1908 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1909 * @vma: virtual memory area whose policy is sought
1910 * @addr: address in @vma for shared policy lookup and interleave policy
1911 * @gfp_flags: for requested zone
1912 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1913 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1915 * Returns a nid suitable for a huge page allocation and a pointer
1916 * to the struct mempolicy for conditional unref after allocation.
1917 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1918 * @nodemask for filtering the zonelist.
1920 * Must be protected by read_mems_allowed_begin()
1922 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
1923 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
1927 *mpol
= get_vma_policy(vma
, addr
);
1928 *nodemask
= NULL
; /* assume !MPOL_BIND */
1930 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1931 nid
= interleave_nid(*mpol
, vma
, addr
,
1932 huge_page_shift(hstate_vma(vma
)));
1934 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
1935 if ((*mpol
)->mode
== MPOL_BIND
)
1936 *nodemask
= &(*mpol
)->v
.nodes
;
1942 * init_nodemask_of_mempolicy
1944 * If the current task's mempolicy is "default" [NULL], return 'false'
1945 * to indicate default policy. Otherwise, extract the policy nodemask
1946 * for 'bind' or 'interleave' policy into the argument nodemask, or
1947 * initialize the argument nodemask to contain the single node for
1948 * 'preferred' or 'local' policy and return 'true' to indicate presence
1949 * of non-default mempolicy.
1951 * We don't bother with reference counting the mempolicy [mpol_get/put]
1952 * because the current task is examining it's own mempolicy and a task's
1953 * mempolicy is only ever changed by the task itself.
1955 * N.B., it is the caller's responsibility to free a returned nodemask.
1957 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1959 struct mempolicy
*mempolicy
;
1962 if (!(mask
&& current
->mempolicy
))
1966 mempolicy
= current
->mempolicy
;
1967 switch (mempolicy
->mode
) {
1968 case MPOL_PREFERRED
:
1969 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1970 nid
= numa_node_id();
1972 nid
= mempolicy
->v
.preferred_node
;
1973 init_nodemask_of_node(mask
, nid
);
1978 case MPOL_INTERLEAVE
:
1979 *mask
= mempolicy
->v
.nodes
;
1985 task_unlock(current
);
1992 * mempolicy_nodemask_intersects
1994 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1995 * policy. Otherwise, check for intersection between mask and the policy
1996 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1997 * policy, always return true since it may allocate elsewhere on fallback.
1999 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2001 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
2002 const nodemask_t
*mask
)
2004 struct mempolicy
*mempolicy
;
2010 mempolicy
= tsk
->mempolicy
;
2014 switch (mempolicy
->mode
) {
2015 case MPOL_PREFERRED
:
2017 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2018 * allocate from, they may fallback to other nodes when oom.
2019 * Thus, it's possible for tsk to have allocated memory from
2024 case MPOL_INTERLEAVE
:
2025 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
2035 /* Allocate a page in interleaved policy.
2036 Own path because it needs to do special accounting. */
2037 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
2042 page
= __alloc_pages(gfp
, order
, nid
);
2043 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2044 if (!static_branch_likely(&vm_numa_stat_key
))
2046 if (page
&& page_to_nid(page
) == nid
) {
2048 __inc_numa_state(page_zone(page
), NUMA_INTERLEAVE_HIT
);
2055 * alloc_pages_vma - Allocate a page for a VMA.
2058 * %GFP_USER user allocation.
2059 * %GFP_KERNEL kernel allocations,
2060 * %GFP_HIGHMEM highmem/user allocations,
2061 * %GFP_FS allocation should not call back into a file system.
2062 * %GFP_ATOMIC don't sleep.
2064 * @order:Order of the GFP allocation.
2065 * @vma: Pointer to VMA or NULL if not available.
2066 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2067 * @node: Which node to prefer for allocation (modulo policy).
2068 * @hugepage: for hugepages try only the preferred node if possible
2070 * This function allocates a page from the kernel page pool and applies
2071 * a NUMA policy associated with the VMA or the current process.
2072 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2073 * mm_struct of the VMA to prevent it from going away. Should be used for
2074 * all allocations for pages that will be mapped into user space. Returns
2075 * NULL when no page can be allocated.
2078 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2079 unsigned long addr
, int node
, bool hugepage
)
2081 struct mempolicy
*pol
;
2086 pol
= get_vma_policy(vma
, addr
);
2088 if (pol
->mode
== MPOL_INTERLEAVE
) {
2091 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2093 page
= alloc_page_interleave(gfp
, order
, nid
);
2097 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2098 int hpage_node
= node
;
2101 * For hugepage allocation and non-interleave policy which
2102 * allows the current node (or other explicitly preferred
2103 * node) we only try to allocate from the current/preferred
2104 * node and don't fall back to other nodes, as the cost of
2105 * remote accesses would likely offset THP benefits.
2107 * If the policy is interleave, or does not allow the current
2108 * node in its nodemask, we allocate the standard way.
2110 if (pol
->mode
== MPOL_PREFERRED
&& !(pol
->flags
& MPOL_F_LOCAL
))
2111 hpage_node
= pol
->v
.preferred_node
;
2113 nmask
= policy_nodemask(gfp
, pol
);
2114 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2116 page
= __alloc_pages_node(hpage_node
,
2117 gfp
| __GFP_THISNODE
, order
);
2122 nmask
= policy_nodemask(gfp
, pol
);
2123 preferred_nid
= policy_node(gfp
, pol
, node
);
2124 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
2129 EXPORT_SYMBOL(alloc_pages_vma
);
2132 * alloc_pages_current - Allocate pages.
2135 * %GFP_USER user allocation,
2136 * %GFP_KERNEL kernel allocation,
2137 * %GFP_HIGHMEM highmem allocation,
2138 * %GFP_FS don't call back into a file system.
2139 * %GFP_ATOMIC don't sleep.
2140 * @order: Power of two of allocation size in pages. 0 is a single page.
2142 * Allocate a page from the kernel page pool. When not in
2143 * interrupt context and apply the current process NUMA policy.
2144 * Returns NULL when no page can be allocated.
2146 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2148 struct mempolicy
*pol
= &default_policy
;
2151 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2152 pol
= get_task_policy(current
);
2155 * No reference counting needed for current->mempolicy
2156 * nor system default_policy
2158 if (pol
->mode
== MPOL_INTERLEAVE
)
2159 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2161 page
= __alloc_pages_nodemask(gfp
, order
,
2162 policy_node(gfp
, pol
, numa_node_id()),
2163 policy_nodemask(gfp
, pol
));
2167 EXPORT_SYMBOL(alloc_pages_current
);
2169 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2171 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2174 return PTR_ERR(pol
);
2175 dst
->vm_policy
= pol
;
2180 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2181 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2182 * with the mems_allowed returned by cpuset_mems_allowed(). This
2183 * keeps mempolicies cpuset relative after its cpuset moves. See
2184 * further kernel/cpuset.c update_nodemask().
2186 * current's mempolicy may be rebinded by the other task(the task that changes
2187 * cpuset's mems), so we needn't do rebind work for current task.
2190 /* Slow path of a mempolicy duplicate */
2191 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2193 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2196 return ERR_PTR(-ENOMEM
);
2198 /* task's mempolicy is protected by alloc_lock */
2199 if (old
== current
->mempolicy
) {
2202 task_unlock(current
);
2206 if (current_cpuset_is_being_rebound()) {
2207 nodemask_t mems
= cpuset_mems_allowed(current
);
2208 mpol_rebind_policy(new, &mems
);
2210 atomic_set(&new->refcnt
, 1);
2214 /* Slow path of a mempolicy comparison */
2215 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2219 if (a
->mode
!= b
->mode
)
2221 if (a
->flags
!= b
->flags
)
2223 if (mpol_store_user_nodemask(a
))
2224 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2230 case MPOL_INTERLEAVE
:
2231 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2232 case MPOL_PREFERRED
:
2233 /* a's ->flags is the same as b's */
2234 if (a
->flags
& MPOL_F_LOCAL
)
2236 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2244 * Shared memory backing store policy support.
2246 * Remember policies even when nobody has shared memory mapped.
2247 * The policies are kept in Red-Black tree linked from the inode.
2248 * They are protected by the sp->lock rwlock, which should be held
2249 * for any accesses to the tree.
2253 * lookup first element intersecting start-end. Caller holds sp->lock for
2254 * reading or for writing
2256 static struct sp_node
*
2257 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2259 struct rb_node
*n
= sp
->root
.rb_node
;
2262 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2264 if (start
>= p
->end
)
2266 else if (end
<= p
->start
)
2274 struct sp_node
*w
= NULL
;
2275 struct rb_node
*prev
= rb_prev(n
);
2278 w
= rb_entry(prev
, struct sp_node
, nd
);
2279 if (w
->end
<= start
)
2283 return rb_entry(n
, struct sp_node
, nd
);
2287 * Insert a new shared policy into the list. Caller holds sp->lock for
2290 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2292 struct rb_node
**p
= &sp
->root
.rb_node
;
2293 struct rb_node
*parent
= NULL
;
2298 nd
= rb_entry(parent
, struct sp_node
, nd
);
2299 if (new->start
< nd
->start
)
2301 else if (new->end
> nd
->end
)
2302 p
= &(*p
)->rb_right
;
2306 rb_link_node(&new->nd
, parent
, p
);
2307 rb_insert_color(&new->nd
, &sp
->root
);
2308 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2309 new->policy
? new->policy
->mode
: 0);
2312 /* Find shared policy intersecting idx */
2314 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2316 struct mempolicy
*pol
= NULL
;
2319 if (!sp
->root
.rb_node
)
2321 read_lock(&sp
->lock
);
2322 sn
= sp_lookup(sp
, idx
, idx
+1);
2324 mpol_get(sn
->policy
);
2327 read_unlock(&sp
->lock
);
2331 static void sp_free(struct sp_node
*n
)
2333 mpol_put(n
->policy
);
2334 kmem_cache_free(sn_cache
, n
);
2338 * mpol_misplaced - check whether current page node is valid in policy
2340 * @page: page to be checked
2341 * @vma: vm area where page mapped
2342 * @addr: virtual address where page mapped
2344 * Lookup current policy node id for vma,addr and "compare to" page's
2348 * -1 - not misplaced, page is in the right node
2349 * node - node id where the page should be
2351 * Policy determination "mimics" alloc_page_vma().
2352 * Called from fault path where we know the vma and faulting address.
2354 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2356 struct mempolicy
*pol
;
2358 int curnid
= page_to_nid(page
);
2359 unsigned long pgoff
;
2360 int thiscpu
= raw_smp_processor_id();
2361 int thisnid
= cpu_to_node(thiscpu
);
2362 int polnid
= NUMA_NO_NODE
;
2365 pol
= get_vma_policy(vma
, addr
);
2366 if (!(pol
->flags
& MPOL_F_MOF
))
2369 switch (pol
->mode
) {
2370 case MPOL_INTERLEAVE
:
2371 pgoff
= vma
->vm_pgoff
;
2372 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2373 polnid
= offset_il_node(pol
, pgoff
);
2376 case MPOL_PREFERRED
:
2377 if (pol
->flags
& MPOL_F_LOCAL
)
2378 polnid
= numa_node_id();
2380 polnid
= pol
->v
.preferred_node
;
2386 * allows binding to multiple nodes.
2387 * use current page if in policy nodemask,
2388 * else select nearest allowed node, if any.
2389 * If no allowed nodes, use current [!misplaced].
2391 if (node_isset(curnid
, pol
->v
.nodes
))
2393 z
= first_zones_zonelist(
2394 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2395 gfp_zone(GFP_HIGHUSER
),
2397 polnid
= zone_to_nid(z
->zone
);
2404 /* Migrate the page towards the node whose CPU is referencing it */
2405 if (pol
->flags
& MPOL_F_MORON
) {
2408 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2412 if (curnid
!= polnid
)
2421 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2422 * dropped after task->mempolicy is set to NULL so that any allocation done as
2423 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2426 void mpol_put_task_policy(struct task_struct
*task
)
2428 struct mempolicy
*pol
;
2431 pol
= task
->mempolicy
;
2432 task
->mempolicy
= NULL
;
2437 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2439 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2440 rb_erase(&n
->nd
, &sp
->root
);
2444 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2445 unsigned long end
, struct mempolicy
*pol
)
2447 node
->start
= start
;
2452 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2453 struct mempolicy
*pol
)
2456 struct mempolicy
*newpol
;
2458 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2462 newpol
= mpol_dup(pol
);
2463 if (IS_ERR(newpol
)) {
2464 kmem_cache_free(sn_cache
, n
);
2467 newpol
->flags
|= MPOL_F_SHARED
;
2468 sp_node_init(n
, start
, end
, newpol
);
2473 /* Replace a policy range. */
2474 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2475 unsigned long end
, struct sp_node
*new)
2478 struct sp_node
*n_new
= NULL
;
2479 struct mempolicy
*mpol_new
= NULL
;
2483 write_lock(&sp
->lock
);
2484 n
= sp_lookup(sp
, start
, end
);
2485 /* Take care of old policies in the same range. */
2486 while (n
&& n
->start
< end
) {
2487 struct rb_node
*next
= rb_next(&n
->nd
);
2488 if (n
->start
>= start
) {
2494 /* Old policy spanning whole new range. */
2499 *mpol_new
= *n
->policy
;
2500 atomic_set(&mpol_new
->refcnt
, 1);
2501 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2503 sp_insert(sp
, n_new
);
2512 n
= rb_entry(next
, struct sp_node
, nd
);
2516 write_unlock(&sp
->lock
);
2523 kmem_cache_free(sn_cache
, n_new
);
2528 write_unlock(&sp
->lock
);
2530 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2533 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2540 * mpol_shared_policy_init - initialize shared policy for inode
2541 * @sp: pointer to inode shared policy
2542 * @mpol: struct mempolicy to install
2544 * Install non-NULL @mpol in inode's shared policy rb-tree.
2545 * On entry, the current task has a reference on a non-NULL @mpol.
2546 * This must be released on exit.
2547 * This is called at get_inode() calls and we can use GFP_KERNEL.
2549 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2553 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2554 rwlock_init(&sp
->lock
);
2557 struct vm_area_struct pvma
;
2558 struct mempolicy
*new;
2559 NODEMASK_SCRATCH(scratch
);
2563 /* contextualize the tmpfs mount point mempolicy */
2564 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2566 goto free_scratch
; /* no valid nodemask intersection */
2569 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2570 task_unlock(current
);
2574 /* Create pseudo-vma that contains just the policy */
2575 vma_init(&pvma
, NULL
);
2576 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2577 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2580 mpol_put(new); /* drop initial ref */
2582 NODEMASK_SCRATCH_FREE(scratch
);
2584 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2588 int mpol_set_shared_policy(struct shared_policy
*info
,
2589 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2592 struct sp_node
*new = NULL
;
2593 unsigned long sz
= vma_pages(vma
);
2595 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2597 sz
, npol
? npol
->mode
: -1,
2598 npol
? npol
->flags
: -1,
2599 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2602 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2606 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2612 /* Free a backing policy store on inode delete. */
2613 void mpol_free_shared_policy(struct shared_policy
*p
)
2616 struct rb_node
*next
;
2618 if (!p
->root
.rb_node
)
2620 write_lock(&p
->lock
);
2621 next
= rb_first(&p
->root
);
2623 n
= rb_entry(next
, struct sp_node
, nd
);
2624 next
= rb_next(&n
->nd
);
2627 write_unlock(&p
->lock
);
2630 #ifdef CONFIG_NUMA_BALANCING
2631 static int __initdata numabalancing_override
;
2633 static void __init
check_numabalancing_enable(void)
2635 bool numabalancing_default
= false;
2637 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2638 numabalancing_default
= true;
2640 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2641 if (numabalancing_override
)
2642 set_numabalancing_state(numabalancing_override
== 1);
2644 if (num_online_nodes() > 1 && !numabalancing_override
) {
2645 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2646 numabalancing_default
? "Enabling" : "Disabling");
2647 set_numabalancing_state(numabalancing_default
);
2651 static int __init
setup_numabalancing(char *str
)
2657 if (!strcmp(str
, "enable")) {
2658 numabalancing_override
= 1;
2660 } else if (!strcmp(str
, "disable")) {
2661 numabalancing_override
= -1;
2666 pr_warn("Unable to parse numa_balancing=\n");
2670 __setup("numa_balancing=", setup_numabalancing
);
2672 static inline void __init
check_numabalancing_enable(void)
2675 #endif /* CONFIG_NUMA_BALANCING */
2677 /* assumes fs == KERNEL_DS */
2678 void __init
numa_policy_init(void)
2680 nodemask_t interleave_nodes
;
2681 unsigned long largest
= 0;
2682 int nid
, prefer
= 0;
2684 policy_cache
= kmem_cache_create("numa_policy",
2685 sizeof(struct mempolicy
),
2686 0, SLAB_PANIC
, NULL
);
2688 sn_cache
= kmem_cache_create("shared_policy_node",
2689 sizeof(struct sp_node
),
2690 0, SLAB_PANIC
, NULL
);
2692 for_each_node(nid
) {
2693 preferred_node_policy
[nid
] = (struct mempolicy
) {
2694 .refcnt
= ATOMIC_INIT(1),
2695 .mode
= MPOL_PREFERRED
,
2696 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2697 .v
= { .preferred_node
= nid
, },
2702 * Set interleaving policy for system init. Interleaving is only
2703 * enabled across suitably sized nodes (default is >= 16MB), or
2704 * fall back to the largest node if they're all smaller.
2706 nodes_clear(interleave_nodes
);
2707 for_each_node_state(nid
, N_MEMORY
) {
2708 unsigned long total_pages
= node_present_pages(nid
);
2710 /* Preserve the largest node */
2711 if (largest
< total_pages
) {
2712 largest
= total_pages
;
2716 /* Interleave this node? */
2717 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2718 node_set(nid
, interleave_nodes
);
2721 /* All too small, use the largest */
2722 if (unlikely(nodes_empty(interleave_nodes
)))
2723 node_set(prefer
, interleave_nodes
);
2725 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2726 pr_err("%s: interleaving failed\n", __func__
);
2728 check_numabalancing_enable();
2731 /* Reset policy of current process to default */
2732 void numa_default_policy(void)
2734 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2738 * Parse and format mempolicy from/to strings
2742 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2744 static const char * const policy_modes
[] =
2746 [MPOL_DEFAULT
] = "default",
2747 [MPOL_PREFERRED
] = "prefer",
2748 [MPOL_BIND
] = "bind",
2749 [MPOL_INTERLEAVE
] = "interleave",
2750 [MPOL_LOCAL
] = "local",
2756 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2757 * @str: string containing mempolicy to parse
2758 * @mpol: pointer to struct mempolicy pointer, returned on success.
2761 * <mode>[=<flags>][:<nodelist>]
2763 * On success, returns 0, else 1
2765 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2767 struct mempolicy
*new = NULL
;
2768 unsigned short mode_flags
;
2770 char *nodelist
= strchr(str
, ':');
2771 char *flags
= strchr(str
, '=');
2775 /* NUL-terminate mode or flags string */
2777 if (nodelist_parse(nodelist
, nodes
))
2779 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2785 *flags
++ = '\0'; /* terminate mode string */
2787 mode
= match_string(policy_modes
, MPOL_MAX
, str
);
2792 case MPOL_PREFERRED
:
2794 * Insist on a nodelist of one node only
2797 char *rest
= nodelist
;
2798 while (isdigit(*rest
))
2804 case MPOL_INTERLEAVE
:
2806 * Default to online nodes with memory if no nodelist
2809 nodes
= node_states
[N_MEMORY
];
2813 * Don't allow a nodelist; mpol_new() checks flags
2817 mode
= MPOL_PREFERRED
;
2821 * Insist on a empty nodelist
2828 * Insist on a nodelist
2837 * Currently, we only support two mutually exclusive
2840 if (!strcmp(flags
, "static"))
2841 mode_flags
|= MPOL_F_STATIC_NODES
;
2842 else if (!strcmp(flags
, "relative"))
2843 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2848 new = mpol_new(mode
, mode_flags
, &nodes
);
2853 * Save nodes for mpol_to_str() to show the tmpfs mount options
2854 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2856 if (mode
!= MPOL_PREFERRED
)
2857 new->v
.nodes
= nodes
;
2859 new->v
.preferred_node
= first_node(nodes
);
2861 new->flags
|= MPOL_F_LOCAL
;
2864 * Save nodes for contextualization: this will be used to "clone"
2865 * the mempolicy in a specific context [cpuset] at a later time.
2867 new->w
.user_nodemask
= nodes
;
2872 /* Restore string for error message */
2881 #endif /* CONFIG_TMPFS */
2884 * mpol_to_str - format a mempolicy structure for printing
2885 * @buffer: to contain formatted mempolicy string
2886 * @maxlen: length of @buffer
2887 * @pol: pointer to mempolicy to be formatted
2889 * Convert @pol into a string. If @buffer is too short, truncate the string.
2890 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2891 * longest flag, "relative", and to display at least a few node ids.
2893 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2896 nodemask_t nodes
= NODE_MASK_NONE
;
2897 unsigned short mode
= MPOL_DEFAULT
;
2898 unsigned short flags
= 0;
2900 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2908 case MPOL_PREFERRED
:
2909 if (flags
& MPOL_F_LOCAL
)
2912 node_set(pol
->v
.preferred_node
, nodes
);
2915 case MPOL_INTERLEAVE
:
2916 nodes
= pol
->v
.nodes
;
2920 snprintf(p
, maxlen
, "unknown");
2924 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2926 if (flags
& MPOL_MODE_FLAGS
) {
2927 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2930 * Currently, the only defined flags are mutually exclusive
2932 if (flags
& MPOL_F_STATIC_NODES
)
2933 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2934 else if (flags
& MPOL_F_RELATIVE_NODES
)
2935 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2938 if (!nodes_empty(nodes
))
2939 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2940 nodemask_pr_args(&nodes
));