target/cxgbit: Use T6 specific macros to get ETH/IP hdr len
[linux/fpc-iii.git] / arch / x86 / kernel / crash.c
blob3741461c63a0cfc56cbc8cf88e3011260ba82018
1 /*
2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
6 * Copyright (C) IBM Corporation, 2004. All rights reserved.
7 * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8 * Authors:
9 * Vivek Goyal <vgoyal@redhat.com>
13 #define pr_fmt(fmt) "kexec: " fmt
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
27 #include <asm/processor.h>
28 #include <asm/hardirq.h>
29 #include <asm/nmi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/apic.h>
32 #include <asm/io_apic.h>
33 #include <asm/hpet.h>
34 #include <linux/kdebug.h>
35 #include <asm/cpu.h>
36 #include <asm/reboot.h>
37 #include <asm/virtext.h>
38 #include <asm/intel_pt.h>
40 /* Alignment required for elf header segment */
41 #define ELF_CORE_HEADER_ALIGN 4096
43 /* This primarily represents number of split ranges due to exclusion */
44 #define CRASH_MAX_RANGES 16
46 struct crash_mem_range {
47 u64 start, end;
50 struct crash_mem {
51 unsigned int nr_ranges;
52 struct crash_mem_range ranges[CRASH_MAX_RANGES];
55 /* Misc data about ram ranges needed to prepare elf headers */
56 struct crash_elf_data {
57 struct kimage *image;
59 * Total number of ram ranges we have after various adjustments for
60 * crash reserved region, etc.
62 unsigned int max_nr_ranges;
64 /* Pointer to elf header */
65 void *ehdr;
66 /* Pointer to next phdr */
67 void *bufp;
68 struct crash_mem mem;
71 /* Used while preparing memory map entries for second kernel */
72 struct crash_memmap_data {
73 struct boot_params *params;
74 /* Type of memory */
75 unsigned int type;
79 * This is used to VMCLEAR all VMCSs loaded on the
80 * processor. And when loading kvm_intel module, the
81 * callback function pointer will be assigned.
83 * protected by rcu.
85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
87 unsigned long crash_zero_bytes;
89 static inline void cpu_crash_vmclear_loaded_vmcss(void)
91 crash_vmclear_fn *do_vmclear_operation = NULL;
93 rcu_read_lock();
94 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
95 if (do_vmclear_operation)
96 do_vmclear_operation();
97 rcu_read_unlock();
100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
104 #ifdef CONFIG_X86_32
105 struct pt_regs fixed_regs;
107 if (!user_mode(regs)) {
108 crash_fixup_ss_esp(&fixed_regs, regs);
109 regs = &fixed_regs;
111 #endif
112 crash_save_cpu(regs, cpu);
115 * VMCLEAR VMCSs loaded on all cpus if needed.
117 cpu_crash_vmclear_loaded_vmcss();
119 /* Disable VMX or SVM if needed.
121 * We need to disable virtualization on all CPUs.
122 * Having VMX or SVM enabled on any CPU may break rebooting
123 * after the kdump kernel has finished its task.
125 cpu_emergency_vmxoff();
126 cpu_emergency_svm_disable();
129 * Disable Intel PT to stop its logging
131 cpu_emergency_stop_pt();
133 disable_local_APIC();
136 void kdump_nmi_shootdown_cpus(void)
138 nmi_shootdown_cpus(kdump_nmi_callback);
140 disable_local_APIC();
143 /* Override the weak function in kernel/panic.c */
144 void crash_smp_send_stop(void)
146 static int cpus_stopped;
148 if (cpus_stopped)
149 return;
151 if (smp_ops.crash_stop_other_cpus)
152 smp_ops.crash_stop_other_cpus();
153 else
154 smp_send_stop();
156 cpus_stopped = 1;
159 #else
160 void crash_smp_send_stop(void)
162 /* There are no cpus to shootdown */
164 #endif
166 void native_machine_crash_shutdown(struct pt_regs *regs)
168 /* This function is only called after the system
169 * has panicked or is otherwise in a critical state.
170 * The minimum amount of code to allow a kexec'd kernel
171 * to run successfully needs to happen here.
173 * In practice this means shooting down the other cpus in
174 * an SMP system.
176 /* The kernel is broken so disable interrupts */
177 local_irq_disable();
179 crash_smp_send_stop();
182 * VMCLEAR VMCSs loaded on this cpu if needed.
184 cpu_crash_vmclear_loaded_vmcss();
186 /* Booting kdump kernel with VMX or SVM enabled won't work,
187 * because (among other limitations) we can't disable paging
188 * with the virt flags.
190 cpu_emergency_vmxoff();
191 cpu_emergency_svm_disable();
194 * Disable Intel PT to stop its logging
196 cpu_emergency_stop_pt();
198 #ifdef CONFIG_X86_IO_APIC
199 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */
200 ioapic_zap_locks();
201 disable_IO_APIC();
202 #endif
203 lapic_shutdown();
204 #ifdef CONFIG_HPET_TIMER
205 hpet_disable();
206 #endif
207 crash_save_cpu(regs, safe_smp_processor_id());
210 #ifdef CONFIG_KEXEC_FILE
211 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
213 unsigned int *nr_ranges = arg;
215 (*nr_ranges)++;
216 return 0;
220 /* Gather all the required information to prepare elf headers for ram regions */
221 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
222 struct kimage *image)
224 unsigned int nr_ranges = 0;
226 ced->image = image;
228 walk_system_ram_res(0, -1, &nr_ranges,
229 get_nr_ram_ranges_callback);
231 ced->max_nr_ranges = nr_ranges;
233 /* Exclusion of crash region could split memory ranges */
234 ced->max_nr_ranges++;
236 /* If crashk_low_res is not 0, another range split possible */
237 if (crashk_low_res.end)
238 ced->max_nr_ranges++;
241 static int exclude_mem_range(struct crash_mem *mem,
242 unsigned long long mstart, unsigned long long mend)
244 int i, j;
245 unsigned long long start, end;
246 struct crash_mem_range temp_range = {0, 0};
248 for (i = 0; i < mem->nr_ranges; i++) {
249 start = mem->ranges[i].start;
250 end = mem->ranges[i].end;
252 if (mstart > end || mend < start)
253 continue;
255 /* Truncate any area outside of range */
256 if (mstart < start)
257 mstart = start;
258 if (mend > end)
259 mend = end;
261 /* Found completely overlapping range */
262 if (mstart == start && mend == end) {
263 mem->ranges[i].start = 0;
264 mem->ranges[i].end = 0;
265 if (i < mem->nr_ranges - 1) {
266 /* Shift rest of the ranges to left */
267 for (j = i; j < mem->nr_ranges - 1; j++) {
268 mem->ranges[j].start =
269 mem->ranges[j+1].start;
270 mem->ranges[j].end =
271 mem->ranges[j+1].end;
274 mem->nr_ranges--;
275 return 0;
278 if (mstart > start && mend < end) {
279 /* Split original range */
280 mem->ranges[i].end = mstart - 1;
281 temp_range.start = mend + 1;
282 temp_range.end = end;
283 } else if (mstart != start)
284 mem->ranges[i].end = mstart - 1;
285 else
286 mem->ranges[i].start = mend + 1;
287 break;
290 /* If a split happend, add the split to array */
291 if (!temp_range.end)
292 return 0;
294 /* Split happened */
295 if (i == CRASH_MAX_RANGES - 1) {
296 pr_err("Too many crash ranges after split\n");
297 return -ENOMEM;
300 /* Location where new range should go */
301 j = i + 1;
302 if (j < mem->nr_ranges) {
303 /* Move over all ranges one slot towards the end */
304 for (i = mem->nr_ranges - 1; i >= j; i--)
305 mem->ranges[i + 1] = mem->ranges[i];
308 mem->ranges[j].start = temp_range.start;
309 mem->ranges[j].end = temp_range.end;
310 mem->nr_ranges++;
311 return 0;
315 * Look for any unwanted ranges between mstart, mend and remove them. This
316 * might lead to split and split ranges are put in ced->mem.ranges[] array
318 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
319 unsigned long long mstart, unsigned long long mend)
321 struct crash_mem *cmem = &ced->mem;
322 int ret = 0;
324 memset(cmem->ranges, 0, sizeof(cmem->ranges));
326 cmem->ranges[0].start = mstart;
327 cmem->ranges[0].end = mend;
328 cmem->nr_ranges = 1;
330 /* Exclude crashkernel region */
331 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
332 if (ret)
333 return ret;
335 if (crashk_low_res.end) {
336 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
337 if (ret)
338 return ret;
341 return ret;
344 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
346 struct crash_elf_data *ced = arg;
347 Elf64_Ehdr *ehdr;
348 Elf64_Phdr *phdr;
349 unsigned long mstart, mend;
350 struct kimage *image = ced->image;
351 struct crash_mem *cmem;
352 int ret, i;
354 ehdr = ced->ehdr;
356 /* Exclude unwanted mem ranges */
357 ret = elf_header_exclude_ranges(ced, start, end);
358 if (ret)
359 return ret;
361 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
362 cmem = &ced->mem;
364 for (i = 0; i < cmem->nr_ranges; i++) {
365 mstart = cmem->ranges[i].start;
366 mend = cmem->ranges[i].end;
368 phdr = ced->bufp;
369 ced->bufp += sizeof(Elf64_Phdr);
371 phdr->p_type = PT_LOAD;
372 phdr->p_flags = PF_R|PF_W|PF_X;
373 phdr->p_offset = mstart;
376 * If a range matches backup region, adjust offset to backup
377 * segment.
379 if (mstart == image->arch.backup_src_start &&
380 (mend - mstart + 1) == image->arch.backup_src_sz)
381 phdr->p_offset = image->arch.backup_load_addr;
383 phdr->p_paddr = mstart;
384 phdr->p_vaddr = (unsigned long long) __va(mstart);
385 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
386 phdr->p_align = 0;
387 ehdr->e_phnum++;
388 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
389 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
390 ehdr->e_phnum, phdr->p_offset);
393 return ret;
396 static int prepare_elf64_headers(struct crash_elf_data *ced,
397 void **addr, unsigned long *sz)
399 Elf64_Ehdr *ehdr;
400 Elf64_Phdr *phdr;
401 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
402 unsigned char *buf, *bufp;
403 unsigned int cpu;
404 unsigned long long notes_addr;
405 int ret;
407 /* extra phdr for vmcoreinfo elf note */
408 nr_phdr = nr_cpus + 1;
409 nr_phdr += ced->max_nr_ranges;
412 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
413 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
414 * I think this is required by tools like gdb. So same physical
415 * memory will be mapped in two elf headers. One will contain kernel
416 * text virtual addresses and other will have __va(physical) addresses.
419 nr_phdr++;
420 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
421 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
423 buf = vzalloc(elf_sz);
424 if (!buf)
425 return -ENOMEM;
427 bufp = buf;
428 ehdr = (Elf64_Ehdr *)bufp;
429 bufp += sizeof(Elf64_Ehdr);
430 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
431 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
432 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
433 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
434 ehdr->e_ident[EI_OSABI] = ELF_OSABI;
435 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
436 ehdr->e_type = ET_CORE;
437 ehdr->e_machine = ELF_ARCH;
438 ehdr->e_version = EV_CURRENT;
439 ehdr->e_phoff = sizeof(Elf64_Ehdr);
440 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
441 ehdr->e_phentsize = sizeof(Elf64_Phdr);
443 /* Prepare one phdr of type PT_NOTE for each present cpu */
444 for_each_present_cpu(cpu) {
445 phdr = (Elf64_Phdr *)bufp;
446 bufp += sizeof(Elf64_Phdr);
447 phdr->p_type = PT_NOTE;
448 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
449 phdr->p_offset = phdr->p_paddr = notes_addr;
450 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
451 (ehdr->e_phnum)++;
454 /* Prepare one PT_NOTE header for vmcoreinfo */
455 phdr = (Elf64_Phdr *)bufp;
456 bufp += sizeof(Elf64_Phdr);
457 phdr->p_type = PT_NOTE;
458 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
459 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
460 (ehdr->e_phnum)++;
462 #ifdef CONFIG_X86_64
463 /* Prepare PT_LOAD type program header for kernel text region */
464 phdr = (Elf64_Phdr *)bufp;
465 bufp += sizeof(Elf64_Phdr);
466 phdr->p_type = PT_LOAD;
467 phdr->p_flags = PF_R|PF_W|PF_X;
468 phdr->p_vaddr = (Elf64_Addr)_text;
469 phdr->p_filesz = phdr->p_memsz = _end - _text;
470 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
471 (ehdr->e_phnum)++;
472 #endif
474 /* Prepare PT_LOAD headers for system ram chunks. */
475 ced->ehdr = ehdr;
476 ced->bufp = bufp;
477 ret = walk_system_ram_res(0, -1, ced,
478 prepare_elf64_ram_headers_callback);
479 if (ret < 0)
480 return ret;
482 *addr = buf;
483 *sz = elf_sz;
484 return 0;
487 /* Prepare elf headers. Return addr and size */
488 static int prepare_elf_headers(struct kimage *image, void **addr,
489 unsigned long *sz)
491 struct crash_elf_data *ced;
492 int ret;
494 ced = kzalloc(sizeof(*ced), GFP_KERNEL);
495 if (!ced)
496 return -ENOMEM;
498 fill_up_crash_elf_data(ced, image);
500 /* By default prepare 64bit headers */
501 ret = prepare_elf64_headers(ced, addr, sz);
502 kfree(ced);
503 return ret;
506 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
508 unsigned int nr_e820_entries;
510 nr_e820_entries = params->e820_entries;
511 if (nr_e820_entries >= E820MAX)
512 return 1;
514 memcpy(&params->e820_map[nr_e820_entries], entry,
515 sizeof(struct e820entry));
516 params->e820_entries++;
517 return 0;
520 static int memmap_entry_callback(u64 start, u64 end, void *arg)
522 struct crash_memmap_data *cmd = arg;
523 struct boot_params *params = cmd->params;
524 struct e820entry ei;
526 ei.addr = start;
527 ei.size = end - start + 1;
528 ei.type = cmd->type;
529 add_e820_entry(params, &ei);
531 return 0;
534 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
535 unsigned long long mstart,
536 unsigned long long mend)
538 unsigned long start, end;
539 int ret = 0;
541 cmem->ranges[0].start = mstart;
542 cmem->ranges[0].end = mend;
543 cmem->nr_ranges = 1;
545 /* Exclude Backup region */
546 start = image->arch.backup_load_addr;
547 end = start + image->arch.backup_src_sz - 1;
548 ret = exclude_mem_range(cmem, start, end);
549 if (ret)
550 return ret;
552 /* Exclude elf header region */
553 start = image->arch.elf_load_addr;
554 end = start + image->arch.elf_headers_sz - 1;
555 return exclude_mem_range(cmem, start, end);
558 /* Prepare memory map for crash dump kernel */
559 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
561 int i, ret = 0;
562 unsigned long flags;
563 struct e820entry ei;
564 struct crash_memmap_data cmd;
565 struct crash_mem *cmem;
567 cmem = vzalloc(sizeof(struct crash_mem));
568 if (!cmem)
569 return -ENOMEM;
571 memset(&cmd, 0, sizeof(struct crash_memmap_data));
572 cmd.params = params;
574 /* Add first 640K segment */
575 ei.addr = image->arch.backup_src_start;
576 ei.size = image->arch.backup_src_sz;
577 ei.type = E820_RAM;
578 add_e820_entry(params, &ei);
580 /* Add ACPI tables */
581 cmd.type = E820_ACPI;
582 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
583 walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
584 memmap_entry_callback);
586 /* Add ACPI Non-volatile Storage */
587 cmd.type = E820_NVS;
588 walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
589 memmap_entry_callback);
591 /* Add crashk_low_res region */
592 if (crashk_low_res.end) {
593 ei.addr = crashk_low_res.start;
594 ei.size = crashk_low_res.end - crashk_low_res.start + 1;
595 ei.type = E820_RAM;
596 add_e820_entry(params, &ei);
599 /* Exclude some ranges from crashk_res and add rest to memmap */
600 ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
601 crashk_res.end);
602 if (ret)
603 goto out;
605 for (i = 0; i < cmem->nr_ranges; i++) {
606 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
608 /* If entry is less than a page, skip it */
609 if (ei.size < PAGE_SIZE)
610 continue;
611 ei.addr = cmem->ranges[i].start;
612 ei.type = E820_RAM;
613 add_e820_entry(params, &ei);
616 out:
617 vfree(cmem);
618 return ret;
621 static int determine_backup_region(u64 start, u64 end, void *arg)
623 struct kimage *image = arg;
625 image->arch.backup_src_start = start;
626 image->arch.backup_src_sz = end - start + 1;
628 /* Expecting only one range for backup region */
629 return 1;
632 int crash_load_segments(struct kimage *image)
634 int ret;
635 struct kexec_buf kbuf = { .image = image, .buf_min = 0,
636 .buf_max = ULONG_MAX, .top_down = false };
639 * Determine and load a segment for backup area. First 640K RAM
640 * region is backup source
643 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
644 image, determine_backup_region);
646 /* Zero or postive return values are ok */
647 if (ret < 0)
648 return ret;
650 /* Add backup segment. */
651 if (image->arch.backup_src_sz) {
652 kbuf.buffer = &crash_zero_bytes;
653 kbuf.bufsz = sizeof(crash_zero_bytes);
654 kbuf.memsz = image->arch.backup_src_sz;
655 kbuf.buf_align = PAGE_SIZE;
657 * Ideally there is no source for backup segment. This is
658 * copied in purgatory after crash. Just add a zero filled
659 * segment for now to make sure checksum logic works fine.
661 ret = kexec_add_buffer(&kbuf);
662 if (ret)
663 return ret;
664 image->arch.backup_load_addr = kbuf.mem;
665 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
666 image->arch.backup_load_addr,
667 image->arch.backup_src_start, kbuf.memsz);
670 /* Prepare elf headers and add a segment */
671 ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
672 if (ret)
673 return ret;
675 image->arch.elf_headers = kbuf.buffer;
676 image->arch.elf_headers_sz = kbuf.bufsz;
678 kbuf.memsz = kbuf.bufsz;
679 kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
680 ret = kexec_add_buffer(&kbuf);
681 if (ret) {
682 vfree((void *)image->arch.elf_headers);
683 return ret;
685 image->arch.elf_load_addr = kbuf.mem;
686 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
687 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
689 return ret;
691 #endif /* CONFIG_KEXEC_FILE */