target/cxgbit: Use T6 specific macros to get ETH/IP hdr len
[linux/fpc-iii.git] / include / asm-generic / pgtable.h
blob18af2bcefe6a7cc564934479d8c0390cb77498fa
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
4 #include <linux/pfn.h>
6 #ifndef __ASSEMBLY__
7 #ifdef CONFIG_MMU
9 #include <linux/mm_types.h>
10 #include <linux/bug.h>
11 #include <linux/errno.h>
13 #if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
14 CONFIG_PGTABLE_LEVELS
15 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
16 #endif
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
24 #ifndef USER_PGTABLES_CEILING
25 #define USER_PGTABLES_CEILING 0UL
26 #endif
28 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
29 extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32 #endif
34 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
36 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
39 #else
40 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
41 unsigned long address, pmd_t *pmdp,
42 pmd_t entry, int dirty)
44 BUILD_BUG();
45 return 0;
47 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
48 #endif
50 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
51 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
52 unsigned long address,
53 pte_t *ptep)
55 pte_t pte = *ptep;
56 int r = 1;
57 if (!pte_young(pte))
58 r = 0;
59 else
60 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
61 return r;
63 #endif
65 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
66 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
67 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
68 unsigned long address,
69 pmd_t *pmdp)
71 pmd_t pmd = *pmdp;
72 int r = 1;
73 if (!pmd_young(pmd))
74 r = 0;
75 else
76 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
77 return r;
79 #else
80 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
81 unsigned long address,
82 pmd_t *pmdp)
84 BUILD_BUG();
85 return 0;
87 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
88 #endif
90 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
91 int ptep_clear_flush_young(struct vm_area_struct *vma,
92 unsigned long address, pte_t *ptep);
93 #endif
95 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
96 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
97 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
98 unsigned long address, pmd_t *pmdp);
99 #else
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
104 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105 unsigned long address, pmd_t *pmdp)
107 BUILD_BUG();
108 return 0;
110 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
111 #endif
113 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
114 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115 unsigned long address,
116 pte_t *ptep)
118 pte_t pte = *ptep;
119 pte_clear(mm, address, ptep);
120 return pte;
122 #endif
124 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
125 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
126 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127 unsigned long address,
128 pmd_t *pmdp)
130 pmd_t pmd = *pmdp;
131 pmd_clear(pmdp);
132 return pmd;
134 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
135 #endif
137 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
139 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
140 unsigned long address, pmd_t *pmdp,
141 int full)
143 return pmdp_huge_get_and_clear(mm, address, pmdp);
145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146 #endif
148 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
149 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150 unsigned long address, pte_t *ptep,
151 int full)
153 pte_t pte;
154 pte = ptep_get_and_clear(mm, address, ptep);
155 return pte;
157 #endif
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
164 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
165 static inline void pte_clear_not_present_full(struct mm_struct *mm,
166 unsigned long address,
167 pte_t *ptep,
168 int full)
170 pte_clear(mm, address, ptep);
172 #endif
174 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
175 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176 unsigned long address,
177 pte_t *ptep);
178 #endif
180 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
182 unsigned long address,
183 pmd_t *pmdp);
184 #endif
186 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
187 struct mm_struct;
188 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
190 pte_t old_pte = *ptep;
191 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
193 #endif
195 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
197 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
198 unsigned long address, pmd_t *pmdp)
200 pmd_t old_pmd = *pmdp;
201 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
203 #else
204 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
205 unsigned long address, pmd_t *pmdp)
207 BUILD_BUG();
209 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
210 #endif
212 #ifndef pmdp_collapse_flush
213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
214 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
215 unsigned long address, pmd_t *pmdp);
216 #else
217 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218 unsigned long address,
219 pmd_t *pmdp)
221 BUILD_BUG();
222 return *pmdp;
224 #define pmdp_collapse_flush pmdp_collapse_flush
225 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226 #endif
228 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
229 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
230 pgtable_t pgtable);
231 #endif
233 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
234 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
235 #endif
237 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
238 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
239 pmd_t *pmdp);
240 #endif
242 #ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
243 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
244 unsigned long address, pmd_t *pmdp)
248 #endif
250 #ifndef __HAVE_ARCH_PTE_SAME
251 static inline int pte_same(pte_t pte_a, pte_t pte_b)
253 return pte_val(pte_a) == pte_val(pte_b);
255 #endif
257 #ifndef __HAVE_ARCH_PTE_UNUSED
259 * Some architectures provide facilities to virtualization guests
260 * so that they can flag allocated pages as unused. This allows the
261 * host to transparently reclaim unused pages. This function returns
262 * whether the pte's page is unused.
264 static inline int pte_unused(pte_t pte)
266 return 0;
268 #endif
270 #ifndef __HAVE_ARCH_PMD_SAME
271 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
272 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
274 return pmd_val(pmd_a) == pmd_val(pmd_b);
276 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
277 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
279 BUILD_BUG();
280 return 0;
282 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283 #endif
285 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
286 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
287 #endif
289 #ifndef __HAVE_ARCH_MOVE_PTE
290 #define move_pte(pte, prot, old_addr, new_addr) (pte)
291 #endif
293 #ifndef pte_accessible
294 # define pte_accessible(mm, pte) ((void)(pte), 1)
295 #endif
297 #ifndef flush_tlb_fix_spurious_fault
298 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
299 #endif
301 #ifndef pgprot_noncached
302 #define pgprot_noncached(prot) (prot)
303 #endif
305 #ifndef pgprot_writecombine
306 #define pgprot_writecombine pgprot_noncached
307 #endif
309 #ifndef pgprot_writethrough
310 #define pgprot_writethrough pgprot_noncached
311 #endif
313 #ifndef pgprot_device
314 #define pgprot_device pgprot_noncached
315 #endif
317 #ifndef pgprot_modify
318 #define pgprot_modify pgprot_modify
319 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
321 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
322 newprot = pgprot_noncached(newprot);
323 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
324 newprot = pgprot_writecombine(newprot);
325 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
326 newprot = pgprot_device(newprot);
327 return newprot;
329 #endif
332 * When walking page tables, get the address of the next boundary,
333 * or the end address of the range if that comes earlier. Although no
334 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
337 #define pgd_addr_end(addr, end) \
338 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
339 (__boundary - 1 < (end) - 1)? __boundary: (end); \
342 #ifndef pud_addr_end
343 #define pud_addr_end(addr, end) \
344 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
345 (__boundary - 1 < (end) - 1)? __boundary: (end); \
347 #endif
349 #ifndef pmd_addr_end
350 #define pmd_addr_end(addr, end) \
351 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
352 (__boundary - 1 < (end) - 1)? __boundary: (end); \
354 #endif
357 * When walking page tables, we usually want to skip any p?d_none entries;
358 * and any p?d_bad entries - reporting the error before resetting to none.
359 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
361 void pgd_clear_bad(pgd_t *);
362 void pud_clear_bad(pud_t *);
363 void pmd_clear_bad(pmd_t *);
365 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
367 if (pgd_none(*pgd))
368 return 1;
369 if (unlikely(pgd_bad(*pgd))) {
370 pgd_clear_bad(pgd);
371 return 1;
373 return 0;
376 static inline int pud_none_or_clear_bad(pud_t *pud)
378 if (pud_none(*pud))
379 return 1;
380 if (unlikely(pud_bad(*pud))) {
381 pud_clear_bad(pud);
382 return 1;
384 return 0;
387 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
389 if (pmd_none(*pmd))
390 return 1;
391 if (unlikely(pmd_bad(*pmd))) {
392 pmd_clear_bad(pmd);
393 return 1;
395 return 0;
398 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
399 unsigned long addr,
400 pte_t *ptep)
403 * Get the current pte state, but zero it out to make it
404 * non-present, preventing the hardware from asynchronously
405 * updating it.
407 return ptep_get_and_clear(mm, addr, ptep);
410 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
411 unsigned long addr,
412 pte_t *ptep, pte_t pte)
415 * The pte is non-present, so there's no hardware state to
416 * preserve.
418 set_pte_at(mm, addr, ptep, pte);
421 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
423 * Start a pte protection read-modify-write transaction, which
424 * protects against asynchronous hardware modifications to the pte.
425 * The intention is not to prevent the hardware from making pte
426 * updates, but to prevent any updates it may make from being lost.
428 * This does not protect against other software modifications of the
429 * pte; the appropriate pte lock must be held over the transation.
431 * Note that this interface is intended to be batchable, meaning that
432 * ptep_modify_prot_commit may not actually update the pte, but merely
433 * queue the update to be done at some later time. The update must be
434 * actually committed before the pte lock is released, however.
436 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
437 unsigned long addr,
438 pte_t *ptep)
440 return __ptep_modify_prot_start(mm, addr, ptep);
444 * Commit an update to a pte, leaving any hardware-controlled bits in
445 * the PTE unmodified.
447 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
448 unsigned long addr,
449 pte_t *ptep, pte_t pte)
451 __ptep_modify_prot_commit(mm, addr, ptep, pte);
453 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
454 #endif /* CONFIG_MMU */
457 * A facility to provide lazy MMU batching. This allows PTE updates and
458 * page invalidations to be delayed until a call to leave lazy MMU mode
459 * is issued. Some architectures may benefit from doing this, and it is
460 * beneficial for both shadow and direct mode hypervisors, which may batch
461 * the PTE updates which happen during this window. Note that using this
462 * interface requires that read hazards be removed from the code. A read
463 * hazard could result in the direct mode hypervisor case, since the actual
464 * write to the page tables may not yet have taken place, so reads though
465 * a raw PTE pointer after it has been modified are not guaranteed to be
466 * up to date. This mode can only be entered and left under the protection of
467 * the page table locks for all page tables which may be modified. In the UP
468 * case, this is required so that preemption is disabled, and in the SMP case,
469 * it must synchronize the delayed page table writes properly on other CPUs.
471 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
472 #define arch_enter_lazy_mmu_mode() do {} while (0)
473 #define arch_leave_lazy_mmu_mode() do {} while (0)
474 #define arch_flush_lazy_mmu_mode() do {} while (0)
475 #endif
478 * A facility to provide batching of the reload of page tables and
479 * other process state with the actual context switch code for
480 * paravirtualized guests. By convention, only one of the batched
481 * update (lazy) modes (CPU, MMU) should be active at any given time,
482 * entry should never be nested, and entry and exits should always be
483 * paired. This is for sanity of maintaining and reasoning about the
484 * kernel code. In this case, the exit (end of the context switch) is
485 * in architecture-specific code, and so doesn't need a generic
486 * definition.
488 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
489 #define arch_start_context_switch(prev) do {} while (0)
490 #endif
492 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
493 static inline int pte_soft_dirty(pte_t pte)
495 return 0;
498 static inline int pmd_soft_dirty(pmd_t pmd)
500 return 0;
503 static inline pte_t pte_mksoft_dirty(pte_t pte)
505 return pte;
508 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
510 return pmd;
513 static inline pte_t pte_clear_soft_dirty(pte_t pte)
515 return pte;
518 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
520 return pmd;
523 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
525 return pte;
528 static inline int pte_swp_soft_dirty(pte_t pte)
530 return 0;
533 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
535 return pte;
537 #endif
539 #ifndef __HAVE_PFNMAP_TRACKING
541 * Interfaces that can be used by architecture code to keep track of
542 * memory type of pfn mappings specified by the remap_pfn_range,
543 * vm_insert_pfn.
547 * track_pfn_remap is called when a _new_ pfn mapping is being established
548 * by remap_pfn_range() for physical range indicated by pfn and size.
550 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
551 unsigned long pfn, unsigned long addr,
552 unsigned long size)
554 return 0;
558 * track_pfn_insert is called when a _new_ single pfn is established
559 * by vm_insert_pfn().
561 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
562 pfn_t pfn)
567 * track_pfn_copy is called when vma that is covering the pfnmap gets
568 * copied through copy_page_range().
570 static inline int track_pfn_copy(struct vm_area_struct *vma)
572 return 0;
576 * untrack_pfn is called while unmapping a pfnmap for a region.
577 * untrack can be called for a specific region indicated by pfn and size or
578 * can be for the entire vma (in which case pfn, size are zero).
580 static inline void untrack_pfn(struct vm_area_struct *vma,
581 unsigned long pfn, unsigned long size)
586 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
588 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
591 #else
592 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
593 unsigned long pfn, unsigned long addr,
594 unsigned long size);
595 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
596 pfn_t pfn);
597 extern int track_pfn_copy(struct vm_area_struct *vma);
598 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
599 unsigned long size);
600 extern void untrack_pfn_moved(struct vm_area_struct *vma);
601 #endif
603 #ifdef __HAVE_COLOR_ZERO_PAGE
604 static inline int is_zero_pfn(unsigned long pfn)
606 extern unsigned long zero_pfn;
607 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
608 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
611 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
613 #else
614 static inline int is_zero_pfn(unsigned long pfn)
616 extern unsigned long zero_pfn;
617 return pfn == zero_pfn;
620 static inline unsigned long my_zero_pfn(unsigned long addr)
622 extern unsigned long zero_pfn;
623 return zero_pfn;
625 #endif
627 #ifdef CONFIG_MMU
629 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
630 static inline int pmd_trans_huge(pmd_t pmd)
632 return 0;
634 #ifndef __HAVE_ARCH_PMD_WRITE
635 static inline int pmd_write(pmd_t pmd)
637 BUG();
638 return 0;
640 #endif /* __HAVE_ARCH_PMD_WRITE */
641 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
643 #ifndef pmd_read_atomic
644 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
647 * Depend on compiler for an atomic pmd read. NOTE: this is
648 * only going to work, if the pmdval_t isn't larger than
649 * an unsigned long.
651 return *pmdp;
653 #endif
655 #ifndef arch_needs_pgtable_deposit
656 #define arch_needs_pgtable_deposit() (false)
657 #endif
659 * This function is meant to be used by sites walking pagetables with
660 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
661 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
662 * into a null pmd and the transhuge page fault can convert a null pmd
663 * into an hugepmd or into a regular pmd (if the hugepage allocation
664 * fails). While holding the mmap_sem in read mode the pmd becomes
665 * stable and stops changing under us only if it's not null and not a
666 * transhuge pmd. When those races occurs and this function makes a
667 * difference vs the standard pmd_none_or_clear_bad, the result is
668 * undefined so behaving like if the pmd was none is safe (because it
669 * can return none anyway). The compiler level barrier() is critically
670 * important to compute the two checks atomically on the same pmdval.
672 * For 32bit kernels with a 64bit large pmd_t this automatically takes
673 * care of reading the pmd atomically to avoid SMP race conditions
674 * against pmd_populate() when the mmap_sem is hold for reading by the
675 * caller (a special atomic read not done by "gcc" as in the generic
676 * version above, is also needed when THP is disabled because the page
677 * fault can populate the pmd from under us).
679 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
681 pmd_t pmdval = pmd_read_atomic(pmd);
683 * The barrier will stabilize the pmdval in a register or on
684 * the stack so that it will stop changing under the code.
686 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
687 * pmd_read_atomic is allowed to return a not atomic pmdval
688 * (for example pointing to an hugepage that has never been
689 * mapped in the pmd). The below checks will only care about
690 * the low part of the pmd with 32bit PAE x86 anyway, with the
691 * exception of pmd_none(). So the important thing is that if
692 * the low part of the pmd is found null, the high part will
693 * be also null or the pmd_none() check below would be
694 * confused.
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 barrier();
698 #endif
699 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
700 return 1;
701 if (unlikely(pmd_bad(pmdval))) {
702 pmd_clear_bad(pmd);
703 return 1;
705 return 0;
709 * This is a noop if Transparent Hugepage Support is not built into
710 * the kernel. Otherwise it is equivalent to
711 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
712 * places that already verified the pmd is not none and they want to
713 * walk ptes while holding the mmap sem in read mode (write mode don't
714 * need this). If THP is not enabled, the pmd can't go away under the
715 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
716 * run a pmd_trans_unstable before walking the ptes after
717 * split_huge_page_pmd returns (because it may have run when the pmd
718 * become null, but then a page fault can map in a THP and not a
719 * regular page).
721 static inline int pmd_trans_unstable(pmd_t *pmd)
723 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
724 return pmd_none_or_trans_huge_or_clear_bad(pmd);
725 #else
726 return 0;
727 #endif
730 #ifndef CONFIG_NUMA_BALANCING
732 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
733 * the only case the kernel cares is for NUMA balancing and is only ever set
734 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
735 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
736 * is the responsibility of the caller to distinguish between PROT_NONE
737 * protections and NUMA hinting fault protections.
739 static inline int pte_protnone(pte_t pte)
741 return 0;
744 static inline int pmd_protnone(pmd_t pmd)
746 return 0;
748 #endif /* CONFIG_NUMA_BALANCING */
750 #endif /* CONFIG_MMU */
752 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
753 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
754 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
755 int pud_clear_huge(pud_t *pud);
756 int pmd_clear_huge(pmd_t *pmd);
757 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
758 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
760 return 0;
762 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
764 return 0;
766 static inline int pud_clear_huge(pud_t *pud)
768 return 0;
770 static inline int pmd_clear_huge(pmd_t *pmd)
772 return 0;
774 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
776 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
779 * ARCHes with special requirements for evicting THP backing TLB entries can
780 * implement this. Otherwise also, it can help optimize normal TLB flush in
781 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
782 * entire TLB TLB if flush span is greater than a threshold, which will
783 * likely be true for a single huge page. Thus a single thp flush will
784 * invalidate the entire TLB which is not desitable.
785 * e.g. see arch/arc: flush_pmd_tlb_range
787 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
788 #else
789 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
790 #endif
791 #endif
793 struct file;
794 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
795 unsigned long size, pgprot_t *vma_prot);
796 #endif /* !__ASSEMBLY__ */
798 #ifndef io_remap_pfn_range
799 #define io_remap_pfn_range remap_pfn_range
800 #endif
802 #ifndef has_transparent_hugepage
803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
804 #define has_transparent_hugepage() 1
805 #else
806 #define has_transparent_hugepage() 0
807 #endif
808 #endif
810 #endif /* _ASM_GENERIC_PGTABLE_H */