3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
179 * The limit is stored in the per-cpu structure to reduce the data cache
186 unsigned int batchcount
;
187 unsigned int touched
;
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
197 struct array_cache ac
;
201 * Need this for bootstrapping a per node allocator.
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
208 static int drain_freelist(struct kmem_cache
*cache
,
209 struct kmem_cache_node
*n
, int tofree
);
210 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
211 int node
, struct list_head
*list
);
212 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
);
213 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
214 static void cache_reap(struct work_struct
*unused
);
216 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
218 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
219 struct kmem_cache_node
*n
, struct page
*page
,
221 static int slab_early_init
= 1;
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
227 INIT_LIST_HEAD(&parent
->slabs_full
);
228 INIT_LIST_HEAD(&parent
->slabs_partial
);
229 INIT_LIST_HEAD(&parent
->slabs_free
);
230 parent
->total_slabs
= 0;
231 parent
->free_slabs
= 0;
232 parent
->shared
= NULL
;
233 parent
->alien
= NULL
;
234 parent
->colour_next
= 0;
235 spin_lock_init(&parent
->list_lock
);
236 parent
->free_objects
= 0;
237 parent
->free_touched
= 0;
240 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 INIT_LIST_HEAD(listp); \
243 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
254 #define CFLGS_OFF_SLAB (0x80000000UL)
255 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
256 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258 #define BATCHREFILL_LIMIT 16
260 * Optimization question: fewer reaps means less probability for unnessary
261 * cpucache drain/refill cycles.
263 * OTOH the cpuarrays can contain lots of objects,
264 * which could lock up otherwise freeable slabs.
266 #define REAPTIMEOUT_AC (2*HZ)
267 #define REAPTIMEOUT_NODE (4*HZ)
270 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
271 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
272 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
273 #define STATS_INC_GROWN(x) ((x)->grown++)
274 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
275 #define STATS_SET_HIGH(x) \
277 if ((x)->num_active > (x)->high_mark) \
278 (x)->high_mark = (x)->num_active; \
280 #define STATS_INC_ERR(x) ((x)->errors++)
281 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
282 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
283 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
284 #define STATS_SET_FREEABLE(x, i) \
286 if ((x)->max_freeable < i) \
287 (x)->max_freeable = i; \
289 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
290 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
291 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
292 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #define STATS_INC_ACTIVE(x) do { } while (0)
295 #define STATS_DEC_ACTIVE(x) do { } while (0)
296 #define STATS_INC_ALLOCED(x) do { } while (0)
297 #define STATS_INC_GROWN(x) do { } while (0)
298 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
299 #define STATS_SET_HIGH(x) do { } while (0)
300 #define STATS_INC_ERR(x) do { } while (0)
301 #define STATS_INC_NODEALLOCS(x) do { } while (0)
302 #define STATS_INC_NODEFREES(x) do { } while (0)
303 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
304 #define STATS_SET_FREEABLE(x, i) do { } while (0)
305 #define STATS_INC_ALLOCHIT(x) do { } while (0)
306 #define STATS_INC_ALLOCMISS(x) do { } while (0)
307 #define STATS_INC_FREEHIT(x) do { } while (0)
308 #define STATS_INC_FREEMISS(x) do { } while (0)
314 * memory layout of objects:
316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
317 * the end of an object is aligned with the end of the real
318 * allocation. Catches writes behind the end of the allocation.
319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * cachep->obj_offset: The real object.
322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
323 * cachep->size - 1* BYTES_PER_WORD: last caller address
324 * [BYTES_PER_WORD long]
326 static int obj_offset(struct kmem_cache
*cachep
)
328 return cachep
->obj_offset
;
331 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
333 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
334 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
335 sizeof(unsigned long long));
338 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
340 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
341 if (cachep
->flags
& SLAB_STORE_USER
)
342 return (unsigned long long *)(objp
+ cachep
->size
-
343 sizeof(unsigned long long) -
345 return (unsigned long long *) (objp
+ cachep
->size
-
346 sizeof(unsigned long long));
349 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
351 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
352 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
357 #define obj_offset(x) 0
358 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
364 #ifdef CONFIG_DEBUG_SLAB_LEAK
366 static inline bool is_store_user_clean(struct kmem_cache
*cachep
)
368 return atomic_read(&cachep
->store_user_clean
) == 1;
371 static inline void set_store_user_clean(struct kmem_cache
*cachep
)
373 atomic_set(&cachep
->store_user_clean
, 1);
376 static inline void set_store_user_dirty(struct kmem_cache
*cachep
)
378 if (is_store_user_clean(cachep
))
379 atomic_set(&cachep
->store_user_clean
, 0);
383 static inline void set_store_user_dirty(struct kmem_cache
*cachep
) {}
388 * Do not go above this order unless 0 objects fit into the slab or
389 * overridden on the command line.
391 #define SLAB_MAX_ORDER_HI 1
392 #define SLAB_MAX_ORDER_LO 0
393 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
394 static bool slab_max_order_set __initdata
;
396 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
398 struct page
*page
= virt_to_head_page(obj
);
399 return page
->slab_cache
;
402 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
405 return page
->s_mem
+ cache
->size
* idx
;
409 * We want to avoid an expensive divide : (offset / cache->size)
410 * Using the fact that size is a constant for a particular cache,
411 * we can replace (offset / cache->size) by
412 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
415 const struct page
*page
, void *obj
)
417 u32 offset
= (obj
- page
->s_mem
);
418 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
421 #define BOOT_CPUCACHE_ENTRIES 1
422 /* internal cache of cache description objs */
423 static struct kmem_cache kmem_cache_boot
= {
425 .limit
= BOOT_CPUCACHE_ENTRIES
,
427 .size
= sizeof(struct kmem_cache
),
428 .name
= "kmem_cache",
431 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
433 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
435 return this_cpu_ptr(cachep
->cpu_cache
);
439 * Calculate the number of objects and left-over bytes for a given buffer size.
441 static unsigned int cache_estimate(unsigned long gfporder
, size_t buffer_size
,
442 unsigned long flags
, size_t *left_over
)
445 size_t slab_size
= PAGE_SIZE
<< gfporder
;
448 * The slab management structure can be either off the slab or
449 * on it. For the latter case, the memory allocated for a
452 * - @buffer_size bytes for each object
453 * - One freelist_idx_t for each object
455 * We don't need to consider alignment of freelist because
456 * freelist will be at the end of slab page. The objects will be
457 * at the correct alignment.
459 * If the slab management structure is off the slab, then the
460 * alignment will already be calculated into the size. Because
461 * the slabs are all pages aligned, the objects will be at the
462 * correct alignment when allocated.
464 if (flags
& (CFLGS_OBJFREELIST_SLAB
| CFLGS_OFF_SLAB
)) {
465 num
= slab_size
/ buffer_size
;
466 *left_over
= slab_size
% buffer_size
;
468 num
= slab_size
/ (buffer_size
+ sizeof(freelist_idx_t
));
469 *left_over
= slab_size
%
470 (buffer_size
+ sizeof(freelist_idx_t
));
477 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
482 pr_err("slab error in %s(): cache `%s': %s\n",
483 function
, cachep
->name
, msg
);
485 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
490 * By default on NUMA we use alien caches to stage the freeing of
491 * objects allocated from other nodes. This causes massive memory
492 * inefficiencies when using fake NUMA setup to split memory into a
493 * large number of small nodes, so it can be disabled on the command
497 static int use_alien_caches __read_mostly
= 1;
498 static int __init
noaliencache_setup(char *s
)
500 use_alien_caches
= 0;
503 __setup("noaliencache", noaliencache_setup
);
505 static int __init
slab_max_order_setup(char *str
)
507 get_option(&str
, &slab_max_order
);
508 slab_max_order
= slab_max_order
< 0 ? 0 :
509 min(slab_max_order
, MAX_ORDER
- 1);
510 slab_max_order_set
= true;
514 __setup("slab_max_order=", slab_max_order_setup
);
518 * Special reaping functions for NUMA systems called from cache_reap().
519 * These take care of doing round robin flushing of alien caches (containing
520 * objects freed on different nodes from which they were allocated) and the
521 * flushing of remote pcps by calling drain_node_pages.
523 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
525 static void init_reap_node(int cpu
)
527 per_cpu(slab_reap_node
, cpu
) = next_node_in(cpu_to_mem(cpu
),
531 static void next_reap_node(void)
533 int node
= __this_cpu_read(slab_reap_node
);
535 node
= next_node_in(node
, node_online_map
);
536 __this_cpu_write(slab_reap_node
, node
);
540 #define init_reap_node(cpu) do { } while (0)
541 #define next_reap_node(void) do { } while (0)
545 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
546 * via the workqueue/eventd.
547 * Add the CPU number into the expiration time to minimize the possibility of
548 * the CPUs getting into lockstep and contending for the global cache chain
551 static void start_cpu_timer(int cpu
)
553 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
555 if (reap_work
->work
.func
== NULL
) {
557 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
558 schedule_delayed_work_on(cpu
, reap_work
,
559 __round_jiffies_relative(HZ
, cpu
));
563 static void init_arraycache(struct array_cache
*ac
, int limit
, int batch
)
566 * The array_cache structures contain pointers to free object.
567 * However, when such objects are allocated or transferred to another
568 * cache the pointers are not cleared and they could be counted as
569 * valid references during a kmemleak scan. Therefore, kmemleak must
570 * not scan such objects.
572 kmemleak_no_scan(ac
);
576 ac
->batchcount
= batch
;
581 static struct array_cache
*alloc_arraycache(int node
, int entries
,
582 int batchcount
, gfp_t gfp
)
584 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
585 struct array_cache
*ac
= NULL
;
587 ac
= kmalloc_node(memsize
, gfp
, node
);
588 init_arraycache(ac
, entries
, batchcount
);
592 static noinline
void cache_free_pfmemalloc(struct kmem_cache
*cachep
,
593 struct page
*page
, void *objp
)
595 struct kmem_cache_node
*n
;
599 page_node
= page_to_nid(page
);
600 n
= get_node(cachep
, page_node
);
602 spin_lock(&n
->list_lock
);
603 free_block(cachep
, &objp
, 1, page_node
, &list
);
604 spin_unlock(&n
->list_lock
);
606 slabs_destroy(cachep
, &list
);
610 * Transfer objects in one arraycache to another.
611 * Locking must be handled by the caller.
613 * Return the number of entries transferred.
615 static int transfer_objects(struct array_cache
*to
,
616 struct array_cache
*from
, unsigned int max
)
618 /* Figure out how many entries to transfer */
619 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
624 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
634 #define drain_alien_cache(cachep, alien) do { } while (0)
635 #define reap_alien(cachep, n) do { } while (0)
637 static inline struct alien_cache
**alloc_alien_cache(int node
,
638 int limit
, gfp_t gfp
)
643 static inline void free_alien_cache(struct alien_cache
**ac_ptr
)
647 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
652 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
658 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
659 gfp_t flags
, int nodeid
)
664 static inline gfp_t
gfp_exact_node(gfp_t flags
)
666 return flags
& ~__GFP_NOFAIL
;
669 #else /* CONFIG_NUMA */
671 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
672 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
674 static struct alien_cache
*__alloc_alien_cache(int node
, int entries
,
675 int batch
, gfp_t gfp
)
677 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct alien_cache
);
678 struct alien_cache
*alc
= NULL
;
680 alc
= kmalloc_node(memsize
, gfp
, node
);
681 init_arraycache(&alc
->ac
, entries
, batch
);
682 spin_lock_init(&alc
->lock
);
686 static struct alien_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
688 struct alien_cache
**alc_ptr
;
689 size_t memsize
= sizeof(void *) * nr_node_ids
;
694 alc_ptr
= kzalloc_node(memsize
, gfp
, node
);
699 if (i
== node
|| !node_online(i
))
701 alc_ptr
[i
] = __alloc_alien_cache(node
, limit
, 0xbaadf00d, gfp
);
703 for (i
--; i
>= 0; i
--)
712 static void free_alien_cache(struct alien_cache
**alc_ptr
)
723 static void __drain_alien_cache(struct kmem_cache
*cachep
,
724 struct array_cache
*ac
, int node
,
725 struct list_head
*list
)
727 struct kmem_cache_node
*n
= get_node(cachep
, node
);
730 spin_lock(&n
->list_lock
);
732 * Stuff objects into the remote nodes shared array first.
733 * That way we could avoid the overhead of putting the objects
734 * into the free lists and getting them back later.
737 transfer_objects(n
->shared
, ac
, ac
->limit
);
739 free_block(cachep
, ac
->entry
, ac
->avail
, node
, list
);
741 spin_unlock(&n
->list_lock
);
746 * Called from cache_reap() to regularly drain alien caches round robin.
748 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
750 int node
= __this_cpu_read(slab_reap_node
);
753 struct alien_cache
*alc
= n
->alien
[node
];
754 struct array_cache
*ac
;
758 if (ac
->avail
&& spin_trylock_irq(&alc
->lock
)) {
761 __drain_alien_cache(cachep
, ac
, node
, &list
);
762 spin_unlock_irq(&alc
->lock
);
763 slabs_destroy(cachep
, &list
);
769 static void drain_alien_cache(struct kmem_cache
*cachep
,
770 struct alien_cache
**alien
)
773 struct alien_cache
*alc
;
774 struct array_cache
*ac
;
777 for_each_online_node(i
) {
783 spin_lock_irqsave(&alc
->lock
, flags
);
784 __drain_alien_cache(cachep
, ac
, i
, &list
);
785 spin_unlock_irqrestore(&alc
->lock
, flags
);
786 slabs_destroy(cachep
, &list
);
791 static int __cache_free_alien(struct kmem_cache
*cachep
, void *objp
,
792 int node
, int page_node
)
794 struct kmem_cache_node
*n
;
795 struct alien_cache
*alien
= NULL
;
796 struct array_cache
*ac
;
799 n
= get_node(cachep
, node
);
800 STATS_INC_NODEFREES(cachep
);
801 if (n
->alien
&& n
->alien
[page_node
]) {
802 alien
= n
->alien
[page_node
];
804 spin_lock(&alien
->lock
);
805 if (unlikely(ac
->avail
== ac
->limit
)) {
806 STATS_INC_ACOVERFLOW(cachep
);
807 __drain_alien_cache(cachep
, ac
, page_node
, &list
);
809 ac
->entry
[ac
->avail
++] = objp
;
810 spin_unlock(&alien
->lock
);
811 slabs_destroy(cachep
, &list
);
813 n
= get_node(cachep
, page_node
);
814 spin_lock(&n
->list_lock
);
815 free_block(cachep
, &objp
, 1, page_node
, &list
);
816 spin_unlock(&n
->list_lock
);
817 slabs_destroy(cachep
, &list
);
822 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
824 int page_node
= page_to_nid(virt_to_page(objp
));
825 int node
= numa_mem_id();
827 * Make sure we are not freeing a object from another node to the array
830 if (likely(node
== page_node
))
833 return __cache_free_alien(cachep
, objp
, node
, page_node
);
837 * Construct gfp mask to allocate from a specific node but do not reclaim or
838 * warn about failures.
840 static inline gfp_t
gfp_exact_node(gfp_t flags
)
842 return (flags
| __GFP_THISNODE
| __GFP_NOWARN
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
846 static int init_cache_node(struct kmem_cache
*cachep
, int node
, gfp_t gfp
)
848 struct kmem_cache_node
*n
;
851 * Set up the kmem_cache_node for cpu before we can
852 * begin anything. Make sure some other cpu on this
853 * node has not already allocated this
855 n
= get_node(cachep
, node
);
857 spin_lock_irq(&n
->list_lock
);
858 n
->free_limit
= (1 + nr_cpus_node(node
)) * cachep
->batchcount
+
860 spin_unlock_irq(&n
->list_lock
);
865 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
869 kmem_cache_node_init(n
);
870 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
871 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
874 (1 + nr_cpus_node(node
)) * cachep
->batchcount
+ cachep
->num
;
877 * The kmem_cache_nodes don't come and go as CPUs
878 * come and go. slab_mutex is sufficient
881 cachep
->node
[node
] = n
;
886 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 * Allocates and initializes node for a node on each slab cache, used for
889 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
890 * will be allocated off-node since memory is not yet online for the new node.
891 * When hotplugging memory or a cpu, existing node are not replaced if
894 * Must hold slab_mutex.
896 static int init_cache_node_node(int node
)
899 struct kmem_cache
*cachep
;
901 list_for_each_entry(cachep
, &slab_caches
, list
) {
902 ret
= init_cache_node(cachep
, node
, GFP_KERNEL
);
911 static int setup_kmem_cache_node(struct kmem_cache
*cachep
,
912 int node
, gfp_t gfp
, bool force_change
)
915 struct kmem_cache_node
*n
;
916 struct array_cache
*old_shared
= NULL
;
917 struct array_cache
*new_shared
= NULL
;
918 struct alien_cache
**new_alien
= NULL
;
921 if (use_alien_caches
) {
922 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
927 if (cachep
->shared
) {
928 new_shared
= alloc_arraycache(node
,
929 cachep
->shared
* cachep
->batchcount
, 0xbaadf00d, gfp
);
934 ret
= init_cache_node(cachep
, node
, gfp
);
938 n
= get_node(cachep
, node
);
939 spin_lock_irq(&n
->list_lock
);
940 if (n
->shared
&& force_change
) {
941 free_block(cachep
, n
->shared
->entry
,
942 n
->shared
->avail
, node
, &list
);
943 n
->shared
->avail
= 0;
946 if (!n
->shared
|| force_change
) {
947 old_shared
= n
->shared
;
948 n
->shared
= new_shared
;
953 n
->alien
= new_alien
;
957 spin_unlock_irq(&n
->list_lock
);
958 slabs_destroy(cachep
, &list
);
961 * To protect lockless access to n->shared during irq disabled context.
962 * If n->shared isn't NULL in irq disabled context, accessing to it is
963 * guaranteed to be valid until irq is re-enabled, because it will be
964 * freed after synchronize_sched().
966 if (old_shared
&& force_change
)
972 free_alien_cache(new_alien
);
979 static void cpuup_canceled(long cpu
)
981 struct kmem_cache
*cachep
;
982 struct kmem_cache_node
*n
= NULL
;
983 int node
= cpu_to_mem(cpu
);
984 const struct cpumask
*mask
= cpumask_of_node(node
);
986 list_for_each_entry(cachep
, &slab_caches
, list
) {
987 struct array_cache
*nc
;
988 struct array_cache
*shared
;
989 struct alien_cache
**alien
;
992 n
= get_node(cachep
, node
);
996 spin_lock_irq(&n
->list_lock
);
998 /* Free limit for this kmem_cache_node */
999 n
->free_limit
-= cachep
->batchcount
;
1001 /* cpu is dead; no one can alloc from it. */
1002 nc
= per_cpu_ptr(cachep
->cpu_cache
, cpu
);
1004 free_block(cachep
, nc
->entry
, nc
->avail
, node
, &list
);
1008 if (!cpumask_empty(mask
)) {
1009 spin_unlock_irq(&n
->list_lock
);
1015 free_block(cachep
, shared
->entry
,
1016 shared
->avail
, node
, &list
);
1023 spin_unlock_irq(&n
->list_lock
);
1027 drain_alien_cache(cachep
, alien
);
1028 free_alien_cache(alien
);
1032 slabs_destroy(cachep
, &list
);
1035 * In the previous loop, all the objects were freed to
1036 * the respective cache's slabs, now we can go ahead and
1037 * shrink each nodelist to its limit.
1039 list_for_each_entry(cachep
, &slab_caches
, list
) {
1040 n
= get_node(cachep
, node
);
1043 drain_freelist(cachep
, n
, INT_MAX
);
1047 static int cpuup_prepare(long cpu
)
1049 struct kmem_cache
*cachep
;
1050 int node
= cpu_to_mem(cpu
);
1054 * We need to do this right in the beginning since
1055 * alloc_arraycache's are going to use this list.
1056 * kmalloc_node allows us to add the slab to the right
1057 * kmem_cache_node and not this cpu's kmem_cache_node
1059 err
= init_cache_node_node(node
);
1064 * Now we can go ahead with allocating the shared arrays and
1067 list_for_each_entry(cachep
, &slab_caches
, list
) {
1068 err
= setup_kmem_cache_node(cachep
, node
, GFP_KERNEL
, false);
1075 cpuup_canceled(cpu
);
1079 int slab_prepare_cpu(unsigned int cpu
)
1083 mutex_lock(&slab_mutex
);
1084 err
= cpuup_prepare(cpu
);
1085 mutex_unlock(&slab_mutex
);
1090 * This is called for a failed online attempt and for a successful
1093 * Even if all the cpus of a node are down, we don't free the
1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095 * a kmalloc allocation from another cpu for memory from the node of
1096 * the cpu going down. The list3 structure is usually allocated from
1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 int slab_dead_cpu(unsigned int cpu
)
1101 mutex_lock(&slab_mutex
);
1102 cpuup_canceled(cpu
);
1103 mutex_unlock(&slab_mutex
);
1108 static int slab_online_cpu(unsigned int cpu
)
1110 start_cpu_timer(cpu
);
1114 static int slab_offline_cpu(unsigned int cpu
)
1117 * Shutdown cache reaper. Note that the slab_mutex is held so
1118 * that if cache_reap() is invoked it cannot do anything
1119 * expensive but will only modify reap_work and reschedule the
1122 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1123 /* Now the cache_reaper is guaranteed to be not running. */
1124 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1128 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131 * Returns -EBUSY if all objects cannot be drained so that the node is not
1134 * Must hold slab_mutex.
1136 static int __meminit
drain_cache_node_node(int node
)
1138 struct kmem_cache
*cachep
;
1141 list_for_each_entry(cachep
, &slab_caches
, list
) {
1142 struct kmem_cache_node
*n
;
1144 n
= get_node(cachep
, node
);
1148 drain_freelist(cachep
, n
, INT_MAX
);
1150 if (!list_empty(&n
->slabs_full
) ||
1151 !list_empty(&n
->slabs_partial
)) {
1159 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1160 unsigned long action
, void *arg
)
1162 struct memory_notify
*mnb
= arg
;
1166 nid
= mnb
->status_change_nid
;
1171 case MEM_GOING_ONLINE
:
1172 mutex_lock(&slab_mutex
);
1173 ret
= init_cache_node_node(nid
);
1174 mutex_unlock(&slab_mutex
);
1176 case MEM_GOING_OFFLINE
:
1177 mutex_lock(&slab_mutex
);
1178 ret
= drain_cache_node_node(nid
);
1179 mutex_unlock(&slab_mutex
);
1183 case MEM_CANCEL_ONLINE
:
1184 case MEM_CANCEL_OFFLINE
:
1188 return notifier_from_errno(ret
);
1190 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1193 * swap the static kmem_cache_node with kmalloced memory
1195 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1198 struct kmem_cache_node
*ptr
;
1200 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1203 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1205 * Do not assume that spinlocks can be initialized via memcpy:
1207 spin_lock_init(&ptr
->list_lock
);
1209 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1210 cachep
->node
[nodeid
] = ptr
;
1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215 * size of kmem_cache_node.
1217 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1221 for_each_online_node(node
) {
1222 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1223 cachep
->node
[node
]->next_reap
= jiffies
+
1225 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1230 * Initialisation. Called after the page allocator have been initialised and
1231 * before smp_init().
1233 void __init
kmem_cache_init(void)
1237 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1238 sizeof(struct rcu_head
));
1239 kmem_cache
= &kmem_cache_boot
;
1241 if (!IS_ENABLED(CONFIG_NUMA
) || num_possible_nodes() == 1)
1242 use_alien_caches
= 0;
1244 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1245 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1248 * Fragmentation resistance on low memory - only use bigger
1249 * page orders on machines with more than 32MB of memory if
1250 * not overridden on the command line.
1252 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1253 slab_max_order
= SLAB_MAX_ORDER_HI
;
1255 /* Bootstrap is tricky, because several objects are allocated
1256 * from caches that do not exist yet:
1257 * 1) initialize the kmem_cache cache: it contains the struct
1258 * kmem_cache structures of all caches, except kmem_cache itself:
1259 * kmem_cache is statically allocated.
1260 * Initially an __init data area is used for the head array and the
1261 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1262 * array at the end of the bootstrap.
1263 * 2) Create the first kmalloc cache.
1264 * The struct kmem_cache for the new cache is allocated normally.
1265 * An __init data area is used for the head array.
1266 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * 4) Replace the __init data head arrays for kmem_cache and the first
1269 * kmalloc cache with kmalloc allocated arrays.
1270 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271 * the other cache's with kmalloc allocated memory.
1272 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1275 /* 1) create the kmem_cache */
1278 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 create_boot_cache(kmem_cache
, "kmem_cache",
1281 offsetof(struct kmem_cache
, node
) +
1282 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1283 SLAB_HWCACHE_ALIGN
);
1284 list_add(&kmem_cache
->list
, &slab_caches
);
1285 slab_state
= PARTIAL
;
1288 * Initialize the caches that provide memory for the kmem_cache_node
1289 * structures first. Without this, further allocations will bug.
1291 kmalloc_caches
[INDEX_NODE
] = create_kmalloc_cache("kmalloc-node",
1292 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1293 slab_state
= PARTIAL_NODE
;
1294 setup_kmalloc_cache_index_table();
1296 slab_early_init
= 0;
1298 /* 5) Replace the bootstrap kmem_cache_node */
1302 for_each_online_node(nid
) {
1303 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1305 init_list(kmalloc_caches
[INDEX_NODE
],
1306 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1310 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1313 void __init
kmem_cache_init_late(void)
1315 struct kmem_cache
*cachep
;
1319 /* 6) resize the head arrays to their final sizes */
1320 mutex_lock(&slab_mutex
);
1321 list_for_each_entry(cachep
, &slab_caches
, list
)
1322 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1324 mutex_unlock(&slab_mutex
);
1331 * Register a memory hotplug callback that initializes and frees
1334 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1338 * The reap timers are started later, with a module init call: That part
1339 * of the kernel is not yet operational.
1343 static int __init
cpucache_init(void)
1348 * Register the timers that return unneeded pages to the page allocator
1350 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "SLAB online",
1351 slab_online_cpu
, slab_offline_cpu
);
1358 __initcall(cpucache_init
);
1360 static noinline
void
1361 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1364 struct kmem_cache_node
*n
;
1365 unsigned long flags
;
1367 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1368 DEFAULT_RATELIMIT_BURST
);
1370 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1373 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374 nodeid
, gfpflags
, &gfpflags
);
1375 pr_warn(" cache: %s, object size: %d, order: %d\n",
1376 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1378 for_each_kmem_cache_node(cachep
, node
, n
) {
1379 unsigned long total_slabs
, free_slabs
, free_objs
;
1381 spin_lock_irqsave(&n
->list_lock
, flags
);
1382 total_slabs
= n
->total_slabs
;
1383 free_slabs
= n
->free_slabs
;
1384 free_objs
= n
->free_objects
;
1385 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1387 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388 node
, total_slabs
- free_slabs
, total_slabs
,
1389 (total_slabs
* cachep
->num
) - free_objs
,
1390 total_slabs
* cachep
->num
);
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1403 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1409 flags
|= cachep
->allocflags
;
1410 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1411 flags
|= __GFP_RECLAIMABLE
;
1413 page
= __alloc_pages_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1415 slab_out_of_memory(cachep
, flags
, nodeid
);
1419 if (memcg_charge_slab(page
, flags
, cachep
->gfporder
, cachep
)) {
1420 __free_pages(page
, cachep
->gfporder
);
1424 nr_pages
= (1 << cachep
->gfporder
);
1425 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1426 add_zone_page_state(page_zone(page
),
1427 NR_SLAB_RECLAIMABLE
, nr_pages
);
1429 add_zone_page_state(page_zone(page
),
1430 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1432 __SetPageSlab(page
);
1433 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434 if (sk_memalloc_socks() && page_is_pfmemalloc(page
))
1435 SetPageSlabPfmemalloc(page
);
1437 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1438 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1441 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1443 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1450 * Interface to system's page release.
1452 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1454 int order
= cachep
->gfporder
;
1455 unsigned long nr_freed
= (1 << order
);
1457 kmemcheck_free_shadow(page
, order
);
1459 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1460 sub_zone_page_state(page_zone(page
),
1461 NR_SLAB_RECLAIMABLE
, nr_freed
);
1463 sub_zone_page_state(page_zone(page
),
1464 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1466 BUG_ON(!PageSlab(page
));
1467 __ClearPageSlabPfmemalloc(page
);
1468 __ClearPageSlab(page
);
1469 page_mapcount_reset(page
);
1470 page
->mapping
= NULL
;
1472 if (current
->reclaim_state
)
1473 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1474 memcg_uncharge_slab(page
, order
, cachep
);
1475 __free_pages(page
, order
);
1478 static void kmem_rcu_free(struct rcu_head
*head
)
1480 struct kmem_cache
*cachep
;
1483 page
= container_of(head
, struct page
, rcu_head
);
1484 cachep
= page
->slab_cache
;
1486 kmem_freepages(cachep
, page
);
1490 static bool is_debug_pagealloc_cache(struct kmem_cache
*cachep
)
1492 if (debug_pagealloc_enabled() && OFF_SLAB(cachep
) &&
1493 (cachep
->size
% PAGE_SIZE
) == 0)
1499 #ifdef CONFIG_DEBUG_PAGEALLOC
1500 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1501 unsigned long caller
)
1503 int size
= cachep
->object_size
;
1505 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1507 if (size
< 5 * sizeof(unsigned long))
1510 *addr
++ = 0x12345678;
1512 *addr
++ = smp_processor_id();
1513 size
-= 3 * sizeof(unsigned long);
1515 unsigned long *sptr
= &caller
;
1516 unsigned long svalue
;
1518 while (!kstack_end(sptr
)) {
1520 if (kernel_text_address(svalue
)) {
1522 size
-= sizeof(unsigned long);
1523 if (size
<= sizeof(unsigned long))
1529 *addr
++ = 0x87654321;
1532 static void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1533 int map
, unsigned long caller
)
1535 if (!is_debug_pagealloc_cache(cachep
))
1539 store_stackinfo(cachep
, objp
, caller
);
1541 kernel_map_pages(virt_to_page(objp
), cachep
->size
/ PAGE_SIZE
, map
);
1545 static inline void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1546 int map
, unsigned long caller
) {}
1550 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1552 int size
= cachep
->object_size
;
1553 addr
= &((char *)addr
)[obj_offset(cachep
)];
1555 memset(addr
, val
, size
);
1556 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1559 static void dump_line(char *data
, int offset
, int limit
)
1562 unsigned char error
= 0;
1565 pr_err("%03x: ", offset
);
1566 for (i
= 0; i
< limit
; i
++) {
1567 if (data
[offset
+ i
] != POISON_FREE
) {
1568 error
= data
[offset
+ i
];
1572 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1573 &data
[offset
], limit
, 1);
1575 if (bad_count
== 1) {
1576 error
^= POISON_FREE
;
1577 if (!(error
& (error
- 1))) {
1578 pr_err("Single bit error detected. Probably bad RAM.\n");
1580 pr_err("Run memtest86+ or a similar memory test tool.\n");
1582 pr_err("Run a memory test tool.\n");
1591 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1596 if (cachep
->flags
& SLAB_RED_ZONE
) {
1597 pr_err("Redzone: 0x%llx/0x%llx\n",
1598 *dbg_redzone1(cachep
, objp
),
1599 *dbg_redzone2(cachep
, objp
));
1602 if (cachep
->flags
& SLAB_STORE_USER
) {
1603 pr_err("Last user: [<%p>](%pSR)\n",
1604 *dbg_userword(cachep
, objp
),
1605 *dbg_userword(cachep
, objp
));
1607 realobj
= (char *)objp
+ obj_offset(cachep
);
1608 size
= cachep
->object_size
;
1609 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1612 if (i
+ limit
> size
)
1614 dump_line(realobj
, i
, limit
);
1618 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1624 if (is_debug_pagealloc_cache(cachep
))
1627 realobj
= (char *)objp
+ obj_offset(cachep
);
1628 size
= cachep
->object_size
;
1630 for (i
= 0; i
< size
; i
++) {
1631 char exp
= POISON_FREE
;
1634 if (realobj
[i
] != exp
) {
1639 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1640 print_tainted(), cachep
->name
,
1642 print_objinfo(cachep
, objp
, 0);
1644 /* Hexdump the affected line */
1647 if (i
+ limit
> size
)
1649 dump_line(realobj
, i
, limit
);
1652 /* Limit to 5 lines */
1658 /* Print some data about the neighboring objects, if they
1661 struct page
*page
= virt_to_head_page(objp
);
1664 objnr
= obj_to_index(cachep
, page
, objp
);
1666 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1667 realobj
= (char *)objp
+ obj_offset(cachep
);
1668 pr_err("Prev obj: start=%p, len=%d\n", realobj
, size
);
1669 print_objinfo(cachep
, objp
, 2);
1671 if (objnr
+ 1 < cachep
->num
) {
1672 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1673 realobj
= (char *)objp
+ obj_offset(cachep
);
1674 pr_err("Next obj: start=%p, len=%d\n", realobj
, size
);
1675 print_objinfo(cachep
, objp
, 2);
1682 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1687 if (OBJFREELIST_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
) {
1688 poison_obj(cachep
, page
->freelist
- obj_offset(cachep
),
1692 for (i
= 0; i
< cachep
->num
; i
++) {
1693 void *objp
= index_to_obj(cachep
, page
, i
);
1695 if (cachep
->flags
& SLAB_POISON
) {
1696 check_poison_obj(cachep
, objp
);
1697 slab_kernel_map(cachep
, objp
, 1, 0);
1699 if (cachep
->flags
& SLAB_RED_ZONE
) {
1700 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1701 slab_error(cachep
, "start of a freed object was overwritten");
1702 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1703 slab_error(cachep
, "end of a freed object was overwritten");
1708 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1715 * slab_destroy - destroy and release all objects in a slab
1716 * @cachep: cache pointer being destroyed
1717 * @page: page pointer being destroyed
1719 * Destroy all the objs in a slab page, and release the mem back to the system.
1720 * Before calling the slab page must have been unlinked from the cache. The
1721 * kmem_cache_node ->list_lock is not held/needed.
1723 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1727 freelist
= page
->freelist
;
1728 slab_destroy_debugcheck(cachep
, page
);
1729 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1730 call_rcu(&page
->rcu_head
, kmem_rcu_free
);
1732 kmem_freepages(cachep
, page
);
1735 * From now on, we don't use freelist
1736 * although actual page can be freed in rcu context
1738 if (OFF_SLAB(cachep
))
1739 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1742 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
)
1744 struct page
*page
, *n
;
1746 list_for_each_entry_safe(page
, n
, list
, lru
) {
1747 list_del(&page
->lru
);
1748 slab_destroy(cachep
, page
);
1753 * calculate_slab_order - calculate size (page order) of slabs
1754 * @cachep: pointer to the cache that is being created
1755 * @size: size of objects to be created in this cache.
1756 * @flags: slab allocation flags
1758 * Also calculates the number of objects per slab.
1760 * This could be made much more intelligent. For now, try to avoid using
1761 * high order pages for slabs. When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
1764 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1765 size_t size
, unsigned long flags
)
1767 size_t left_over
= 0;
1770 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1774 num
= cache_estimate(gfporder
, size
, flags
, &remainder
);
1778 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1779 if (num
> SLAB_OBJ_MAX_NUM
)
1782 if (flags
& CFLGS_OFF_SLAB
) {
1783 struct kmem_cache
*freelist_cache
;
1784 size_t freelist_size
;
1786 freelist_size
= num
* sizeof(freelist_idx_t
);
1787 freelist_cache
= kmalloc_slab(freelist_size
, 0u);
1788 if (!freelist_cache
)
1792 * Needed to avoid possible looping condition
1793 * in cache_grow_begin()
1795 if (OFF_SLAB(freelist_cache
))
1798 /* check if off slab has enough benefit */
1799 if (freelist_cache
->size
> cachep
->size
/ 2)
1803 /* Found something acceptable - save it away */
1805 cachep
->gfporder
= gfporder
;
1806 left_over
= remainder
;
1809 * A VFS-reclaimable slab tends to have most allocations
1810 * as GFP_NOFS and we really don't want to have to be allocating
1811 * higher-order pages when we are unable to shrink dcache.
1813 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1817 * Large number of objects is good, but very large slabs are
1818 * currently bad for the gfp()s.
1820 if (gfporder
>= slab_max_order
)
1824 * Acceptable internal fragmentation?
1826 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1832 static struct array_cache __percpu
*alloc_kmem_cache_cpus(
1833 struct kmem_cache
*cachep
, int entries
, int batchcount
)
1837 struct array_cache __percpu
*cpu_cache
;
1839 size
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
1840 cpu_cache
= __alloc_percpu(size
, sizeof(void *));
1845 for_each_possible_cpu(cpu
) {
1846 init_arraycache(per_cpu_ptr(cpu_cache
, cpu
),
1847 entries
, batchcount
);
1853 static int __ref
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
1855 if (slab_state
>= FULL
)
1856 return enable_cpucache(cachep
, gfp
);
1858 cachep
->cpu_cache
= alloc_kmem_cache_cpus(cachep
, 1, 1);
1859 if (!cachep
->cpu_cache
)
1862 if (slab_state
== DOWN
) {
1863 /* Creation of first cache (kmem_cache). */
1864 set_up_node(kmem_cache
, CACHE_CACHE
);
1865 } else if (slab_state
== PARTIAL
) {
1866 /* For kmem_cache_node */
1867 set_up_node(cachep
, SIZE_NODE
);
1871 for_each_online_node(node
) {
1872 cachep
->node
[node
] = kmalloc_node(
1873 sizeof(struct kmem_cache_node
), gfp
, node
);
1874 BUG_ON(!cachep
->node
[node
]);
1875 kmem_cache_node_init(cachep
->node
[node
]);
1879 cachep
->node
[numa_mem_id()]->next_reap
=
1880 jiffies
+ REAPTIMEOUT_NODE
+
1881 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1883 cpu_cache_get(cachep
)->avail
= 0;
1884 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1885 cpu_cache_get(cachep
)->batchcount
= 1;
1886 cpu_cache_get(cachep
)->touched
= 0;
1887 cachep
->batchcount
= 1;
1888 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1892 unsigned long kmem_cache_flags(unsigned long object_size
,
1893 unsigned long flags
, const char *name
,
1894 void (*ctor
)(void *))
1900 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
1901 unsigned long flags
, void (*ctor
)(void *))
1903 struct kmem_cache
*cachep
;
1905 cachep
= find_mergeable(size
, align
, flags
, name
, ctor
);
1910 * Adjust the object sizes so that we clear
1911 * the complete object on kzalloc.
1913 cachep
->object_size
= max_t(int, cachep
->object_size
, size
);
1918 static bool set_objfreelist_slab_cache(struct kmem_cache
*cachep
,
1919 size_t size
, unsigned long flags
)
1925 if (cachep
->ctor
|| flags
& SLAB_DESTROY_BY_RCU
)
1928 left
= calculate_slab_order(cachep
, size
,
1929 flags
| CFLGS_OBJFREELIST_SLAB
);
1933 if (cachep
->num
* sizeof(freelist_idx_t
) > cachep
->object_size
)
1936 cachep
->colour
= left
/ cachep
->colour_off
;
1941 static bool set_off_slab_cache(struct kmem_cache
*cachep
,
1942 size_t size
, unsigned long flags
)
1949 * Always use on-slab management when SLAB_NOLEAKTRACE
1950 * to avoid recursive calls into kmemleak.
1952 if (flags
& SLAB_NOLEAKTRACE
)
1956 * Size is large, assume best to place the slab management obj
1957 * off-slab (should allow better packing of objs).
1959 left
= calculate_slab_order(cachep
, size
, flags
| CFLGS_OFF_SLAB
);
1964 * If the slab has been placed off-slab, and we have enough space then
1965 * move it on-slab. This is at the expense of any extra colouring.
1967 if (left
>= cachep
->num
* sizeof(freelist_idx_t
))
1970 cachep
->colour
= left
/ cachep
->colour_off
;
1975 static bool set_on_slab_cache(struct kmem_cache
*cachep
,
1976 size_t size
, unsigned long flags
)
1982 left
= calculate_slab_order(cachep
, size
, flags
);
1986 cachep
->colour
= left
/ cachep
->colour_off
;
1992 * __kmem_cache_create - Create a cache.
1993 * @cachep: cache management descriptor
1994 * @flags: SLAB flags
1996 * Returns a ptr to the cache on success, NULL on failure.
1997 * Cannot be called within a int, but can be interrupted.
1998 * The @ctor is run when new pages are allocated by the cache.
2002 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2003 * to catch references to uninitialised memory.
2005 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2006 * for buffer overruns.
2008 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2009 * cacheline. This can be beneficial if you're counting cycles as closely
2013 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2015 size_t ralign
= BYTES_PER_WORD
;
2018 size_t size
= cachep
->size
;
2023 * Enable redzoning and last user accounting, except for caches with
2024 * large objects, if the increased size would increase the object size
2025 * above the next power of two: caches with object sizes just above a
2026 * power of two have a significant amount of internal fragmentation.
2028 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2029 2 * sizeof(unsigned long long)))
2030 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2031 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2032 flags
|= SLAB_POISON
;
2037 * Check that size is in terms of words. This is needed to avoid
2038 * unaligned accesses for some archs when redzoning is used, and makes
2039 * sure any on-slab bufctl's are also correctly aligned.
2041 if (size
& (BYTES_PER_WORD
- 1)) {
2042 size
+= (BYTES_PER_WORD
- 1);
2043 size
&= ~(BYTES_PER_WORD
- 1);
2046 if (flags
& SLAB_RED_ZONE
) {
2047 ralign
= REDZONE_ALIGN
;
2048 /* If redzoning, ensure that the second redzone is suitably
2049 * aligned, by adjusting the object size accordingly. */
2050 size
+= REDZONE_ALIGN
- 1;
2051 size
&= ~(REDZONE_ALIGN
- 1);
2054 /* 3) caller mandated alignment */
2055 if (ralign
< cachep
->align
) {
2056 ralign
= cachep
->align
;
2058 /* disable debug if necessary */
2059 if (ralign
> __alignof__(unsigned long long))
2060 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2064 cachep
->align
= ralign
;
2065 cachep
->colour_off
= cache_line_size();
2066 /* Offset must be a multiple of the alignment. */
2067 if (cachep
->colour_off
< cachep
->align
)
2068 cachep
->colour_off
= cachep
->align
;
2070 if (slab_is_available())
2078 * Both debugging options require word-alignment which is calculated
2081 if (flags
& SLAB_RED_ZONE
) {
2082 /* add space for red zone words */
2083 cachep
->obj_offset
+= sizeof(unsigned long long);
2084 size
+= 2 * sizeof(unsigned long long);
2086 if (flags
& SLAB_STORE_USER
) {
2087 /* user store requires one word storage behind the end of
2088 * the real object. But if the second red zone needs to be
2089 * aligned to 64 bits, we must allow that much space.
2091 if (flags
& SLAB_RED_ZONE
)
2092 size
+= REDZONE_ALIGN
;
2094 size
+= BYTES_PER_WORD
;
2098 kasan_cache_create(cachep
, &size
, &flags
);
2100 size
= ALIGN(size
, cachep
->align
);
2102 * We should restrict the number of objects in a slab to implement
2103 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2105 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2106 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2110 * To activate debug pagealloc, off-slab management is necessary
2111 * requirement. In early phase of initialization, small sized slab
2112 * doesn't get initialized so it would not be possible. So, we need
2113 * to check size >= 256. It guarantees that all necessary small
2114 * sized slab is initialized in current slab initialization sequence.
2116 if (debug_pagealloc_enabled() && (flags
& SLAB_POISON
) &&
2117 size
>= 256 && cachep
->object_size
> cache_line_size()) {
2118 if (size
< PAGE_SIZE
|| size
% PAGE_SIZE
== 0) {
2119 size_t tmp_size
= ALIGN(size
, PAGE_SIZE
);
2121 if (set_off_slab_cache(cachep
, tmp_size
, flags
)) {
2122 flags
|= CFLGS_OFF_SLAB
;
2123 cachep
->obj_offset
+= tmp_size
- size
;
2131 if (set_objfreelist_slab_cache(cachep
, size
, flags
)) {
2132 flags
|= CFLGS_OBJFREELIST_SLAB
;
2136 if (set_off_slab_cache(cachep
, size
, flags
)) {
2137 flags
|= CFLGS_OFF_SLAB
;
2141 if (set_on_slab_cache(cachep
, size
, flags
))
2147 cachep
->freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
2148 cachep
->flags
= flags
;
2149 cachep
->allocflags
= __GFP_COMP
;
2150 if (flags
& SLAB_CACHE_DMA
)
2151 cachep
->allocflags
|= GFP_DMA
;
2152 cachep
->size
= size
;
2153 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2157 * If we're going to use the generic kernel_map_pages()
2158 * poisoning, then it's going to smash the contents of
2159 * the redzone and userword anyhow, so switch them off.
2161 if (IS_ENABLED(CONFIG_PAGE_POISONING
) &&
2162 (cachep
->flags
& SLAB_POISON
) &&
2163 is_debug_pagealloc_cache(cachep
))
2164 cachep
->flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2167 if (OFF_SLAB(cachep
)) {
2168 cachep
->freelist_cache
=
2169 kmalloc_slab(cachep
->freelist_size
, 0u);
2172 err
= setup_cpu_cache(cachep
, gfp
);
2174 __kmem_cache_release(cachep
);
2182 static void check_irq_off(void)
2184 BUG_ON(!irqs_disabled());
2187 static void check_irq_on(void)
2189 BUG_ON(irqs_disabled());
2192 static void check_mutex_acquired(void)
2194 BUG_ON(!mutex_is_locked(&slab_mutex
));
2197 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2201 assert_spin_locked(&get_node(cachep
, numa_mem_id())->list_lock
);
2205 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2209 assert_spin_locked(&get_node(cachep
, node
)->list_lock
);
2214 #define check_irq_off() do { } while(0)
2215 #define check_irq_on() do { } while(0)
2216 #define check_mutex_acquired() do { } while(0)
2217 #define check_spinlock_acquired(x) do { } while(0)
2218 #define check_spinlock_acquired_node(x, y) do { } while(0)
2221 static void drain_array_locked(struct kmem_cache
*cachep
, struct array_cache
*ac
,
2222 int node
, bool free_all
, struct list_head
*list
)
2226 if (!ac
|| !ac
->avail
)
2229 tofree
= free_all
? ac
->avail
: (ac
->limit
+ 4) / 5;
2230 if (tofree
> ac
->avail
)
2231 tofree
= (ac
->avail
+ 1) / 2;
2233 free_block(cachep
, ac
->entry
, tofree
, node
, list
);
2234 ac
->avail
-= tofree
;
2235 memmove(ac
->entry
, &(ac
->entry
[tofree
]), sizeof(void *) * ac
->avail
);
2238 static void do_drain(void *arg
)
2240 struct kmem_cache
*cachep
= arg
;
2241 struct array_cache
*ac
;
2242 int node
= numa_mem_id();
2243 struct kmem_cache_node
*n
;
2247 ac
= cpu_cache_get(cachep
);
2248 n
= get_node(cachep
, node
);
2249 spin_lock(&n
->list_lock
);
2250 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
2251 spin_unlock(&n
->list_lock
);
2252 slabs_destroy(cachep
, &list
);
2256 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2258 struct kmem_cache_node
*n
;
2262 on_each_cpu(do_drain
, cachep
, 1);
2264 for_each_kmem_cache_node(cachep
, node
, n
)
2266 drain_alien_cache(cachep
, n
->alien
);
2268 for_each_kmem_cache_node(cachep
, node
, n
) {
2269 spin_lock_irq(&n
->list_lock
);
2270 drain_array_locked(cachep
, n
->shared
, node
, true, &list
);
2271 spin_unlock_irq(&n
->list_lock
);
2273 slabs_destroy(cachep
, &list
);
2278 * Remove slabs from the list of free slabs.
2279 * Specify the number of slabs to drain in tofree.
2281 * Returns the actual number of slabs released.
2283 static int drain_freelist(struct kmem_cache
*cache
,
2284 struct kmem_cache_node
*n
, int tofree
)
2286 struct list_head
*p
;
2291 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2293 spin_lock_irq(&n
->list_lock
);
2294 p
= n
->slabs_free
.prev
;
2295 if (p
== &n
->slabs_free
) {
2296 spin_unlock_irq(&n
->list_lock
);
2300 page
= list_entry(p
, struct page
, lru
);
2301 list_del(&page
->lru
);
2305 * Safe to drop the lock. The slab is no longer linked
2308 n
->free_objects
-= cache
->num
;
2309 spin_unlock_irq(&n
->list_lock
);
2310 slab_destroy(cache
, page
);
2317 int __kmem_cache_shrink(struct kmem_cache
*cachep
)
2321 struct kmem_cache_node
*n
;
2323 drain_cpu_caches(cachep
);
2326 for_each_kmem_cache_node(cachep
, node
, n
) {
2327 drain_freelist(cachep
, n
, INT_MAX
);
2329 ret
+= !list_empty(&n
->slabs_full
) ||
2330 !list_empty(&n
->slabs_partial
);
2332 return (ret
? 1 : 0);
2335 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2337 return __kmem_cache_shrink(cachep
);
2340 void __kmem_cache_release(struct kmem_cache
*cachep
)
2343 struct kmem_cache_node
*n
;
2345 cache_random_seq_destroy(cachep
);
2347 free_percpu(cachep
->cpu_cache
);
2349 /* NUMA: free the node structures */
2350 for_each_kmem_cache_node(cachep
, i
, n
) {
2352 free_alien_cache(n
->alien
);
2354 cachep
->node
[i
] = NULL
;
2359 * Get the memory for a slab management obj.
2361 * For a slab cache when the slab descriptor is off-slab, the
2362 * slab descriptor can't come from the same cache which is being created,
2363 * Because if it is the case, that means we defer the creation of
2364 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2365 * And we eventually call down to __kmem_cache_create(), which
2366 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2367 * This is a "chicken-and-egg" problem.
2369 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2370 * which are all initialized during kmem_cache_init().
2372 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2373 struct page
*page
, int colour_off
,
2374 gfp_t local_flags
, int nodeid
)
2377 void *addr
= page_address(page
);
2379 page
->s_mem
= addr
+ colour_off
;
2382 if (OBJFREELIST_SLAB(cachep
))
2384 else if (OFF_SLAB(cachep
)) {
2385 /* Slab management obj is off-slab. */
2386 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2387 local_flags
, nodeid
);
2391 /* We will use last bytes at the slab for freelist */
2392 freelist
= addr
+ (PAGE_SIZE
<< cachep
->gfporder
) -
2393 cachep
->freelist_size
;
2399 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2401 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2404 static inline void set_free_obj(struct page
*page
,
2405 unsigned int idx
, freelist_idx_t val
)
2407 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2410 static void cache_init_objs_debug(struct kmem_cache
*cachep
, struct page
*page
)
2415 for (i
= 0; i
< cachep
->num
; i
++) {
2416 void *objp
= index_to_obj(cachep
, page
, i
);
2418 if (cachep
->flags
& SLAB_STORE_USER
)
2419 *dbg_userword(cachep
, objp
) = NULL
;
2421 if (cachep
->flags
& SLAB_RED_ZONE
) {
2422 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2423 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2426 * Constructors are not allowed to allocate memory from the same
2427 * cache which they are a constructor for. Otherwise, deadlock.
2428 * They must also be threaded.
2430 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
)) {
2431 kasan_unpoison_object_data(cachep
,
2432 objp
+ obj_offset(cachep
));
2433 cachep
->ctor(objp
+ obj_offset(cachep
));
2434 kasan_poison_object_data(
2435 cachep
, objp
+ obj_offset(cachep
));
2438 if (cachep
->flags
& SLAB_RED_ZONE
) {
2439 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2440 slab_error(cachep
, "constructor overwrote the end of an object");
2441 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2442 slab_error(cachep
, "constructor overwrote the start of an object");
2444 /* need to poison the objs? */
2445 if (cachep
->flags
& SLAB_POISON
) {
2446 poison_obj(cachep
, objp
, POISON_FREE
);
2447 slab_kernel_map(cachep
, objp
, 0, 0);
2453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2454 /* Hold information during a freelist initialization */
2455 union freelist_init_state
{
2461 struct rnd_state rnd_state
;
2465 * Initialize the state based on the randomization methode available.
2466 * return true if the pre-computed list is available, false otherwize.
2468 static bool freelist_state_initialize(union freelist_init_state
*state
,
2469 struct kmem_cache
*cachep
,
2475 /* Use best entropy available to define a random shift */
2476 rand
= get_random_int();
2478 /* Use a random state if the pre-computed list is not available */
2479 if (!cachep
->random_seq
) {
2480 prandom_seed_state(&state
->rnd_state
, rand
);
2483 state
->list
= cachep
->random_seq
;
2484 state
->count
= count
;
2485 state
->pos
= rand
% count
;
2491 /* Get the next entry on the list and randomize it using a random shift */
2492 static freelist_idx_t
next_random_slot(union freelist_init_state
*state
)
2494 if (state
->pos
>= state
->count
)
2496 return state
->list
[state
->pos
++];
2499 /* Swap two freelist entries */
2500 static void swap_free_obj(struct page
*page
, unsigned int a
, unsigned int b
)
2502 swap(((freelist_idx_t
*)page
->freelist
)[a
],
2503 ((freelist_idx_t
*)page
->freelist
)[b
]);
2507 * Shuffle the freelist initialization state based on pre-computed lists.
2508 * return true if the list was successfully shuffled, false otherwise.
2510 static bool shuffle_freelist(struct kmem_cache
*cachep
, struct page
*page
)
2512 unsigned int objfreelist
= 0, i
, rand
, count
= cachep
->num
;
2513 union freelist_init_state state
;
2519 precomputed
= freelist_state_initialize(&state
, cachep
, count
);
2521 /* Take a random entry as the objfreelist */
2522 if (OBJFREELIST_SLAB(cachep
)) {
2524 objfreelist
= count
- 1;
2526 objfreelist
= next_random_slot(&state
);
2527 page
->freelist
= index_to_obj(cachep
, page
, objfreelist
) +
2533 * On early boot, generate the list dynamically.
2534 * Later use a pre-computed list for speed.
2537 for (i
= 0; i
< count
; i
++)
2538 set_free_obj(page
, i
, i
);
2540 /* Fisher-Yates shuffle */
2541 for (i
= count
- 1; i
> 0; i
--) {
2542 rand
= prandom_u32_state(&state
.rnd_state
);
2544 swap_free_obj(page
, i
, rand
);
2547 for (i
= 0; i
< count
; i
++)
2548 set_free_obj(page
, i
, next_random_slot(&state
));
2551 if (OBJFREELIST_SLAB(cachep
))
2552 set_free_obj(page
, cachep
->num
- 1, objfreelist
);
2557 static inline bool shuffle_freelist(struct kmem_cache
*cachep
,
2562 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2564 static void cache_init_objs(struct kmem_cache
*cachep
,
2571 cache_init_objs_debug(cachep
, page
);
2573 /* Try to randomize the freelist if enabled */
2574 shuffled
= shuffle_freelist(cachep
, page
);
2576 if (!shuffled
&& OBJFREELIST_SLAB(cachep
)) {
2577 page
->freelist
= index_to_obj(cachep
, page
, cachep
->num
- 1) +
2581 for (i
= 0; i
< cachep
->num
; i
++) {
2582 objp
= index_to_obj(cachep
, page
, i
);
2583 kasan_init_slab_obj(cachep
, objp
);
2585 /* constructor could break poison info */
2586 if (DEBUG
== 0 && cachep
->ctor
) {
2587 kasan_unpoison_object_data(cachep
, objp
);
2589 kasan_poison_object_data(cachep
, objp
);
2593 set_free_obj(page
, i
, i
);
2597 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
)
2601 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2605 if (cachep
->flags
& SLAB_STORE_USER
)
2606 set_store_user_dirty(cachep
);
2612 static void slab_put_obj(struct kmem_cache
*cachep
,
2613 struct page
*page
, void *objp
)
2615 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2619 /* Verify double free bug */
2620 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2621 if (get_free_obj(page
, i
) == objnr
) {
2622 pr_err("slab: double free detected in cache '%s', objp %p\n",
2623 cachep
->name
, objp
);
2629 if (!page
->freelist
)
2630 page
->freelist
= objp
+ obj_offset(cachep
);
2632 set_free_obj(page
, page
->active
, objnr
);
2636 * Map pages beginning at addr to the given cache and slab. This is required
2637 * for the slab allocator to be able to lookup the cache and slab of a
2638 * virtual address for kfree, ksize, and slab debugging.
2640 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2643 page
->slab_cache
= cache
;
2644 page
->freelist
= freelist
;
2648 * Grow (by 1) the number of slabs within a cache. This is called by
2649 * kmem_cache_alloc() when there are no active objs left in a cache.
2651 static struct page
*cache_grow_begin(struct kmem_cache
*cachep
,
2652 gfp_t flags
, int nodeid
)
2658 struct kmem_cache_node
*n
;
2662 * Be lazy and only check for valid flags here, keeping it out of the
2663 * critical path in kmem_cache_alloc().
2665 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
2666 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
2667 flags
&= ~GFP_SLAB_BUG_MASK
;
2668 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2669 invalid_mask
, &invalid_mask
, flags
, &flags
);
2672 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2675 if (gfpflags_allow_blocking(local_flags
))
2679 * Get mem for the objs. Attempt to allocate a physical page from
2682 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2686 page_node
= page_to_nid(page
);
2687 n
= get_node(cachep
, page_node
);
2689 /* Get colour for the slab, and cal the next value. */
2691 if (n
->colour_next
>= cachep
->colour
)
2694 offset
= n
->colour_next
;
2695 if (offset
>= cachep
->colour
)
2698 offset
*= cachep
->colour_off
;
2700 /* Get slab management. */
2701 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2702 local_flags
& ~GFP_CONSTRAINT_MASK
, page_node
);
2703 if (OFF_SLAB(cachep
) && !freelist
)
2706 slab_map_pages(cachep
, page
, freelist
);
2708 kasan_poison_slab(page
);
2709 cache_init_objs(cachep
, page
);
2711 if (gfpflags_allow_blocking(local_flags
))
2712 local_irq_disable();
2717 kmem_freepages(cachep
, page
);
2719 if (gfpflags_allow_blocking(local_flags
))
2720 local_irq_disable();
2724 static void cache_grow_end(struct kmem_cache
*cachep
, struct page
*page
)
2726 struct kmem_cache_node
*n
;
2734 INIT_LIST_HEAD(&page
->lru
);
2735 n
= get_node(cachep
, page_to_nid(page
));
2737 spin_lock(&n
->list_lock
);
2739 if (!page
->active
) {
2740 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2743 fixup_slab_list(cachep
, n
, page
, &list
);
2745 STATS_INC_GROWN(cachep
);
2746 n
->free_objects
+= cachep
->num
- page
->active
;
2747 spin_unlock(&n
->list_lock
);
2749 fixup_objfreelist_debug(cachep
, &list
);
2755 * Perform extra freeing checks:
2756 * - detect bad pointers.
2757 * - POISON/RED_ZONE checking
2759 static void kfree_debugcheck(const void *objp
)
2761 if (!virt_addr_valid(objp
)) {
2762 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763 (unsigned long)objp
);
2768 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2770 unsigned long long redzone1
, redzone2
;
2772 redzone1
= *dbg_redzone1(cache
, obj
);
2773 redzone2
= *dbg_redzone2(cache
, obj
);
2778 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2781 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2782 slab_error(cache
, "double free detected");
2784 slab_error(cache
, "memory outside object was overwritten");
2786 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787 obj
, redzone1
, redzone2
);
2790 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2791 unsigned long caller
)
2796 BUG_ON(virt_to_cache(objp
) != cachep
);
2798 objp
-= obj_offset(cachep
);
2799 kfree_debugcheck(objp
);
2800 page
= virt_to_head_page(objp
);
2802 if (cachep
->flags
& SLAB_RED_ZONE
) {
2803 verify_redzone_free(cachep
, objp
);
2804 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2805 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2807 if (cachep
->flags
& SLAB_STORE_USER
) {
2808 set_store_user_dirty(cachep
);
2809 *dbg_userword(cachep
, objp
) = (void *)caller
;
2812 objnr
= obj_to_index(cachep
, page
, objp
);
2814 BUG_ON(objnr
>= cachep
->num
);
2815 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2817 if (cachep
->flags
& SLAB_POISON
) {
2818 poison_obj(cachep
, objp
, POISON_FREE
);
2819 slab_kernel_map(cachep
, objp
, 0, caller
);
2825 #define kfree_debugcheck(x) do { } while(0)
2826 #define cache_free_debugcheck(x,objp,z) (objp)
2829 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
2837 objp
= next
- obj_offset(cachep
);
2838 next
= *(void **)next
;
2839 poison_obj(cachep
, objp
, POISON_FREE
);
2844 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
2845 struct kmem_cache_node
*n
, struct page
*page
,
2848 /* move slabp to correct slabp list: */
2849 list_del(&page
->lru
);
2850 if (page
->active
== cachep
->num
) {
2851 list_add(&page
->lru
, &n
->slabs_full
);
2852 if (OBJFREELIST_SLAB(cachep
)) {
2854 /* Poisoning will be done without holding the lock */
2855 if (cachep
->flags
& SLAB_POISON
) {
2856 void **objp
= page
->freelist
;
2862 page
->freelist
= NULL
;
2865 list_add(&page
->lru
, &n
->slabs_partial
);
2868 /* Try to find non-pfmemalloc slab if needed */
2869 static noinline
struct page
*get_valid_first_slab(struct kmem_cache_node
*n
,
2870 struct page
*page
, bool pfmemalloc
)
2878 if (!PageSlabPfmemalloc(page
))
2881 /* No need to keep pfmemalloc slab if we have enough free objects */
2882 if (n
->free_objects
> n
->free_limit
) {
2883 ClearPageSlabPfmemalloc(page
);
2887 /* Move pfmemalloc slab to the end of list to speed up next search */
2888 list_del(&page
->lru
);
2889 if (!page
->active
) {
2890 list_add_tail(&page
->lru
, &n
->slabs_free
);
2893 list_add_tail(&page
->lru
, &n
->slabs_partial
);
2895 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
2896 if (!PageSlabPfmemalloc(page
))
2900 n
->free_touched
= 1;
2901 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
2902 if (!PageSlabPfmemalloc(page
)) {
2911 static struct page
*get_first_slab(struct kmem_cache_node
*n
, bool pfmemalloc
)
2915 assert_spin_locked(&n
->list_lock
);
2916 page
= list_first_entry_or_null(&n
->slabs_partial
, struct page
, lru
);
2918 n
->free_touched
= 1;
2919 page
= list_first_entry_or_null(&n
->slabs_free
, struct page
,
2925 if (sk_memalloc_socks())
2926 page
= get_valid_first_slab(n
, page
, pfmemalloc
);
2931 static noinline
void *cache_alloc_pfmemalloc(struct kmem_cache
*cachep
,
2932 struct kmem_cache_node
*n
, gfp_t flags
)
2938 if (!gfp_pfmemalloc_allowed(flags
))
2941 spin_lock(&n
->list_lock
);
2942 page
= get_first_slab(n
, true);
2944 spin_unlock(&n
->list_lock
);
2948 obj
= slab_get_obj(cachep
, page
);
2951 fixup_slab_list(cachep
, n
, page
, &list
);
2953 spin_unlock(&n
->list_lock
);
2954 fixup_objfreelist_debug(cachep
, &list
);
2960 * Slab list should be fixed up by fixup_slab_list() for existing slab
2961 * or cache_grow_end() for new slab
2963 static __always_inline
int alloc_block(struct kmem_cache
*cachep
,
2964 struct array_cache
*ac
, struct page
*page
, int batchcount
)
2967 * There must be at least one object available for
2970 BUG_ON(page
->active
>= cachep
->num
);
2972 while (page
->active
< cachep
->num
&& batchcount
--) {
2973 STATS_INC_ALLOCED(cachep
);
2974 STATS_INC_ACTIVE(cachep
);
2975 STATS_SET_HIGH(cachep
);
2977 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, page
);
2983 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2986 struct kmem_cache_node
*n
;
2987 struct array_cache
*ac
, *shared
;
2993 node
= numa_mem_id();
2995 ac
= cpu_cache_get(cachep
);
2996 batchcount
= ac
->batchcount
;
2997 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2999 * If there was little recent activity on this cache, then
3000 * perform only a partial refill. Otherwise we could generate
3003 batchcount
= BATCHREFILL_LIMIT
;
3005 n
= get_node(cachep
, node
);
3007 BUG_ON(ac
->avail
> 0 || !n
);
3008 shared
= READ_ONCE(n
->shared
);
3009 if (!n
->free_objects
&& (!shared
|| !shared
->avail
))
3012 spin_lock(&n
->list_lock
);
3013 shared
= READ_ONCE(n
->shared
);
3015 /* See if we can refill from the shared array */
3016 if (shared
&& transfer_objects(ac
, shared
, batchcount
)) {
3017 shared
->touched
= 1;
3021 while (batchcount
> 0) {
3022 /* Get slab alloc is to come from. */
3023 page
= get_first_slab(n
, false);
3027 check_spinlock_acquired(cachep
);
3029 batchcount
= alloc_block(cachep
, ac
, page
, batchcount
);
3030 fixup_slab_list(cachep
, n
, page
, &list
);
3034 n
->free_objects
-= ac
->avail
;
3036 spin_unlock(&n
->list_lock
);
3037 fixup_objfreelist_debug(cachep
, &list
);
3040 if (unlikely(!ac
->avail
)) {
3041 /* Check if we can use obj in pfmemalloc slab */
3042 if (sk_memalloc_socks()) {
3043 void *obj
= cache_alloc_pfmemalloc(cachep
, n
, flags
);
3049 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), node
);
3052 * cache_grow_begin() can reenable interrupts,
3053 * then ac could change.
3055 ac
= cpu_cache_get(cachep
);
3056 if (!ac
->avail
&& page
)
3057 alloc_block(cachep
, ac
, page
, batchcount
);
3058 cache_grow_end(cachep
, page
);
3065 return ac
->entry
[--ac
->avail
];
3068 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3071 might_sleep_if(gfpflags_allow_blocking(flags
));
3075 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3076 gfp_t flags
, void *objp
, unsigned long caller
)
3080 if (cachep
->flags
& SLAB_POISON
) {
3081 check_poison_obj(cachep
, objp
);
3082 slab_kernel_map(cachep
, objp
, 1, 0);
3083 poison_obj(cachep
, objp
, POISON_INUSE
);
3085 if (cachep
->flags
& SLAB_STORE_USER
)
3086 *dbg_userword(cachep
, objp
) = (void *)caller
;
3088 if (cachep
->flags
& SLAB_RED_ZONE
) {
3089 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3090 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3091 slab_error(cachep
, "double free, or memory outside object was overwritten");
3092 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3093 objp
, *dbg_redzone1(cachep
, objp
),
3094 *dbg_redzone2(cachep
, objp
));
3096 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3097 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3100 objp
+= obj_offset(cachep
);
3101 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3103 if (ARCH_SLAB_MINALIGN
&&
3104 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3105 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp
, (int)ARCH_SLAB_MINALIGN
);
3111 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3114 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3117 struct array_cache
*ac
;
3121 ac
= cpu_cache_get(cachep
);
3122 if (likely(ac
->avail
)) {
3124 objp
= ac
->entry
[--ac
->avail
];
3126 STATS_INC_ALLOCHIT(cachep
);
3130 STATS_INC_ALLOCMISS(cachep
);
3131 objp
= cache_alloc_refill(cachep
, flags
);
3133 * the 'ac' may be updated by cache_alloc_refill(),
3134 * and kmemleak_erase() requires its correct value.
3136 ac
= cpu_cache_get(cachep
);
3140 * To avoid a false negative, if an object that is in one of the
3141 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3142 * treat the array pointers as a reference to the object.
3145 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3151 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153 * If we are in_interrupt, then process context, including cpusets and
3154 * mempolicy, may not apply and should not be used for allocation policy.
3156 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3158 int nid_alloc
, nid_here
;
3160 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3162 nid_alloc
= nid_here
= numa_mem_id();
3163 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3164 nid_alloc
= cpuset_slab_spread_node();
3165 else if (current
->mempolicy
)
3166 nid_alloc
= mempolicy_slab_node();
3167 if (nid_alloc
!= nid_here
)
3168 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3173 * Fallback function if there was no memory available and no objects on a
3174 * certain node and fall back is permitted. First we scan all the
3175 * available node for available objects. If that fails then we
3176 * perform an allocation without specifying a node. This allows the page
3177 * allocator to do its reclaim / fallback magic. We then insert the
3178 * slab into the proper nodelist and then allocate from it.
3180 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3182 struct zonelist
*zonelist
;
3185 enum zone_type high_zoneidx
= gfp_zone(flags
);
3189 unsigned int cpuset_mems_cookie
;
3191 if (flags
& __GFP_THISNODE
)
3195 cpuset_mems_cookie
= read_mems_allowed_begin();
3196 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3200 * Look through allowed nodes for objects available
3201 * from existing per node queues.
3203 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3204 nid
= zone_to_nid(zone
);
3206 if (cpuset_zone_allowed(zone
, flags
) &&
3207 get_node(cache
, nid
) &&
3208 get_node(cache
, nid
)->free_objects
) {
3209 obj
= ____cache_alloc_node(cache
,
3210 gfp_exact_node(flags
), nid
);
3218 * This allocation will be performed within the constraints
3219 * of the current cpuset / memory policy requirements.
3220 * We may trigger various forms of reclaim on the allowed
3221 * set and go into memory reserves if necessary.
3223 page
= cache_grow_begin(cache
, flags
, numa_mem_id());
3224 cache_grow_end(cache
, page
);
3226 nid
= page_to_nid(page
);
3227 obj
= ____cache_alloc_node(cache
,
3228 gfp_exact_node(flags
), nid
);
3231 * Another processor may allocate the objects in
3232 * the slab since we are not holding any locks.
3239 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3245 * A interface to enable slab creation on nodeid
3247 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3251 struct kmem_cache_node
*n
;
3255 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3256 n
= get_node(cachep
, nodeid
);
3260 spin_lock(&n
->list_lock
);
3261 page
= get_first_slab(n
, false);
3265 check_spinlock_acquired_node(cachep
, nodeid
);
3267 STATS_INC_NODEALLOCS(cachep
);
3268 STATS_INC_ACTIVE(cachep
);
3269 STATS_SET_HIGH(cachep
);
3271 BUG_ON(page
->active
== cachep
->num
);
3273 obj
= slab_get_obj(cachep
, page
);
3276 fixup_slab_list(cachep
, n
, page
, &list
);
3278 spin_unlock(&n
->list_lock
);
3279 fixup_objfreelist_debug(cachep
, &list
);
3283 spin_unlock(&n
->list_lock
);
3284 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), nodeid
);
3286 /* This slab isn't counted yet so don't update free_objects */
3287 obj
= slab_get_obj(cachep
, page
);
3289 cache_grow_end(cachep
, page
);
3291 return obj
? obj
: fallback_alloc(cachep
, flags
);
3294 static __always_inline
void *
3295 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3296 unsigned long caller
)
3298 unsigned long save_flags
;
3300 int slab_node
= numa_mem_id();
3302 flags
&= gfp_allowed_mask
;
3303 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3304 if (unlikely(!cachep
))
3307 cache_alloc_debugcheck_before(cachep
, flags
);
3308 local_irq_save(save_flags
);
3310 if (nodeid
== NUMA_NO_NODE
)
3313 if (unlikely(!get_node(cachep
, nodeid
))) {
3314 /* Node not bootstrapped yet */
3315 ptr
= fallback_alloc(cachep
, flags
);
3319 if (nodeid
== slab_node
) {
3321 * Use the locally cached objects if possible.
3322 * However ____cache_alloc does not allow fallback
3323 * to other nodes. It may fail while we still have
3324 * objects on other nodes available.
3326 ptr
= ____cache_alloc(cachep
, flags
);
3330 /* ___cache_alloc_node can fall back to other nodes */
3331 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3333 local_irq_restore(save_flags
);
3334 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3336 if (unlikely(flags
& __GFP_ZERO
) && ptr
)
3337 memset(ptr
, 0, cachep
->object_size
);
3339 slab_post_alloc_hook(cachep
, flags
, 1, &ptr
);
3343 static __always_inline
void *
3344 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3348 if (current
->mempolicy
|| cpuset_do_slab_mem_spread()) {
3349 objp
= alternate_node_alloc(cache
, flags
);
3353 objp
= ____cache_alloc(cache
, flags
);
3356 * We may just have run out of memory on the local node.
3357 * ____cache_alloc_node() knows how to locate memory on other nodes
3360 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3367 static __always_inline
void *
3368 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3370 return ____cache_alloc(cachep
, flags
);
3373 #endif /* CONFIG_NUMA */
3375 static __always_inline
void *
3376 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3378 unsigned long save_flags
;
3381 flags
&= gfp_allowed_mask
;
3382 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3383 if (unlikely(!cachep
))
3386 cache_alloc_debugcheck_before(cachep
, flags
);
3387 local_irq_save(save_flags
);
3388 objp
= __do_cache_alloc(cachep
, flags
);
3389 local_irq_restore(save_flags
);
3390 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3393 if (unlikely(flags
& __GFP_ZERO
) && objp
)
3394 memset(objp
, 0, cachep
->object_size
);
3396 slab_post_alloc_hook(cachep
, flags
, 1, &objp
);
3401 * Caller needs to acquire correct kmem_cache_node's list_lock
3402 * @list: List of detached free slabs should be freed by caller
3404 static void free_block(struct kmem_cache
*cachep
, void **objpp
,
3405 int nr_objects
, int node
, struct list_head
*list
)
3408 struct kmem_cache_node
*n
= get_node(cachep
, node
);
3411 n
->free_objects
+= nr_objects
;
3413 for (i
= 0; i
< nr_objects
; i
++) {
3419 page
= virt_to_head_page(objp
);
3420 list_del(&page
->lru
);
3421 check_spinlock_acquired_node(cachep
, node
);
3422 slab_put_obj(cachep
, page
, objp
);
3423 STATS_DEC_ACTIVE(cachep
);
3425 /* fixup slab chains */
3426 if (page
->active
== 0) {
3427 list_add(&page
->lru
, &n
->slabs_free
);
3430 /* Unconditionally move a slab to the end of the
3431 * partial list on free - maximum time for the
3432 * other objects to be freed, too.
3434 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3438 while (n
->free_objects
> n
->free_limit
&& !list_empty(&n
->slabs_free
)) {
3439 n
->free_objects
-= cachep
->num
;
3441 page
= list_last_entry(&n
->slabs_free
, struct page
, lru
);
3442 list_move(&page
->lru
, list
);
3448 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3451 struct kmem_cache_node
*n
;
3452 int node
= numa_mem_id();
3455 batchcount
= ac
->batchcount
;
3458 n
= get_node(cachep
, node
);
3459 spin_lock(&n
->list_lock
);
3461 struct array_cache
*shared_array
= n
->shared
;
3462 int max
= shared_array
->limit
- shared_array
->avail
;
3464 if (batchcount
> max
)
3466 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3467 ac
->entry
, sizeof(void *) * batchcount
);
3468 shared_array
->avail
+= batchcount
;
3473 free_block(cachep
, ac
->entry
, batchcount
, node
, &list
);
3480 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
3481 BUG_ON(page
->active
);
3485 STATS_SET_FREEABLE(cachep
, i
);
3488 spin_unlock(&n
->list_lock
);
3489 slabs_destroy(cachep
, &list
);
3490 ac
->avail
-= batchcount
;
3491 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3495 * Release an obj back to its cache. If the obj has a constructed state, it must
3496 * be in this state _before_ it is released. Called with disabled ints.
3498 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3499 unsigned long caller
)
3501 /* Put the object into the quarantine, don't touch it for now. */
3502 if (kasan_slab_free(cachep
, objp
))
3505 ___cache_free(cachep
, objp
, caller
);
3508 void ___cache_free(struct kmem_cache
*cachep
, void *objp
,
3509 unsigned long caller
)
3511 struct array_cache
*ac
= cpu_cache_get(cachep
);
3514 kmemleak_free_recursive(objp
, cachep
->flags
);
3515 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3517 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3520 * Skip calling cache_free_alien() when the platform is not numa.
3521 * This will avoid cache misses that happen while accessing slabp (which
3522 * is per page memory reference) to get nodeid. Instead use a global
3523 * variable to skip the call, which is mostly likely to be present in
3526 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3529 if (ac
->avail
< ac
->limit
) {
3530 STATS_INC_FREEHIT(cachep
);
3532 STATS_INC_FREEMISS(cachep
);
3533 cache_flusharray(cachep
, ac
);
3536 if (sk_memalloc_socks()) {
3537 struct page
*page
= virt_to_head_page(objp
);
3539 if (unlikely(PageSlabPfmemalloc(page
))) {
3540 cache_free_pfmemalloc(cachep
, page
, objp
);
3545 ac
->entry
[ac
->avail
++] = objp
;
3549 * kmem_cache_alloc - Allocate an object
3550 * @cachep: The cache to allocate from.
3551 * @flags: See kmalloc().
3553 * Allocate an object from this cache. The flags are only relevant
3554 * if the cache has no available objects.
3556 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3558 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3560 kasan_slab_alloc(cachep
, ret
, flags
);
3561 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3562 cachep
->object_size
, cachep
->size
, flags
);
3566 EXPORT_SYMBOL(kmem_cache_alloc
);
3568 static __always_inline
void
3569 cache_alloc_debugcheck_after_bulk(struct kmem_cache
*s
, gfp_t flags
,
3570 size_t size
, void **p
, unsigned long caller
)
3574 for (i
= 0; i
< size
; i
++)
3575 p
[i
] = cache_alloc_debugcheck_after(s
, flags
, p
[i
], caller
);
3578 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3583 s
= slab_pre_alloc_hook(s
, flags
);
3587 cache_alloc_debugcheck_before(s
, flags
);
3589 local_irq_disable();
3590 for (i
= 0; i
< size
; i
++) {
3591 void *objp
= __do_cache_alloc(s
, flags
);
3593 if (unlikely(!objp
))
3599 cache_alloc_debugcheck_after_bulk(s
, flags
, size
, p
, _RET_IP_
);
3601 /* Clear memory outside IRQ disabled section */
3602 if (unlikely(flags
& __GFP_ZERO
))
3603 for (i
= 0; i
< size
; i
++)
3604 memset(p
[i
], 0, s
->object_size
);
3606 slab_post_alloc_hook(s
, flags
, size
, p
);
3607 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3611 cache_alloc_debugcheck_after_bulk(s
, flags
, i
, p
, _RET_IP_
);
3612 slab_post_alloc_hook(s
, flags
, i
, p
);
3613 __kmem_cache_free_bulk(s
, i
, p
);
3616 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3618 #ifdef CONFIG_TRACING
3620 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3624 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3626 kasan_kmalloc(cachep
, ret
, size
, flags
);
3627 trace_kmalloc(_RET_IP_
, ret
,
3628 size
, cachep
->size
, flags
);
3631 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3636 * kmem_cache_alloc_node - Allocate an object on the specified node
3637 * @cachep: The cache to allocate from.
3638 * @flags: See kmalloc().
3639 * @nodeid: node number of the target node.
3641 * Identical to kmem_cache_alloc but it will allocate memory on the given
3642 * node, which can improve the performance for cpu bound structures.
3644 * Fallback to other node is possible if __GFP_THISNODE is not set.
3646 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3648 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3650 kasan_slab_alloc(cachep
, ret
, flags
);
3651 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3652 cachep
->object_size
, cachep
->size
,
3657 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3659 #ifdef CONFIG_TRACING
3660 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3667 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3669 kasan_kmalloc(cachep
, ret
, size
, flags
);
3670 trace_kmalloc_node(_RET_IP_
, ret
,
3675 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3678 static __always_inline
void *
3679 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3681 struct kmem_cache
*cachep
;
3684 cachep
= kmalloc_slab(size
, flags
);
3685 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3687 ret
= kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3688 kasan_kmalloc(cachep
, ret
, size
, flags
);
3693 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3695 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3697 EXPORT_SYMBOL(__kmalloc_node
);
3699 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3700 int node
, unsigned long caller
)
3702 return __do_kmalloc_node(size
, flags
, node
, caller
);
3704 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3705 #endif /* CONFIG_NUMA */
3708 * __do_kmalloc - allocate memory
3709 * @size: how many bytes of memory are required.
3710 * @flags: the type of memory to allocate (see kmalloc).
3711 * @caller: function caller for debug tracking of the caller
3713 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3714 unsigned long caller
)
3716 struct kmem_cache
*cachep
;
3719 cachep
= kmalloc_slab(size
, flags
);
3720 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3722 ret
= slab_alloc(cachep
, flags
, caller
);
3724 kasan_kmalloc(cachep
, ret
, size
, flags
);
3725 trace_kmalloc(caller
, ret
,
3726 size
, cachep
->size
, flags
);
3731 void *__kmalloc(size_t size
, gfp_t flags
)
3733 return __do_kmalloc(size
, flags
, _RET_IP_
);
3735 EXPORT_SYMBOL(__kmalloc
);
3737 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3739 return __do_kmalloc(size
, flags
, caller
);
3741 EXPORT_SYMBOL(__kmalloc_track_caller
);
3744 * kmem_cache_free - Deallocate an object
3745 * @cachep: The cache the allocation was from.
3746 * @objp: The previously allocated object.
3748 * Free an object which was previously allocated from this
3751 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3753 unsigned long flags
;
3754 cachep
= cache_from_obj(cachep
, objp
);
3758 local_irq_save(flags
);
3759 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3760 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3761 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3762 __cache_free(cachep
, objp
, _RET_IP_
);
3763 local_irq_restore(flags
);
3765 trace_kmem_cache_free(_RET_IP_
, objp
);
3767 EXPORT_SYMBOL(kmem_cache_free
);
3769 void kmem_cache_free_bulk(struct kmem_cache
*orig_s
, size_t size
, void **p
)
3771 struct kmem_cache
*s
;
3774 local_irq_disable();
3775 for (i
= 0; i
< size
; i
++) {
3778 if (!orig_s
) /* called via kfree_bulk */
3779 s
= virt_to_cache(objp
);
3781 s
= cache_from_obj(orig_s
, objp
);
3783 debug_check_no_locks_freed(objp
, s
->object_size
);
3784 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
3785 debug_check_no_obj_freed(objp
, s
->object_size
);
3787 __cache_free(s
, objp
, _RET_IP_
);
3791 /* FIXME: add tracing */
3793 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3796 * kfree - free previously allocated memory
3797 * @objp: pointer returned by kmalloc.
3799 * If @objp is NULL, no operation is performed.
3801 * Don't free memory not originally allocated by kmalloc()
3802 * or you will run into trouble.
3804 void kfree(const void *objp
)
3806 struct kmem_cache
*c
;
3807 unsigned long flags
;
3809 trace_kfree(_RET_IP_
, objp
);
3811 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3813 local_irq_save(flags
);
3814 kfree_debugcheck(objp
);
3815 c
= virt_to_cache(objp
);
3816 debug_check_no_locks_freed(objp
, c
->object_size
);
3818 debug_check_no_obj_freed(objp
, c
->object_size
);
3819 __cache_free(c
, (void *)objp
, _RET_IP_
);
3820 local_irq_restore(flags
);
3822 EXPORT_SYMBOL(kfree
);
3825 * This initializes kmem_cache_node or resizes various caches for all nodes.
3827 static int setup_kmem_cache_nodes(struct kmem_cache
*cachep
, gfp_t gfp
)
3831 struct kmem_cache_node
*n
;
3833 for_each_online_node(node
) {
3834 ret
= setup_kmem_cache_node(cachep
, node
, gfp
, true);
3843 if (!cachep
->list
.next
) {
3844 /* Cache is not active yet. Roll back what we did */
3847 n
= get_node(cachep
, node
);
3850 free_alien_cache(n
->alien
);
3852 cachep
->node
[node
] = NULL
;
3860 /* Always called with the slab_mutex held */
3861 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3862 int batchcount
, int shared
, gfp_t gfp
)
3864 struct array_cache __percpu
*cpu_cache
, *prev
;
3867 cpu_cache
= alloc_kmem_cache_cpus(cachep
, limit
, batchcount
);
3871 prev
= cachep
->cpu_cache
;
3872 cachep
->cpu_cache
= cpu_cache
;
3873 kick_all_cpus_sync();
3876 cachep
->batchcount
= batchcount
;
3877 cachep
->limit
= limit
;
3878 cachep
->shared
= shared
;
3883 for_each_online_cpu(cpu
) {
3886 struct kmem_cache_node
*n
;
3887 struct array_cache
*ac
= per_cpu_ptr(prev
, cpu
);
3889 node
= cpu_to_mem(cpu
);
3890 n
= get_node(cachep
, node
);
3891 spin_lock_irq(&n
->list_lock
);
3892 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
3893 spin_unlock_irq(&n
->list_lock
);
3894 slabs_destroy(cachep
, &list
);
3899 return setup_kmem_cache_nodes(cachep
, gfp
);
3902 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3903 int batchcount
, int shared
, gfp_t gfp
)
3906 struct kmem_cache
*c
;
3908 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3910 if (slab_state
< FULL
)
3913 if ((ret
< 0) || !is_root_cache(cachep
))
3916 lockdep_assert_held(&slab_mutex
);
3917 for_each_memcg_cache(c
, cachep
) {
3918 /* return value determined by the root cache only */
3919 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3925 /* Called with slab_mutex held always */
3926 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3933 err
= cache_random_seq_create(cachep
, cachep
->num
, gfp
);
3937 if (!is_root_cache(cachep
)) {
3938 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3939 limit
= root
->limit
;
3940 shared
= root
->shared
;
3941 batchcount
= root
->batchcount
;
3944 if (limit
&& shared
&& batchcount
)
3947 * The head array serves three purposes:
3948 * - create a LIFO ordering, i.e. return objects that are cache-warm
3949 * - reduce the number of spinlock operations.
3950 * - reduce the number of linked list operations on the slab and
3951 * bufctl chains: array operations are cheaper.
3952 * The numbers are guessed, we should auto-tune as described by
3955 if (cachep
->size
> 131072)
3957 else if (cachep
->size
> PAGE_SIZE
)
3959 else if (cachep
->size
> 1024)
3961 else if (cachep
->size
> 256)
3967 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3968 * allocation behaviour: Most allocs on one cpu, most free operations
3969 * on another cpu. For these cases, an efficient object passing between
3970 * cpus is necessary. This is provided by a shared array. The array
3971 * replaces Bonwick's magazine layer.
3972 * On uniprocessor, it's functionally equivalent (but less efficient)
3973 * to a larger limit. Thus disabled by default.
3976 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3981 * With debugging enabled, large batchcount lead to excessively long
3982 * periods with disabled local interrupts. Limit the batchcount
3987 batchcount
= (limit
+ 1) / 2;
3989 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3992 pr_err("enable_cpucache failed for %s, error %d\n",
3993 cachep
->name
, -err
);
3998 * Drain an array if it contains any elements taking the node lock only if
3999 * necessary. Note that the node listlock also protects the array_cache
4000 * if drain_array() is used on the shared array.
4002 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
4003 struct array_cache
*ac
, int node
)
4007 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008 check_mutex_acquired();
4010 if (!ac
|| !ac
->avail
)
4018 spin_lock_irq(&n
->list_lock
);
4019 drain_array_locked(cachep
, ac
, node
, false, &list
);
4020 spin_unlock_irq(&n
->list_lock
);
4022 slabs_destroy(cachep
, &list
);
4026 * cache_reap - Reclaim memory from caches.
4027 * @w: work descriptor
4029 * Called from workqueue/eventd every few seconds.
4031 * - clear the per-cpu caches for this CPU.
4032 * - return freeable pages to the main free memory pool.
4034 * If we cannot acquire the cache chain mutex then just give up - we'll try
4035 * again on the next iteration.
4037 static void cache_reap(struct work_struct
*w
)
4039 struct kmem_cache
*searchp
;
4040 struct kmem_cache_node
*n
;
4041 int node
= numa_mem_id();
4042 struct delayed_work
*work
= to_delayed_work(w
);
4044 if (!mutex_trylock(&slab_mutex
))
4045 /* Give up. Setup the next iteration. */
4048 list_for_each_entry(searchp
, &slab_caches
, list
) {
4052 * We only take the node lock if absolutely necessary and we
4053 * have established with reasonable certainty that
4054 * we can do some work if the lock was obtained.
4056 n
= get_node(searchp
, node
);
4058 reap_alien(searchp
, n
);
4060 drain_array(searchp
, n
, cpu_cache_get(searchp
), node
);
4063 * These are racy checks but it does not matter
4064 * if we skip one check or scan twice.
4066 if (time_after(n
->next_reap
, jiffies
))
4069 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
4071 drain_array(searchp
, n
, n
->shared
, node
);
4073 if (n
->free_touched
)
4074 n
->free_touched
= 0;
4078 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
4079 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4080 STATS_ADD_REAPED(searchp
, freed
);
4086 mutex_unlock(&slab_mutex
);
4089 /* Set up the next iteration */
4090 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_AC
));
4093 #ifdef CONFIG_SLABINFO
4094 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4096 unsigned long active_objs
, num_objs
, active_slabs
;
4097 unsigned long total_slabs
= 0, free_objs
= 0, shared_avail
= 0;
4098 unsigned long free_slabs
= 0;
4100 struct kmem_cache_node
*n
;
4102 for_each_kmem_cache_node(cachep
, node
, n
) {
4104 spin_lock_irq(&n
->list_lock
);
4106 total_slabs
+= n
->total_slabs
;
4107 free_slabs
+= n
->free_slabs
;
4108 free_objs
+= n
->free_objects
;
4111 shared_avail
+= n
->shared
->avail
;
4113 spin_unlock_irq(&n
->list_lock
);
4115 num_objs
= total_slabs
* cachep
->num
;
4116 active_slabs
= total_slabs
- free_slabs
;
4117 active_objs
= num_objs
- free_objs
;
4119 sinfo
->active_objs
= active_objs
;
4120 sinfo
->num_objs
= num_objs
;
4121 sinfo
->active_slabs
= active_slabs
;
4122 sinfo
->num_slabs
= total_slabs
;
4123 sinfo
->shared_avail
= shared_avail
;
4124 sinfo
->limit
= cachep
->limit
;
4125 sinfo
->batchcount
= cachep
->batchcount
;
4126 sinfo
->shared
= cachep
->shared
;
4127 sinfo
->objects_per_slab
= cachep
->num
;
4128 sinfo
->cache_order
= cachep
->gfporder
;
4131 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4135 unsigned long high
= cachep
->high_mark
;
4136 unsigned long allocs
= cachep
->num_allocations
;
4137 unsigned long grown
= cachep
->grown
;
4138 unsigned long reaped
= cachep
->reaped
;
4139 unsigned long errors
= cachep
->errors
;
4140 unsigned long max_freeable
= cachep
->max_freeable
;
4141 unsigned long node_allocs
= cachep
->node_allocs
;
4142 unsigned long node_frees
= cachep
->node_frees
;
4143 unsigned long overflows
= cachep
->node_overflow
;
4145 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4146 allocs
, high
, grown
,
4147 reaped
, errors
, max_freeable
, node_allocs
,
4148 node_frees
, overflows
);
4152 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4153 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4154 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4155 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4157 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4158 allochit
, allocmiss
, freehit
, freemiss
);
4163 #define MAX_SLABINFO_WRITE 128
4165 * slabinfo_write - Tuning for the slab allocator
4167 * @buffer: user buffer
4168 * @count: data length
4171 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4172 size_t count
, loff_t
*ppos
)
4174 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4175 int limit
, batchcount
, shared
, res
;
4176 struct kmem_cache
*cachep
;
4178 if (count
> MAX_SLABINFO_WRITE
)
4180 if (copy_from_user(&kbuf
, buffer
, count
))
4182 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4184 tmp
= strchr(kbuf
, ' ');
4189 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4192 /* Find the cache in the chain of caches. */
4193 mutex_lock(&slab_mutex
);
4195 list_for_each_entry(cachep
, &slab_caches
, list
) {
4196 if (!strcmp(cachep
->name
, kbuf
)) {
4197 if (limit
< 1 || batchcount
< 1 ||
4198 batchcount
> limit
|| shared
< 0) {
4201 res
= do_tune_cpucache(cachep
, limit
,
4208 mutex_unlock(&slab_mutex
);
4214 #ifdef CONFIG_DEBUG_SLAB_LEAK
4216 static inline int add_caller(unsigned long *n
, unsigned long v
)
4226 unsigned long *q
= p
+ 2 * i
;
4240 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4246 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4255 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4258 for (j
= page
->active
; j
< c
->num
; j
++) {
4259 if (get_free_obj(page
, j
) == i
) {
4269 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4270 * mapping is established when actual object allocation and
4271 * we could mistakenly access the unmapped object in the cpu
4274 if (probe_kernel_read(&v
, dbg_userword(c
, p
), sizeof(v
)))
4277 if (!add_caller(n
, v
))
4282 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4284 #ifdef CONFIG_KALLSYMS
4285 unsigned long offset
, size
;
4286 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4288 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4289 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4291 seq_printf(m
, " [%s]", modname
);
4295 seq_printf(m
, "%p", (void *)address
);
4298 static int leaks_show(struct seq_file
*m
, void *p
)
4300 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4302 struct kmem_cache_node
*n
;
4304 unsigned long *x
= m
->private;
4308 if (!(cachep
->flags
& SLAB_STORE_USER
))
4310 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4314 * Set store_user_clean and start to grab stored user information
4315 * for all objects on this cache. If some alloc/free requests comes
4316 * during the processing, information would be wrong so restart
4320 set_store_user_clean(cachep
);
4321 drain_cpu_caches(cachep
);
4325 for_each_kmem_cache_node(cachep
, node
, n
) {
4328 spin_lock_irq(&n
->list_lock
);
4330 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4331 handle_slab(x
, cachep
, page
);
4332 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4333 handle_slab(x
, cachep
, page
);
4334 spin_unlock_irq(&n
->list_lock
);
4336 } while (!is_store_user_clean(cachep
));
4338 name
= cachep
->name
;
4340 /* Increase the buffer size */
4341 mutex_unlock(&slab_mutex
);
4342 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4344 /* Too bad, we are really out */
4346 mutex_lock(&slab_mutex
);
4349 *(unsigned long *)m
->private = x
[0] * 2;
4351 mutex_lock(&slab_mutex
);
4352 /* Now make sure this entry will be retried */
4356 for (i
= 0; i
< x
[1]; i
++) {
4357 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4358 show_symbol(m
, x
[2*i
+2]);
4365 static const struct seq_operations slabstats_op
= {
4366 .start
= slab_start
,
4372 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4376 n
= __seq_open_private(file
, &slabstats_op
, PAGE_SIZE
);
4380 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4385 static const struct file_operations proc_slabstats_operations
= {
4386 .open
= slabstats_open
,
4388 .llseek
= seq_lseek
,
4389 .release
= seq_release_private
,
4393 static int __init
slab_proc_init(void)
4395 #ifdef CONFIG_DEBUG_SLAB_LEAK
4396 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4400 module_init(slab_proc_init
);
4403 #ifdef CONFIG_HARDENED_USERCOPY
4405 * Rejects objects that are incorrectly sized.
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4410 const char *__check_heap_object(const void *ptr
, unsigned long n
,
4413 struct kmem_cache
*cachep
;
4415 unsigned long offset
;
4417 /* Find and validate object. */
4418 cachep
= page
->slab_cache
;
4419 objnr
= obj_to_index(cachep
, page
, (void *)ptr
);
4420 BUG_ON(objnr
>= cachep
->num
);
4422 /* Find offset within object. */
4423 offset
= ptr
- index_to_obj(cachep
, page
, objnr
) - obj_offset(cachep
);
4425 /* Allow address range falling entirely within object size. */
4426 if (offset
<= cachep
->object_size
&& n
<= cachep
->object_size
- offset
)
4429 return cachep
->name
;
4431 #endif /* CONFIG_HARDENED_USERCOPY */
4434 * ksize - get the actual amount of memory allocated for a given object
4435 * @objp: Pointer to the object
4437 * kmalloc may internally round up allocations and return more memory
4438 * than requested. ksize() can be used to determine the actual amount of
4439 * memory allocated. The caller may use this additional memory, even though
4440 * a smaller amount of memory was initially specified with the kmalloc call.
4441 * The caller must guarantee that objp points to a valid object previously
4442 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4443 * must not be freed during the duration of the call.
4445 size_t ksize(const void *objp
)
4450 if (unlikely(objp
== ZERO_SIZE_PTR
))
4453 size
= virt_to_cache(objp
)->object_size
;
4454 /* We assume that ksize callers could use the whole allocated area,
4455 * so we need to unpoison this area.
4457 kasan_unpoison_shadow(objp
, size
);
4461 EXPORT_SYMBOL(ksize
);