2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/fpu/xstate.h>
13 #include <asm/traps.h>
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
22 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23 * depending on the FPU hardware format:
25 union fpregs_state init_fpstate __read_mostly
;
28 * Track whether the kernel is using the FPU state
33 * - by IRQ context code to potentially use the FPU
36 * - to debug kernel_fpu_begin()/end() correctness
38 static DEFINE_PER_CPU(bool, in_kernel_fpu
);
41 * Track which context is using the FPU on the CPU:
43 DEFINE_PER_CPU(struct fpu
*, fpu_fpregs_owner_ctx
);
45 static void kernel_fpu_disable(void)
47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu
));
48 this_cpu_write(in_kernel_fpu
, true);
51 static void kernel_fpu_enable(void)
53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu
));
54 this_cpu_write(in_kernel_fpu
, false);
57 static bool kernel_fpu_disabled(void)
59 return this_cpu_read(in_kernel_fpu
);
62 static bool interrupted_kernel_fpu_idle(void)
64 return !kernel_fpu_disabled();
68 * Were we in user mode (or vm86 mode) when we were
71 * Doing kernel_fpu_begin/end() is ok if we are running
72 * in an interrupt context from user mode - we'll just
73 * save the FPU state as required.
75 static bool interrupted_user_mode(void)
77 struct pt_regs
*regs
= get_irq_regs();
78 return regs
&& user_mode(regs
);
82 * Can we use the FPU in kernel mode with the
83 * whole "kernel_fpu_begin/end()" sequence?
85 * It's always ok in process context (ie "not interrupt")
86 * but it is sometimes ok even from an irq.
88 bool irq_fpu_usable(void)
90 return !in_interrupt() ||
91 interrupted_user_mode() ||
92 interrupted_kernel_fpu_idle();
94 EXPORT_SYMBOL(irq_fpu_usable
);
96 void __kernel_fpu_begin(void)
98 struct fpu
*fpu
= ¤t
->thread
.fpu
;
100 WARN_ON_FPU(!irq_fpu_usable());
102 kernel_fpu_disable();
104 if (fpu
->fpregs_active
) {
106 * Ignore return value -- we don't care if reg state
109 copy_fpregs_to_fpstate(fpu
);
111 __cpu_invalidate_fpregs_state();
114 EXPORT_SYMBOL(__kernel_fpu_begin
);
116 void __kernel_fpu_end(void)
118 struct fpu
*fpu
= ¤t
->thread
.fpu
;
120 if (fpu
->fpregs_active
)
121 copy_kernel_to_fpregs(&fpu
->state
);
125 EXPORT_SYMBOL(__kernel_fpu_end
);
127 void kernel_fpu_begin(void)
130 __kernel_fpu_begin();
132 EXPORT_SYMBOL_GPL(kernel_fpu_begin
);
134 void kernel_fpu_end(void)
139 EXPORT_SYMBOL_GPL(kernel_fpu_end
);
142 * Save the FPU state (mark it for reload if necessary):
144 * This only ever gets called for the current task.
146 void fpu__save(struct fpu
*fpu
)
148 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
);
151 trace_x86_fpu_before_save(fpu
);
152 if (fpu
->fpregs_active
) {
153 if (!copy_fpregs_to_fpstate(fpu
)) {
154 copy_kernel_to_fpregs(&fpu
->state
);
157 trace_x86_fpu_after_save(fpu
);
160 EXPORT_SYMBOL_GPL(fpu__save
);
163 * Legacy x87 fpstate state init:
165 static inline void fpstate_init_fstate(struct fregs_state
*fp
)
167 fp
->cwd
= 0xffff037fu
;
168 fp
->swd
= 0xffff0000u
;
169 fp
->twd
= 0xffffffffu
;
170 fp
->fos
= 0xffff0000u
;
173 void fpstate_init(union fpregs_state
*state
)
175 if (!static_cpu_has(X86_FEATURE_FPU
)) {
176 fpstate_init_soft(&state
->soft
);
180 memset(state
, 0, fpu_kernel_xstate_size
);
183 * XRSTORS requires that this bit is set in xcomp_bv, or
184 * it will #GP. Make sure it is replaced after the memset().
186 if (static_cpu_has(X86_FEATURE_XSAVES
))
187 state
->xsave
.header
.xcomp_bv
= XCOMP_BV_COMPACTED_FORMAT
|
190 if (static_cpu_has(X86_FEATURE_FXSR
))
191 fpstate_init_fxstate(&state
->fxsave
);
193 fpstate_init_fstate(&state
->fsave
);
195 EXPORT_SYMBOL_GPL(fpstate_init
);
197 int fpu__copy(struct fpu
*dst_fpu
, struct fpu
*src_fpu
)
199 dst_fpu
->fpregs_active
= 0;
200 dst_fpu
->last_cpu
= -1;
202 if (!src_fpu
->fpstate_active
|| !static_cpu_has(X86_FEATURE_FPU
))
205 WARN_ON_FPU(src_fpu
!= ¤t
->thread
.fpu
);
208 * Don't let 'init optimized' areas of the XSAVE area
209 * leak into the child task:
211 memset(&dst_fpu
->state
.xsave
, 0, fpu_kernel_xstate_size
);
214 * Save current FPU registers directly into the child
215 * FPU context, without any memory-to-memory copying.
216 * In lazy mode, if the FPU context isn't loaded into
217 * fpregs, CR0.TS will be set and do_device_not_available
218 * will load the FPU context.
220 * We have to do all this with preemption disabled,
221 * mostly because of the FNSAVE case, because in that
222 * case we must not allow preemption in the window
223 * between the FNSAVE and us marking the context lazy.
225 * It shouldn't be an issue as even FNSAVE is plenty
226 * fast in terms of critical section length.
229 if (!copy_fpregs_to_fpstate(dst_fpu
)) {
230 memcpy(&src_fpu
->state
, &dst_fpu
->state
,
231 fpu_kernel_xstate_size
);
233 copy_kernel_to_fpregs(&src_fpu
->state
);
237 trace_x86_fpu_copy_src(src_fpu
);
238 trace_x86_fpu_copy_dst(dst_fpu
);
244 * Activate the current task's in-memory FPU context,
245 * if it has not been used before:
247 void fpu__activate_curr(struct fpu
*fpu
)
249 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
);
251 if (!fpu
->fpstate_active
) {
252 fpstate_init(&fpu
->state
);
253 trace_x86_fpu_init_state(fpu
);
255 trace_x86_fpu_activate_state(fpu
);
256 /* Safe to do for the current task: */
257 fpu
->fpstate_active
= 1;
260 EXPORT_SYMBOL_GPL(fpu__activate_curr
);
263 * This function must be called before we read a task's fpstate.
265 * If the task has not used the FPU before then initialize its
268 * If the task has used the FPU before then save it.
270 void fpu__activate_fpstate_read(struct fpu
*fpu
)
273 * If fpregs are active (in the current CPU), then
274 * copy them to the fpstate:
276 if (fpu
->fpregs_active
) {
279 if (!fpu
->fpstate_active
) {
280 fpstate_init(&fpu
->state
);
281 trace_x86_fpu_init_state(fpu
);
283 trace_x86_fpu_activate_state(fpu
);
284 /* Safe to do for current and for stopped child tasks: */
285 fpu
->fpstate_active
= 1;
291 * This function must be called before we write a task's fpstate.
293 * If the task has used the FPU before then unlazy it.
294 * If the task has not used the FPU before then initialize its fpstate.
296 * After this function call, after registers in the fpstate are
297 * modified and the child task has woken up, the child task will
298 * restore the modified FPU state from the modified context. If we
299 * didn't clear its lazy status here then the lazy in-registers
300 * state pending on its former CPU could be restored, corrupting
303 void fpu__activate_fpstate_write(struct fpu
*fpu
)
306 * Only stopped child tasks can be used to modify the FPU
307 * state in the fpstate buffer:
309 WARN_ON_FPU(fpu
== ¤t
->thread
.fpu
);
311 if (fpu
->fpstate_active
) {
312 /* Invalidate any lazy state: */
313 __fpu_invalidate_fpregs_state(fpu
);
315 fpstate_init(&fpu
->state
);
316 trace_x86_fpu_init_state(fpu
);
318 trace_x86_fpu_activate_state(fpu
);
319 /* Safe to do for stopped child tasks: */
320 fpu
->fpstate_active
= 1;
325 * This function must be called before we write the current
328 * This call gets the current FPU register state and moves
329 * it in to the 'fpstate'. Preemption is disabled so that
330 * no writes to the 'fpstate' can occur from context
333 * Must be followed by a fpu__current_fpstate_write_end().
335 void fpu__current_fpstate_write_begin(void)
337 struct fpu
*fpu
= ¤t
->thread
.fpu
;
340 * Ensure that the context-switching code does not write
341 * over the fpstate while we are doing our update.
346 * Move the fpregs in to the fpu's 'fpstate'.
348 fpu__activate_fpstate_read(fpu
);
351 * The caller is about to write to 'fpu'. Ensure that no
352 * CPU thinks that its fpregs match the fpstate. This
353 * ensures we will not be lazy and skip a XRSTOR in the
356 __fpu_invalidate_fpregs_state(fpu
);
360 * This function must be paired with fpu__current_fpstate_write_begin()
362 * This will ensure that the modified fpstate gets placed back in
363 * the fpregs if necessary.
365 * Note: This function may be called whether or not an _actual_
366 * write to the fpstate occurred.
368 void fpu__current_fpstate_write_end(void)
370 struct fpu
*fpu
= ¤t
->thread
.fpu
;
373 * 'fpu' now has an updated copy of the state, but the
374 * registers may still be out of date. Update them with
375 * an XRSTOR if they are active.
378 copy_kernel_to_fpregs(&fpu
->state
);
381 * Our update is done and the fpregs/fpstate are in sync
382 * if necessary. Context switches can happen again.
388 * 'fpu__restore()' is called to copy FPU registers from
389 * the FPU fpstate to the live hw registers and to activate
390 * access to the hardware registers, so that FPU instructions
391 * can be used afterwards.
393 * Must be called with kernel preemption disabled (for example
394 * with local interrupts disabled, as it is in the case of
395 * do_device_not_available()).
397 void fpu__restore(struct fpu
*fpu
)
399 fpu__activate_curr(fpu
);
401 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
402 kernel_fpu_disable();
403 trace_x86_fpu_before_restore(fpu
);
404 fpregs_activate(fpu
);
405 copy_kernel_to_fpregs(&fpu
->state
);
406 trace_x86_fpu_after_restore(fpu
);
409 EXPORT_SYMBOL_GPL(fpu__restore
);
412 * Drops current FPU state: deactivates the fpregs and
413 * the fpstate. NOTE: it still leaves previous contents
414 * in the fpregs in the eager-FPU case.
416 * This function can be used in cases where we know that
417 * a state-restore is coming: either an explicit one,
420 void fpu__drop(struct fpu
*fpu
)
424 if (fpu
->fpregs_active
) {
425 /* Ignore delayed exceptions from user space */
426 asm volatile("1: fwait\n"
428 _ASM_EXTABLE(1b
, 2b
));
429 fpregs_deactivate(fpu
);
432 fpu
->fpstate_active
= 0;
434 trace_x86_fpu_dropped(fpu
);
440 * Clear FPU registers by setting them up from
443 static inline void copy_init_fpstate_to_fpregs(void)
446 copy_kernel_to_xregs(&init_fpstate
.xsave
, -1);
447 else if (static_cpu_has(X86_FEATURE_FXSR
))
448 copy_kernel_to_fxregs(&init_fpstate
.fxsave
);
450 copy_kernel_to_fregs(&init_fpstate
.fsave
);
452 if (boot_cpu_has(X86_FEATURE_OSPKE
))
453 copy_init_pkru_to_fpregs();
457 * Clear the FPU state back to init state.
459 * Called by sys_execve(), by the signal handler code and by various
462 void fpu__clear(struct fpu
*fpu
)
464 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
); /* Almost certainly an anomaly */
469 * Make sure fpstate is cleared and initialized.
471 if (static_cpu_has(X86_FEATURE_FPU
)) {
472 fpu__activate_curr(fpu
);
474 copy_init_fpstate_to_fpregs();
479 * x87 math exception handling:
482 int fpu__exception_code(struct fpu
*fpu
, int trap_nr
)
486 if (trap_nr
== X86_TRAP_MF
) {
487 unsigned short cwd
, swd
;
489 * (~cwd & swd) will mask out exceptions that are not set to unmasked
490 * status. 0x3f is the exception bits in these regs, 0x200 is the
491 * C1 reg you need in case of a stack fault, 0x040 is the stack
492 * fault bit. We should only be taking one exception at a time,
493 * so if this combination doesn't produce any single exception,
494 * then we have a bad program that isn't synchronizing its FPU usage
495 * and it will suffer the consequences since we won't be able to
496 * fully reproduce the context of the exception.
498 if (boot_cpu_has(X86_FEATURE_FXSR
)) {
499 cwd
= fpu
->state
.fxsave
.cwd
;
500 swd
= fpu
->state
.fxsave
.swd
;
502 cwd
= (unsigned short)fpu
->state
.fsave
.cwd
;
503 swd
= (unsigned short)fpu
->state
.fsave
.swd
;
509 * The SIMD FPU exceptions are handled a little differently, as there
510 * is only a single status/control register. Thus, to determine which
511 * unmasked exception was caught we must mask the exception mask bits
512 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
514 unsigned short mxcsr
= MXCSR_DEFAULT
;
516 if (boot_cpu_has(X86_FEATURE_XMM
))
517 mxcsr
= fpu
->state
.fxsave
.mxcsr
;
519 err
= ~(mxcsr
>> 7) & mxcsr
;
522 if (err
& 0x001) { /* Invalid op */
524 * swd & 0x240 == 0x040: Stack Underflow
525 * swd & 0x240 == 0x240: Stack Overflow
526 * User must clear the SF bit (0x40) if set
529 } else if (err
& 0x004) { /* Divide by Zero */
531 } else if (err
& 0x008) { /* Overflow */
533 } else if (err
& 0x012) { /* Denormal, Underflow */
535 } else if (err
& 0x020) { /* Precision */
540 * If we're using IRQ 13, or supposedly even some trap
541 * X86_TRAP_MF implementations, it's possible
542 * we get a spurious trap, which is not an error.