2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
25 #include <dma-coherence.h>
27 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
28 /* User defined DMA coherency from command line. */
29 enum coherent_io_user_state coherentio
= IO_COHERENCE_DEFAULT
;
30 EXPORT_SYMBOL_GPL(coherentio
);
31 int hw_coherentio
= 0; /* Actual hardware supported DMA coherency setting. */
33 static int __init
setcoherentio(char *str
)
35 coherentio
= IO_COHERENCE_ENABLED
;
36 pr_info("Hardware DMA cache coherency (command line)\n");
39 early_param("coherentio", setcoherentio
);
41 static int __init
setnocoherentio(char *str
)
43 coherentio
= IO_COHERENCE_DISABLED
;
44 pr_info("Software DMA cache coherency (command line)\n");
47 early_param("nocoherentio", setnocoherentio
);
50 static inline struct page
*dma_addr_to_page(struct device
*dev
,
54 plat_dma_addr_to_phys(dev
, dma_addr
) >> PAGE_SHIFT
);
58 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
59 * speculatively fill random cachelines with stale data at any time,
60 * requiring an extra flush post-DMA.
62 * Warning on the terminology - Linux calls an uncached area coherent;
63 * MIPS terminology calls memory areas with hardware maintained coherency
66 * Note that the R14000 and R16000 should also be checked for in this
67 * condition. However this function is only called on non-I/O-coherent
68 * systems and only the R10000 and R12000 are used in such systems, the
69 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
71 static inline int cpu_needs_post_dma_flush(struct device
*dev
)
73 return !plat_device_is_coherent(dev
) &&
74 (boot_cpu_type() == CPU_R10000
||
75 boot_cpu_type() == CPU_R12000
||
76 boot_cpu_type() == CPU_BMIPS5000
);
79 static gfp_t
massage_gfp_flags(const struct device
*dev
, gfp_t gfp
)
83 /* ignore region specifiers */
84 gfp
&= ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
);
91 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
92 if (dev
== NULL
|| dev
->coherent_dma_mask
< DMA_BIT_MASK(32))
94 else if (dev
->coherent_dma_mask
< DMA_BIT_MASK(64))
95 dma_flag
= __GFP_DMA32
;
98 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
99 if (dev
== NULL
|| dev
->coherent_dma_mask
< DMA_BIT_MASK(64))
100 dma_flag
= __GFP_DMA32
;
103 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
105 dev
->coherent_dma_mask
< DMA_BIT_MASK(sizeof(phys_addr_t
) * 8))
106 dma_flag
= __GFP_DMA
;
111 /* Don't invoke OOM killer */
112 gfp
|= __GFP_NORETRY
;
114 return gfp
| dma_flag
;
117 static void *mips_dma_alloc_noncoherent(struct device
*dev
, size_t size
,
118 dma_addr_t
* dma_handle
, gfp_t gfp
)
122 gfp
= massage_gfp_flags(dev
, gfp
);
124 ret
= (void *) __get_free_pages(gfp
, get_order(size
));
127 memset(ret
, 0, size
);
128 *dma_handle
= plat_map_dma_mem(dev
, ret
, size
);
134 static void *mips_dma_alloc_coherent(struct device
*dev
, size_t size
,
135 dma_addr_t
*dma_handle
, gfp_t gfp
, unsigned long attrs
)
138 struct page
*page
= NULL
;
139 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
142 * XXX: seems like the coherent and non-coherent implementations could
145 if (attrs
& DMA_ATTR_NON_CONSISTENT
)
146 return mips_dma_alloc_noncoherent(dev
, size
, dma_handle
, gfp
);
148 gfp
= massage_gfp_flags(dev
, gfp
);
150 if (IS_ENABLED(CONFIG_DMA_CMA
) && gfpflags_allow_blocking(gfp
))
151 page
= dma_alloc_from_contiguous(dev
,
152 count
, get_order(size
));
154 page
= alloc_pages(gfp
, get_order(size
));
159 ret
= page_address(page
);
160 memset(ret
, 0, size
);
161 *dma_handle
= plat_map_dma_mem(dev
, ret
, size
);
162 if (!plat_device_is_coherent(dev
)) {
163 dma_cache_wback_inv((unsigned long) ret
, size
);
164 ret
= UNCAC_ADDR(ret
);
171 static void mips_dma_free_noncoherent(struct device
*dev
, size_t size
,
172 void *vaddr
, dma_addr_t dma_handle
)
174 plat_unmap_dma_mem(dev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
175 free_pages((unsigned long) vaddr
, get_order(size
));
178 static void mips_dma_free_coherent(struct device
*dev
, size_t size
, void *vaddr
,
179 dma_addr_t dma_handle
, unsigned long attrs
)
181 unsigned long addr
= (unsigned long) vaddr
;
182 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
183 struct page
*page
= NULL
;
185 if (attrs
& DMA_ATTR_NON_CONSISTENT
) {
186 mips_dma_free_noncoherent(dev
, size
, vaddr
, dma_handle
);
190 plat_unmap_dma_mem(dev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
192 if (!plat_device_is_coherent(dev
))
193 addr
= CAC_ADDR(addr
);
195 page
= virt_to_page((void *) addr
);
197 if (!dma_release_from_contiguous(dev
, page
, count
))
198 __free_pages(page
, get_order(size
));
201 static int mips_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
202 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
205 unsigned long user_count
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
206 unsigned long count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
207 unsigned long addr
= (unsigned long)cpu_addr
;
208 unsigned long off
= vma
->vm_pgoff
;
212 if (!plat_device_is_coherent(dev
))
213 addr
= CAC_ADDR(addr
);
215 pfn
= page_to_pfn(virt_to_page((void *)addr
));
217 if (attrs
& DMA_ATTR_WRITE_COMBINE
)
218 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
220 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
222 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
225 if (off
< count
&& user_count
<= (count
- off
)) {
226 ret
= remap_pfn_range(vma
, vma
->vm_start
,
228 user_count
<< PAGE_SHIFT
,
235 static inline void __dma_sync_virtual(void *addr
, size_t size
,
236 enum dma_data_direction direction
)
240 dma_cache_wback((unsigned long)addr
, size
);
243 case DMA_FROM_DEVICE
:
244 dma_cache_inv((unsigned long)addr
, size
);
247 case DMA_BIDIRECTIONAL
:
248 dma_cache_wback_inv((unsigned long)addr
, size
);
257 * A single sg entry may refer to multiple physically contiguous
258 * pages. But we still need to process highmem pages individually.
259 * If highmem is not configured then the bulk of this loop gets
262 static inline void __dma_sync(struct page
*page
,
263 unsigned long offset
, size_t size
, enum dma_data_direction direction
)
270 if (PageHighMem(page
)) {
273 if (offset
+ len
> PAGE_SIZE
) {
274 if (offset
>= PAGE_SIZE
) {
275 page
+= offset
>> PAGE_SHIFT
;
276 offset
&= ~PAGE_MASK
;
278 len
= PAGE_SIZE
- offset
;
281 addr
= kmap_atomic(page
);
282 __dma_sync_virtual(addr
+ offset
, len
, direction
);
285 __dma_sync_virtual(page_address(page
) + offset
,
293 static void mips_dma_unmap_page(struct device
*dev
, dma_addr_t dma_addr
,
294 size_t size
, enum dma_data_direction direction
, unsigned long attrs
)
296 if (cpu_needs_post_dma_flush(dev
) && !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
))
297 __dma_sync(dma_addr_to_page(dev
, dma_addr
),
298 dma_addr
& ~PAGE_MASK
, size
, direction
);
299 plat_post_dma_flush(dev
);
300 plat_unmap_dma_mem(dev
, dma_addr
, size
, direction
);
303 static int mips_dma_map_sg(struct device
*dev
, struct scatterlist
*sglist
,
304 int nents
, enum dma_data_direction direction
, unsigned long attrs
)
307 struct scatterlist
*sg
;
309 for_each_sg(sglist
, sg
, nents
, i
) {
310 if (!plat_device_is_coherent(dev
) &&
311 !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
))
312 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
314 #ifdef CONFIG_NEED_SG_DMA_LENGTH
315 sg
->dma_length
= sg
->length
;
317 sg
->dma_address
= plat_map_dma_mem_page(dev
, sg_page(sg
)) +
324 static dma_addr_t
mips_dma_map_page(struct device
*dev
, struct page
*page
,
325 unsigned long offset
, size_t size
, enum dma_data_direction direction
,
328 if (!plat_device_is_coherent(dev
) && !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
))
329 __dma_sync(page
, offset
, size
, direction
);
331 return plat_map_dma_mem_page(dev
, page
) + offset
;
334 static void mips_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
335 int nhwentries
, enum dma_data_direction direction
,
339 struct scatterlist
*sg
;
341 for_each_sg(sglist
, sg
, nhwentries
, i
) {
342 if (!plat_device_is_coherent(dev
) &&
343 !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
344 direction
!= DMA_TO_DEVICE
)
345 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
347 plat_unmap_dma_mem(dev
, sg
->dma_address
, sg
->length
, direction
);
351 static void mips_dma_sync_single_for_cpu(struct device
*dev
,
352 dma_addr_t dma_handle
, size_t size
, enum dma_data_direction direction
)
354 if (cpu_needs_post_dma_flush(dev
))
355 __dma_sync(dma_addr_to_page(dev
, dma_handle
),
356 dma_handle
& ~PAGE_MASK
, size
, direction
);
357 plat_post_dma_flush(dev
);
360 static void mips_dma_sync_single_for_device(struct device
*dev
,
361 dma_addr_t dma_handle
, size_t size
, enum dma_data_direction direction
)
363 if (!plat_device_is_coherent(dev
))
364 __dma_sync(dma_addr_to_page(dev
, dma_handle
),
365 dma_handle
& ~PAGE_MASK
, size
, direction
);
368 static void mips_dma_sync_sg_for_cpu(struct device
*dev
,
369 struct scatterlist
*sglist
, int nelems
,
370 enum dma_data_direction direction
)
373 struct scatterlist
*sg
;
375 if (cpu_needs_post_dma_flush(dev
)) {
376 for_each_sg(sglist
, sg
, nelems
, i
) {
377 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
381 plat_post_dma_flush(dev
);
384 static void mips_dma_sync_sg_for_device(struct device
*dev
,
385 struct scatterlist
*sglist
, int nelems
,
386 enum dma_data_direction direction
)
389 struct scatterlist
*sg
;
391 if (!plat_device_is_coherent(dev
)) {
392 for_each_sg(sglist
, sg
, nelems
, i
) {
393 __dma_sync(sg_page(sg
), sg
->offset
, sg
->length
,
399 int mips_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
404 int mips_dma_supported(struct device
*dev
, u64 mask
)
406 return plat_dma_supported(dev
, mask
);
409 void dma_cache_sync(struct device
*dev
, void *vaddr
, size_t size
,
410 enum dma_data_direction direction
)
412 BUG_ON(direction
== DMA_NONE
);
414 if (!plat_device_is_coherent(dev
))
415 __dma_sync_virtual(vaddr
, size
, direction
);
418 EXPORT_SYMBOL(dma_cache_sync
);
420 static struct dma_map_ops mips_default_dma_map_ops
= {
421 .alloc
= mips_dma_alloc_coherent
,
422 .free
= mips_dma_free_coherent
,
423 .mmap
= mips_dma_mmap
,
424 .map_page
= mips_dma_map_page
,
425 .unmap_page
= mips_dma_unmap_page
,
426 .map_sg
= mips_dma_map_sg
,
427 .unmap_sg
= mips_dma_unmap_sg
,
428 .sync_single_for_cpu
= mips_dma_sync_single_for_cpu
,
429 .sync_single_for_device
= mips_dma_sync_single_for_device
,
430 .sync_sg_for_cpu
= mips_dma_sync_sg_for_cpu
,
431 .sync_sg_for_device
= mips_dma_sync_sg_for_device
,
432 .mapping_error
= mips_dma_mapping_error
,
433 .dma_supported
= mips_dma_supported
436 struct dma_map_ops
*mips_dma_map_ops
= &mips_default_dma_map_ops
;
437 EXPORT_SYMBOL(mips_dma_map_ops
);
439 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
441 static int __init
mips_dma_init(void)
443 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
447 fs_initcall(mips_dma_init
);