2 * SGI RTC clock/timer routines.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
31 #define RTC_NAME "sgi_rtc"
33 static u64
uv_read_rtc(struct clocksource
*cs
);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device
*);
35 static int uv_rtc_shutdown(struct clock_event_device
*evt
);
37 static struct clocksource clocksource_uv
= {
41 .mask
= (u64
)UVH_RTC_REAL_TIME_CLOCK_MASK
,
42 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
45 static struct clock_event_device clock_event_device_uv
= {
47 .features
= CLOCK_EVT_FEAT_ONESHOT
,
51 .set_next_event
= uv_rtc_next_event
,
52 .set_state_shutdown
= uv_rtc_shutdown
,
53 .event_handler
= NULL
,
56 static DEFINE_PER_CPU(struct clock_event_device
, cpu_ced
);
58 /* There is one of these allocated per node */
59 struct uv_rtc_timer_head
{
61 /* next cpu waiting for timer, local node relative: */
63 /* number of cpus on this node: */
66 int lcpu
; /* systemwide logical cpu number */
67 u64 expires
; /* next timer expiration for this cpu */
72 * Access to uv_rtc_timer_head via blade id.
74 static struct uv_rtc_timer_head
**blade_info __read_mostly
;
76 static int uv_rtc_evt_enable
;
79 * Hardware interface routines
82 /* Send IPIs to another node */
83 static void uv_rtc_send_IPI(int cpu
)
85 unsigned long apicid
, val
;
88 apicid
= cpu_physical_id(cpu
);
89 pnode
= uv_apicid_to_pnode(apicid
);
90 apicid
|= uv_apicid_hibits
;
91 val
= (1UL << UVH_IPI_INT_SEND_SHFT
) |
92 (apicid
<< UVH_IPI_INT_APIC_ID_SHFT
) |
93 (X86_PLATFORM_IPI_VECTOR
<< UVH_IPI_INT_VECTOR_SHFT
);
95 uv_write_global_mmr64(pnode
, UVH_IPI_INT
, val
);
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode
)
102 return uv_read_global_mmr64(pnode
, UVH_EVENT_OCCURRED0
) &
103 UV1H_EVENT_OCCURRED0_RTC1_MASK
;
104 else if (is_uvx_hub())
105 return uv_read_global_mmr64(pnode
, UVXH_EVENT_OCCURRED2
) &
106 UVXH_EVENT_OCCURRED2_RTC_1_MASK
;
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu
, u64 expires
)
114 unsigned long apicid
= cpu_physical_id(cpu
) | uv_apicid_hibits
;
115 int pnode
= uv_cpu_to_pnode(cpu
);
117 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
118 UVH_RTC1_INT_CONFIG_M_MASK
);
119 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, -1L);
122 uv_write_global_mmr64(pnode
, UVH_EVENT_OCCURRED0_ALIAS
,
123 UV1H_EVENT_OCCURRED0_RTC1_MASK
);
125 uv_write_global_mmr64(pnode
, UVXH_EVENT_OCCURRED2_ALIAS
,
126 UVXH_EVENT_OCCURRED2_RTC_1_MASK
);
128 val
= (X86_PLATFORM_IPI_VECTOR
<< UVH_RTC1_INT_CONFIG_VECTOR_SHFT
) |
129 ((u64
)apicid
<< UVH_RTC1_INT_CONFIG_APIC_ID_SHFT
);
131 /* Set configuration */
132 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
, val
);
133 /* Initialize comparator value */
134 uv_write_global_mmr64(pnode
, UVH_INT_CMPB
, expires
);
136 if (uv_read_rtc(NULL
) <= expires
)
139 return !uv_intr_pending(pnode
);
143 * Per-cpu timer tracking routines
146 static __init
void uv_rtc_deallocate_timers(void)
150 for_each_possible_blade(bid
) {
151 kfree(blade_info
[bid
]);
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init
int uv_rtc_allocate_timers(void)
161 blade_info
= kzalloc(uv_possible_blades
* sizeof(void *), GFP_KERNEL
);
165 for_each_present_cpu(cpu
) {
166 int nid
= cpu_to_node(cpu
);
167 int bid
= uv_cpu_to_blade_id(cpu
);
168 int bcpu
= uv_cpu_blade_processor_id(cpu
);
169 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
172 head
= kmalloc_node(sizeof(struct uv_rtc_timer_head
) +
173 (uv_blade_nr_possible_cpus(bid
) *
177 uv_rtc_deallocate_timers();
180 spin_lock_init(&head
->lock
);
181 head
->ncpus
= uv_blade_nr_possible_cpus(bid
);
183 blade_info
[bid
] = head
;
186 head
->cpu
[bcpu
].lcpu
= cpu
;
187 head
->cpu
[bcpu
].expires
= ULLONG_MAX
;
193 /* Find and set the next expiring timer. */
194 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head
*head
, int pnode
)
196 u64 lowest
= ULLONG_MAX
;
200 for (c
= 0; c
< head
->ncpus
; c
++) {
201 u64 exp
= head
->cpu
[c
].expires
;
208 head
->next_cpu
= bcpu
;
209 c
= head
->cpu
[bcpu
].lcpu
;
210 if (uv_setup_intr(c
, lowest
))
211 /* If we didn't set it up in time, trigger */
214 uv_write_global_mmr64(pnode
, UVH_RTC1_INT_CONFIG
,
215 UVH_RTC1_INT_CONFIG_M_MASK
);
220 * Set expiration time for current cpu.
222 * Returns 1 if we missed the expiration time.
224 static int uv_rtc_set_timer(int cpu
, u64 expires
)
226 int pnode
= uv_cpu_to_pnode(cpu
);
227 int bid
= uv_cpu_to_blade_id(cpu
);
228 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
229 int bcpu
= uv_cpu_blade_processor_id(cpu
);
230 u64
*t
= &head
->cpu
[bcpu
].expires
;
234 spin_lock_irqsave(&head
->lock
, flags
);
236 next_cpu
= head
->next_cpu
;
239 /* Will this one be next to go off? */
240 if (next_cpu
< 0 || bcpu
== next_cpu
||
241 expires
< head
->cpu
[next_cpu
].expires
) {
242 head
->next_cpu
= bcpu
;
243 if (uv_setup_intr(cpu
, expires
)) {
245 uv_rtc_find_next_timer(head
, pnode
);
246 spin_unlock_irqrestore(&head
->lock
, flags
);
251 spin_unlock_irqrestore(&head
->lock
, flags
);
256 * Unset expiration time for current cpu.
258 * Returns 1 if this timer was pending.
260 static int uv_rtc_unset_timer(int cpu
, int force
)
262 int pnode
= uv_cpu_to_pnode(cpu
);
263 int bid
= uv_cpu_to_blade_id(cpu
);
264 struct uv_rtc_timer_head
*head
= blade_info
[bid
];
265 int bcpu
= uv_cpu_blade_processor_id(cpu
);
266 u64
*t
= &head
->cpu
[bcpu
].expires
;
270 spin_lock_irqsave(&head
->lock
, flags
);
272 if ((head
->next_cpu
== bcpu
&& uv_read_rtc(NULL
) >= *t
) || force
)
277 /* Was the hardware setup for this timer? */
278 if (head
->next_cpu
== bcpu
)
279 uv_rtc_find_next_timer(head
, pnode
);
282 spin_unlock_irqrestore(&head
->lock
, flags
);
289 * Kernel interface routines.
295 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
296 * cachelines of it's own page. This allows faster simultaneous reads
297 * from a given socket.
299 static u64
uv_read_rtc(struct clocksource
*cs
)
301 unsigned long offset
;
303 if (uv_get_min_hub_revision_id() == 1)
306 offset
= (uv_blade_processor_id() * L1_CACHE_BYTES
) % PAGE_SIZE
;
308 return (u64
)uv_read_local_mmr(UVH_RTC
| offset
);
312 * Program the next event, relative to now
314 static int uv_rtc_next_event(unsigned long delta
,
315 struct clock_event_device
*ced
)
317 int ced_cpu
= cpumask_first(ced
->cpumask
);
319 return uv_rtc_set_timer(ced_cpu
, delta
+ uv_read_rtc(NULL
));
323 * Shutdown the RTC timer
325 static int uv_rtc_shutdown(struct clock_event_device
*evt
)
327 int ced_cpu
= cpumask_first(evt
->cpumask
);
329 uv_rtc_unset_timer(ced_cpu
, 1);
333 static void uv_rtc_interrupt(void)
335 int cpu
= smp_processor_id();
336 struct clock_event_device
*ced
= &per_cpu(cpu_ced
, cpu
);
338 if (!ced
|| !ced
->event_handler
)
341 if (uv_rtc_unset_timer(cpu
, 0) != 1)
344 ced
->event_handler(ced
);
347 static int __init
uv_enable_evt_rtc(char *str
)
349 uv_rtc_evt_enable
= 1;
353 __setup("uvrtcevt", uv_enable_evt_rtc
);
355 static __init
void uv_rtc_register_clockevents(struct work_struct
*dummy
)
357 struct clock_event_device
*ced
= this_cpu_ptr(&cpu_ced
);
359 *ced
= clock_event_device_uv
;
360 ced
->cpumask
= cpumask_of(smp_processor_id());
361 clockevents_register_device(ced
);
364 static __init
int uv_rtc_setup_clock(void)
371 rc
= clocksource_register_hz(&clocksource_uv
, sn_rtc_cycles_per_second
);
373 printk(KERN_INFO
"UV RTC clocksource failed rc %d\n", rc
);
375 printk(KERN_INFO
"UV RTC clocksource registered freq %lu MHz\n",
376 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
378 if (rc
|| !uv_rtc_evt_enable
|| x86_platform_ipi_callback
)
381 /* Setup and register clockevents */
382 rc
= uv_rtc_allocate_timers();
386 x86_platform_ipi_callback
= uv_rtc_interrupt
;
388 clock_event_device_uv
.mult
= div_sc(sn_rtc_cycles_per_second
,
389 NSEC_PER_SEC
, clock_event_device_uv
.shift
);
391 clock_event_device_uv
.min_delta_ns
= NSEC_PER_SEC
/
392 sn_rtc_cycles_per_second
;
394 clock_event_device_uv
.max_delta_ns
= clocksource_uv
.mask
*
395 (NSEC_PER_SEC
/ sn_rtc_cycles_per_second
);
397 rc
= schedule_on_each_cpu(uv_rtc_register_clockevents
);
399 x86_platform_ipi_callback
= NULL
;
400 uv_rtc_deallocate_timers();
404 printk(KERN_INFO
"UV RTC clockevents registered\n");
409 clocksource_unregister(&clocksource_uv
);
410 printk(KERN_INFO
"UV RTC clockevents failed rc %d\n", rc
);
414 arch_initcall(uv_rtc_setup_clock
);