4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
17 * DMA mapping callbacks...
18 * As alloc_coherent is the only DMA callback being used currently, that's
19 * the only thing implemented properly. The rest need looking into...
22 #include <linux/dma-mapping.h>
23 #include <linux/dma-debug.h>
24 #include <linux/export.h>
26 #include <asm/cpuinfo.h>
27 #include <asm/spr_defs.h>
28 #include <asm/tlbflush.h>
31 page_set_nocache(pte_t
*pte
, unsigned long addr
,
32 unsigned long next
, struct mm_walk
*walk
)
36 pte_val(*pte
) |= _PAGE_CI
;
39 * Flush the page out of the TLB so that the new page flags get
40 * picked up next time there's an access
42 flush_tlb_page(NULL
, addr
);
44 /* Flush page out of dcache */
45 for (cl
= __pa(addr
); cl
< __pa(next
); cl
+= cpuinfo
.dcache_block_size
)
52 page_clear_nocache(pte_t
*pte
, unsigned long addr
,
53 unsigned long next
, struct mm_walk
*walk
)
55 pte_val(*pte
) &= ~_PAGE_CI
;
58 * Flush the page out of the TLB so that the new page flags get
59 * picked up next time there's an access
61 flush_tlb_page(NULL
, addr
);
67 * Alloc "coherent" memory, which for OpenRISC means simply uncached.
69 * This function effectively just calls __get_free_pages, sets the
70 * cache-inhibit bit on those pages, and makes sure that the pages are
71 * flushed out of the cache before they are used.
73 * If the NON_CONSISTENT attribute is set, then this function just
74 * returns "normal", cachable memory.
76 * There are additional flags WEAK_ORDERING and WRITE_COMBINE to take
77 * into consideration here, too. All current known implementations of
78 * the OR1K support only strongly ordered memory accesses, so that flag
79 * is being ignored for now; uncached but write-combined memory is a
80 * missing feature of the OR1K.
83 or1k_dma_alloc(struct device
*dev
, size_t size
,
84 dma_addr_t
*dma_handle
, gfp_t gfp
,
89 struct mm_walk walk
= {
90 .pte_entry
= page_set_nocache
,
94 page
= alloc_pages_exact(size
, gfp
);
98 /* This gives us the real physical address of the first page. */
99 *dma_handle
= __pa(page
);
101 va
= (unsigned long)page
;
103 if ((attrs
& DMA_ATTR_NON_CONSISTENT
) == 0) {
105 * We need to iterate through the pages, clearing the dcache for
106 * them and setting the cache-inhibit bit.
108 if (walk_page_range(va
, va
+ size
, &walk
)) {
109 free_pages_exact(page
, size
);
118 or1k_dma_free(struct device
*dev
, size_t size
, void *vaddr
,
119 dma_addr_t dma_handle
, unsigned long attrs
)
121 unsigned long va
= (unsigned long)vaddr
;
122 struct mm_walk walk
= {
123 .pte_entry
= page_clear_nocache
,
127 if ((attrs
& DMA_ATTR_NON_CONSISTENT
) == 0) {
128 /* walk_page_range shouldn't be able to fail here */
129 WARN_ON(walk_page_range(va
, va
+ size
, &walk
));
132 free_pages_exact(vaddr
, size
);
136 or1k_map_page(struct device
*dev
, struct page
*page
,
137 unsigned long offset
, size_t size
,
138 enum dma_data_direction dir
,
142 dma_addr_t addr
= page_to_phys(page
) + offset
;
144 if (attrs
& DMA_ATTR_SKIP_CPU_SYNC
)
149 /* Flush the dcache for the requested range */
150 for (cl
= addr
; cl
< addr
+ size
;
151 cl
+= cpuinfo
.dcache_block_size
)
152 mtspr(SPR_DCBFR
, cl
);
154 case DMA_FROM_DEVICE
:
155 /* Invalidate the dcache for the requested range */
156 for (cl
= addr
; cl
< addr
+ size
;
157 cl
+= cpuinfo
.dcache_block_size
)
158 mtspr(SPR_DCBIR
, cl
);
162 * NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to
163 * flush nor invalidate the cache here as the area will need
164 * to be manually synced anyway.
173 or1k_unmap_page(struct device
*dev
, dma_addr_t dma_handle
,
174 size_t size
, enum dma_data_direction dir
,
177 /* Nothing special to do here... */
181 or1k_map_sg(struct device
*dev
, struct scatterlist
*sg
,
182 int nents
, enum dma_data_direction dir
,
185 struct scatterlist
*s
;
188 for_each_sg(sg
, s
, nents
, i
) {
189 s
->dma_address
= or1k_map_page(dev
, sg_page(s
), s
->offset
,
197 or1k_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
198 int nents
, enum dma_data_direction dir
,
201 struct scatterlist
*s
;
204 for_each_sg(sg
, s
, nents
, i
) {
205 or1k_unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, 0);
210 or1k_sync_single_for_cpu(struct device
*dev
,
211 dma_addr_t dma_handle
, size_t size
,
212 enum dma_data_direction dir
)
215 dma_addr_t addr
= dma_handle
;
217 /* Invalidate the dcache for the requested range */
218 for (cl
= addr
; cl
< addr
+ size
; cl
+= cpuinfo
.dcache_block_size
)
219 mtspr(SPR_DCBIR
, cl
);
223 or1k_sync_single_for_device(struct device
*dev
,
224 dma_addr_t dma_handle
, size_t size
,
225 enum dma_data_direction dir
)
228 dma_addr_t addr
= dma_handle
;
230 /* Flush the dcache for the requested range */
231 for (cl
= addr
; cl
< addr
+ size
; cl
+= cpuinfo
.dcache_block_size
)
232 mtspr(SPR_DCBFR
, cl
);
235 struct dma_map_ops or1k_dma_map_ops
= {
236 .alloc
= or1k_dma_alloc
,
237 .free
= or1k_dma_free
,
238 .map_page
= or1k_map_page
,
239 .unmap_page
= or1k_unmap_page
,
240 .map_sg
= or1k_map_sg
,
241 .unmap_sg
= or1k_unmap_sg
,
242 .sync_single_for_cpu
= or1k_sync_single_for_cpu
,
243 .sync_single_for_device
= or1k_sync_single_for_device
,
245 EXPORT_SYMBOL(or1k_dma_map_ops
);
247 /* Number of entries preallocated for DMA-API debugging */
248 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
250 static int __init
dma_init(void)
252 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
256 fs_initcall(dma_init
);