ipv[4|6]: correct dropwatch false positive in local_deliver_finish
[linux/fpc-iii.git] / drivers / spi / spi-bitbang.c
bloba63d7da3bfe2209bebd921bfc81cdafb5d0a8cfd
1 /*
2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi_bitbang.h>
33 /*----------------------------------------------------------------------*/
36 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
37 * Use this for GPIO or shift-register level hardware APIs.
39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
40 * to glue code. These bitbang setup() and cleanup() routines are always
41 * used, though maybe they're called from controller-aware code.
43 * chipselect() and friends may use use spi_device->controller_data and
44 * controller registers as appropriate.
47 * NOTE: SPI controller pins can often be used as GPIO pins instead,
48 * which means you could use a bitbang driver either to get hardware
49 * working quickly, or testing for differences that aren't speed related.
52 struct spi_bitbang_cs {
53 unsigned nsecs; /* (clock cycle time)/2 */
54 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
55 u32 word, u8 bits);
56 unsigned (*txrx_bufs)(struct spi_device *,
57 u32 (*txrx_word)(
58 struct spi_device *spi,
59 unsigned nsecs,
60 u32 word, u8 bits),
61 unsigned, struct spi_transfer *);
64 static unsigned bitbang_txrx_8(
65 struct spi_device *spi,
66 u32 (*txrx_word)(struct spi_device *spi,
67 unsigned nsecs,
68 u32 word, u8 bits),
69 unsigned ns,
70 struct spi_transfer *t
71 ) {
72 unsigned bits = t->bits_per_word;
73 unsigned count = t->len;
74 const u8 *tx = t->tx_buf;
75 u8 *rx = t->rx_buf;
77 while (likely(count > 0)) {
78 u8 word = 0;
80 if (tx)
81 word = *tx++;
82 word = txrx_word(spi, ns, word, bits);
83 if (rx)
84 *rx++ = word;
85 count -= 1;
87 return t->len - count;
90 static unsigned bitbang_txrx_16(
91 struct spi_device *spi,
92 u32 (*txrx_word)(struct spi_device *spi,
93 unsigned nsecs,
94 u32 word, u8 bits),
95 unsigned ns,
96 struct spi_transfer *t
97 ) {
98 unsigned bits = t->bits_per_word;
99 unsigned count = t->len;
100 const u16 *tx = t->tx_buf;
101 u16 *rx = t->rx_buf;
103 while (likely(count > 1)) {
104 u16 word = 0;
106 if (tx)
107 word = *tx++;
108 word = txrx_word(spi, ns, word, bits);
109 if (rx)
110 *rx++ = word;
111 count -= 2;
113 return t->len - count;
116 static unsigned bitbang_txrx_32(
117 struct spi_device *spi,
118 u32 (*txrx_word)(struct spi_device *spi,
119 unsigned nsecs,
120 u32 word, u8 bits),
121 unsigned ns,
122 struct spi_transfer *t
124 unsigned bits = t->bits_per_word;
125 unsigned count = t->len;
126 const u32 *tx = t->tx_buf;
127 u32 *rx = t->rx_buf;
129 while (likely(count > 3)) {
130 u32 word = 0;
132 if (tx)
133 word = *tx++;
134 word = txrx_word(spi, ns, word, bits);
135 if (rx)
136 *rx++ = word;
137 count -= 4;
139 return t->len - count;
142 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
144 struct spi_bitbang_cs *cs = spi->controller_state;
145 u8 bits_per_word;
146 u32 hz;
148 if (t) {
149 bits_per_word = t->bits_per_word;
150 hz = t->speed_hz;
151 } else {
152 bits_per_word = 0;
153 hz = 0;
156 /* spi_transfer level calls that work per-word */
157 if (!bits_per_word)
158 bits_per_word = spi->bits_per_word;
159 if (bits_per_word <= 8)
160 cs->txrx_bufs = bitbang_txrx_8;
161 else if (bits_per_word <= 16)
162 cs->txrx_bufs = bitbang_txrx_16;
163 else if (bits_per_word <= 32)
164 cs->txrx_bufs = bitbang_txrx_32;
165 else
166 return -EINVAL;
168 /* nsecs = (clock period)/2 */
169 if (!hz)
170 hz = spi->max_speed_hz;
171 if (hz) {
172 cs->nsecs = (1000000000/2) / hz;
173 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174 return -EINVAL;
177 return 0;
179 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
182 * spi_bitbang_setup - default setup for per-word I/O loops
184 int spi_bitbang_setup(struct spi_device *spi)
186 struct spi_bitbang_cs *cs = spi->controller_state;
187 struct spi_bitbang *bitbang;
188 int retval;
189 unsigned long flags;
191 bitbang = spi_master_get_devdata(spi->master);
193 if (!cs) {
194 cs = kzalloc(sizeof *cs, GFP_KERNEL);
195 if (!cs)
196 return -ENOMEM;
197 spi->controller_state = cs;
200 /* per-word shift register access, in hardware or bitbanging */
201 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202 if (!cs->txrx_word)
203 return -EINVAL;
205 retval = bitbang->setup_transfer(spi, NULL);
206 if (retval < 0)
207 return retval;
209 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
211 /* NOTE we _need_ to call chipselect() early, ideally with adapter
212 * setup, unless the hardware defaults cooperate to avoid confusion
213 * between normal (active low) and inverted chipselects.
216 /* deselect chip (low or high) */
217 spin_lock_irqsave(&bitbang->lock, flags);
218 if (!bitbang->busy) {
219 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220 ndelay(cs->nsecs);
222 spin_unlock_irqrestore(&bitbang->lock, flags);
224 return 0;
226 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
231 void spi_bitbang_cleanup(struct spi_device *spi)
233 kfree(spi->controller_state);
235 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
237 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
239 struct spi_bitbang_cs *cs = spi->controller_state;
240 unsigned nsecs = cs->nsecs;
242 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
245 /*----------------------------------------------------------------------*/
248 * SECOND PART ... simple transfer queue runner.
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence. Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
258 static void bitbang_work(struct work_struct *work)
260 struct spi_bitbang *bitbang =
261 container_of(work, struct spi_bitbang, work);
262 unsigned long flags;
263 struct spi_message *m, *_m;
265 spin_lock_irqsave(&bitbang->lock, flags);
266 bitbang->busy = 1;
267 list_for_each_entry_safe(m, _m, &bitbang->queue, queue) {
268 struct spi_device *spi;
269 unsigned nsecs;
270 struct spi_transfer *t = NULL;
271 unsigned tmp;
272 unsigned cs_change;
273 int status;
274 int do_setup = -1;
276 list_del(&m->queue);
277 spin_unlock_irqrestore(&bitbang->lock, flags);
279 /* FIXME this is made-up ... the correct value is known to
280 * word-at-a-time bitbang code, and presumably chipselect()
281 * should enforce these requirements too?
283 nsecs = 100;
285 spi = m->spi;
286 tmp = 0;
287 cs_change = 1;
288 status = 0;
290 list_for_each_entry (t, &m->transfers, transfer_list) {
292 /* override speed or wordsize? */
293 if (t->speed_hz || t->bits_per_word)
294 do_setup = 1;
296 /* init (-1) or override (1) transfer params */
297 if (do_setup != 0) {
298 status = bitbang->setup_transfer(spi, t);
299 if (status < 0)
300 break;
301 if (do_setup == -1)
302 do_setup = 0;
305 /* set up default clock polarity, and activate chip;
306 * this implicitly updates clock and spi modes as
307 * previously recorded for this device via setup().
308 * (and also deselects any other chip that might be
309 * selected ...)
311 if (cs_change) {
312 bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
313 ndelay(nsecs);
315 cs_change = t->cs_change;
316 if (!t->tx_buf && !t->rx_buf && t->len) {
317 status = -EINVAL;
318 break;
321 /* transfer data. the lower level code handles any
322 * new dma mappings it needs. our caller always gave
323 * us dma-safe buffers.
325 if (t->len) {
326 /* REVISIT dma API still needs a designated
327 * DMA_ADDR_INVALID; ~0 might be better.
329 if (!m->is_dma_mapped)
330 t->rx_dma = t->tx_dma = 0;
331 status = bitbang->txrx_bufs(spi, t);
333 if (status > 0)
334 m->actual_length += status;
335 if (status != t->len) {
336 /* always report some kind of error */
337 if (status >= 0)
338 status = -EREMOTEIO;
339 break;
341 status = 0;
343 /* protocol tweaks before next transfer */
344 if (t->delay_usecs)
345 udelay(t->delay_usecs);
347 if (cs_change && !list_is_last(&t->transfer_list, &m->transfers)) {
348 /* sometimes a short mid-message deselect of the chip
349 * may be needed to terminate a mode or command
351 ndelay(nsecs);
352 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
353 ndelay(nsecs);
357 m->status = status;
358 m->complete(m->context);
360 /* normally deactivate chipselect ... unless no error and
361 * cs_change has hinted that the next message will probably
362 * be for this chip too.
364 if (!(status == 0 && cs_change)) {
365 ndelay(nsecs);
366 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
367 ndelay(nsecs);
370 spin_lock_irqsave(&bitbang->lock, flags);
372 bitbang->busy = 0;
373 spin_unlock_irqrestore(&bitbang->lock, flags);
377 * spi_bitbang_transfer - default submit to transfer queue
379 int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
381 struct spi_bitbang *bitbang;
382 unsigned long flags;
383 int status = 0;
385 m->actual_length = 0;
386 m->status = -EINPROGRESS;
388 bitbang = spi_master_get_devdata(spi->master);
390 spin_lock_irqsave(&bitbang->lock, flags);
391 if (!spi->max_speed_hz)
392 status = -ENETDOWN;
393 else {
394 list_add_tail(&m->queue, &bitbang->queue);
395 queue_work(bitbang->workqueue, &bitbang->work);
397 spin_unlock_irqrestore(&bitbang->lock, flags);
399 return status;
401 EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
403 /*----------------------------------------------------------------------*/
406 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
407 * @bitbang: driver handle
409 * Caller should have zero-initialized all parts of the structure, and then
410 * provided callbacks for chip selection and I/O loops. If the master has
411 * a transfer method, its final step should call spi_bitbang_transfer; or,
412 * that's the default if the transfer routine is not initialized. It should
413 * also set up the bus number and number of chipselects.
415 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
416 * hardware that basically exposes a shift register) or per-spi_transfer
417 * (which takes better advantage of hardware like fifos or DMA engines).
419 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
420 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
421 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
422 * routine isn't initialized.
424 * This routine registers the spi_master, which will process requests in a
425 * dedicated task, keeping IRQs unblocked most of the time. To stop
426 * processing those requests, call spi_bitbang_stop().
428 int spi_bitbang_start(struct spi_bitbang *bitbang)
430 struct spi_master *master = bitbang->master;
431 int status;
433 if (!master || !bitbang->chipselect)
434 return -EINVAL;
436 INIT_WORK(&bitbang->work, bitbang_work);
437 spin_lock_init(&bitbang->lock);
438 INIT_LIST_HEAD(&bitbang->queue);
440 if (!master->mode_bits)
441 master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
443 if (!master->transfer)
444 master->transfer = spi_bitbang_transfer;
445 if (!bitbang->txrx_bufs) {
446 bitbang->use_dma = 0;
447 bitbang->txrx_bufs = spi_bitbang_bufs;
448 if (!master->setup) {
449 if (!bitbang->setup_transfer)
450 bitbang->setup_transfer =
451 spi_bitbang_setup_transfer;
452 master->setup = spi_bitbang_setup;
453 master->cleanup = spi_bitbang_cleanup;
455 } else if (!master->setup)
456 return -EINVAL;
457 if (master->transfer == spi_bitbang_transfer &&
458 !bitbang->setup_transfer)
459 return -EINVAL;
461 /* this task is the only thing to touch the SPI bits */
462 bitbang->busy = 0;
463 bitbang->workqueue = create_singlethread_workqueue(
464 dev_name(master->dev.parent));
465 if (bitbang->workqueue == NULL) {
466 status = -EBUSY;
467 goto err1;
470 /* driver may get busy before register() returns, especially
471 * if someone registered boardinfo for devices
473 status = spi_register_master(master);
474 if (status < 0)
475 goto err2;
477 return status;
479 err2:
480 destroy_workqueue(bitbang->workqueue);
481 err1:
482 return status;
484 EXPORT_SYMBOL_GPL(spi_bitbang_start);
487 * spi_bitbang_stop - stops the task providing spi communication
489 int spi_bitbang_stop(struct spi_bitbang *bitbang)
491 spi_unregister_master(bitbang->master);
493 WARN_ON(!list_empty(&bitbang->queue));
495 destroy_workqueue(bitbang->workqueue);
497 return 0;
499 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
501 MODULE_LICENSE("GPL");