2 * Copyright (C) 2014-2015 Broadcom Corporation
3 * Copyright 2014 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
20 #include <linux/jiffies.h>
22 #include <linux/of_address.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
26 #include <asm/cacheflush.h>
28 #include <asm/smp_plat.h>
29 #include <asm/smp_scu.h>
31 /* Size of mapped Cortex A9 SCU address space */
32 #define CORTEX_A9_SCU_SIZE 0x58
34 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
35 #define BOOT_ADDR_CPUID_MASK 0x3
37 /* Name of device node property defining secondary boot register location */
38 #define OF_SECONDARY_BOOT "secondary-boot-reg"
39 #define MPIDR_CPUID_BITMASK 0x3
42 * Enable the Cortex A9 Snoop Control Unit
44 * By the time this is called we already know there are multiple
45 * cores present. We assume we're running on a Cortex A9 processor,
46 * so any trouble getting the base address register or getting the
47 * SCU base is a problem.
49 * Return 0 if successful or an error code otherwise.
51 static int __init
scu_a9_enable(void)
53 unsigned long config_base
;
54 void __iomem
*scu_base
;
56 if (!scu_a9_has_base()) {
57 pr_err("no configuration base address register!\n");
61 /* Config base address register value is zero for uniprocessor */
62 config_base
= scu_a9_get_base();
64 pr_err("hardware reports only one core\n");
68 scu_base
= ioremap((phys_addr_t
)config_base
, CORTEX_A9_SCU_SIZE
);
70 pr_err("failed to remap config base (%lu/%u) for SCU\n",
71 config_base
, CORTEX_A9_SCU_SIZE
);
77 iounmap(scu_base
); /* That's the last we'll need of this */
82 static u32
secondary_boot_addr_for(unsigned int cpu
)
84 u32 secondary_boot_addr
= 0;
85 struct device_node
*cpu_node
= of_get_cpu_node(cpu
, NULL
);
88 pr_err("Failed to find device tree node for CPU%u\n", cpu
);
92 if (of_property_read_u32(cpu_node
,
94 &secondary_boot_addr
))
95 pr_err("required secondary boot register not specified for CPU%u\n",
98 of_node_put(cpu_node
);
100 return secondary_boot_addr
;
103 static int nsp_write_lut(unsigned int cpu
)
105 void __iomem
*sku_rom_lut
;
106 phys_addr_t secondary_startup_phy
;
107 const u32 secondary_boot_addr
= secondary_boot_addr_for(cpu
);
109 if (!secondary_boot_addr
)
112 sku_rom_lut
= ioremap_nocache((phys_addr_t
)secondary_boot_addr
,
113 sizeof(phys_addr_t
));
115 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu
);
119 secondary_startup_phy
= virt_to_phys(secondary_startup
);
120 BUG_ON(secondary_startup_phy
> (phys_addr_t
)U32_MAX
);
122 writel_relaxed(secondary_startup_phy
, sku_rom_lut
);
124 /* Ensure the write is visible to the secondary core */
127 iounmap(sku_rom_lut
);
132 static void __init
bcm_smp_prepare_cpus(unsigned int max_cpus
)
134 const cpumask_t only_cpu_0
= { CPU_BITS_CPU0
};
136 /* Enable the SCU on Cortex A9 based SoCs */
137 if (scu_a9_enable()) {
138 /* Update the CPU present map to reflect uniprocessor mode */
139 pr_warn("failed to enable A9 SCU - disabling SMP\n");
140 init_cpu_present(&only_cpu_0
);
145 * The ROM code has the secondary cores looping, waiting for an event.
146 * When an event occurs each core examines the bottom two bits of the
147 * secondary boot register. When a core finds those bits contain its
148 * own core id, it performs initialization, including computing its boot
149 * address by clearing the boot register value's bottom two bits. The
150 * core signals that it is beginning its execution by writing its boot
151 * address back to the secondary boot register, and finally jumps to
154 * So to start a core executing we need to:
155 * - Encode the (hardware) CPU id with the bottom bits of the secondary
157 * - Write that value into the secondary boot register.
158 * - Generate an event to wake up the secondary CPU(s).
159 * - Wait for the secondary boot register to be re-written, which
160 * indicates the secondary core has started.
162 static int kona_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
164 void __iomem
*boot_reg
;
165 phys_addr_t boot_func
;
169 bool timeout
= false;
170 const u32 secondary_boot_addr
= secondary_boot_addr_for(cpu
);
172 cpu_id
= cpu_logical_map(cpu
);
173 if (cpu_id
& ~BOOT_ADDR_CPUID_MASK
) {
174 pr_err("bad cpu id (%u > %u)\n", cpu_id
, BOOT_ADDR_CPUID_MASK
);
178 if (!secondary_boot_addr
)
181 boot_reg
= ioremap_nocache((phys_addr_t
)secondary_boot_addr
,
182 sizeof(phys_addr_t
));
184 pr_err("unable to map boot register for cpu %u\n", cpu_id
);
189 * Secondary cores will start in secondary_startup(),
190 * defined in "arch/arm/kernel/head.S"
192 boot_func
= virt_to_phys(secondary_startup
);
193 BUG_ON(boot_func
& BOOT_ADDR_CPUID_MASK
);
194 BUG_ON(boot_func
> (phys_addr_t
)U32_MAX
);
196 /* The core to start is encoded in the low bits */
197 boot_val
= (u32
)boot_func
| cpu_id
;
198 writel_relaxed(boot_val
, boot_reg
);
202 /* The low bits will be cleared once the core has started */
203 start_clock
= local_clock();
204 while (!timeout
&& readl_relaxed(boot_reg
) == boot_val
)
205 timeout
= local_clock() - start_clock
> SECONDARY_TIMEOUT_NS
;
212 pr_err("timeout waiting for cpu %u to start\n", cpu_id
);
217 /* Cluster Dormant Control command to bring CPU into a running state */
219 #define CDC_CMD_OFFSET 0
220 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
223 * BCM23550 has a Cluster Dormant Control block that keeps the core in
224 * idle state. A command needs to be sent to the block to bring the CPU
225 * into running state.
227 static int bcm23550_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
229 void __iomem
*cdc_base
;
230 struct device_node
*dn
;
234 /* Make sure a CDC node exists before booting the
237 name
= "brcm,bcm23550-cdc";
238 dn
= of_find_compatible_node(NULL
, NULL
, name
);
240 pr_err("unable to find cdc node\n");
244 cdc_base
= of_iomap(dn
, 0);
248 pr_err("unable to remap cdc base register\n");
252 /* Boot the secondary core */
253 ret
= kona_boot_secondary(cpu
, idle
);
257 /* Bring this CPU to RUN state so that nIRQ nFIQ
258 * signals are unblocked.
260 writel_relaxed(CDC_CMD
, cdc_base
+ CDC_CMD_REG(cpu
));
268 static int nsp_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
273 * After wake up, secondary core branches to the startup
274 * address programmed at SKU ROM LUT location.
276 ret
= nsp_write_lut(cpu
);
278 pr_err("unable to write startup addr to SKU ROM LUT\n");
282 /* Send a CPU wakeup interrupt to the secondary core */
283 arch_send_wakeup_ipi_mask(cpumask_of(cpu
));
289 static const struct smp_operations kona_smp_ops __initconst
= {
290 .smp_prepare_cpus
= bcm_smp_prepare_cpus
,
291 .smp_boot_secondary
= kona_boot_secondary
,
293 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx
, "brcm,bcm11351-cpu-method",
296 static const struct smp_operations bcm23550_smp_ops __initconst
= {
297 .smp_boot_secondary
= bcm23550_boot_secondary
,
299 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550
, "brcm,bcm23550",
302 static const struct smp_operations nsp_smp_ops __initconst
= {
303 .smp_prepare_cpus
= bcm_smp_prepare_cpus
,
304 .smp_boot_secondary
= nsp_boot_secondary
,
306 CPU_METHOD_OF_DECLARE(bcm_smp_nsp
, "brcm,bcm-nsp-smp", &nsp_smp_ops
);