ipv[4|6]: correct dropwatch false positive in local_deliver_finish
[linux/fpc-iii.git] / drivers / mmc / card / block.c
blob5bab73b91c209a1cce2e92e5af29fa212f169ae5
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
44 #include <asm/uaccess.h>
46 #include "queue.h"
48 MODULE_ALIAS("mmc:block");
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "mmcblk."
54 #define INAND_CMD38_ARG_EXT_CSD 113
55 #define INAND_CMD38_ARG_ERASE 0x00
56 #define INAND_CMD38_ARG_TRIM 0x01
57 #define INAND_CMD38_ARG_SECERASE 0x80
58 #define INAND_CMD38_ARG_SECTRIM1 0x81
59 #define INAND_CMD38_ARG_SECTRIM2 0x88
60 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
63 (req->cmd_flags & REQ_META)) && \
64 (rq_data_dir(req) == WRITE))
65 #define PACKED_CMD_VER 0x01
66 #define PACKED_CMD_WR 0x02
68 static DEFINE_MUTEX(block_mutex);
71 * The defaults come from config options but can be overriden by module
72 * or bootarg options.
74 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77 * We've only got one major, so number of mmcblk devices is
78 * limited to 256 / number of minors per device.
80 static int max_devices;
82 /* 256 minors, so at most 256 separate devices */
83 static DECLARE_BITMAP(dev_use, 256);
84 static DECLARE_BITMAP(name_use, 256);
87 * There is one mmc_blk_data per slot.
89 struct mmc_blk_data {
90 spinlock_t lock;
91 struct gendisk *disk;
92 struct mmc_queue queue;
93 struct list_head part;
95 unsigned int flags;
96 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
97 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
98 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
100 unsigned int usage;
101 unsigned int read_only;
102 unsigned int part_type;
103 unsigned int name_idx;
104 unsigned int reset_done;
105 #define MMC_BLK_READ BIT(0)
106 #define MMC_BLK_WRITE BIT(1)
107 #define MMC_BLK_DISCARD BIT(2)
108 #define MMC_BLK_SECDISCARD BIT(3)
111 * Only set in main mmc_blk_data associated
112 * with mmc_card with mmc_set_drvdata, and keeps
113 * track of the current selected device partition.
115 unsigned int part_curr;
116 struct device_attribute force_ro;
117 struct device_attribute power_ro_lock;
118 int area_type;
121 static DEFINE_MUTEX(open_lock);
123 enum {
124 MMC_PACKED_NR_IDX = -1,
125 MMC_PACKED_NR_ZERO,
126 MMC_PACKED_NR_SINGLE,
129 module_param(perdev_minors, int, 0444);
130 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
132 static inline int mmc_blk_part_switch(struct mmc_card *card,
133 struct mmc_blk_data *md);
134 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
136 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
138 struct mmc_packed *packed = mqrq->packed;
140 BUG_ON(!packed);
142 mqrq->cmd_type = MMC_PACKED_NONE;
143 packed->nr_entries = MMC_PACKED_NR_ZERO;
144 packed->idx_failure = MMC_PACKED_NR_IDX;
145 packed->retries = 0;
146 packed->blocks = 0;
149 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
151 struct mmc_blk_data *md;
153 mutex_lock(&open_lock);
154 md = disk->private_data;
155 if (md && md->usage == 0)
156 md = NULL;
157 if (md)
158 md->usage++;
159 mutex_unlock(&open_lock);
161 return md;
164 static inline int mmc_get_devidx(struct gendisk *disk)
166 int devmaj = MAJOR(disk_devt(disk));
167 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
169 if (!devmaj)
170 devidx = disk->first_minor / perdev_minors;
171 return devidx;
174 static void mmc_blk_put(struct mmc_blk_data *md)
176 mutex_lock(&open_lock);
177 md->usage--;
178 if (md->usage == 0) {
179 int devidx = mmc_get_devidx(md->disk);
180 blk_cleanup_queue(md->queue.queue);
182 __clear_bit(devidx, dev_use);
184 put_disk(md->disk);
185 kfree(md);
187 mutex_unlock(&open_lock);
190 static ssize_t power_ro_lock_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
193 int ret;
194 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
195 struct mmc_card *card = md->queue.card;
196 int locked = 0;
198 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
199 locked = 2;
200 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
201 locked = 1;
203 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
205 return ret;
208 static ssize_t power_ro_lock_store(struct device *dev,
209 struct device_attribute *attr, const char *buf, size_t count)
211 int ret;
212 struct mmc_blk_data *md, *part_md;
213 struct mmc_card *card;
214 unsigned long set;
216 if (kstrtoul(buf, 0, &set))
217 return -EINVAL;
219 if (set != 1)
220 return count;
222 md = mmc_blk_get(dev_to_disk(dev));
223 card = md->queue.card;
225 mmc_claim_host(card->host);
227 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
228 card->ext_csd.boot_ro_lock |
229 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
230 card->ext_csd.part_time);
231 if (ret)
232 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
233 else
234 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
236 mmc_release_host(card->host);
238 if (!ret) {
239 pr_info("%s: Locking boot partition ro until next power on\n",
240 md->disk->disk_name);
241 set_disk_ro(md->disk, 1);
243 list_for_each_entry(part_md, &md->part, part)
244 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
245 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
246 set_disk_ro(part_md->disk, 1);
250 mmc_blk_put(md);
251 return count;
254 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
255 char *buf)
257 int ret;
258 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
260 ret = snprintf(buf, PAGE_SIZE, "%d",
261 get_disk_ro(dev_to_disk(dev)) ^
262 md->read_only);
263 mmc_blk_put(md);
264 return ret;
267 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
268 const char *buf, size_t count)
270 int ret;
271 char *end;
272 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
273 unsigned long set = simple_strtoul(buf, &end, 0);
274 if (end == buf) {
275 ret = -EINVAL;
276 goto out;
279 set_disk_ro(dev_to_disk(dev), set || md->read_only);
280 ret = count;
281 out:
282 mmc_blk_put(md);
283 return ret;
286 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
288 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
289 int ret = -ENXIO;
291 mutex_lock(&block_mutex);
292 if (md) {
293 if (md->usage == 2)
294 check_disk_change(bdev);
295 ret = 0;
297 if ((mode & FMODE_WRITE) && md->read_only) {
298 mmc_blk_put(md);
299 ret = -EROFS;
302 mutex_unlock(&block_mutex);
304 return ret;
307 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
309 struct mmc_blk_data *md = disk->private_data;
311 mutex_lock(&block_mutex);
312 mmc_blk_put(md);
313 mutex_unlock(&block_mutex);
314 return 0;
317 static int
318 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
320 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
321 geo->heads = 4;
322 geo->sectors = 16;
323 return 0;
326 struct mmc_blk_ioc_data {
327 struct mmc_ioc_cmd ic;
328 unsigned char *buf;
329 u64 buf_bytes;
332 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
333 struct mmc_ioc_cmd __user *user)
335 struct mmc_blk_ioc_data *idata;
336 int err;
338 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
339 if (!idata) {
340 err = -ENOMEM;
341 goto out;
344 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
345 err = -EFAULT;
346 goto idata_err;
349 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
350 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
351 err = -EOVERFLOW;
352 goto idata_err;
355 if (!idata->buf_bytes)
356 return idata;
358 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
359 if (!idata->buf) {
360 err = -ENOMEM;
361 goto idata_err;
364 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
365 idata->ic.data_ptr, idata->buf_bytes)) {
366 err = -EFAULT;
367 goto copy_err;
370 return idata;
372 copy_err:
373 kfree(idata->buf);
374 idata_err:
375 kfree(idata);
376 out:
377 return ERR_PTR(err);
380 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
381 u32 retries_max)
383 int err;
384 u32 retry_count = 0;
386 if (!status || !retries_max)
387 return -EINVAL;
389 do {
390 err = get_card_status(card, status, 5);
391 if (err)
392 break;
394 if (!R1_STATUS(*status) &&
395 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
396 break; /* RPMB programming operation complete */
399 * Rechedule to give the MMC device a chance to continue
400 * processing the previous command without being polled too
401 * frequently.
403 usleep_range(1000, 5000);
404 } while (++retry_count < retries_max);
406 if (retry_count == retries_max)
407 err = -EPERM;
409 return err;
412 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
413 struct mmc_ioc_cmd __user *ic_ptr)
415 struct mmc_blk_ioc_data *idata;
416 struct mmc_blk_data *md;
417 struct mmc_card *card;
418 struct mmc_command cmd = {0};
419 struct mmc_data data = {0};
420 struct mmc_request mrq = {NULL};
421 struct scatterlist sg;
422 int err;
423 int is_rpmb = false;
424 u32 status = 0;
427 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
428 * whole block device, not on a partition. This prevents overspray
429 * between sibling partitions.
431 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
432 return -EPERM;
434 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
435 if (IS_ERR(idata))
436 return PTR_ERR(idata);
438 md = mmc_blk_get(bdev->bd_disk);
439 if (!md) {
440 err = -EINVAL;
441 goto cmd_err;
444 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
445 is_rpmb = true;
447 card = md->queue.card;
448 if (IS_ERR(card)) {
449 err = PTR_ERR(card);
450 goto cmd_done;
453 cmd.opcode = idata->ic.opcode;
454 cmd.arg = idata->ic.arg;
455 cmd.flags = idata->ic.flags;
457 if (idata->buf_bytes) {
458 data.sg = &sg;
459 data.sg_len = 1;
460 data.blksz = idata->ic.blksz;
461 data.blocks = idata->ic.blocks;
463 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
465 if (idata->ic.write_flag)
466 data.flags = MMC_DATA_WRITE;
467 else
468 data.flags = MMC_DATA_READ;
470 /* data.flags must already be set before doing this. */
471 mmc_set_data_timeout(&data, card);
473 /* Allow overriding the timeout_ns for empirical tuning. */
474 if (idata->ic.data_timeout_ns)
475 data.timeout_ns = idata->ic.data_timeout_ns;
477 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
479 * Pretend this is a data transfer and rely on the
480 * host driver to compute timeout. When all host
481 * drivers support cmd.cmd_timeout for R1B, this
482 * can be changed to:
484 * mrq.data = NULL;
485 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
487 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
490 mrq.data = &data;
493 mrq.cmd = &cmd;
495 mmc_claim_host(card->host);
497 err = mmc_blk_part_switch(card, md);
498 if (err)
499 goto cmd_rel_host;
501 if (idata->ic.is_acmd) {
502 err = mmc_app_cmd(card->host, card);
503 if (err)
504 goto cmd_rel_host;
507 if (is_rpmb) {
508 err = mmc_set_blockcount(card, data.blocks,
509 idata->ic.write_flag & (1 << 31));
510 if (err)
511 goto cmd_rel_host;
514 mmc_wait_for_req(card->host, &mrq);
516 if (cmd.error) {
517 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
518 __func__, cmd.error);
519 err = cmd.error;
520 goto cmd_rel_host;
522 if (data.error) {
523 dev_err(mmc_dev(card->host), "%s: data error %d\n",
524 __func__, data.error);
525 err = data.error;
526 goto cmd_rel_host;
530 * According to the SD specs, some commands require a delay after
531 * issuing the command.
533 if (idata->ic.postsleep_min_us)
534 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
536 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
537 err = -EFAULT;
538 goto cmd_rel_host;
541 if (!idata->ic.write_flag) {
542 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
543 idata->buf, idata->buf_bytes)) {
544 err = -EFAULT;
545 goto cmd_rel_host;
549 if (is_rpmb) {
551 * Ensure RPMB command has completed by polling CMD13
552 * "Send Status".
554 err = ioctl_rpmb_card_status_poll(card, &status, 5);
555 if (err)
556 dev_err(mmc_dev(card->host),
557 "%s: Card Status=0x%08X, error %d\n",
558 __func__, status, err);
561 cmd_rel_host:
562 mmc_release_host(card->host);
564 cmd_done:
565 mmc_blk_put(md);
566 cmd_err:
567 kfree(idata->buf);
568 kfree(idata);
569 return err;
572 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
573 unsigned int cmd, unsigned long arg)
575 int ret = -EINVAL;
576 if (cmd == MMC_IOC_CMD)
577 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
578 return ret;
581 #ifdef CONFIG_COMPAT
582 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
583 unsigned int cmd, unsigned long arg)
585 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
587 #endif
589 static const struct block_device_operations mmc_bdops = {
590 .open = mmc_blk_open,
591 .release = mmc_blk_release,
592 .getgeo = mmc_blk_getgeo,
593 .owner = THIS_MODULE,
594 .ioctl = mmc_blk_ioctl,
595 #ifdef CONFIG_COMPAT
596 .compat_ioctl = mmc_blk_compat_ioctl,
597 #endif
600 static inline int mmc_blk_part_switch(struct mmc_card *card,
601 struct mmc_blk_data *md)
603 int ret;
604 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
606 if (main_md->part_curr == md->part_type)
607 return 0;
609 if (mmc_card_mmc(card)) {
610 u8 part_config = card->ext_csd.part_config;
612 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
613 part_config |= md->part_type;
615 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
616 EXT_CSD_PART_CONFIG, part_config,
617 card->ext_csd.part_time);
618 if (ret)
619 return ret;
621 card->ext_csd.part_config = part_config;
624 main_md->part_curr = md->part_type;
625 return 0;
628 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
630 int err;
631 u32 result;
632 __be32 *blocks;
634 struct mmc_request mrq = {NULL};
635 struct mmc_command cmd = {0};
636 struct mmc_data data = {0};
638 struct scatterlist sg;
640 cmd.opcode = MMC_APP_CMD;
641 cmd.arg = card->rca << 16;
642 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
644 err = mmc_wait_for_cmd(card->host, &cmd, 0);
645 if (err)
646 return (u32)-1;
647 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
648 return (u32)-1;
650 memset(&cmd, 0, sizeof(struct mmc_command));
652 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
653 cmd.arg = 0;
654 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
656 data.blksz = 4;
657 data.blocks = 1;
658 data.flags = MMC_DATA_READ;
659 data.sg = &sg;
660 data.sg_len = 1;
661 mmc_set_data_timeout(&data, card);
663 mrq.cmd = &cmd;
664 mrq.data = &data;
666 blocks = kmalloc(4, GFP_KERNEL);
667 if (!blocks)
668 return (u32)-1;
670 sg_init_one(&sg, blocks, 4);
672 mmc_wait_for_req(card->host, &mrq);
674 result = ntohl(*blocks);
675 kfree(blocks);
677 if (cmd.error || data.error)
678 result = (u32)-1;
680 return result;
683 static int send_stop(struct mmc_card *card, u32 *status)
685 struct mmc_command cmd = {0};
686 int err;
688 cmd.opcode = MMC_STOP_TRANSMISSION;
689 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
690 err = mmc_wait_for_cmd(card->host, &cmd, 5);
691 if (err == 0)
692 *status = cmd.resp[0];
693 return err;
696 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
698 struct mmc_command cmd = {0};
699 int err;
701 cmd.opcode = MMC_SEND_STATUS;
702 if (!mmc_host_is_spi(card->host))
703 cmd.arg = card->rca << 16;
704 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
705 err = mmc_wait_for_cmd(card->host, &cmd, retries);
706 if (err == 0)
707 *status = cmd.resp[0];
708 return err;
711 #define ERR_NOMEDIUM 3
712 #define ERR_RETRY 2
713 #define ERR_ABORT 1
714 #define ERR_CONTINUE 0
716 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
717 bool status_valid, u32 status)
719 switch (error) {
720 case -EILSEQ:
721 /* response crc error, retry the r/w cmd */
722 pr_err("%s: %s sending %s command, card status %#x\n",
723 req->rq_disk->disk_name, "response CRC error",
724 name, status);
725 return ERR_RETRY;
727 case -ETIMEDOUT:
728 pr_err("%s: %s sending %s command, card status %#x\n",
729 req->rq_disk->disk_name, "timed out", name, status);
731 /* If the status cmd initially failed, retry the r/w cmd */
732 if (!status_valid)
733 return ERR_RETRY;
736 * If it was a r/w cmd crc error, or illegal command
737 * (eg, issued in wrong state) then retry - we should
738 * have corrected the state problem above.
740 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
741 return ERR_RETRY;
743 /* Otherwise abort the command */
744 return ERR_ABORT;
746 default:
747 /* We don't understand the error code the driver gave us */
748 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
749 req->rq_disk->disk_name, error, status);
750 return ERR_ABORT;
755 * Initial r/w and stop cmd error recovery.
756 * We don't know whether the card received the r/w cmd or not, so try to
757 * restore things back to a sane state. Essentially, we do this as follows:
758 * - Obtain card status. If the first attempt to obtain card status fails,
759 * the status word will reflect the failed status cmd, not the failed
760 * r/w cmd. If we fail to obtain card status, it suggests we can no
761 * longer communicate with the card.
762 * - Check the card state. If the card received the cmd but there was a
763 * transient problem with the response, it might still be in a data transfer
764 * mode. Try to send it a stop command. If this fails, we can't recover.
765 * - If the r/w cmd failed due to a response CRC error, it was probably
766 * transient, so retry the cmd.
767 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
768 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
769 * illegal cmd, retry.
770 * Otherwise we don't understand what happened, so abort.
772 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
773 struct mmc_blk_request *brq, int *ecc_err)
775 bool prev_cmd_status_valid = true;
776 u32 status, stop_status = 0;
777 int err, retry;
779 if (mmc_card_removed(card))
780 return ERR_NOMEDIUM;
783 * Try to get card status which indicates both the card state
784 * and why there was no response. If the first attempt fails,
785 * we can't be sure the returned status is for the r/w command.
787 for (retry = 2; retry >= 0; retry--) {
788 err = get_card_status(card, &status, 0);
789 if (!err)
790 break;
792 prev_cmd_status_valid = false;
793 pr_err("%s: error %d sending status command, %sing\n",
794 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
797 /* We couldn't get a response from the card. Give up. */
798 if (err) {
799 /* Check if the card is removed */
800 if (mmc_detect_card_removed(card->host))
801 return ERR_NOMEDIUM;
802 return ERR_ABORT;
805 /* Flag ECC errors */
806 if ((status & R1_CARD_ECC_FAILED) ||
807 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
808 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
809 *ecc_err = 1;
812 * Check the current card state. If it is in some data transfer
813 * mode, tell it to stop (and hopefully transition back to TRAN.)
815 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
816 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
817 err = send_stop(card, &stop_status);
818 if (err)
819 pr_err("%s: error %d sending stop command\n",
820 req->rq_disk->disk_name, err);
823 * If the stop cmd also timed out, the card is probably
824 * not present, so abort. Other errors are bad news too.
826 if (err)
827 return ERR_ABORT;
828 if (stop_status & R1_CARD_ECC_FAILED)
829 *ecc_err = 1;
832 /* Check for set block count errors */
833 if (brq->sbc.error)
834 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
835 prev_cmd_status_valid, status);
837 /* Check for r/w command errors */
838 if (brq->cmd.error)
839 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
840 prev_cmd_status_valid, status);
842 /* Data errors */
843 if (!brq->stop.error)
844 return ERR_CONTINUE;
846 /* Now for stop errors. These aren't fatal to the transfer. */
847 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
848 req->rq_disk->disk_name, brq->stop.error,
849 brq->cmd.resp[0], status);
852 * Subsitute in our own stop status as this will give the error
853 * state which happened during the execution of the r/w command.
855 if (stop_status) {
856 brq->stop.resp[0] = stop_status;
857 brq->stop.error = 0;
859 return ERR_CONTINUE;
862 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
863 int type)
865 int err;
867 if (md->reset_done & type)
868 return -EEXIST;
870 md->reset_done |= type;
871 err = mmc_hw_reset(host);
872 /* Ensure we switch back to the correct partition */
873 if (err != -EOPNOTSUPP) {
874 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
875 int part_err;
877 main_md->part_curr = main_md->part_type;
878 part_err = mmc_blk_part_switch(host->card, md);
879 if (part_err) {
881 * We have failed to get back into the correct
882 * partition, so we need to abort the whole request.
884 return -ENODEV;
887 return err;
890 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
892 md->reset_done &= ~type;
895 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
897 struct mmc_blk_data *md = mq->data;
898 struct mmc_card *card = md->queue.card;
899 unsigned int from, nr, arg;
900 int err = 0, type = MMC_BLK_DISCARD;
902 if (!mmc_can_erase(card)) {
903 err = -EOPNOTSUPP;
904 goto out;
907 from = blk_rq_pos(req);
908 nr = blk_rq_sectors(req);
910 if (mmc_can_discard(card))
911 arg = MMC_DISCARD_ARG;
912 else if (mmc_can_trim(card))
913 arg = MMC_TRIM_ARG;
914 else
915 arg = MMC_ERASE_ARG;
916 retry:
917 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
918 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
919 INAND_CMD38_ARG_EXT_CSD,
920 arg == MMC_TRIM_ARG ?
921 INAND_CMD38_ARG_TRIM :
922 INAND_CMD38_ARG_ERASE,
924 if (err)
925 goto out;
927 err = mmc_erase(card, from, nr, arg);
928 out:
929 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
930 goto retry;
931 if (!err)
932 mmc_blk_reset_success(md, type);
933 blk_end_request(req, err, blk_rq_bytes(req));
935 return err ? 0 : 1;
938 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
939 struct request *req)
941 struct mmc_blk_data *md = mq->data;
942 struct mmc_card *card = md->queue.card;
943 unsigned int from, nr, arg, trim_arg, erase_arg;
944 int err = 0, type = MMC_BLK_SECDISCARD;
946 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
947 err = -EOPNOTSUPP;
948 goto out;
951 from = blk_rq_pos(req);
952 nr = blk_rq_sectors(req);
954 /* The sanitize operation is supported at v4.5 only */
955 if (mmc_can_sanitize(card)) {
956 erase_arg = MMC_ERASE_ARG;
957 trim_arg = MMC_TRIM_ARG;
958 } else {
959 erase_arg = MMC_SECURE_ERASE_ARG;
960 trim_arg = MMC_SECURE_TRIM1_ARG;
963 if (mmc_erase_group_aligned(card, from, nr))
964 arg = erase_arg;
965 else if (mmc_can_trim(card))
966 arg = trim_arg;
967 else {
968 err = -EINVAL;
969 goto out;
971 retry:
972 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
973 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
974 INAND_CMD38_ARG_EXT_CSD,
975 arg == MMC_SECURE_TRIM1_ARG ?
976 INAND_CMD38_ARG_SECTRIM1 :
977 INAND_CMD38_ARG_SECERASE,
979 if (err)
980 goto out_retry;
983 err = mmc_erase(card, from, nr, arg);
984 if (err == -EIO)
985 goto out_retry;
986 if (err)
987 goto out;
989 if (arg == MMC_SECURE_TRIM1_ARG) {
990 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
991 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
992 INAND_CMD38_ARG_EXT_CSD,
993 INAND_CMD38_ARG_SECTRIM2,
995 if (err)
996 goto out_retry;
999 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1000 if (err == -EIO)
1001 goto out_retry;
1002 if (err)
1003 goto out;
1006 if (mmc_can_sanitize(card))
1007 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1008 EXT_CSD_SANITIZE_START, 1, 0);
1009 out_retry:
1010 if (err && !mmc_blk_reset(md, card->host, type))
1011 goto retry;
1012 if (!err)
1013 mmc_blk_reset_success(md, type);
1014 out:
1015 blk_end_request(req, err, blk_rq_bytes(req));
1017 return err ? 0 : 1;
1020 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1022 struct mmc_blk_data *md = mq->data;
1023 struct mmc_card *card = md->queue.card;
1024 int ret = 0;
1026 ret = mmc_flush_cache(card);
1027 if (ret)
1028 ret = -EIO;
1030 blk_end_request_all(req, ret);
1032 return ret ? 0 : 1;
1036 * Reformat current write as a reliable write, supporting
1037 * both legacy and the enhanced reliable write MMC cards.
1038 * In each transfer we'll handle only as much as a single
1039 * reliable write can handle, thus finish the request in
1040 * partial completions.
1042 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1043 struct mmc_card *card,
1044 struct request *req)
1046 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1047 /* Legacy mode imposes restrictions on transfers. */
1048 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1049 brq->data.blocks = 1;
1051 if (brq->data.blocks > card->ext_csd.rel_sectors)
1052 brq->data.blocks = card->ext_csd.rel_sectors;
1053 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1054 brq->data.blocks = 1;
1058 #define CMD_ERRORS \
1059 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1060 R1_ADDRESS_ERROR | /* Misaligned address */ \
1061 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1062 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1063 R1_CC_ERROR | /* Card controller error */ \
1064 R1_ERROR) /* General/unknown error */
1066 static int mmc_blk_err_check(struct mmc_card *card,
1067 struct mmc_async_req *areq)
1069 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1070 mmc_active);
1071 struct mmc_blk_request *brq = &mq_mrq->brq;
1072 struct request *req = mq_mrq->req;
1073 int ecc_err = 0;
1076 * sbc.error indicates a problem with the set block count
1077 * command. No data will have been transferred.
1079 * cmd.error indicates a problem with the r/w command. No
1080 * data will have been transferred.
1082 * stop.error indicates a problem with the stop command. Data
1083 * may have been transferred, or may still be transferring.
1085 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1086 brq->data.error) {
1087 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1088 case ERR_RETRY:
1089 return MMC_BLK_RETRY;
1090 case ERR_ABORT:
1091 return MMC_BLK_ABORT;
1092 case ERR_NOMEDIUM:
1093 return MMC_BLK_NOMEDIUM;
1094 case ERR_CONTINUE:
1095 break;
1100 * Check for errors relating to the execution of the
1101 * initial command - such as address errors. No data
1102 * has been transferred.
1104 if (brq->cmd.resp[0] & CMD_ERRORS) {
1105 pr_err("%s: r/w command failed, status = %#x\n",
1106 req->rq_disk->disk_name, brq->cmd.resp[0]);
1107 return MMC_BLK_ABORT;
1111 * Everything else is either success, or a data error of some
1112 * kind. If it was a write, we may have transitioned to
1113 * program mode, which we have to wait for it to complete.
1115 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1116 u32 status;
1117 unsigned long timeout;
1119 timeout = jiffies + msecs_to_jiffies(MMC_BLK_TIMEOUT_MS);
1120 do {
1121 int err = get_card_status(card, &status, 5);
1122 if (err) {
1123 pr_err("%s: error %d requesting status\n",
1124 req->rq_disk->disk_name, err);
1125 return MMC_BLK_CMD_ERR;
1128 /* Timeout if the device never becomes ready for data
1129 * and never leaves the program state.
1131 if (time_after(jiffies, timeout)) {
1132 pr_err("%s: Card stuck in programming state!"\
1133 " %s %s\n", mmc_hostname(card->host),
1134 req->rq_disk->disk_name, __func__);
1136 return MMC_BLK_CMD_ERR;
1139 * Some cards mishandle the status bits,
1140 * so make sure to check both the busy
1141 * indication and the card state.
1143 } while (!(status & R1_READY_FOR_DATA) ||
1144 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1147 if (brq->data.error) {
1148 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1149 req->rq_disk->disk_name, brq->data.error,
1150 (unsigned)blk_rq_pos(req),
1151 (unsigned)blk_rq_sectors(req),
1152 brq->cmd.resp[0], brq->stop.resp[0]);
1154 if (rq_data_dir(req) == READ) {
1155 if (ecc_err)
1156 return MMC_BLK_ECC_ERR;
1157 return MMC_BLK_DATA_ERR;
1158 } else {
1159 return MMC_BLK_CMD_ERR;
1163 if (!brq->data.bytes_xfered)
1164 return MMC_BLK_RETRY;
1166 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1167 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1168 return MMC_BLK_PARTIAL;
1169 else
1170 return MMC_BLK_SUCCESS;
1173 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1174 return MMC_BLK_PARTIAL;
1176 return MMC_BLK_SUCCESS;
1179 static int mmc_blk_packed_err_check(struct mmc_card *card,
1180 struct mmc_async_req *areq)
1182 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1183 mmc_active);
1184 struct request *req = mq_rq->req;
1185 struct mmc_packed *packed = mq_rq->packed;
1186 int err, check, status;
1187 u8 *ext_csd;
1189 BUG_ON(!packed);
1191 packed->retries--;
1192 check = mmc_blk_err_check(card, areq);
1193 err = get_card_status(card, &status, 0);
1194 if (err) {
1195 pr_err("%s: error %d sending status command\n",
1196 req->rq_disk->disk_name, err);
1197 return MMC_BLK_ABORT;
1200 if (status & R1_EXCEPTION_EVENT) {
1201 ext_csd = kzalloc(512, GFP_KERNEL);
1202 if (!ext_csd) {
1203 pr_err("%s: unable to allocate buffer for ext_csd\n",
1204 req->rq_disk->disk_name);
1205 return -ENOMEM;
1208 err = mmc_send_ext_csd(card, ext_csd);
1209 if (err) {
1210 pr_err("%s: error %d sending ext_csd\n",
1211 req->rq_disk->disk_name, err);
1212 check = MMC_BLK_ABORT;
1213 goto free;
1216 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1217 EXT_CSD_PACKED_FAILURE) &&
1218 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1219 EXT_CSD_PACKED_GENERIC_ERROR)) {
1220 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1221 EXT_CSD_PACKED_INDEXED_ERROR) {
1222 packed->idx_failure =
1223 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1224 check = MMC_BLK_PARTIAL;
1226 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1227 "failure index: %d\n",
1228 req->rq_disk->disk_name, packed->nr_entries,
1229 packed->blocks, packed->idx_failure);
1231 free:
1232 kfree(ext_csd);
1235 return check;
1238 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1239 struct mmc_card *card,
1240 int disable_multi,
1241 struct mmc_queue *mq)
1243 u32 readcmd, writecmd;
1244 struct mmc_blk_request *brq = &mqrq->brq;
1245 struct request *req = mqrq->req;
1246 struct mmc_blk_data *md = mq->data;
1247 bool do_data_tag;
1250 * Reliable writes are used to implement Forced Unit Access and
1251 * REQ_META accesses, and are supported only on MMCs.
1253 * XXX: this really needs a good explanation of why REQ_META
1254 * is treated special.
1256 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1257 (req->cmd_flags & REQ_META)) &&
1258 (rq_data_dir(req) == WRITE) &&
1259 (md->flags & MMC_BLK_REL_WR);
1261 memset(brq, 0, sizeof(struct mmc_blk_request));
1262 brq->mrq.cmd = &brq->cmd;
1263 brq->mrq.data = &brq->data;
1265 brq->cmd.arg = blk_rq_pos(req);
1266 if (!mmc_card_blockaddr(card))
1267 brq->cmd.arg <<= 9;
1268 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1269 brq->data.blksz = 512;
1270 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1271 brq->stop.arg = 0;
1272 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1273 brq->data.blocks = blk_rq_sectors(req);
1276 * The block layer doesn't support all sector count
1277 * restrictions, so we need to be prepared for too big
1278 * requests.
1280 if (brq->data.blocks > card->host->max_blk_count)
1281 brq->data.blocks = card->host->max_blk_count;
1283 if (brq->data.blocks > 1) {
1285 * After a read error, we redo the request one sector
1286 * at a time in order to accurately determine which
1287 * sectors can be read successfully.
1289 if (disable_multi)
1290 brq->data.blocks = 1;
1292 /* Some controllers can't do multiblock reads due to hw bugs */
1293 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1294 rq_data_dir(req) == READ)
1295 brq->data.blocks = 1;
1298 if (brq->data.blocks > 1 || do_rel_wr) {
1299 /* SPI multiblock writes terminate using a special
1300 * token, not a STOP_TRANSMISSION request.
1302 if (!mmc_host_is_spi(card->host) ||
1303 rq_data_dir(req) == READ)
1304 brq->mrq.stop = &brq->stop;
1305 readcmd = MMC_READ_MULTIPLE_BLOCK;
1306 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1307 } else {
1308 brq->mrq.stop = NULL;
1309 readcmd = MMC_READ_SINGLE_BLOCK;
1310 writecmd = MMC_WRITE_BLOCK;
1312 if (rq_data_dir(req) == READ) {
1313 brq->cmd.opcode = readcmd;
1314 brq->data.flags |= MMC_DATA_READ;
1315 } else {
1316 brq->cmd.opcode = writecmd;
1317 brq->data.flags |= MMC_DATA_WRITE;
1320 if (do_rel_wr)
1321 mmc_apply_rel_rw(brq, card, req);
1324 * Data tag is used only during writing meta data to speed
1325 * up write and any subsequent read of this meta data
1327 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1328 (req->cmd_flags & REQ_META) &&
1329 (rq_data_dir(req) == WRITE) &&
1330 ((brq->data.blocks * brq->data.blksz) >=
1331 card->ext_csd.data_tag_unit_size);
1334 * Pre-defined multi-block transfers are preferable to
1335 * open ended-ones (and necessary for reliable writes).
1336 * However, it is not sufficient to just send CMD23,
1337 * and avoid the final CMD12, as on an error condition
1338 * CMD12 (stop) needs to be sent anyway. This, coupled
1339 * with Auto-CMD23 enhancements provided by some
1340 * hosts, means that the complexity of dealing
1341 * with this is best left to the host. If CMD23 is
1342 * supported by card and host, we'll fill sbc in and let
1343 * the host deal with handling it correctly. This means
1344 * that for hosts that don't expose MMC_CAP_CMD23, no
1345 * change of behavior will be observed.
1347 * N.B: Some MMC cards experience perf degradation.
1348 * We'll avoid using CMD23-bounded multiblock writes for
1349 * these, while retaining features like reliable writes.
1351 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1352 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1353 do_data_tag)) {
1354 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1355 brq->sbc.arg = brq->data.blocks |
1356 (do_rel_wr ? (1 << 31) : 0) |
1357 (do_data_tag ? (1 << 29) : 0);
1358 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1359 brq->mrq.sbc = &brq->sbc;
1362 mmc_set_data_timeout(&brq->data, card);
1364 brq->data.sg = mqrq->sg;
1365 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1368 * Adjust the sg list so it is the same size as the
1369 * request.
1371 if (brq->data.blocks != blk_rq_sectors(req)) {
1372 int i, data_size = brq->data.blocks << 9;
1373 struct scatterlist *sg;
1375 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1376 data_size -= sg->length;
1377 if (data_size <= 0) {
1378 sg->length += data_size;
1379 i++;
1380 break;
1383 brq->data.sg_len = i;
1386 mqrq->mmc_active.mrq = &brq->mrq;
1387 mqrq->mmc_active.err_check = mmc_blk_err_check;
1389 mmc_queue_bounce_pre(mqrq);
1392 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1393 struct mmc_card *card)
1395 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1396 unsigned int max_seg_sz = queue_max_segment_size(q);
1397 unsigned int len, nr_segs = 0;
1399 do {
1400 len = min(hdr_sz, max_seg_sz);
1401 hdr_sz -= len;
1402 nr_segs++;
1403 } while (hdr_sz);
1405 return nr_segs;
1408 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1410 struct request_queue *q = mq->queue;
1411 struct mmc_card *card = mq->card;
1412 struct request *cur = req, *next = NULL;
1413 struct mmc_blk_data *md = mq->data;
1414 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1415 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1416 unsigned int req_sectors = 0, phys_segments = 0;
1417 unsigned int max_blk_count, max_phys_segs;
1418 bool put_back = true;
1419 u8 max_packed_rw = 0;
1420 u8 reqs = 0;
1422 if (!(md->flags & MMC_BLK_PACKED_CMD))
1423 goto no_packed;
1425 if ((rq_data_dir(cur) == WRITE) &&
1426 mmc_host_packed_wr(card->host))
1427 max_packed_rw = card->ext_csd.max_packed_writes;
1429 if (max_packed_rw == 0)
1430 goto no_packed;
1432 if (mmc_req_rel_wr(cur) &&
1433 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1434 goto no_packed;
1436 if (mmc_large_sector(card) &&
1437 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1438 goto no_packed;
1440 mmc_blk_clear_packed(mqrq);
1442 max_blk_count = min(card->host->max_blk_count,
1443 card->host->max_req_size >> 9);
1444 if (unlikely(max_blk_count > 0xffff))
1445 max_blk_count = 0xffff;
1447 max_phys_segs = queue_max_segments(q);
1448 req_sectors += blk_rq_sectors(cur);
1449 phys_segments += cur->nr_phys_segments;
1451 if (rq_data_dir(cur) == WRITE) {
1452 req_sectors += mmc_large_sector(card) ? 8 : 1;
1453 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1456 do {
1457 if (reqs >= max_packed_rw - 1) {
1458 put_back = false;
1459 break;
1462 spin_lock_irq(q->queue_lock);
1463 next = blk_fetch_request(q);
1464 spin_unlock_irq(q->queue_lock);
1465 if (!next) {
1466 put_back = false;
1467 break;
1470 if (mmc_large_sector(card) &&
1471 !IS_ALIGNED(blk_rq_sectors(next), 8))
1472 break;
1474 if (next->cmd_flags & REQ_DISCARD ||
1475 next->cmd_flags & REQ_FLUSH)
1476 break;
1478 if (rq_data_dir(cur) != rq_data_dir(next))
1479 break;
1481 if (mmc_req_rel_wr(next) &&
1482 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1483 break;
1485 req_sectors += blk_rq_sectors(next);
1486 if (req_sectors > max_blk_count)
1487 break;
1489 phys_segments += next->nr_phys_segments;
1490 if (phys_segments > max_phys_segs)
1491 break;
1493 list_add_tail(&next->queuelist, &mqrq->packed->list);
1494 cur = next;
1495 reqs++;
1496 } while (1);
1498 if (put_back) {
1499 spin_lock_irq(q->queue_lock);
1500 blk_requeue_request(q, next);
1501 spin_unlock_irq(q->queue_lock);
1504 if (reqs > 0) {
1505 list_add(&req->queuelist, &mqrq->packed->list);
1506 mqrq->packed->nr_entries = ++reqs;
1507 mqrq->packed->retries = reqs;
1508 return reqs;
1511 no_packed:
1512 mqrq->cmd_type = MMC_PACKED_NONE;
1513 return 0;
1516 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1517 struct mmc_card *card,
1518 struct mmc_queue *mq)
1520 struct mmc_blk_request *brq = &mqrq->brq;
1521 struct request *req = mqrq->req;
1522 struct request *prq;
1523 struct mmc_blk_data *md = mq->data;
1524 struct mmc_packed *packed = mqrq->packed;
1525 bool do_rel_wr, do_data_tag;
1526 u32 *packed_cmd_hdr;
1527 u8 hdr_blocks;
1528 u8 i = 1;
1530 BUG_ON(!packed);
1532 mqrq->cmd_type = MMC_PACKED_WRITE;
1533 packed->blocks = 0;
1534 packed->idx_failure = MMC_PACKED_NR_IDX;
1536 packed_cmd_hdr = packed->cmd_hdr;
1537 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1538 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1539 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1540 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1543 * Argument for each entry of packed group
1545 list_for_each_entry(prq, &packed->list, queuelist) {
1546 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1547 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1548 (prq->cmd_flags & REQ_META) &&
1549 (rq_data_dir(prq) == WRITE) &&
1550 ((brq->data.blocks * brq->data.blksz) >=
1551 card->ext_csd.data_tag_unit_size);
1552 /* Argument of CMD23 */
1553 packed_cmd_hdr[(i * 2)] =
1554 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1555 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1556 blk_rq_sectors(prq);
1557 /* Argument of CMD18 or CMD25 */
1558 packed_cmd_hdr[((i * 2)) + 1] =
1559 mmc_card_blockaddr(card) ?
1560 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1561 packed->blocks += blk_rq_sectors(prq);
1562 i++;
1565 memset(brq, 0, sizeof(struct mmc_blk_request));
1566 brq->mrq.cmd = &brq->cmd;
1567 brq->mrq.data = &brq->data;
1568 brq->mrq.sbc = &brq->sbc;
1569 brq->mrq.stop = &brq->stop;
1571 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1572 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1573 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1575 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1576 brq->cmd.arg = blk_rq_pos(req);
1577 if (!mmc_card_blockaddr(card))
1578 brq->cmd.arg <<= 9;
1579 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1581 brq->data.blksz = 512;
1582 brq->data.blocks = packed->blocks + hdr_blocks;
1583 brq->data.flags |= MMC_DATA_WRITE;
1585 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1586 brq->stop.arg = 0;
1587 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1589 mmc_set_data_timeout(&brq->data, card);
1591 brq->data.sg = mqrq->sg;
1592 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1594 mqrq->mmc_active.mrq = &brq->mrq;
1595 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1597 mmc_queue_bounce_pre(mqrq);
1600 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1601 struct mmc_blk_request *brq, struct request *req,
1602 int ret)
1604 struct mmc_queue_req *mq_rq;
1605 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1608 * If this is an SD card and we're writing, we can first
1609 * mark the known good sectors as ok.
1611 * If the card is not SD, we can still ok written sectors
1612 * as reported by the controller (which might be less than
1613 * the real number of written sectors, but never more).
1615 if (mmc_card_sd(card)) {
1616 u32 blocks;
1618 blocks = mmc_sd_num_wr_blocks(card);
1619 if (blocks != (u32)-1) {
1620 ret = blk_end_request(req, 0, blocks << 9);
1622 } else {
1623 if (!mmc_packed_cmd(mq_rq->cmd_type))
1624 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1626 return ret;
1629 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1631 struct request *prq;
1632 struct mmc_packed *packed = mq_rq->packed;
1633 int idx = packed->idx_failure, i = 0;
1634 int ret = 0;
1636 BUG_ON(!packed);
1638 while (!list_empty(&packed->list)) {
1639 prq = list_entry_rq(packed->list.next);
1640 if (idx == i) {
1641 /* retry from error index */
1642 packed->nr_entries -= idx;
1643 mq_rq->req = prq;
1644 ret = 1;
1646 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1647 list_del_init(&prq->queuelist);
1648 mmc_blk_clear_packed(mq_rq);
1650 return ret;
1652 list_del_init(&prq->queuelist);
1653 blk_end_request(prq, 0, blk_rq_bytes(prq));
1654 i++;
1657 mmc_blk_clear_packed(mq_rq);
1658 return ret;
1661 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1663 struct request *prq;
1664 struct mmc_packed *packed = mq_rq->packed;
1666 BUG_ON(!packed);
1668 while (!list_empty(&packed->list)) {
1669 prq = list_entry_rq(packed->list.next);
1670 list_del_init(&prq->queuelist);
1671 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1674 mmc_blk_clear_packed(mq_rq);
1677 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1678 struct mmc_queue_req *mq_rq)
1680 struct request *prq;
1681 struct request_queue *q = mq->queue;
1682 struct mmc_packed *packed = mq_rq->packed;
1684 BUG_ON(!packed);
1686 while (!list_empty(&packed->list)) {
1687 prq = list_entry_rq(packed->list.prev);
1688 if (prq->queuelist.prev != &packed->list) {
1689 list_del_init(&prq->queuelist);
1690 spin_lock_irq(q->queue_lock);
1691 blk_requeue_request(mq->queue, prq);
1692 spin_unlock_irq(q->queue_lock);
1693 } else {
1694 list_del_init(&prq->queuelist);
1698 mmc_blk_clear_packed(mq_rq);
1701 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1703 struct mmc_blk_data *md = mq->data;
1704 struct mmc_card *card = md->queue.card;
1705 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1706 int ret = 1, disable_multi = 0, retry = 0, type;
1707 enum mmc_blk_status status;
1708 struct mmc_queue_req *mq_rq;
1709 struct request *req = rqc;
1710 struct mmc_async_req *areq;
1711 const u8 packed_nr = 2;
1712 u8 reqs = 0;
1714 if (!rqc && !mq->mqrq_prev->req)
1715 return 0;
1717 if (rqc)
1718 reqs = mmc_blk_prep_packed_list(mq, rqc);
1720 do {
1721 if (rqc) {
1723 * When 4KB native sector is enabled, only 8 blocks
1724 * multiple read or write is allowed
1726 if ((brq->data.blocks & 0x07) &&
1727 (card->ext_csd.data_sector_size == 4096)) {
1728 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1729 req->rq_disk->disk_name);
1730 mq_rq = mq->mqrq_cur;
1731 goto cmd_abort;
1734 if (reqs >= packed_nr)
1735 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1736 card, mq);
1737 else
1738 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1739 areq = &mq->mqrq_cur->mmc_active;
1740 } else
1741 areq = NULL;
1742 areq = mmc_start_req(card->host, areq, (int *) &status);
1743 if (!areq) {
1744 if (status == MMC_BLK_NEW_REQUEST)
1745 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1746 return 0;
1749 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1750 brq = &mq_rq->brq;
1751 req = mq_rq->req;
1752 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1753 mmc_queue_bounce_post(mq_rq);
1755 switch (status) {
1756 case MMC_BLK_SUCCESS:
1757 case MMC_BLK_PARTIAL:
1759 * A block was successfully transferred.
1761 mmc_blk_reset_success(md, type);
1763 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1764 ret = mmc_blk_end_packed_req(mq_rq);
1765 break;
1766 } else {
1767 ret = blk_end_request(req, 0,
1768 brq->data.bytes_xfered);
1772 * If the blk_end_request function returns non-zero even
1773 * though all data has been transferred and no errors
1774 * were returned by the host controller, it's a bug.
1776 if (status == MMC_BLK_SUCCESS && ret) {
1777 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1778 __func__, blk_rq_bytes(req),
1779 brq->data.bytes_xfered);
1780 rqc = NULL;
1781 goto cmd_abort;
1783 break;
1784 case MMC_BLK_CMD_ERR:
1785 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1786 if (!mmc_blk_reset(md, card->host, type))
1787 break;
1788 goto cmd_abort;
1789 case MMC_BLK_RETRY:
1790 if (retry++ < 5)
1791 break;
1792 /* Fall through */
1793 case MMC_BLK_ABORT:
1794 if (!mmc_blk_reset(md, card->host, type))
1795 break;
1796 goto cmd_abort;
1797 case MMC_BLK_DATA_ERR: {
1798 int err;
1800 err = mmc_blk_reset(md, card->host, type);
1801 if (!err)
1802 break;
1803 if (err == -ENODEV ||
1804 mmc_packed_cmd(mq_rq->cmd_type))
1805 goto cmd_abort;
1806 /* Fall through */
1808 case MMC_BLK_ECC_ERR:
1809 if (brq->data.blocks > 1) {
1810 /* Redo read one sector at a time */
1811 pr_warning("%s: retrying using single block read\n",
1812 req->rq_disk->disk_name);
1813 disable_multi = 1;
1814 break;
1817 * After an error, we redo I/O one sector at a
1818 * time, so we only reach here after trying to
1819 * read a single sector.
1821 ret = blk_end_request(req, -EIO,
1822 brq->data.blksz);
1823 if (!ret)
1824 goto start_new_req;
1825 break;
1826 case MMC_BLK_NOMEDIUM:
1827 goto cmd_abort;
1828 default:
1829 pr_err("%s: Unhandled return value (%d)",
1830 req->rq_disk->disk_name, status);
1831 goto cmd_abort;
1834 if (ret) {
1835 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1836 if (!mq_rq->packed->retries)
1837 goto cmd_abort;
1838 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1839 mmc_start_req(card->host,
1840 &mq_rq->mmc_active, NULL);
1841 } else {
1844 * In case of a incomplete request
1845 * prepare it again and resend.
1847 mmc_blk_rw_rq_prep(mq_rq, card,
1848 disable_multi, mq);
1849 mmc_start_req(card->host,
1850 &mq_rq->mmc_active, NULL);
1853 } while (ret);
1855 return 1;
1857 cmd_abort:
1858 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1859 mmc_blk_abort_packed_req(mq_rq);
1860 } else {
1861 if (mmc_card_removed(card))
1862 req->cmd_flags |= REQ_QUIET;
1863 while (ret)
1864 ret = blk_end_request(req, -EIO,
1865 blk_rq_cur_bytes(req));
1868 start_new_req:
1869 if (rqc) {
1870 if (mmc_card_removed(card)) {
1871 rqc->cmd_flags |= REQ_QUIET;
1872 blk_end_request_all(rqc, -EIO);
1873 } else {
1875 * If current request is packed, it needs to put back.
1877 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
1878 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
1880 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1881 mmc_start_req(card->host,
1882 &mq->mqrq_cur->mmc_active, NULL);
1886 return 0;
1889 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1891 int ret;
1892 struct mmc_blk_data *md = mq->data;
1893 struct mmc_card *card = md->queue.card;
1894 struct mmc_host *host = card->host;
1895 unsigned long flags;
1897 if (req && !mq->mqrq_prev->req)
1898 /* claim host only for the first request */
1899 mmc_claim_host(card->host);
1901 ret = mmc_blk_part_switch(card, md);
1902 if (ret) {
1903 if (req) {
1904 blk_end_request_all(req, -EIO);
1906 ret = 0;
1907 goto out;
1910 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
1911 if (req && req->cmd_flags & REQ_DISCARD) {
1912 /* complete ongoing async transfer before issuing discard */
1913 if (card->host->areq)
1914 mmc_blk_issue_rw_rq(mq, NULL);
1915 if (req->cmd_flags & REQ_SECURE &&
1916 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1917 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1918 else
1919 ret = mmc_blk_issue_discard_rq(mq, req);
1920 } else if (req && req->cmd_flags & REQ_FLUSH) {
1921 /* complete ongoing async transfer before issuing flush */
1922 if (card->host->areq)
1923 mmc_blk_issue_rw_rq(mq, NULL);
1924 ret = mmc_blk_issue_flush(mq, req);
1925 } else {
1926 if (!req && host->areq) {
1927 spin_lock_irqsave(&host->context_info.lock, flags);
1928 host->context_info.is_waiting_last_req = true;
1929 spin_unlock_irqrestore(&host->context_info.lock, flags);
1931 ret = mmc_blk_issue_rw_rq(mq, req);
1934 out:
1935 if (!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST))
1936 /* release host only when there are no more requests */
1937 mmc_release_host(card->host);
1938 return ret;
1941 static inline int mmc_blk_readonly(struct mmc_card *card)
1943 return mmc_card_readonly(card) ||
1944 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1947 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1948 struct device *parent,
1949 sector_t size,
1950 bool default_ro,
1951 const char *subname,
1952 int area_type)
1954 struct mmc_blk_data *md;
1955 int devidx, ret;
1957 devidx = find_first_zero_bit(dev_use, max_devices);
1958 if (devidx >= max_devices)
1959 return ERR_PTR(-ENOSPC);
1960 __set_bit(devidx, dev_use);
1962 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1963 if (!md) {
1964 ret = -ENOMEM;
1965 goto out;
1969 * !subname implies we are creating main mmc_blk_data that will be
1970 * associated with mmc_card with mmc_set_drvdata. Due to device
1971 * partitions, devidx will not coincide with a per-physical card
1972 * index anymore so we keep track of a name index.
1974 if (!subname) {
1975 md->name_idx = find_first_zero_bit(name_use, max_devices);
1976 __set_bit(md->name_idx, name_use);
1977 } else
1978 md->name_idx = ((struct mmc_blk_data *)
1979 dev_to_disk(parent)->private_data)->name_idx;
1981 md->area_type = area_type;
1984 * Set the read-only status based on the supported commands
1985 * and the write protect switch.
1987 md->read_only = mmc_blk_readonly(card);
1989 md->disk = alloc_disk(perdev_minors);
1990 if (md->disk == NULL) {
1991 ret = -ENOMEM;
1992 goto err_kfree;
1995 spin_lock_init(&md->lock);
1996 INIT_LIST_HEAD(&md->part);
1997 md->usage = 1;
1999 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2000 if (ret)
2001 goto err_putdisk;
2003 md->queue.issue_fn = mmc_blk_issue_rq;
2004 md->queue.data = md;
2006 md->disk->major = MMC_BLOCK_MAJOR;
2007 md->disk->first_minor = devidx * perdev_minors;
2008 md->disk->fops = &mmc_bdops;
2009 md->disk->private_data = md;
2010 md->disk->queue = md->queue.queue;
2011 md->disk->driverfs_dev = parent;
2012 set_disk_ro(md->disk, md->read_only || default_ro);
2013 if (area_type & MMC_BLK_DATA_AREA_RPMB)
2014 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2017 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2019 * - be set for removable media with permanent block devices
2020 * - be unset for removable block devices with permanent media
2022 * Since MMC block devices clearly fall under the second
2023 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2024 * should use the block device creation/destruction hotplug
2025 * messages to tell when the card is present.
2028 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2029 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2031 if (mmc_card_mmc(card))
2032 blk_queue_logical_block_size(md->queue.queue,
2033 card->ext_csd.data_sector_size);
2034 else
2035 blk_queue_logical_block_size(md->queue.queue, 512);
2037 set_capacity(md->disk, size);
2039 if (mmc_host_cmd23(card->host)) {
2040 if (mmc_card_mmc(card) ||
2041 (mmc_card_sd(card) &&
2042 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2043 md->flags |= MMC_BLK_CMD23;
2046 if (mmc_card_mmc(card) &&
2047 md->flags & MMC_BLK_CMD23 &&
2048 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2049 card->ext_csd.rel_sectors)) {
2050 md->flags |= MMC_BLK_REL_WR;
2051 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2054 if (mmc_card_mmc(card) &&
2055 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2056 (md->flags & MMC_BLK_CMD23) &&
2057 card->ext_csd.packed_event_en) {
2058 if (!mmc_packed_init(&md->queue, card))
2059 md->flags |= MMC_BLK_PACKED_CMD;
2062 return md;
2064 err_putdisk:
2065 put_disk(md->disk);
2066 err_kfree:
2067 kfree(md);
2068 out:
2069 return ERR_PTR(ret);
2072 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2074 sector_t size;
2075 struct mmc_blk_data *md;
2077 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2079 * The EXT_CSD sector count is in number or 512 byte
2080 * sectors.
2082 size = card->ext_csd.sectors;
2083 } else {
2085 * The CSD capacity field is in units of read_blkbits.
2086 * set_capacity takes units of 512 bytes.
2088 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2091 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2092 MMC_BLK_DATA_AREA_MAIN);
2093 return md;
2096 static int mmc_blk_alloc_part(struct mmc_card *card,
2097 struct mmc_blk_data *md,
2098 unsigned int part_type,
2099 sector_t size,
2100 bool default_ro,
2101 const char *subname,
2102 int area_type)
2104 char cap_str[10];
2105 struct mmc_blk_data *part_md;
2107 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2108 subname, area_type);
2109 if (IS_ERR(part_md))
2110 return PTR_ERR(part_md);
2111 part_md->part_type = part_type;
2112 list_add(&part_md->part, &md->part);
2114 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2115 cap_str, sizeof(cap_str));
2116 pr_info("%s: %s %s partition %u %s\n",
2117 part_md->disk->disk_name, mmc_card_id(card),
2118 mmc_card_name(card), part_md->part_type, cap_str);
2119 return 0;
2122 /* MMC Physical partitions consist of two boot partitions and
2123 * up to four general purpose partitions.
2124 * For each partition enabled in EXT_CSD a block device will be allocatedi
2125 * to provide access to the partition.
2128 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2130 int idx, ret = 0;
2132 if (!mmc_card_mmc(card))
2133 return 0;
2135 for (idx = 0; idx < card->nr_parts; idx++) {
2136 if (card->part[idx].size) {
2137 ret = mmc_blk_alloc_part(card, md,
2138 card->part[idx].part_cfg,
2139 card->part[idx].size >> 9,
2140 card->part[idx].force_ro,
2141 card->part[idx].name,
2142 card->part[idx].area_type);
2143 if (ret)
2144 return ret;
2148 return ret;
2151 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2153 struct mmc_card *card;
2155 if (md) {
2156 card = md->queue.card;
2157 if (md->disk->flags & GENHD_FL_UP) {
2158 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2159 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2160 card->ext_csd.boot_ro_lockable)
2161 device_remove_file(disk_to_dev(md->disk),
2162 &md->power_ro_lock);
2164 /* Stop new requests from getting into the queue */
2165 del_gendisk(md->disk);
2168 /* Then flush out any already in there */
2169 mmc_cleanup_queue(&md->queue);
2170 if (md->flags & MMC_BLK_PACKED_CMD)
2171 mmc_packed_clean(&md->queue);
2172 mmc_blk_put(md);
2176 static void mmc_blk_remove_parts(struct mmc_card *card,
2177 struct mmc_blk_data *md)
2179 struct list_head *pos, *q;
2180 struct mmc_blk_data *part_md;
2182 __clear_bit(md->name_idx, name_use);
2183 list_for_each_safe(pos, q, &md->part) {
2184 part_md = list_entry(pos, struct mmc_blk_data, part);
2185 list_del(pos);
2186 mmc_blk_remove_req(part_md);
2190 static int mmc_add_disk(struct mmc_blk_data *md)
2192 int ret;
2193 struct mmc_card *card = md->queue.card;
2195 add_disk(md->disk);
2196 md->force_ro.show = force_ro_show;
2197 md->force_ro.store = force_ro_store;
2198 sysfs_attr_init(&md->force_ro.attr);
2199 md->force_ro.attr.name = "force_ro";
2200 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2201 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2202 if (ret)
2203 goto force_ro_fail;
2205 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2206 card->ext_csd.boot_ro_lockable) {
2207 umode_t mode;
2209 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2210 mode = S_IRUGO;
2211 else
2212 mode = S_IRUGO | S_IWUSR;
2214 md->power_ro_lock.show = power_ro_lock_show;
2215 md->power_ro_lock.store = power_ro_lock_store;
2216 sysfs_attr_init(&md->power_ro_lock.attr);
2217 md->power_ro_lock.attr.mode = mode;
2218 md->power_ro_lock.attr.name =
2219 "ro_lock_until_next_power_on";
2220 ret = device_create_file(disk_to_dev(md->disk),
2221 &md->power_ro_lock);
2222 if (ret)
2223 goto power_ro_lock_fail;
2225 return ret;
2227 power_ro_lock_fail:
2228 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2229 force_ro_fail:
2230 del_gendisk(md->disk);
2232 return ret;
2235 #define CID_MANFID_SANDISK 0x2
2236 #define CID_MANFID_TOSHIBA 0x11
2237 #define CID_MANFID_MICRON 0x13
2238 #define CID_MANFID_SAMSUNG 0x15
2240 static const struct mmc_fixup blk_fixups[] =
2242 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2243 MMC_QUIRK_INAND_CMD38),
2244 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2245 MMC_QUIRK_INAND_CMD38),
2246 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2247 MMC_QUIRK_INAND_CMD38),
2248 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2249 MMC_QUIRK_INAND_CMD38),
2250 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2251 MMC_QUIRK_INAND_CMD38),
2254 * Some MMC cards experience performance degradation with CMD23
2255 * instead of CMD12-bounded multiblock transfers. For now we'll
2256 * black list what's bad...
2257 * - Certain Toshiba cards.
2259 * N.B. This doesn't affect SD cards.
2261 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2262 MMC_QUIRK_BLK_NO_CMD23),
2263 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2264 MMC_QUIRK_BLK_NO_CMD23),
2265 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2266 MMC_QUIRK_BLK_NO_CMD23),
2269 * Some Micron MMC cards needs longer data read timeout than
2270 * indicated in CSD.
2272 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2273 MMC_QUIRK_LONG_READ_TIME),
2276 * On these Samsung MoviNAND parts, performing secure erase or
2277 * secure trim can result in unrecoverable corruption due to a
2278 * firmware bug.
2280 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2281 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2282 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2283 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2284 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2285 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2286 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2287 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2288 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2289 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2290 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2291 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2292 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2293 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2294 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2295 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2297 END_FIXUP
2300 static int mmc_blk_probe(struct mmc_card *card)
2302 struct mmc_blk_data *md, *part_md;
2303 char cap_str[10];
2306 * Check that the card supports the command class(es) we need.
2308 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2309 return -ENODEV;
2311 md = mmc_blk_alloc(card);
2312 if (IS_ERR(md))
2313 return PTR_ERR(md);
2315 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
2316 cap_str, sizeof(cap_str));
2317 pr_info("%s: %s %s %s %s\n",
2318 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2319 cap_str, md->read_only ? "(ro)" : "");
2321 if (mmc_blk_alloc_parts(card, md))
2322 goto out;
2324 mmc_set_drvdata(card, md);
2325 mmc_fixup_device(card, blk_fixups);
2327 if (mmc_add_disk(md))
2328 goto out;
2330 list_for_each_entry(part_md, &md->part, part) {
2331 if (mmc_add_disk(part_md))
2332 goto out;
2334 return 0;
2336 out:
2337 mmc_blk_remove_parts(card, md);
2338 mmc_blk_remove_req(md);
2339 return 0;
2342 static void mmc_blk_remove(struct mmc_card *card)
2344 struct mmc_blk_data *md = mmc_get_drvdata(card);
2346 mmc_blk_remove_parts(card, md);
2347 mmc_claim_host(card->host);
2348 mmc_blk_part_switch(card, md);
2349 mmc_release_host(card->host);
2350 mmc_blk_remove_req(md);
2351 mmc_set_drvdata(card, NULL);
2354 #ifdef CONFIG_PM
2355 static int mmc_blk_suspend(struct mmc_card *card)
2357 struct mmc_blk_data *part_md;
2358 struct mmc_blk_data *md = mmc_get_drvdata(card);
2360 if (md) {
2361 mmc_queue_suspend(&md->queue);
2362 list_for_each_entry(part_md, &md->part, part) {
2363 mmc_queue_suspend(&part_md->queue);
2366 return 0;
2369 static int mmc_blk_resume(struct mmc_card *card)
2371 struct mmc_blk_data *part_md;
2372 struct mmc_blk_data *md = mmc_get_drvdata(card);
2374 if (md) {
2376 * Resume involves the card going into idle state,
2377 * so current partition is always the main one.
2379 md->part_curr = md->part_type;
2380 mmc_queue_resume(&md->queue);
2381 list_for_each_entry(part_md, &md->part, part) {
2382 mmc_queue_resume(&part_md->queue);
2385 return 0;
2387 #else
2388 #define mmc_blk_suspend NULL
2389 #define mmc_blk_resume NULL
2390 #endif
2392 static struct mmc_driver mmc_driver = {
2393 .drv = {
2394 .name = "mmcblk",
2396 .probe = mmc_blk_probe,
2397 .remove = mmc_blk_remove,
2398 .suspend = mmc_blk_suspend,
2399 .resume = mmc_blk_resume,
2402 static int __init mmc_blk_init(void)
2404 int res;
2406 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2407 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2409 max_devices = 256 / perdev_minors;
2411 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2412 if (res)
2413 goto out;
2415 res = mmc_register_driver(&mmc_driver);
2416 if (res)
2417 goto out2;
2419 return 0;
2420 out2:
2421 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2422 out:
2423 return res;
2426 static void __exit mmc_blk_exit(void)
2428 mmc_unregister_driver(&mmc_driver);
2429 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2432 module_init(mmc_blk_init);
2433 module_exit(mmc_blk_exit);
2435 MODULE_LICENSE("GPL");
2436 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");