mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT...
[linux/fpc-iii.git] / mm / mempolicy.c
blob932c26845e3e33933710de5bcc7743db5af0737a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
130 struct mempolicy *get_task_policy(struct task_struct *p)
132 struct mempolicy *pol = p->mempolicy;
133 int node;
135 if (pol)
136 return pol;
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
146 return &default_policy;
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
156 return pol->flags & MPOL_MODE_FLAGS;
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
206 int ret;
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
245 struct mempolicy *policy;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
255 VM_BUG_ON(!nodes);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
283 return policy;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
300 nodemask_t tmp;
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
312 if (nodes_empty(tmp))
313 tmp = *nodes;
315 pol->v.nodes = tmp;
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
321 nodemask_t tmp;
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
357 mpol_ops[pol->mode].rebind(pol, newmask);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
369 mpol_rebind_policy(tsk->mempolicy, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
380 struct vm_area_struct *vma;
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435 * specified.
436 * 2 - THP was split.
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
439 * policy.
441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 unsigned long end, struct mm_walk *walk)
444 int ret = 0;
445 struct page *page;
446 struct queue_pages *qp = walk->private;
447 unsigned long flags;
449 if (unlikely(is_pmd_migration_entry(*pmd))) {
450 ret = -EIO;
451 goto unlock;
453 page = pmd_page(*pmd);
454 if (is_huge_zero_page(page)) {
455 spin_unlock(ptl);
456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 ret = 2;
458 goto out;
460 if (!queue_pages_required(page, qp))
461 goto unlock;
463 flags = qp->flags;
464 /* go to thp migration */
465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 if (!vma_migratable(walk->vma)) {
467 ret = 1;
468 goto unlock;
471 migrate_page_add(page, qp->pagelist, flags);
472 } else
473 ret = -EIO;
474 unlock:
475 spin_unlock(ptl);
476 out:
477 return ret;
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
484 * queue_pages_pte_range() has three possible return values:
485 * 0 - pages are placed on the right node or queued successfully.
486 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
487 * specified.
488 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
489 * on a node that does not follow the policy.
491 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
492 unsigned long end, struct mm_walk *walk)
494 struct vm_area_struct *vma = walk->vma;
495 struct page *page;
496 struct queue_pages *qp = walk->private;
497 unsigned long flags = qp->flags;
498 int ret;
499 bool has_unmovable = false;
500 pte_t *pte;
501 spinlock_t *ptl;
503 ptl = pmd_trans_huge_lock(pmd, vma);
504 if (ptl) {
505 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
506 if (ret != 2)
507 return ret;
509 /* THP was split, fall through to pte walk */
511 if (pmd_trans_unstable(pmd))
512 return 0;
514 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
515 for (; addr != end; pte++, addr += PAGE_SIZE) {
516 if (!pte_present(*pte))
517 continue;
518 page = vm_normal_page(vma, addr, *pte);
519 if (!page)
520 continue;
522 * vm_normal_page() filters out zero pages, but there might
523 * still be PageReserved pages to skip, perhaps in a VDSO.
525 if (PageReserved(page))
526 continue;
527 if (!queue_pages_required(page, qp))
528 continue;
529 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
530 /* MPOL_MF_STRICT must be specified if we get here */
531 if (!vma_migratable(vma)) {
532 has_unmovable = true;
533 break;
535 migrate_page_add(page, qp->pagelist, flags);
536 } else
537 break;
539 pte_unmap_unlock(pte - 1, ptl);
540 cond_resched();
542 if (has_unmovable)
543 return 1;
545 return addr != end ? -EIO : 0;
548 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
549 unsigned long addr, unsigned long end,
550 struct mm_walk *walk)
552 #ifdef CONFIG_HUGETLB_PAGE
553 struct queue_pages *qp = walk->private;
554 unsigned long flags = qp->flags;
555 struct page *page;
556 spinlock_t *ptl;
557 pte_t entry;
559 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
560 entry = huge_ptep_get(pte);
561 if (!pte_present(entry))
562 goto unlock;
563 page = pte_page(entry);
564 if (!queue_pages_required(page, qp))
565 goto unlock;
566 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
567 if (flags & (MPOL_MF_MOVE_ALL) ||
568 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
569 isolate_huge_page(page, qp->pagelist);
570 unlock:
571 spin_unlock(ptl);
572 #else
573 BUG();
574 #endif
575 return 0;
578 #ifdef CONFIG_NUMA_BALANCING
580 * This is used to mark a range of virtual addresses to be inaccessible.
581 * These are later cleared by a NUMA hinting fault. Depending on these
582 * faults, pages may be migrated for better NUMA placement.
584 * This is assuming that NUMA faults are handled using PROT_NONE. If
585 * an architecture makes a different choice, it will need further
586 * changes to the core.
588 unsigned long change_prot_numa(struct vm_area_struct *vma,
589 unsigned long addr, unsigned long end)
591 int nr_updated;
593 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
594 if (nr_updated)
595 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
597 return nr_updated;
599 #else
600 static unsigned long change_prot_numa(struct vm_area_struct *vma,
601 unsigned long addr, unsigned long end)
603 return 0;
605 #endif /* CONFIG_NUMA_BALANCING */
607 static int queue_pages_test_walk(unsigned long start, unsigned long end,
608 struct mm_walk *walk)
610 struct vm_area_struct *vma = walk->vma;
611 struct queue_pages *qp = walk->private;
612 unsigned long endvma = vma->vm_end;
613 unsigned long flags = qp->flags;
616 * Need check MPOL_MF_STRICT to return -EIO if possible
617 * regardless of vma_migratable
619 if (!vma_migratable(vma) &&
620 !(flags & MPOL_MF_STRICT))
621 return 1;
623 if (endvma > end)
624 endvma = end;
625 if (vma->vm_start > start)
626 start = vma->vm_start;
628 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
629 if (!vma->vm_next && vma->vm_end < end)
630 return -EFAULT;
631 if (qp->prev && qp->prev->vm_end < vma->vm_start)
632 return -EFAULT;
635 qp->prev = vma;
637 if (flags & MPOL_MF_LAZY) {
638 /* Similar to task_numa_work, skip inaccessible VMAs */
639 if (!is_vm_hugetlb_page(vma) &&
640 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
641 !(vma->vm_flags & VM_MIXEDMAP))
642 change_prot_numa(vma, start, endvma);
643 return 1;
646 /* queue pages from current vma */
647 if (flags & MPOL_MF_VALID)
648 return 0;
649 return 1;
653 * Walk through page tables and collect pages to be migrated.
655 * If pages found in a given range are on a set of nodes (determined by
656 * @nodes and @flags,) it's isolated and queued to the pagelist which is
657 * passed via @private.
659 * queue_pages_range() has three possible return values:
660 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
661 * specified.
662 * 0 - queue pages successfully or no misplaced page.
663 * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified.
665 static int
666 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
667 nodemask_t *nodes, unsigned long flags,
668 struct list_head *pagelist)
670 struct queue_pages qp = {
671 .pagelist = pagelist,
672 .flags = flags,
673 .nmask = nodes,
674 .prev = NULL,
676 struct mm_walk queue_pages_walk = {
677 .hugetlb_entry = queue_pages_hugetlb,
678 .pmd_entry = queue_pages_pte_range,
679 .test_walk = queue_pages_test_walk,
680 .mm = mm,
681 .private = &qp,
684 return walk_page_range(start, end, &queue_pages_walk);
688 * Apply policy to a single VMA
689 * This must be called with the mmap_sem held for writing.
691 static int vma_replace_policy(struct vm_area_struct *vma,
692 struct mempolicy *pol)
694 int err;
695 struct mempolicy *old;
696 struct mempolicy *new;
698 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
699 vma->vm_start, vma->vm_end, vma->vm_pgoff,
700 vma->vm_ops, vma->vm_file,
701 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
703 new = mpol_dup(pol);
704 if (IS_ERR(new))
705 return PTR_ERR(new);
707 if (vma->vm_ops && vma->vm_ops->set_policy) {
708 err = vma->vm_ops->set_policy(vma, new);
709 if (err)
710 goto err_out;
713 old = vma->vm_policy;
714 vma->vm_policy = new; /* protected by mmap_sem */
715 mpol_put(old);
717 return 0;
718 err_out:
719 mpol_put(new);
720 return err;
723 /* Step 2: apply policy to a range and do splits. */
724 static int mbind_range(struct mm_struct *mm, unsigned long start,
725 unsigned long end, struct mempolicy *new_pol)
727 struct vm_area_struct *next;
728 struct vm_area_struct *prev;
729 struct vm_area_struct *vma;
730 int err = 0;
731 pgoff_t pgoff;
732 unsigned long vmstart;
733 unsigned long vmend;
735 vma = find_vma(mm, start);
736 if (!vma || vma->vm_start > start)
737 return -EFAULT;
739 prev = vma->vm_prev;
740 if (start > vma->vm_start)
741 prev = vma;
743 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
744 next = vma->vm_next;
745 vmstart = max(start, vma->vm_start);
746 vmend = min(end, vma->vm_end);
748 if (mpol_equal(vma_policy(vma), new_pol))
749 continue;
751 pgoff = vma->vm_pgoff +
752 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
753 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
754 vma->anon_vma, vma->vm_file, pgoff,
755 new_pol, vma->vm_userfaultfd_ctx);
756 if (prev) {
757 vma = prev;
758 next = vma->vm_next;
759 if (mpol_equal(vma_policy(vma), new_pol))
760 continue;
761 /* vma_merge() joined vma && vma->next, case 8 */
762 goto replace;
764 if (vma->vm_start != vmstart) {
765 err = split_vma(vma->vm_mm, vma, vmstart, 1);
766 if (err)
767 goto out;
769 if (vma->vm_end != vmend) {
770 err = split_vma(vma->vm_mm, vma, vmend, 0);
771 if (err)
772 goto out;
774 replace:
775 err = vma_replace_policy(vma, new_pol);
776 if (err)
777 goto out;
780 out:
781 return err;
784 /* Set the process memory policy */
785 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
786 nodemask_t *nodes)
788 struct mempolicy *new, *old;
789 NODEMASK_SCRATCH(scratch);
790 int ret;
792 if (!scratch)
793 return -ENOMEM;
795 new = mpol_new(mode, flags, nodes);
796 if (IS_ERR(new)) {
797 ret = PTR_ERR(new);
798 goto out;
801 task_lock(current);
802 ret = mpol_set_nodemask(new, nodes, scratch);
803 if (ret) {
804 task_unlock(current);
805 mpol_put(new);
806 goto out;
808 old = current->mempolicy;
809 current->mempolicy = new;
810 if (new && new->mode == MPOL_INTERLEAVE)
811 current->il_prev = MAX_NUMNODES-1;
812 task_unlock(current);
813 mpol_put(old);
814 ret = 0;
815 out:
816 NODEMASK_SCRATCH_FREE(scratch);
817 return ret;
821 * Return nodemask for policy for get_mempolicy() query
823 * Called with task's alloc_lock held
825 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
827 nodes_clear(*nodes);
828 if (p == &default_policy)
829 return;
831 switch (p->mode) {
832 case MPOL_BIND:
833 /* Fall through */
834 case MPOL_INTERLEAVE:
835 *nodes = p->v.nodes;
836 break;
837 case MPOL_PREFERRED:
838 if (!(p->flags & MPOL_F_LOCAL))
839 node_set(p->v.preferred_node, *nodes);
840 /* else return empty node mask for local allocation */
841 break;
842 default:
843 BUG();
847 static int lookup_node(struct mm_struct *mm, unsigned long addr)
849 struct page *p;
850 int err;
852 int locked = 1;
853 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
854 if (err >= 0) {
855 err = page_to_nid(p);
856 put_page(p);
858 if (locked)
859 up_read(&mm->mmap_sem);
860 return err;
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
865 unsigned long addr, unsigned long flags)
867 int err;
868 struct mm_struct *mm = current->mm;
869 struct vm_area_struct *vma = NULL;
870 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
872 if (flags &
873 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
874 return -EINVAL;
876 if (flags & MPOL_F_MEMS_ALLOWED) {
877 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
878 return -EINVAL;
879 *policy = 0; /* just so it's initialized */
880 task_lock(current);
881 *nmask = cpuset_current_mems_allowed;
882 task_unlock(current);
883 return 0;
886 if (flags & MPOL_F_ADDR) {
888 * Do NOT fall back to task policy if the
889 * vma/shared policy at addr is NULL. We
890 * want to return MPOL_DEFAULT in this case.
892 down_read(&mm->mmap_sem);
893 vma = find_vma_intersection(mm, addr, addr+1);
894 if (!vma) {
895 up_read(&mm->mmap_sem);
896 return -EFAULT;
898 if (vma->vm_ops && vma->vm_ops->get_policy)
899 pol = vma->vm_ops->get_policy(vma, addr);
900 else
901 pol = vma->vm_policy;
902 } else if (addr)
903 return -EINVAL;
905 if (!pol)
906 pol = &default_policy; /* indicates default behavior */
908 if (flags & MPOL_F_NODE) {
909 if (flags & MPOL_F_ADDR) {
911 * Take a refcount on the mpol, lookup_node()
912 * wil drop the mmap_sem, so after calling
913 * lookup_node() only "pol" remains valid, "vma"
914 * is stale.
916 pol_refcount = pol;
917 vma = NULL;
918 mpol_get(pol);
919 err = lookup_node(mm, addr);
920 if (err < 0)
921 goto out;
922 *policy = err;
923 } else if (pol == current->mempolicy &&
924 pol->mode == MPOL_INTERLEAVE) {
925 *policy = next_node_in(current->il_prev, pol->v.nodes);
926 } else {
927 err = -EINVAL;
928 goto out;
930 } else {
931 *policy = pol == &default_policy ? MPOL_DEFAULT :
932 pol->mode;
934 * Internal mempolicy flags must be masked off before exposing
935 * the policy to userspace.
937 *policy |= (pol->flags & MPOL_MODE_FLAGS);
940 err = 0;
941 if (nmask) {
942 if (mpol_store_user_nodemask(pol)) {
943 *nmask = pol->w.user_nodemask;
944 } else {
945 task_lock(current);
946 get_policy_nodemask(pol, nmask);
947 task_unlock(current);
951 out:
952 mpol_cond_put(pol);
953 if (vma)
954 up_read(&mm->mmap_sem);
955 if (pol_refcount)
956 mpol_put(pol_refcount);
957 return err;
960 #ifdef CONFIG_MIGRATION
962 * page migration, thp tail pages can be passed.
964 static void migrate_page_add(struct page *page, struct list_head *pagelist,
965 unsigned long flags)
967 struct page *head = compound_head(page);
969 * Avoid migrating a page that is shared with others.
971 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
972 if (!isolate_lru_page(head)) {
973 list_add_tail(&head->lru, pagelist);
974 mod_node_page_state(page_pgdat(head),
975 NR_ISOLATED_ANON + page_is_file_cache(head),
976 hpage_nr_pages(head));
981 /* page allocation callback for NUMA node migration */
982 struct page *alloc_new_node_page(struct page *page, unsigned long node)
984 if (PageHuge(page))
985 return alloc_huge_page_node(page_hstate(compound_head(page)),
986 node);
987 else if (PageTransHuge(page)) {
988 struct page *thp;
990 thp = alloc_pages_node(node,
991 (GFP_TRANSHUGE | __GFP_THISNODE),
992 HPAGE_PMD_ORDER);
993 if (!thp)
994 return NULL;
995 prep_transhuge_page(thp);
996 return thp;
997 } else
998 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
999 __GFP_THISNODE, 0);
1003 * Migrate pages from one node to a target node.
1004 * Returns error or the number of pages not migrated.
1006 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1007 int flags)
1009 nodemask_t nmask;
1010 LIST_HEAD(pagelist);
1011 int err = 0;
1013 nodes_clear(nmask);
1014 node_set(source, nmask);
1017 * This does not "check" the range but isolates all pages that
1018 * need migration. Between passing in the full user address
1019 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1021 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1022 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1023 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1025 if (!list_empty(&pagelist)) {
1026 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1027 MIGRATE_SYNC, MR_SYSCALL);
1028 if (err)
1029 putback_movable_pages(&pagelist);
1032 return err;
1036 * Move pages between the two nodesets so as to preserve the physical
1037 * layout as much as possible.
1039 * Returns the number of page that could not be moved.
1041 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1042 const nodemask_t *to, int flags)
1044 int busy = 0;
1045 int err;
1046 nodemask_t tmp;
1048 err = migrate_prep();
1049 if (err)
1050 return err;
1052 down_read(&mm->mmap_sem);
1055 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1056 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1057 * bit in 'tmp', and return that <source, dest> pair for migration.
1058 * The pair of nodemasks 'to' and 'from' define the map.
1060 * If no pair of bits is found that way, fallback to picking some
1061 * pair of 'source' and 'dest' bits that are not the same. If the
1062 * 'source' and 'dest' bits are the same, this represents a node
1063 * that will be migrating to itself, so no pages need move.
1065 * If no bits are left in 'tmp', or if all remaining bits left
1066 * in 'tmp' correspond to the same bit in 'to', return false
1067 * (nothing left to migrate).
1069 * This lets us pick a pair of nodes to migrate between, such that
1070 * if possible the dest node is not already occupied by some other
1071 * source node, minimizing the risk of overloading the memory on a
1072 * node that would happen if we migrated incoming memory to a node
1073 * before migrating outgoing memory source that same node.
1075 * A single scan of tmp is sufficient. As we go, we remember the
1076 * most recent <s, d> pair that moved (s != d). If we find a pair
1077 * that not only moved, but what's better, moved to an empty slot
1078 * (d is not set in tmp), then we break out then, with that pair.
1079 * Otherwise when we finish scanning from_tmp, we at least have the
1080 * most recent <s, d> pair that moved. If we get all the way through
1081 * the scan of tmp without finding any node that moved, much less
1082 * moved to an empty node, then there is nothing left worth migrating.
1085 tmp = *from;
1086 while (!nodes_empty(tmp)) {
1087 int s,d;
1088 int source = NUMA_NO_NODE;
1089 int dest = 0;
1091 for_each_node_mask(s, tmp) {
1094 * do_migrate_pages() tries to maintain the relative
1095 * node relationship of the pages established between
1096 * threads and memory areas.
1098 * However if the number of source nodes is not equal to
1099 * the number of destination nodes we can not preserve
1100 * this node relative relationship. In that case, skip
1101 * copying memory from a node that is in the destination
1102 * mask.
1104 * Example: [2,3,4] -> [3,4,5] moves everything.
1105 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1108 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1109 (node_isset(s, *to)))
1110 continue;
1112 d = node_remap(s, *from, *to);
1113 if (s == d)
1114 continue;
1116 source = s; /* Node moved. Memorize */
1117 dest = d;
1119 /* dest not in remaining from nodes? */
1120 if (!node_isset(dest, tmp))
1121 break;
1123 if (source == NUMA_NO_NODE)
1124 break;
1126 node_clear(source, tmp);
1127 err = migrate_to_node(mm, source, dest, flags);
1128 if (err > 0)
1129 busy += err;
1130 if (err < 0)
1131 break;
1133 up_read(&mm->mmap_sem);
1134 if (err < 0)
1135 return err;
1136 return busy;
1141 * Allocate a new page for page migration based on vma policy.
1142 * Start by assuming the page is mapped by the same vma as contains @start.
1143 * Search forward from there, if not. N.B., this assumes that the
1144 * list of pages handed to migrate_pages()--which is how we get here--
1145 * is in virtual address order.
1147 static struct page *new_page(struct page *page, unsigned long start)
1149 struct vm_area_struct *vma;
1150 unsigned long uninitialized_var(address);
1152 vma = find_vma(current->mm, start);
1153 while (vma) {
1154 address = page_address_in_vma(page, vma);
1155 if (address != -EFAULT)
1156 break;
1157 vma = vma->vm_next;
1160 if (PageHuge(page)) {
1161 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1162 vma, address);
1163 } else if (PageTransHuge(page)) {
1164 struct page *thp;
1166 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1167 HPAGE_PMD_ORDER);
1168 if (!thp)
1169 return NULL;
1170 prep_transhuge_page(thp);
1171 return thp;
1174 * if !vma, alloc_page_vma() will use task or system default policy
1176 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1177 vma, address);
1179 #else
1181 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1182 unsigned long flags)
1186 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1187 const nodemask_t *to, int flags)
1189 return -ENOSYS;
1192 static struct page *new_page(struct page *page, unsigned long start)
1194 return NULL;
1196 #endif
1198 static long do_mbind(unsigned long start, unsigned long len,
1199 unsigned short mode, unsigned short mode_flags,
1200 nodemask_t *nmask, unsigned long flags)
1202 struct mm_struct *mm = current->mm;
1203 struct mempolicy *new;
1204 unsigned long end;
1205 int err;
1206 int ret;
1207 LIST_HEAD(pagelist);
1209 if (flags & ~(unsigned long)MPOL_MF_VALID)
1210 return -EINVAL;
1211 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1212 return -EPERM;
1214 if (start & ~PAGE_MASK)
1215 return -EINVAL;
1217 if (mode == MPOL_DEFAULT)
1218 flags &= ~MPOL_MF_STRICT;
1220 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1221 end = start + len;
1223 if (end < start)
1224 return -EINVAL;
1225 if (end == start)
1226 return 0;
1228 new = mpol_new(mode, mode_flags, nmask);
1229 if (IS_ERR(new))
1230 return PTR_ERR(new);
1232 if (flags & MPOL_MF_LAZY)
1233 new->flags |= MPOL_F_MOF;
1236 * If we are using the default policy then operation
1237 * on discontinuous address spaces is okay after all
1239 if (!new)
1240 flags |= MPOL_MF_DISCONTIG_OK;
1242 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1243 start, start + len, mode, mode_flags,
1244 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1246 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1248 err = migrate_prep();
1249 if (err)
1250 goto mpol_out;
1253 NODEMASK_SCRATCH(scratch);
1254 if (scratch) {
1255 down_write(&mm->mmap_sem);
1256 task_lock(current);
1257 err = mpol_set_nodemask(new, nmask, scratch);
1258 task_unlock(current);
1259 if (err)
1260 up_write(&mm->mmap_sem);
1261 } else
1262 err = -ENOMEM;
1263 NODEMASK_SCRATCH_FREE(scratch);
1265 if (err)
1266 goto mpol_out;
1268 ret = queue_pages_range(mm, start, end, nmask,
1269 flags | MPOL_MF_INVERT, &pagelist);
1271 if (ret < 0) {
1272 err = -EIO;
1273 goto up_out;
1276 err = mbind_range(mm, start, end, new);
1278 if (!err) {
1279 int nr_failed = 0;
1281 if (!list_empty(&pagelist)) {
1282 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1283 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1284 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1285 if (nr_failed)
1286 putback_movable_pages(&pagelist);
1289 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1290 err = -EIO;
1291 } else
1292 putback_movable_pages(&pagelist);
1294 up_out:
1295 up_write(&mm->mmap_sem);
1296 mpol_out:
1297 mpol_put(new);
1298 return err;
1302 * User space interface with variable sized bitmaps for nodelists.
1305 /* Copy a node mask from user space. */
1306 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1307 unsigned long maxnode)
1309 unsigned long k;
1310 unsigned long t;
1311 unsigned long nlongs;
1312 unsigned long endmask;
1314 --maxnode;
1315 nodes_clear(*nodes);
1316 if (maxnode == 0 || !nmask)
1317 return 0;
1318 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1319 return -EINVAL;
1321 nlongs = BITS_TO_LONGS(maxnode);
1322 if ((maxnode % BITS_PER_LONG) == 0)
1323 endmask = ~0UL;
1324 else
1325 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1328 * When the user specified more nodes than supported just check
1329 * if the non supported part is all zero.
1331 * If maxnode have more longs than MAX_NUMNODES, check
1332 * the bits in that area first. And then go through to
1333 * check the rest bits which equal or bigger than MAX_NUMNODES.
1334 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1336 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1337 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1338 if (get_user(t, nmask + k))
1339 return -EFAULT;
1340 if (k == nlongs - 1) {
1341 if (t & endmask)
1342 return -EINVAL;
1343 } else if (t)
1344 return -EINVAL;
1346 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1347 endmask = ~0UL;
1350 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1351 unsigned long valid_mask = endmask;
1353 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1354 if (get_user(t, nmask + nlongs - 1))
1355 return -EFAULT;
1356 if (t & valid_mask)
1357 return -EINVAL;
1360 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1361 return -EFAULT;
1362 nodes_addr(*nodes)[nlongs-1] &= endmask;
1363 return 0;
1366 /* Copy a kernel node mask to user space */
1367 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1368 nodemask_t *nodes)
1370 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1371 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1373 if (copy > nbytes) {
1374 if (copy > PAGE_SIZE)
1375 return -EINVAL;
1376 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1377 return -EFAULT;
1378 copy = nbytes;
1380 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1383 static long kernel_mbind(unsigned long start, unsigned long len,
1384 unsigned long mode, const unsigned long __user *nmask,
1385 unsigned long maxnode, unsigned int flags)
1387 nodemask_t nodes;
1388 int err;
1389 unsigned short mode_flags;
1391 mode_flags = mode & MPOL_MODE_FLAGS;
1392 mode &= ~MPOL_MODE_FLAGS;
1393 if (mode >= MPOL_MAX)
1394 return -EINVAL;
1395 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1396 (mode_flags & MPOL_F_RELATIVE_NODES))
1397 return -EINVAL;
1398 err = get_nodes(&nodes, nmask, maxnode);
1399 if (err)
1400 return err;
1401 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1404 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1405 unsigned long, mode, const unsigned long __user *, nmask,
1406 unsigned long, maxnode, unsigned int, flags)
1408 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1411 /* Set the process memory policy */
1412 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1413 unsigned long maxnode)
1415 int err;
1416 nodemask_t nodes;
1417 unsigned short flags;
1419 flags = mode & MPOL_MODE_FLAGS;
1420 mode &= ~MPOL_MODE_FLAGS;
1421 if ((unsigned int)mode >= MPOL_MAX)
1422 return -EINVAL;
1423 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1424 return -EINVAL;
1425 err = get_nodes(&nodes, nmask, maxnode);
1426 if (err)
1427 return err;
1428 return do_set_mempolicy(mode, flags, &nodes);
1431 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1432 unsigned long, maxnode)
1434 return kernel_set_mempolicy(mode, nmask, maxnode);
1437 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1438 const unsigned long __user *old_nodes,
1439 const unsigned long __user *new_nodes)
1441 struct mm_struct *mm = NULL;
1442 struct task_struct *task;
1443 nodemask_t task_nodes;
1444 int err;
1445 nodemask_t *old;
1446 nodemask_t *new;
1447 NODEMASK_SCRATCH(scratch);
1449 if (!scratch)
1450 return -ENOMEM;
1452 old = &scratch->mask1;
1453 new = &scratch->mask2;
1455 err = get_nodes(old, old_nodes, maxnode);
1456 if (err)
1457 goto out;
1459 err = get_nodes(new, new_nodes, maxnode);
1460 if (err)
1461 goto out;
1463 /* Find the mm_struct */
1464 rcu_read_lock();
1465 task = pid ? find_task_by_vpid(pid) : current;
1466 if (!task) {
1467 rcu_read_unlock();
1468 err = -ESRCH;
1469 goto out;
1471 get_task_struct(task);
1473 err = -EINVAL;
1476 * Check if this process has the right to modify the specified process.
1477 * Use the regular "ptrace_may_access()" checks.
1479 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1480 rcu_read_unlock();
1481 err = -EPERM;
1482 goto out_put;
1484 rcu_read_unlock();
1486 task_nodes = cpuset_mems_allowed(task);
1487 /* Is the user allowed to access the target nodes? */
1488 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1489 err = -EPERM;
1490 goto out_put;
1493 task_nodes = cpuset_mems_allowed(current);
1494 nodes_and(*new, *new, task_nodes);
1495 if (nodes_empty(*new))
1496 goto out_put;
1498 nodes_and(*new, *new, node_states[N_MEMORY]);
1499 if (nodes_empty(*new))
1500 goto out_put;
1502 err = security_task_movememory(task);
1503 if (err)
1504 goto out_put;
1506 mm = get_task_mm(task);
1507 put_task_struct(task);
1509 if (!mm) {
1510 err = -EINVAL;
1511 goto out;
1514 err = do_migrate_pages(mm, old, new,
1515 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1517 mmput(mm);
1518 out:
1519 NODEMASK_SCRATCH_FREE(scratch);
1521 return err;
1523 out_put:
1524 put_task_struct(task);
1525 goto out;
1529 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1530 const unsigned long __user *, old_nodes,
1531 const unsigned long __user *, new_nodes)
1533 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1537 /* Retrieve NUMA policy */
1538 static int kernel_get_mempolicy(int __user *policy,
1539 unsigned long __user *nmask,
1540 unsigned long maxnode,
1541 unsigned long addr,
1542 unsigned long flags)
1544 int err;
1545 int uninitialized_var(pval);
1546 nodemask_t nodes;
1548 if (nmask != NULL && maxnode < nr_node_ids)
1549 return -EINVAL;
1551 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1553 if (err)
1554 return err;
1556 if (policy && put_user(pval, policy))
1557 return -EFAULT;
1559 if (nmask)
1560 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1562 return err;
1565 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1566 unsigned long __user *, nmask, unsigned long, maxnode,
1567 unsigned long, addr, unsigned long, flags)
1569 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1572 #ifdef CONFIG_COMPAT
1574 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1575 compat_ulong_t __user *, nmask,
1576 compat_ulong_t, maxnode,
1577 compat_ulong_t, addr, compat_ulong_t, flags)
1579 long err;
1580 unsigned long __user *nm = NULL;
1581 unsigned long nr_bits, alloc_size;
1582 DECLARE_BITMAP(bm, MAX_NUMNODES);
1584 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1585 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1587 if (nmask)
1588 nm = compat_alloc_user_space(alloc_size);
1590 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1592 if (!err && nmask) {
1593 unsigned long copy_size;
1594 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1595 err = copy_from_user(bm, nm, copy_size);
1596 /* ensure entire bitmap is zeroed */
1597 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1598 err |= compat_put_bitmap(nmask, bm, nr_bits);
1601 return err;
1604 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1605 compat_ulong_t, maxnode)
1607 unsigned long __user *nm = NULL;
1608 unsigned long nr_bits, alloc_size;
1609 DECLARE_BITMAP(bm, MAX_NUMNODES);
1611 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1612 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1614 if (nmask) {
1615 if (compat_get_bitmap(bm, nmask, nr_bits))
1616 return -EFAULT;
1617 nm = compat_alloc_user_space(alloc_size);
1618 if (copy_to_user(nm, bm, alloc_size))
1619 return -EFAULT;
1622 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1625 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1626 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1627 compat_ulong_t, maxnode, compat_ulong_t, flags)
1629 unsigned long __user *nm = NULL;
1630 unsigned long nr_bits, alloc_size;
1631 nodemask_t bm;
1633 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1634 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1636 if (nmask) {
1637 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1638 return -EFAULT;
1639 nm = compat_alloc_user_space(alloc_size);
1640 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1641 return -EFAULT;
1644 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1647 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1648 compat_ulong_t, maxnode,
1649 const compat_ulong_t __user *, old_nodes,
1650 const compat_ulong_t __user *, new_nodes)
1652 unsigned long __user *old = NULL;
1653 unsigned long __user *new = NULL;
1654 nodemask_t tmp_mask;
1655 unsigned long nr_bits;
1656 unsigned long size;
1658 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1659 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1660 if (old_nodes) {
1661 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1662 return -EFAULT;
1663 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1664 if (new_nodes)
1665 new = old + size / sizeof(unsigned long);
1666 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1667 return -EFAULT;
1669 if (new_nodes) {
1670 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1671 return -EFAULT;
1672 if (new == NULL)
1673 new = compat_alloc_user_space(size);
1674 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1675 return -EFAULT;
1677 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1680 #endif /* CONFIG_COMPAT */
1682 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1683 unsigned long addr)
1685 struct mempolicy *pol = NULL;
1687 if (vma) {
1688 if (vma->vm_ops && vma->vm_ops->get_policy) {
1689 pol = vma->vm_ops->get_policy(vma, addr);
1690 } else if (vma->vm_policy) {
1691 pol = vma->vm_policy;
1694 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1695 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1696 * count on these policies which will be dropped by
1697 * mpol_cond_put() later
1699 if (mpol_needs_cond_ref(pol))
1700 mpol_get(pol);
1704 return pol;
1708 * get_vma_policy(@vma, @addr)
1709 * @vma: virtual memory area whose policy is sought
1710 * @addr: address in @vma for shared policy lookup
1712 * Returns effective policy for a VMA at specified address.
1713 * Falls back to current->mempolicy or system default policy, as necessary.
1714 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1715 * count--added by the get_policy() vm_op, as appropriate--to protect against
1716 * freeing by another task. It is the caller's responsibility to free the
1717 * extra reference for shared policies.
1719 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1720 unsigned long addr)
1722 struct mempolicy *pol = __get_vma_policy(vma, addr);
1724 if (!pol)
1725 pol = get_task_policy(current);
1727 return pol;
1730 bool vma_policy_mof(struct vm_area_struct *vma)
1732 struct mempolicy *pol;
1734 if (vma->vm_ops && vma->vm_ops->get_policy) {
1735 bool ret = false;
1737 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1738 if (pol && (pol->flags & MPOL_F_MOF))
1739 ret = true;
1740 mpol_cond_put(pol);
1742 return ret;
1745 pol = vma->vm_policy;
1746 if (!pol)
1747 pol = get_task_policy(current);
1749 return pol->flags & MPOL_F_MOF;
1752 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1754 enum zone_type dynamic_policy_zone = policy_zone;
1756 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1759 * if policy->v.nodes has movable memory only,
1760 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1762 * policy->v.nodes is intersect with node_states[N_MEMORY].
1763 * so if the following test faile, it implies
1764 * policy->v.nodes has movable memory only.
1766 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1767 dynamic_policy_zone = ZONE_MOVABLE;
1769 return zone >= dynamic_policy_zone;
1773 * Return a nodemask representing a mempolicy for filtering nodes for
1774 * page allocation
1776 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1778 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1779 if (unlikely(policy->mode == MPOL_BIND) &&
1780 apply_policy_zone(policy, gfp_zone(gfp)) &&
1781 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1782 return &policy->v.nodes;
1784 return NULL;
1787 /* Return the node id preferred by the given mempolicy, or the given id */
1788 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1789 int nd)
1791 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1792 nd = policy->v.preferred_node;
1793 else {
1795 * __GFP_THISNODE shouldn't even be used with the bind policy
1796 * because we might easily break the expectation to stay on the
1797 * requested node and not break the policy.
1799 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1802 return nd;
1805 /* Do dynamic interleaving for a process */
1806 static unsigned interleave_nodes(struct mempolicy *policy)
1808 unsigned next;
1809 struct task_struct *me = current;
1811 next = next_node_in(me->il_prev, policy->v.nodes);
1812 if (next < MAX_NUMNODES)
1813 me->il_prev = next;
1814 return next;
1818 * Depending on the memory policy provide a node from which to allocate the
1819 * next slab entry.
1821 unsigned int mempolicy_slab_node(void)
1823 struct mempolicy *policy;
1824 int node = numa_mem_id();
1826 if (in_interrupt())
1827 return node;
1829 policy = current->mempolicy;
1830 if (!policy || policy->flags & MPOL_F_LOCAL)
1831 return node;
1833 switch (policy->mode) {
1834 case MPOL_PREFERRED:
1836 * handled MPOL_F_LOCAL above
1838 return policy->v.preferred_node;
1840 case MPOL_INTERLEAVE:
1841 return interleave_nodes(policy);
1843 case MPOL_BIND: {
1844 struct zoneref *z;
1847 * Follow bind policy behavior and start allocation at the
1848 * first node.
1850 struct zonelist *zonelist;
1851 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1852 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1853 z = first_zones_zonelist(zonelist, highest_zoneidx,
1854 &policy->v.nodes);
1855 return z->zone ? zone_to_nid(z->zone) : node;
1858 default:
1859 BUG();
1864 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1865 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1866 * number of present nodes.
1868 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1870 unsigned nnodes = nodes_weight(pol->v.nodes);
1871 unsigned target;
1872 int i;
1873 int nid;
1875 if (!nnodes)
1876 return numa_node_id();
1877 target = (unsigned int)n % nnodes;
1878 nid = first_node(pol->v.nodes);
1879 for (i = 0; i < target; i++)
1880 nid = next_node(nid, pol->v.nodes);
1881 return nid;
1884 /* Determine a node number for interleave */
1885 static inline unsigned interleave_nid(struct mempolicy *pol,
1886 struct vm_area_struct *vma, unsigned long addr, int shift)
1888 if (vma) {
1889 unsigned long off;
1892 * for small pages, there is no difference between
1893 * shift and PAGE_SHIFT, so the bit-shift is safe.
1894 * for huge pages, since vm_pgoff is in units of small
1895 * pages, we need to shift off the always 0 bits to get
1896 * a useful offset.
1898 BUG_ON(shift < PAGE_SHIFT);
1899 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1900 off += (addr - vma->vm_start) >> shift;
1901 return offset_il_node(pol, off);
1902 } else
1903 return interleave_nodes(pol);
1906 #ifdef CONFIG_HUGETLBFS
1908 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1909 * @vma: virtual memory area whose policy is sought
1910 * @addr: address in @vma for shared policy lookup and interleave policy
1911 * @gfp_flags: for requested zone
1912 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1913 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1915 * Returns a nid suitable for a huge page allocation and a pointer
1916 * to the struct mempolicy for conditional unref after allocation.
1917 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1918 * @nodemask for filtering the zonelist.
1920 * Must be protected by read_mems_allowed_begin()
1922 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1923 struct mempolicy **mpol, nodemask_t **nodemask)
1925 int nid;
1927 *mpol = get_vma_policy(vma, addr);
1928 *nodemask = NULL; /* assume !MPOL_BIND */
1930 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1931 nid = interleave_nid(*mpol, vma, addr,
1932 huge_page_shift(hstate_vma(vma)));
1933 } else {
1934 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1935 if ((*mpol)->mode == MPOL_BIND)
1936 *nodemask = &(*mpol)->v.nodes;
1938 return nid;
1942 * init_nodemask_of_mempolicy
1944 * If the current task's mempolicy is "default" [NULL], return 'false'
1945 * to indicate default policy. Otherwise, extract the policy nodemask
1946 * for 'bind' or 'interleave' policy into the argument nodemask, or
1947 * initialize the argument nodemask to contain the single node for
1948 * 'preferred' or 'local' policy and return 'true' to indicate presence
1949 * of non-default mempolicy.
1951 * We don't bother with reference counting the mempolicy [mpol_get/put]
1952 * because the current task is examining it's own mempolicy and a task's
1953 * mempolicy is only ever changed by the task itself.
1955 * N.B., it is the caller's responsibility to free a returned nodemask.
1957 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1959 struct mempolicy *mempolicy;
1960 int nid;
1962 if (!(mask && current->mempolicy))
1963 return false;
1965 task_lock(current);
1966 mempolicy = current->mempolicy;
1967 switch (mempolicy->mode) {
1968 case MPOL_PREFERRED:
1969 if (mempolicy->flags & MPOL_F_LOCAL)
1970 nid = numa_node_id();
1971 else
1972 nid = mempolicy->v.preferred_node;
1973 init_nodemask_of_node(mask, nid);
1974 break;
1976 case MPOL_BIND:
1977 /* Fall through */
1978 case MPOL_INTERLEAVE:
1979 *mask = mempolicy->v.nodes;
1980 break;
1982 default:
1983 BUG();
1985 task_unlock(current);
1987 return true;
1989 #endif
1992 * mempolicy_nodemask_intersects
1994 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1995 * policy. Otherwise, check for intersection between mask and the policy
1996 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1997 * policy, always return true since it may allocate elsewhere on fallback.
1999 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2001 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2002 const nodemask_t *mask)
2004 struct mempolicy *mempolicy;
2005 bool ret = true;
2007 if (!mask)
2008 return ret;
2009 task_lock(tsk);
2010 mempolicy = tsk->mempolicy;
2011 if (!mempolicy)
2012 goto out;
2014 switch (mempolicy->mode) {
2015 case MPOL_PREFERRED:
2017 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2018 * allocate from, they may fallback to other nodes when oom.
2019 * Thus, it's possible for tsk to have allocated memory from
2020 * nodes in mask.
2022 break;
2023 case MPOL_BIND:
2024 case MPOL_INTERLEAVE:
2025 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2026 break;
2027 default:
2028 BUG();
2030 out:
2031 task_unlock(tsk);
2032 return ret;
2035 /* Allocate a page in interleaved policy.
2036 Own path because it needs to do special accounting. */
2037 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2038 unsigned nid)
2040 struct page *page;
2042 page = __alloc_pages(gfp, order, nid);
2043 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2044 if (!static_branch_likely(&vm_numa_stat_key))
2045 return page;
2046 if (page && page_to_nid(page) == nid) {
2047 preempt_disable();
2048 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2049 preempt_enable();
2051 return page;
2055 * alloc_pages_vma - Allocate a page for a VMA.
2057 * @gfp:
2058 * %GFP_USER user allocation.
2059 * %GFP_KERNEL kernel allocations,
2060 * %GFP_HIGHMEM highmem/user allocations,
2061 * %GFP_FS allocation should not call back into a file system.
2062 * %GFP_ATOMIC don't sleep.
2064 * @order:Order of the GFP allocation.
2065 * @vma: Pointer to VMA or NULL if not available.
2066 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2067 * @node: Which node to prefer for allocation (modulo policy).
2068 * @hugepage: for hugepages try only the preferred node if possible
2070 * This function allocates a page from the kernel page pool and applies
2071 * a NUMA policy associated with the VMA or the current process.
2072 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2073 * mm_struct of the VMA to prevent it from going away. Should be used for
2074 * all allocations for pages that will be mapped into user space. Returns
2075 * NULL when no page can be allocated.
2077 struct page *
2078 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2079 unsigned long addr, int node, bool hugepage)
2081 struct mempolicy *pol;
2082 struct page *page;
2083 int preferred_nid;
2084 nodemask_t *nmask;
2086 pol = get_vma_policy(vma, addr);
2088 if (pol->mode == MPOL_INTERLEAVE) {
2089 unsigned nid;
2091 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2092 mpol_cond_put(pol);
2093 page = alloc_page_interleave(gfp, order, nid);
2094 goto out;
2097 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2098 int hpage_node = node;
2101 * For hugepage allocation and non-interleave policy which
2102 * allows the current node (or other explicitly preferred
2103 * node) we only try to allocate from the current/preferred
2104 * node and don't fall back to other nodes, as the cost of
2105 * remote accesses would likely offset THP benefits.
2107 * If the policy is interleave, or does not allow the current
2108 * node in its nodemask, we allocate the standard way.
2110 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2111 hpage_node = pol->v.preferred_node;
2113 nmask = policy_nodemask(gfp, pol);
2114 if (!nmask || node_isset(hpage_node, *nmask)) {
2115 mpol_cond_put(pol);
2116 page = __alloc_pages_node(hpage_node,
2117 gfp | __GFP_THISNODE, order);
2118 goto out;
2122 nmask = policy_nodemask(gfp, pol);
2123 preferred_nid = policy_node(gfp, pol, node);
2124 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2125 mpol_cond_put(pol);
2126 out:
2127 return page;
2129 EXPORT_SYMBOL(alloc_pages_vma);
2132 * alloc_pages_current - Allocate pages.
2134 * @gfp:
2135 * %GFP_USER user allocation,
2136 * %GFP_KERNEL kernel allocation,
2137 * %GFP_HIGHMEM highmem allocation,
2138 * %GFP_FS don't call back into a file system.
2139 * %GFP_ATOMIC don't sleep.
2140 * @order: Power of two of allocation size in pages. 0 is a single page.
2142 * Allocate a page from the kernel page pool. When not in
2143 * interrupt context and apply the current process NUMA policy.
2144 * Returns NULL when no page can be allocated.
2146 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2148 struct mempolicy *pol = &default_policy;
2149 struct page *page;
2151 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2152 pol = get_task_policy(current);
2155 * No reference counting needed for current->mempolicy
2156 * nor system default_policy
2158 if (pol->mode == MPOL_INTERLEAVE)
2159 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2160 else
2161 page = __alloc_pages_nodemask(gfp, order,
2162 policy_node(gfp, pol, numa_node_id()),
2163 policy_nodemask(gfp, pol));
2165 return page;
2167 EXPORT_SYMBOL(alloc_pages_current);
2169 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2171 struct mempolicy *pol = mpol_dup(vma_policy(src));
2173 if (IS_ERR(pol))
2174 return PTR_ERR(pol);
2175 dst->vm_policy = pol;
2176 return 0;
2180 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2181 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2182 * with the mems_allowed returned by cpuset_mems_allowed(). This
2183 * keeps mempolicies cpuset relative after its cpuset moves. See
2184 * further kernel/cpuset.c update_nodemask().
2186 * current's mempolicy may be rebinded by the other task(the task that changes
2187 * cpuset's mems), so we needn't do rebind work for current task.
2190 /* Slow path of a mempolicy duplicate */
2191 struct mempolicy *__mpol_dup(struct mempolicy *old)
2193 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2195 if (!new)
2196 return ERR_PTR(-ENOMEM);
2198 /* task's mempolicy is protected by alloc_lock */
2199 if (old == current->mempolicy) {
2200 task_lock(current);
2201 *new = *old;
2202 task_unlock(current);
2203 } else
2204 *new = *old;
2206 if (current_cpuset_is_being_rebound()) {
2207 nodemask_t mems = cpuset_mems_allowed(current);
2208 mpol_rebind_policy(new, &mems);
2210 atomic_set(&new->refcnt, 1);
2211 return new;
2214 /* Slow path of a mempolicy comparison */
2215 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2217 if (!a || !b)
2218 return false;
2219 if (a->mode != b->mode)
2220 return false;
2221 if (a->flags != b->flags)
2222 return false;
2223 if (mpol_store_user_nodemask(a))
2224 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2225 return false;
2227 switch (a->mode) {
2228 case MPOL_BIND:
2229 /* Fall through */
2230 case MPOL_INTERLEAVE:
2231 return !!nodes_equal(a->v.nodes, b->v.nodes);
2232 case MPOL_PREFERRED:
2233 /* a's ->flags is the same as b's */
2234 if (a->flags & MPOL_F_LOCAL)
2235 return true;
2236 return a->v.preferred_node == b->v.preferred_node;
2237 default:
2238 BUG();
2239 return false;
2244 * Shared memory backing store policy support.
2246 * Remember policies even when nobody has shared memory mapped.
2247 * The policies are kept in Red-Black tree linked from the inode.
2248 * They are protected by the sp->lock rwlock, which should be held
2249 * for any accesses to the tree.
2253 * lookup first element intersecting start-end. Caller holds sp->lock for
2254 * reading or for writing
2256 static struct sp_node *
2257 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2259 struct rb_node *n = sp->root.rb_node;
2261 while (n) {
2262 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2264 if (start >= p->end)
2265 n = n->rb_right;
2266 else if (end <= p->start)
2267 n = n->rb_left;
2268 else
2269 break;
2271 if (!n)
2272 return NULL;
2273 for (;;) {
2274 struct sp_node *w = NULL;
2275 struct rb_node *prev = rb_prev(n);
2276 if (!prev)
2277 break;
2278 w = rb_entry(prev, struct sp_node, nd);
2279 if (w->end <= start)
2280 break;
2281 n = prev;
2283 return rb_entry(n, struct sp_node, nd);
2287 * Insert a new shared policy into the list. Caller holds sp->lock for
2288 * writing.
2290 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2292 struct rb_node **p = &sp->root.rb_node;
2293 struct rb_node *parent = NULL;
2294 struct sp_node *nd;
2296 while (*p) {
2297 parent = *p;
2298 nd = rb_entry(parent, struct sp_node, nd);
2299 if (new->start < nd->start)
2300 p = &(*p)->rb_left;
2301 else if (new->end > nd->end)
2302 p = &(*p)->rb_right;
2303 else
2304 BUG();
2306 rb_link_node(&new->nd, parent, p);
2307 rb_insert_color(&new->nd, &sp->root);
2308 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2309 new->policy ? new->policy->mode : 0);
2312 /* Find shared policy intersecting idx */
2313 struct mempolicy *
2314 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2316 struct mempolicy *pol = NULL;
2317 struct sp_node *sn;
2319 if (!sp->root.rb_node)
2320 return NULL;
2321 read_lock(&sp->lock);
2322 sn = sp_lookup(sp, idx, idx+1);
2323 if (sn) {
2324 mpol_get(sn->policy);
2325 pol = sn->policy;
2327 read_unlock(&sp->lock);
2328 return pol;
2331 static void sp_free(struct sp_node *n)
2333 mpol_put(n->policy);
2334 kmem_cache_free(sn_cache, n);
2338 * mpol_misplaced - check whether current page node is valid in policy
2340 * @page: page to be checked
2341 * @vma: vm area where page mapped
2342 * @addr: virtual address where page mapped
2344 * Lookup current policy node id for vma,addr and "compare to" page's
2345 * node id.
2347 * Returns:
2348 * -1 - not misplaced, page is in the right node
2349 * node - node id where the page should be
2351 * Policy determination "mimics" alloc_page_vma().
2352 * Called from fault path where we know the vma and faulting address.
2354 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2356 struct mempolicy *pol;
2357 struct zoneref *z;
2358 int curnid = page_to_nid(page);
2359 unsigned long pgoff;
2360 int thiscpu = raw_smp_processor_id();
2361 int thisnid = cpu_to_node(thiscpu);
2362 int polnid = NUMA_NO_NODE;
2363 int ret = -1;
2365 pol = get_vma_policy(vma, addr);
2366 if (!(pol->flags & MPOL_F_MOF))
2367 goto out;
2369 switch (pol->mode) {
2370 case MPOL_INTERLEAVE:
2371 pgoff = vma->vm_pgoff;
2372 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2373 polnid = offset_il_node(pol, pgoff);
2374 break;
2376 case MPOL_PREFERRED:
2377 if (pol->flags & MPOL_F_LOCAL)
2378 polnid = numa_node_id();
2379 else
2380 polnid = pol->v.preferred_node;
2381 break;
2383 case MPOL_BIND:
2386 * allows binding to multiple nodes.
2387 * use current page if in policy nodemask,
2388 * else select nearest allowed node, if any.
2389 * If no allowed nodes, use current [!misplaced].
2391 if (node_isset(curnid, pol->v.nodes))
2392 goto out;
2393 z = first_zones_zonelist(
2394 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2395 gfp_zone(GFP_HIGHUSER),
2396 &pol->v.nodes);
2397 polnid = zone_to_nid(z->zone);
2398 break;
2400 default:
2401 BUG();
2404 /* Migrate the page towards the node whose CPU is referencing it */
2405 if (pol->flags & MPOL_F_MORON) {
2406 polnid = thisnid;
2408 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2409 goto out;
2412 if (curnid != polnid)
2413 ret = polnid;
2414 out:
2415 mpol_cond_put(pol);
2417 return ret;
2421 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2422 * dropped after task->mempolicy is set to NULL so that any allocation done as
2423 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2424 * policy.
2426 void mpol_put_task_policy(struct task_struct *task)
2428 struct mempolicy *pol;
2430 task_lock(task);
2431 pol = task->mempolicy;
2432 task->mempolicy = NULL;
2433 task_unlock(task);
2434 mpol_put(pol);
2437 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2439 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2440 rb_erase(&n->nd, &sp->root);
2441 sp_free(n);
2444 static void sp_node_init(struct sp_node *node, unsigned long start,
2445 unsigned long end, struct mempolicy *pol)
2447 node->start = start;
2448 node->end = end;
2449 node->policy = pol;
2452 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2453 struct mempolicy *pol)
2455 struct sp_node *n;
2456 struct mempolicy *newpol;
2458 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2459 if (!n)
2460 return NULL;
2462 newpol = mpol_dup(pol);
2463 if (IS_ERR(newpol)) {
2464 kmem_cache_free(sn_cache, n);
2465 return NULL;
2467 newpol->flags |= MPOL_F_SHARED;
2468 sp_node_init(n, start, end, newpol);
2470 return n;
2473 /* Replace a policy range. */
2474 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2475 unsigned long end, struct sp_node *new)
2477 struct sp_node *n;
2478 struct sp_node *n_new = NULL;
2479 struct mempolicy *mpol_new = NULL;
2480 int ret = 0;
2482 restart:
2483 write_lock(&sp->lock);
2484 n = sp_lookup(sp, start, end);
2485 /* Take care of old policies in the same range. */
2486 while (n && n->start < end) {
2487 struct rb_node *next = rb_next(&n->nd);
2488 if (n->start >= start) {
2489 if (n->end <= end)
2490 sp_delete(sp, n);
2491 else
2492 n->start = end;
2493 } else {
2494 /* Old policy spanning whole new range. */
2495 if (n->end > end) {
2496 if (!n_new)
2497 goto alloc_new;
2499 *mpol_new = *n->policy;
2500 atomic_set(&mpol_new->refcnt, 1);
2501 sp_node_init(n_new, end, n->end, mpol_new);
2502 n->end = start;
2503 sp_insert(sp, n_new);
2504 n_new = NULL;
2505 mpol_new = NULL;
2506 break;
2507 } else
2508 n->end = start;
2510 if (!next)
2511 break;
2512 n = rb_entry(next, struct sp_node, nd);
2514 if (new)
2515 sp_insert(sp, new);
2516 write_unlock(&sp->lock);
2517 ret = 0;
2519 err_out:
2520 if (mpol_new)
2521 mpol_put(mpol_new);
2522 if (n_new)
2523 kmem_cache_free(sn_cache, n_new);
2525 return ret;
2527 alloc_new:
2528 write_unlock(&sp->lock);
2529 ret = -ENOMEM;
2530 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2531 if (!n_new)
2532 goto err_out;
2533 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2534 if (!mpol_new)
2535 goto err_out;
2536 goto restart;
2540 * mpol_shared_policy_init - initialize shared policy for inode
2541 * @sp: pointer to inode shared policy
2542 * @mpol: struct mempolicy to install
2544 * Install non-NULL @mpol in inode's shared policy rb-tree.
2545 * On entry, the current task has a reference on a non-NULL @mpol.
2546 * This must be released on exit.
2547 * This is called at get_inode() calls and we can use GFP_KERNEL.
2549 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2551 int ret;
2553 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2554 rwlock_init(&sp->lock);
2556 if (mpol) {
2557 struct vm_area_struct pvma;
2558 struct mempolicy *new;
2559 NODEMASK_SCRATCH(scratch);
2561 if (!scratch)
2562 goto put_mpol;
2563 /* contextualize the tmpfs mount point mempolicy */
2564 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2565 if (IS_ERR(new))
2566 goto free_scratch; /* no valid nodemask intersection */
2568 task_lock(current);
2569 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2570 task_unlock(current);
2571 if (ret)
2572 goto put_new;
2574 /* Create pseudo-vma that contains just the policy */
2575 vma_init(&pvma, NULL);
2576 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2577 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2579 put_new:
2580 mpol_put(new); /* drop initial ref */
2581 free_scratch:
2582 NODEMASK_SCRATCH_FREE(scratch);
2583 put_mpol:
2584 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2588 int mpol_set_shared_policy(struct shared_policy *info,
2589 struct vm_area_struct *vma, struct mempolicy *npol)
2591 int err;
2592 struct sp_node *new = NULL;
2593 unsigned long sz = vma_pages(vma);
2595 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2596 vma->vm_pgoff,
2597 sz, npol ? npol->mode : -1,
2598 npol ? npol->flags : -1,
2599 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2601 if (npol) {
2602 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2603 if (!new)
2604 return -ENOMEM;
2606 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2607 if (err && new)
2608 sp_free(new);
2609 return err;
2612 /* Free a backing policy store on inode delete. */
2613 void mpol_free_shared_policy(struct shared_policy *p)
2615 struct sp_node *n;
2616 struct rb_node *next;
2618 if (!p->root.rb_node)
2619 return;
2620 write_lock(&p->lock);
2621 next = rb_first(&p->root);
2622 while (next) {
2623 n = rb_entry(next, struct sp_node, nd);
2624 next = rb_next(&n->nd);
2625 sp_delete(p, n);
2627 write_unlock(&p->lock);
2630 #ifdef CONFIG_NUMA_BALANCING
2631 static int __initdata numabalancing_override;
2633 static void __init check_numabalancing_enable(void)
2635 bool numabalancing_default = false;
2637 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2638 numabalancing_default = true;
2640 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2641 if (numabalancing_override)
2642 set_numabalancing_state(numabalancing_override == 1);
2644 if (num_online_nodes() > 1 && !numabalancing_override) {
2645 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2646 numabalancing_default ? "Enabling" : "Disabling");
2647 set_numabalancing_state(numabalancing_default);
2651 static int __init setup_numabalancing(char *str)
2653 int ret = 0;
2654 if (!str)
2655 goto out;
2657 if (!strcmp(str, "enable")) {
2658 numabalancing_override = 1;
2659 ret = 1;
2660 } else if (!strcmp(str, "disable")) {
2661 numabalancing_override = -1;
2662 ret = 1;
2664 out:
2665 if (!ret)
2666 pr_warn("Unable to parse numa_balancing=\n");
2668 return ret;
2670 __setup("numa_balancing=", setup_numabalancing);
2671 #else
2672 static inline void __init check_numabalancing_enable(void)
2675 #endif /* CONFIG_NUMA_BALANCING */
2677 /* assumes fs == KERNEL_DS */
2678 void __init numa_policy_init(void)
2680 nodemask_t interleave_nodes;
2681 unsigned long largest = 0;
2682 int nid, prefer = 0;
2684 policy_cache = kmem_cache_create("numa_policy",
2685 sizeof(struct mempolicy),
2686 0, SLAB_PANIC, NULL);
2688 sn_cache = kmem_cache_create("shared_policy_node",
2689 sizeof(struct sp_node),
2690 0, SLAB_PANIC, NULL);
2692 for_each_node(nid) {
2693 preferred_node_policy[nid] = (struct mempolicy) {
2694 .refcnt = ATOMIC_INIT(1),
2695 .mode = MPOL_PREFERRED,
2696 .flags = MPOL_F_MOF | MPOL_F_MORON,
2697 .v = { .preferred_node = nid, },
2702 * Set interleaving policy for system init. Interleaving is only
2703 * enabled across suitably sized nodes (default is >= 16MB), or
2704 * fall back to the largest node if they're all smaller.
2706 nodes_clear(interleave_nodes);
2707 for_each_node_state(nid, N_MEMORY) {
2708 unsigned long total_pages = node_present_pages(nid);
2710 /* Preserve the largest node */
2711 if (largest < total_pages) {
2712 largest = total_pages;
2713 prefer = nid;
2716 /* Interleave this node? */
2717 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2718 node_set(nid, interleave_nodes);
2721 /* All too small, use the largest */
2722 if (unlikely(nodes_empty(interleave_nodes)))
2723 node_set(prefer, interleave_nodes);
2725 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2726 pr_err("%s: interleaving failed\n", __func__);
2728 check_numabalancing_enable();
2731 /* Reset policy of current process to default */
2732 void numa_default_policy(void)
2734 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2738 * Parse and format mempolicy from/to strings
2742 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2744 static const char * const policy_modes[] =
2746 [MPOL_DEFAULT] = "default",
2747 [MPOL_PREFERRED] = "prefer",
2748 [MPOL_BIND] = "bind",
2749 [MPOL_INTERLEAVE] = "interleave",
2750 [MPOL_LOCAL] = "local",
2754 #ifdef CONFIG_TMPFS
2756 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2757 * @str: string containing mempolicy to parse
2758 * @mpol: pointer to struct mempolicy pointer, returned on success.
2760 * Format of input:
2761 * <mode>[=<flags>][:<nodelist>]
2763 * On success, returns 0, else 1
2765 int mpol_parse_str(char *str, struct mempolicy **mpol)
2767 struct mempolicy *new = NULL;
2768 unsigned short mode_flags;
2769 nodemask_t nodes;
2770 char *nodelist = strchr(str, ':');
2771 char *flags = strchr(str, '=');
2772 int err = 1, mode;
2774 if (nodelist) {
2775 /* NUL-terminate mode or flags string */
2776 *nodelist++ = '\0';
2777 if (nodelist_parse(nodelist, nodes))
2778 goto out;
2779 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2780 goto out;
2781 } else
2782 nodes_clear(nodes);
2784 if (flags)
2785 *flags++ = '\0'; /* terminate mode string */
2787 mode = match_string(policy_modes, MPOL_MAX, str);
2788 if (mode < 0)
2789 goto out;
2791 switch (mode) {
2792 case MPOL_PREFERRED:
2794 * Insist on a nodelist of one node only
2796 if (nodelist) {
2797 char *rest = nodelist;
2798 while (isdigit(*rest))
2799 rest++;
2800 if (*rest)
2801 goto out;
2803 break;
2804 case MPOL_INTERLEAVE:
2806 * Default to online nodes with memory if no nodelist
2808 if (!nodelist)
2809 nodes = node_states[N_MEMORY];
2810 break;
2811 case MPOL_LOCAL:
2813 * Don't allow a nodelist; mpol_new() checks flags
2815 if (nodelist)
2816 goto out;
2817 mode = MPOL_PREFERRED;
2818 break;
2819 case MPOL_DEFAULT:
2821 * Insist on a empty nodelist
2823 if (!nodelist)
2824 err = 0;
2825 goto out;
2826 case MPOL_BIND:
2828 * Insist on a nodelist
2830 if (!nodelist)
2831 goto out;
2834 mode_flags = 0;
2835 if (flags) {
2837 * Currently, we only support two mutually exclusive
2838 * mode flags.
2840 if (!strcmp(flags, "static"))
2841 mode_flags |= MPOL_F_STATIC_NODES;
2842 else if (!strcmp(flags, "relative"))
2843 mode_flags |= MPOL_F_RELATIVE_NODES;
2844 else
2845 goto out;
2848 new = mpol_new(mode, mode_flags, &nodes);
2849 if (IS_ERR(new))
2850 goto out;
2853 * Save nodes for mpol_to_str() to show the tmpfs mount options
2854 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2856 if (mode != MPOL_PREFERRED)
2857 new->v.nodes = nodes;
2858 else if (nodelist)
2859 new->v.preferred_node = first_node(nodes);
2860 else
2861 new->flags |= MPOL_F_LOCAL;
2864 * Save nodes for contextualization: this will be used to "clone"
2865 * the mempolicy in a specific context [cpuset] at a later time.
2867 new->w.user_nodemask = nodes;
2869 err = 0;
2871 out:
2872 /* Restore string for error message */
2873 if (nodelist)
2874 *--nodelist = ':';
2875 if (flags)
2876 *--flags = '=';
2877 if (!err)
2878 *mpol = new;
2879 return err;
2881 #endif /* CONFIG_TMPFS */
2884 * mpol_to_str - format a mempolicy structure for printing
2885 * @buffer: to contain formatted mempolicy string
2886 * @maxlen: length of @buffer
2887 * @pol: pointer to mempolicy to be formatted
2889 * Convert @pol into a string. If @buffer is too short, truncate the string.
2890 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2891 * longest flag, "relative", and to display at least a few node ids.
2893 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2895 char *p = buffer;
2896 nodemask_t nodes = NODE_MASK_NONE;
2897 unsigned short mode = MPOL_DEFAULT;
2898 unsigned short flags = 0;
2900 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2901 mode = pol->mode;
2902 flags = pol->flags;
2905 switch (mode) {
2906 case MPOL_DEFAULT:
2907 break;
2908 case MPOL_PREFERRED:
2909 if (flags & MPOL_F_LOCAL)
2910 mode = MPOL_LOCAL;
2911 else
2912 node_set(pol->v.preferred_node, nodes);
2913 break;
2914 case MPOL_BIND:
2915 case MPOL_INTERLEAVE:
2916 nodes = pol->v.nodes;
2917 break;
2918 default:
2919 WARN_ON_ONCE(1);
2920 snprintf(p, maxlen, "unknown");
2921 return;
2924 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2926 if (flags & MPOL_MODE_FLAGS) {
2927 p += snprintf(p, buffer + maxlen - p, "=");
2930 * Currently, the only defined flags are mutually exclusive
2932 if (flags & MPOL_F_STATIC_NODES)
2933 p += snprintf(p, buffer + maxlen - p, "static");
2934 else if (flags & MPOL_F_RELATIVE_NODES)
2935 p += snprintf(p, buffer + maxlen - p, "relative");
2938 if (!nodes_empty(nodes))
2939 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2940 nodemask_pr_args(&nodes));