2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry
*blk_debugfs_root
;
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
57 DEFINE_IDA(blk_queue_ida
);
60 * For the allocated request tables
62 struct kmem_cache
*request_cachep
;
65 * For queue allocation
67 struct kmem_cache
*blk_requestq_cachep
;
70 * Controlling structure to kblockd
72 static struct workqueue_struct
*kblockd_workqueue
;
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
79 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
83 spin_lock_irqsave(q
->queue_lock
, flags
);
84 queue_flag_set(flag
, q
);
85 spin_unlock_irqrestore(q
->queue_lock
, flags
);
87 EXPORT_SYMBOL(blk_queue_flag_set
);
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
94 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
98 spin_lock_irqsave(q
->queue_lock
, flags
);
99 queue_flag_clear(flag
, q
);
100 spin_unlock_irqrestore(q
->queue_lock
, flags
);
102 EXPORT_SYMBOL(blk_queue_flag_clear
);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
117 spin_lock_irqsave(q
->queue_lock
, flags
);
118 res
= queue_flag_test_and_set(flag
, q
);
119 spin_unlock_irqrestore(q
->queue_lock
, flags
);
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
133 bool blk_queue_flag_test_and_clear(unsigned int flag
, struct request_queue
*q
)
138 spin_lock_irqsave(q
->queue_lock
, flags
);
139 res
= queue_flag_test_and_clear(flag
, q
);
140 spin_unlock_irqrestore(q
->queue_lock
, flags
);
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear
);
146 static void blk_clear_congested(struct request_list
*rl
, int sync
)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl
== &rl
->q
->root_rl
)
156 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
160 static void blk_set_congested(struct request_list
*rl
, int sync
)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
165 /* see blk_clear_congested() */
166 if (rl
== &rl
->q
->root_rl
)
167 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
171 void blk_queue_congestion_threshold(struct request_queue
*q
)
175 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
176 if (nr
> q
->nr_requests
)
178 q
->nr_congestion_on
= nr
;
180 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
183 q
->nr_congestion_off
= nr
;
186 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
188 memset(rq
, 0, sizeof(*rq
));
190 INIT_LIST_HEAD(&rq
->queuelist
);
191 INIT_LIST_HEAD(&rq
->timeout_list
);
194 rq
->__sector
= (sector_t
) -1;
195 INIT_HLIST_NODE(&rq
->hash
);
196 RB_CLEAR_NODE(&rq
->rb_node
);
198 rq
->internal_tag
= -1;
199 rq
->start_time_ns
= ktime_get_ns();
202 EXPORT_SYMBOL(blk_rq_init
);
204 static const struct {
208 [BLK_STS_OK
] = { 0, "" },
209 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
210 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
211 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
212 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
213 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
214 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
215 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
216 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
217 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
219 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
224 /* everything else not covered above: */
225 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
228 blk_status_t
errno_to_blk_status(int errno
)
232 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
233 if (blk_errors
[i
].errno
== errno
)
234 return (__force blk_status_t
)i
;
237 return BLK_STS_IOERR
;
239 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
241 int blk_status_to_errno(blk_status_t status
)
243 int idx
= (__force
int)status
;
245 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
247 return blk_errors
[idx
].errno
;
249 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
251 static void print_req_error(struct request
*req
, blk_status_t status
)
253 int idx
= (__force
int)status
;
255 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
258 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
259 __func__
, blk_errors
[idx
].name
, req
->rq_disk
?
260 req
->rq_disk
->disk_name
: "?",
261 (unsigned long long)blk_rq_pos(req
));
264 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
265 unsigned int nbytes
, blk_status_t error
)
268 bio
->bi_status
= error
;
270 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
271 bio_set_flag(bio
, BIO_QUIET
);
273 bio_advance(bio
, nbytes
);
275 /* don't actually finish bio if it's part of flush sequence */
276 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
280 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
282 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
283 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
284 (unsigned long long) rq
->cmd_flags
);
286 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq
),
288 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
289 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
290 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
292 EXPORT_SYMBOL(blk_dump_rq_flags
);
294 static void blk_delay_work(struct work_struct
*work
)
296 struct request_queue
*q
;
298 q
= container_of(work
, struct request_queue
, delay_work
.work
);
299 spin_lock_irq(q
->queue_lock
);
301 spin_unlock_irq(q
->queue_lock
);
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
312 * restarted around the specified time.
314 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
316 lockdep_assert_held(q
->queue_lock
);
317 WARN_ON_ONCE(q
->mq_ops
);
319 if (likely(!blk_queue_dead(q
)))
320 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
321 msecs_to_jiffies(msecs
));
323 EXPORT_SYMBOL(blk_delay_queue
);
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
334 void blk_start_queue_async(struct request_queue
*q
)
336 lockdep_assert_held(q
->queue_lock
);
337 WARN_ON_ONCE(q
->mq_ops
);
339 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
340 blk_run_queue_async(q
);
342 EXPORT_SYMBOL(blk_start_queue_async
);
345 * blk_start_queue - restart a previously stopped queue
346 * @q: The &struct request_queue in question
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue().
353 void blk_start_queue(struct request_queue
*q
)
355 lockdep_assert_held(q
->queue_lock
);
356 WARN_ON_ONCE(q
->mq_ops
);
358 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
361 EXPORT_SYMBOL(blk_start_queue
);
364 * blk_stop_queue - stop a queue
365 * @q: The &struct request_queue in question
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
375 * blk_start_queue() to restart queue operations.
377 void blk_stop_queue(struct request_queue
*q
)
379 lockdep_assert_held(q
->queue_lock
);
380 WARN_ON_ONCE(q
->mq_ops
);
382 cancel_delayed_work(&q
->delay_work
);
383 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
385 EXPORT_SYMBOL(blk_stop_queue
);
388 * blk_sync_queue - cancel any pending callbacks on a queue
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
396 * that the callbacks might use. The caller must already have made sure
397 * that its ->make_request_fn will not re-add plugging prior to calling
400 * This function does not cancel any asynchronous activity arising
401 * out of elevator or throttling code. That would require elevator_exit()
402 * and blkcg_exit_queue() to be called with queue lock initialized.
405 void blk_sync_queue(struct request_queue
*q
)
407 del_timer_sync(&q
->timeout
);
408 cancel_work_sync(&q
->timeout_work
);
411 struct blk_mq_hw_ctx
*hctx
;
414 cancel_delayed_work_sync(&q
->requeue_work
);
415 queue_for_each_hw_ctx(q
, hctx
, i
)
416 cancel_delayed_work_sync(&hctx
->run_work
);
418 cancel_delayed_work_sync(&q
->delay_work
);
421 EXPORT_SYMBOL(blk_sync_queue
);
424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425 * @q: request queue pointer
427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428 * set and 1 if the flag was already set.
430 int blk_set_preempt_only(struct request_queue
*q
)
432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY
, q
);
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only
);
436 void blk_clear_preempt_only(struct request_queue
*q
)
438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY
, q
);
439 wake_up_all(&q
->mq_freeze_wq
);
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only
);
444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445 * @q: The queue to run
448 * Invoke request handling on a queue if there are any pending requests.
449 * May be used to restart request handling after a request has completed.
450 * This variant runs the queue whether or not the queue has been
451 * stopped. Must be called with the queue lock held and interrupts
452 * disabled. See also @blk_run_queue.
454 inline void __blk_run_queue_uncond(struct request_queue
*q
)
456 lockdep_assert_held(q
->queue_lock
);
457 WARN_ON_ONCE(q
->mq_ops
);
459 if (unlikely(blk_queue_dead(q
)))
463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 * the queue lock internally. As a result multiple threads may be
465 * running such a request function concurrently. Keep track of the
466 * number of active request_fn invocations such that blk_drain_queue()
467 * can wait until all these request_fn calls have finished.
469 q
->request_fn_active
++;
471 q
->request_fn_active
--;
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
476 * __blk_run_queue - run a single device queue
477 * @q: The queue to run
480 * See @blk_run_queue.
482 void __blk_run_queue(struct request_queue
*q
)
484 lockdep_assert_held(q
->queue_lock
);
485 WARN_ON_ONCE(q
->mq_ops
);
487 if (unlikely(blk_queue_stopped(q
)))
490 __blk_run_queue_uncond(q
);
492 EXPORT_SYMBOL(__blk_run_queue
);
495 * blk_run_queue_async - run a single device queue in workqueue context
496 * @q: The queue to run
499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504 * has canceled q->delay_work, callers must hold the queue lock to avoid
505 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
507 void blk_run_queue_async(struct request_queue
*q
)
509 lockdep_assert_held(q
->queue_lock
);
510 WARN_ON_ONCE(q
->mq_ops
);
512 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
513 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
515 EXPORT_SYMBOL(blk_run_queue_async
);
518 * blk_run_queue - run a single device queue
519 * @q: The queue to run
522 * Invoke request handling on this queue, if it has pending work to do.
523 * May be used to restart queueing when a request has completed.
525 void blk_run_queue(struct request_queue
*q
)
529 WARN_ON_ONCE(q
->mq_ops
);
531 spin_lock_irqsave(q
->queue_lock
, flags
);
533 spin_unlock_irqrestore(q
->queue_lock
, flags
);
535 EXPORT_SYMBOL(blk_run_queue
);
537 void blk_put_queue(struct request_queue
*q
)
539 kobject_put(&q
->kobj
);
541 EXPORT_SYMBOL(blk_put_queue
);
544 * __blk_drain_queue - drain requests from request_queue
546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
548 * Drain requests from @q. If @drain_all is set, all requests are drained.
549 * If not, only ELVPRIV requests are drained. The caller is responsible
550 * for ensuring that no new requests which need to be drained are queued.
552 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
553 __releases(q
->queue_lock
)
554 __acquires(q
->queue_lock
)
558 lockdep_assert_held(q
->queue_lock
);
559 WARN_ON_ONCE(q
->mq_ops
);
565 * The caller might be trying to drain @q before its
566 * elevator is initialized.
569 elv_drain_elevator(q
);
571 blkcg_drain_queue(q
);
574 * This function might be called on a queue which failed
575 * driver init after queue creation or is not yet fully
576 * active yet. Some drivers (e.g. fd and loop) get unhappy
577 * in such cases. Kick queue iff dispatch queue has
578 * something on it and @q has request_fn set.
580 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
583 drain
|= q
->nr_rqs_elvpriv
;
584 drain
|= q
->request_fn_active
;
587 * Unfortunately, requests are queued at and tracked from
588 * multiple places and there's no single counter which can
589 * be drained. Check all the queues and counters.
592 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
593 drain
|= !list_empty(&q
->queue_head
);
594 for (i
= 0; i
< 2; i
++) {
595 drain
|= q
->nr_rqs
[i
];
596 drain
|= q
->in_flight
[i
];
598 drain
|= !list_empty(&fq
->flush_queue
[i
]);
605 spin_unlock_irq(q
->queue_lock
);
609 spin_lock_irq(q
->queue_lock
);
613 * With queue marked dead, any woken up waiter will fail the
614 * allocation path, so the wakeup chaining is lost and we're
615 * left with hung waiters. We need to wake up those waiters.
618 struct request_list
*rl
;
620 blk_queue_for_each_rl(rl
, q
)
621 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
622 wake_up_all(&rl
->wait
[i
]);
626 void blk_drain_queue(struct request_queue
*q
)
628 spin_lock_irq(q
->queue_lock
);
629 __blk_drain_queue(q
, true);
630 spin_unlock_irq(q
->queue_lock
);
634 * blk_queue_bypass_start - enter queue bypass mode
635 * @q: queue of interest
637 * In bypass mode, only the dispatch FIFO queue of @q is used. This
638 * function makes @q enter bypass mode and drains all requests which were
639 * throttled or issued before. On return, it's guaranteed that no request
640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641 * inside queue or RCU read lock.
643 void blk_queue_bypass_start(struct request_queue
*q
)
645 WARN_ON_ONCE(q
->mq_ops
);
647 spin_lock_irq(q
->queue_lock
);
649 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
650 spin_unlock_irq(q
->queue_lock
);
653 * Queues start drained. Skip actual draining till init is
654 * complete. This avoids lenghty delays during queue init which
655 * can happen many times during boot.
657 if (blk_queue_init_done(q
)) {
658 spin_lock_irq(q
->queue_lock
);
659 __blk_drain_queue(q
, false);
660 spin_unlock_irq(q
->queue_lock
);
662 /* ensure blk_queue_bypass() is %true inside RCU read lock */
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
669 * blk_queue_bypass_end - leave queue bypass mode
670 * @q: queue of interest
672 * Leave bypass mode and restore the normal queueing behavior.
674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675 * this function is called for both blk-sq and blk-mq queues.
677 void blk_queue_bypass_end(struct request_queue
*q
)
679 spin_lock_irq(q
->queue_lock
);
680 if (!--q
->bypass_depth
)
681 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
682 WARN_ON_ONCE(q
->bypass_depth
< 0);
683 spin_unlock_irq(q
->queue_lock
);
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
687 void blk_set_queue_dying(struct request_queue
*q
)
689 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
692 * When queue DYING flag is set, we need to block new req
693 * entering queue, so we call blk_freeze_queue_start() to
694 * prevent I/O from crossing blk_queue_enter().
696 blk_freeze_queue_start(q
);
699 blk_mq_wake_waiters(q
);
701 struct request_list
*rl
;
703 spin_lock_irq(q
->queue_lock
);
704 blk_queue_for_each_rl(rl
, q
) {
706 wake_up_all(&rl
->wait
[BLK_RW_SYNC
]);
707 wake_up_all(&rl
->wait
[BLK_RW_ASYNC
]);
710 spin_unlock_irq(q
->queue_lock
);
713 /* Make blk_queue_enter() reexamine the DYING flag. */
714 wake_up_all(&q
->mq_freeze_wq
);
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
719 void blk_exit_queue(struct request_queue
*q
)
722 * Since the I/O scheduler exit code may access cgroup information,
723 * perform I/O scheduler exit before disassociating from the block
728 elevator_exit(q
, q
->elevator
);
733 * Remove all references to @q from the block cgroup controller before
734 * restoring @q->queue_lock to avoid that restoring this pointer causes
735 * e.g. blkcg_print_blkgs() to crash.
740 * Since the cgroup code may dereference the @q->backing_dev_info
741 * pointer, only decrease its reference count after having removed the
742 * association with the block cgroup controller.
744 bdi_put(q
->backing_dev_info
);
748 * blk_cleanup_queue - shutdown a request queue
749 * @q: request queue to shutdown
751 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
752 * put it. All future requests will be failed immediately with -ENODEV.
754 void blk_cleanup_queue(struct request_queue
*q
)
756 spinlock_t
*lock
= q
->queue_lock
;
758 /* mark @q DYING, no new request or merges will be allowed afterwards */
759 mutex_lock(&q
->sysfs_lock
);
760 blk_set_queue_dying(q
);
764 * A dying queue is permanently in bypass mode till released. Note
765 * that, unlike blk_queue_bypass_start(), we aren't performing
766 * synchronize_rcu() after entering bypass mode to avoid the delay
767 * as some drivers create and destroy a lot of queues while
768 * probing. This is still safe because blk_release_queue() will be
769 * called only after the queue refcnt drops to zero and nothing,
770 * RCU or not, would be traversing the queue by then.
773 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
775 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
776 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
777 queue_flag_set(QUEUE_FLAG_DYING
, q
);
778 spin_unlock_irq(lock
);
779 mutex_unlock(&q
->sysfs_lock
);
782 * Drain all requests queued before DYING marking. Set DEAD flag to
783 * prevent that q->request_fn() gets invoked after draining finished.
787 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
788 spin_unlock_irq(lock
);
791 * make sure all in-progress dispatch are completed because
792 * blk_freeze_queue() can only complete all requests, and
793 * dispatch may still be in-progress since we dispatch requests
794 * from more than one contexts.
796 * No need to quiesce queue if it isn't initialized yet since
797 * blk_freeze_queue() should be enough for cases of passthrough
800 if (q
->mq_ops
&& blk_queue_init_done(q
))
801 blk_mq_quiesce_queue(q
);
803 /* for synchronous bio-based driver finish in-flight integrity i/o */
804 blk_flush_integrity();
806 /* @q won't process any more request, flush async actions */
807 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
811 * I/O scheduler exit is only safe after the sysfs scheduler attribute
814 WARN_ON_ONCE(q
->kobj
.state_in_sysfs
);
819 blk_mq_free_queue(q
);
820 percpu_ref_exit(&q
->q_usage_counter
);
823 if (q
->queue_lock
!= &q
->__queue_lock
)
824 q
->queue_lock
= &q
->__queue_lock
;
825 spin_unlock_irq(lock
);
827 /* @q is and will stay empty, shutdown and put */
830 EXPORT_SYMBOL(blk_cleanup_queue
);
832 /* Allocate memory local to the request queue */
833 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
835 struct request_queue
*q
= data
;
837 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
840 static void free_request_simple(void *element
, void *data
)
842 kmem_cache_free(request_cachep
, element
);
845 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
847 struct request_queue
*q
= data
;
850 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
852 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
859 static void free_request_size(void *element
, void *data
)
861 struct request_queue
*q
= data
;
864 q
->exit_rq_fn(q
, element
);
868 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
871 if (unlikely(rl
->rq_pool
) || q
->mq_ops
)
875 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
876 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
877 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
878 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
881 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
882 alloc_request_size
, free_request_size
,
883 q
, gfp_mask
, q
->node
);
885 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
886 alloc_request_simple
, free_request_simple
,
887 q
, gfp_mask
, q
->node
);
892 if (rl
!= &q
->root_rl
)
893 WARN_ON_ONCE(!blk_get_queue(q
));
898 void blk_exit_rl(struct request_queue
*q
, struct request_list
*rl
)
901 mempool_destroy(rl
->rq_pool
);
902 if (rl
!= &q
->root_rl
)
907 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
909 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
, NULL
);
911 EXPORT_SYMBOL(blk_alloc_queue
);
914 * blk_queue_enter() - try to increase q->q_usage_counter
915 * @q: request queue pointer
916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
918 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
920 const bool preempt
= flags
& BLK_MQ_REQ_PREEMPT
;
923 bool success
= false;
926 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
928 * The code that sets the PREEMPT_ONLY flag is
929 * responsible for ensuring that that flag is globally
930 * visible before the queue is unfrozen.
932 if (preempt
|| !blk_queue_preempt_only(q
)) {
935 percpu_ref_put(&q
->q_usage_counter
);
943 if (flags
& BLK_MQ_REQ_NOWAIT
)
947 * read pair of barrier in blk_freeze_queue_start(),
948 * we need to order reading __PERCPU_REF_DEAD flag of
949 * .q_usage_counter and reading .mq_freeze_depth or
950 * queue dying flag, otherwise the following wait may
951 * never return if the two reads are reordered.
955 wait_event(q
->mq_freeze_wq
,
956 (atomic_read(&q
->mq_freeze_depth
) == 0 &&
957 (preempt
|| !blk_queue_preempt_only(q
))) ||
959 if (blk_queue_dying(q
))
964 void blk_queue_exit(struct request_queue
*q
)
966 percpu_ref_put(&q
->q_usage_counter
);
969 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
971 struct request_queue
*q
=
972 container_of(ref
, struct request_queue
, q_usage_counter
);
974 wake_up_all(&q
->mq_freeze_wq
);
977 static void blk_rq_timed_out_timer(struct timer_list
*t
)
979 struct request_queue
*q
= from_timer(q
, t
, timeout
);
981 kblockd_schedule_work(&q
->timeout_work
);
985 * blk_alloc_queue_node - allocate a request queue
986 * @gfp_mask: memory allocation flags
987 * @node_id: NUMA node to allocate memory from
988 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
989 * serialize calls to the legacy .request_fn() callback. Ignored for
990 * blk-mq request queues.
992 * Note: pass the queue lock as the third argument to this function instead of
993 * setting the queue lock pointer explicitly to avoid triggering a sporadic
994 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
995 * the queue lock pointer must be set before blkcg_init_queue() is called.
997 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
,
1000 struct request_queue
*q
;
1003 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
1004 gfp_mask
| __GFP_ZERO
, node_id
);
1008 INIT_LIST_HEAD(&q
->queue_head
);
1009 q
->last_merge
= NULL
;
1011 q
->boundary_rq
= NULL
;
1013 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
1017 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
1021 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
1022 if (!q
->backing_dev_info
)
1025 q
->stats
= blk_alloc_queue_stats();
1029 q
->backing_dev_info
->ra_pages
=
1030 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
1031 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
1032 q
->backing_dev_info
->name
= "block";
1035 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
1036 laptop_mode_timer_fn
, 0);
1037 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
1038 INIT_WORK(&q
->timeout_work
, NULL
);
1039 INIT_LIST_HEAD(&q
->timeout_list
);
1040 INIT_LIST_HEAD(&q
->icq_list
);
1041 #ifdef CONFIG_BLK_CGROUP
1042 INIT_LIST_HEAD(&q
->blkg_list
);
1044 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
1046 kobject_init(&q
->kobj
, &blk_queue_ktype
);
1048 #ifdef CONFIG_BLK_DEV_IO_TRACE
1049 mutex_init(&q
->blk_trace_mutex
);
1051 mutex_init(&q
->sysfs_lock
);
1052 spin_lock_init(&q
->__queue_lock
);
1055 q
->queue_lock
= lock
? : &q
->__queue_lock
;
1058 * A queue starts its life with bypass turned on to avoid
1059 * unnecessary bypass on/off overhead and nasty surprises during
1060 * init. The initial bypass will be finished when the queue is
1061 * registered by blk_register_queue().
1063 q
->bypass_depth
= 1;
1064 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS
, q
);
1066 init_waitqueue_head(&q
->mq_freeze_wq
);
1069 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1070 * See blk_register_queue() for details.
1072 if (percpu_ref_init(&q
->q_usage_counter
,
1073 blk_queue_usage_counter_release
,
1074 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1077 if (blkcg_init_queue(q
))
1083 percpu_ref_exit(&q
->q_usage_counter
);
1085 blk_free_queue_stats(q
->stats
);
1087 bdi_put(q
->backing_dev_info
);
1089 bioset_exit(&q
->bio_split
);
1091 ida_simple_remove(&blk_queue_ida
, q
->id
);
1093 kmem_cache_free(blk_requestq_cachep
, q
);
1096 EXPORT_SYMBOL(blk_alloc_queue_node
);
1099 * blk_init_queue - prepare a request queue for use with a block device
1100 * @rfn: The function to be called to process requests that have been
1101 * placed on the queue.
1102 * @lock: Request queue spin lock
1105 * If a block device wishes to use the standard request handling procedures,
1106 * which sorts requests and coalesces adjacent requests, then it must
1107 * call blk_init_queue(). The function @rfn will be called when there
1108 * are requests on the queue that need to be processed. If the device
1109 * supports plugging, then @rfn may not be called immediately when requests
1110 * are available on the queue, but may be called at some time later instead.
1111 * Plugged queues are generally unplugged when a buffer belonging to one
1112 * of the requests on the queue is needed, or due to memory pressure.
1114 * @rfn is not required, or even expected, to remove all requests off the
1115 * queue, but only as many as it can handle at a time. If it does leave
1116 * requests on the queue, it is responsible for arranging that the requests
1117 * get dealt with eventually.
1119 * The queue spin lock must be held while manipulating the requests on the
1120 * request queue; this lock will be taken also from interrupt context, so irq
1121 * disabling is needed for it.
1123 * Function returns a pointer to the initialized request queue, or %NULL if
1124 * it didn't succeed.
1127 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1128 * when the block device is deactivated (such as at module unload).
1131 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1133 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
1135 EXPORT_SYMBOL(blk_init_queue
);
1137 struct request_queue
*
1138 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1140 struct request_queue
*q
;
1142 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
, lock
);
1146 q
->request_fn
= rfn
;
1147 if (blk_init_allocated_queue(q
) < 0) {
1148 blk_cleanup_queue(q
);
1154 EXPORT_SYMBOL(blk_init_queue_node
);
1156 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
1159 int blk_init_allocated_queue(struct request_queue
*q
)
1161 WARN_ON_ONCE(q
->mq_ops
);
1163 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
);
1167 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
1168 goto out_free_flush_queue
;
1170 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
1171 goto out_exit_flush_rq
;
1173 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
1174 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
1177 * This also sets hw/phys segments, boundary and size
1179 blk_queue_make_request(q
, blk_queue_bio
);
1181 q
->sg_reserved_size
= INT_MAX
;
1183 if (elevator_init(q
))
1184 goto out_exit_flush_rq
;
1189 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
1190 out_free_flush_queue
:
1191 blk_free_flush_queue(q
->fq
);
1195 EXPORT_SYMBOL(blk_init_allocated_queue
);
1197 bool blk_get_queue(struct request_queue
*q
)
1199 if (likely(!blk_queue_dying(q
))) {
1206 EXPORT_SYMBOL(blk_get_queue
);
1208 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
1210 if (rq
->rq_flags
& RQF_ELVPRIV
) {
1211 elv_put_request(rl
->q
, rq
);
1213 put_io_context(rq
->elv
.icq
->ioc
);
1216 mempool_free(rq
, rl
->rq_pool
);
1220 * ioc_batching returns true if the ioc is a valid batching request and
1221 * should be given priority access to a request.
1223 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
1229 * Make sure the process is able to allocate at least 1 request
1230 * even if the batch times out, otherwise we could theoretically
1233 return ioc
->nr_batch_requests
== q
->nr_batching
||
1234 (ioc
->nr_batch_requests
> 0
1235 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240 * will cause the process to be a "batcher" on all queues in the system. This
1241 * is the behaviour we want though - once it gets a wakeup it should be given
1244 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
1246 if (!ioc
|| ioc_batching(q
, ioc
))
1249 ioc
->nr_batch_requests
= q
->nr_batching
;
1250 ioc
->last_waited
= jiffies
;
1253 static void __freed_request(struct request_list
*rl
, int sync
)
1255 struct request_queue
*q
= rl
->q
;
1257 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
1258 blk_clear_congested(rl
, sync
);
1260 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
1261 if (waitqueue_active(&rl
->wait
[sync
]))
1262 wake_up(&rl
->wait
[sync
]);
1264 blk_clear_rl_full(rl
, sync
);
1269 * A request has just been released. Account for it, update the full and
1270 * congestion status, wake up any waiters. Called under q->queue_lock.
1272 static void freed_request(struct request_list
*rl
, bool sync
,
1273 req_flags_t rq_flags
)
1275 struct request_queue
*q
= rl
->q
;
1279 if (rq_flags
& RQF_ELVPRIV
)
1280 q
->nr_rqs_elvpriv
--;
1282 __freed_request(rl
, sync
);
1284 if (unlikely(rl
->starved
[sync
^ 1]))
1285 __freed_request(rl
, sync
^ 1);
1288 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
1290 struct request_list
*rl
;
1291 int on_thresh
, off_thresh
;
1293 WARN_ON_ONCE(q
->mq_ops
);
1295 spin_lock_irq(q
->queue_lock
);
1296 q
->nr_requests
= nr
;
1297 blk_queue_congestion_threshold(q
);
1298 on_thresh
= queue_congestion_on_threshold(q
);
1299 off_thresh
= queue_congestion_off_threshold(q
);
1301 blk_queue_for_each_rl(rl
, q
) {
1302 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1303 blk_set_congested(rl
, BLK_RW_SYNC
);
1304 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1305 blk_clear_congested(rl
, BLK_RW_SYNC
);
1307 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1308 blk_set_congested(rl
, BLK_RW_ASYNC
);
1309 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1310 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1312 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1313 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1315 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1316 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1319 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1320 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1322 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1323 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1327 spin_unlock_irq(q
->queue_lock
);
1332 * __get_request - get a free request
1333 * @rl: request list to allocate from
1334 * @op: operation and flags
1335 * @bio: bio to allocate request for (can be %NULL)
1336 * @flags: BLQ_MQ_REQ_* flags
1337 * @gfp_mask: allocator flags
1339 * Get a free request from @q. This function may fail under memory
1340 * pressure or if @q is dead.
1342 * Must be called with @q->queue_lock held and,
1343 * Returns ERR_PTR on failure, with @q->queue_lock held.
1344 * Returns request pointer on success, with @q->queue_lock *not held*.
1346 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1347 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp_mask
)
1349 struct request_queue
*q
= rl
->q
;
1351 struct elevator_type
*et
= q
->elevator
->type
;
1352 struct io_context
*ioc
= rq_ioc(bio
);
1353 struct io_cq
*icq
= NULL
;
1354 const bool is_sync
= op_is_sync(op
);
1356 req_flags_t rq_flags
= RQF_ALLOCED
;
1358 lockdep_assert_held(q
->queue_lock
);
1360 if (unlikely(blk_queue_dying(q
)))
1361 return ERR_PTR(-ENODEV
);
1363 may_queue
= elv_may_queue(q
, op
);
1364 if (may_queue
== ELV_MQUEUE_NO
)
1367 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1368 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1370 * The queue will fill after this allocation, so set
1371 * it as full, and mark this process as "batching".
1372 * This process will be allowed to complete a batch of
1373 * requests, others will be blocked.
1375 if (!blk_rl_full(rl
, is_sync
)) {
1376 ioc_set_batching(q
, ioc
);
1377 blk_set_rl_full(rl
, is_sync
);
1379 if (may_queue
!= ELV_MQUEUE_MUST
1380 && !ioc_batching(q
, ioc
)) {
1382 * The queue is full and the allocating
1383 * process is not a "batcher", and not
1384 * exempted by the IO scheduler
1386 return ERR_PTR(-ENOMEM
);
1390 blk_set_congested(rl
, is_sync
);
1394 * Only allow batching queuers to allocate up to 50% over the defined
1395 * limit of requests, otherwise we could have thousands of requests
1396 * allocated with any setting of ->nr_requests
1398 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1399 return ERR_PTR(-ENOMEM
);
1401 q
->nr_rqs
[is_sync
]++;
1402 rl
->count
[is_sync
]++;
1403 rl
->starved
[is_sync
] = 0;
1406 * Decide whether the new request will be managed by elevator. If
1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1408 * prevent the current elevator from being destroyed until the new
1409 * request is freed. This guarantees icq's won't be destroyed and
1410 * makes creating new ones safe.
1412 * Flush requests do not use the elevator so skip initialization.
1413 * This allows a request to share the flush and elevator data.
1415 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1416 * it will be created after releasing queue_lock.
1418 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1419 rq_flags
|= RQF_ELVPRIV
;
1420 q
->nr_rqs_elvpriv
++;
1421 if (et
->icq_cache
&& ioc
)
1422 icq
= ioc_lookup_icq(ioc
, q
);
1425 if (blk_queue_io_stat(q
))
1426 rq_flags
|= RQF_IO_STAT
;
1427 spin_unlock_irq(q
->queue_lock
);
1429 /* allocate and init request */
1430 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1435 blk_rq_set_rl(rq
, rl
);
1437 rq
->rq_flags
= rq_flags
;
1438 if (flags
& BLK_MQ_REQ_PREEMPT
)
1439 rq
->rq_flags
|= RQF_PREEMPT
;
1442 if (rq_flags
& RQF_ELVPRIV
) {
1443 if (unlikely(et
->icq_cache
&& !icq
)) {
1445 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1451 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1454 /* @rq->elv.icq holds io_context until @rq is freed */
1456 get_io_context(icq
->ioc
);
1460 * ioc may be NULL here, and ioc_batching will be false. That's
1461 * OK, if the queue is under the request limit then requests need
1462 * not count toward the nr_batch_requests limit. There will always
1463 * be some limit enforced by BLK_BATCH_TIME.
1465 if (ioc_batching(q
, ioc
))
1466 ioc
->nr_batch_requests
--;
1468 trace_block_getrq(q
, bio
, op
);
1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1474 * and may fail indefinitely under memory pressure and thus
1475 * shouldn't stall IO. Treat this request as !elvpriv. This will
1476 * disturb iosched and blkcg but weird is bettern than dead.
1478 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1479 __func__
, dev_name(q
->backing_dev_info
->dev
));
1481 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1484 spin_lock_irq(q
->queue_lock
);
1485 q
->nr_rqs_elvpriv
--;
1486 spin_unlock_irq(q
->queue_lock
);
1491 * Allocation failed presumably due to memory. Undo anything we
1492 * might have messed up.
1494 * Allocating task should really be put onto the front of the wait
1495 * queue, but this is pretty rare.
1497 spin_lock_irq(q
->queue_lock
);
1498 freed_request(rl
, is_sync
, rq_flags
);
1501 * in the very unlikely event that allocation failed and no
1502 * requests for this direction was pending, mark us starved so that
1503 * freeing of a request in the other direction will notice
1504 * us. another possible fix would be to split the rq mempool into
1508 if (unlikely(rl
->count
[is_sync
] == 0))
1509 rl
->starved
[is_sync
] = 1;
1510 return ERR_PTR(-ENOMEM
);
1514 * get_request - get a free request
1515 * @q: request_queue to allocate request from
1516 * @op: operation and flags
1517 * @bio: bio to allocate request for (can be %NULL)
1518 * @flags: BLK_MQ_REQ_* flags.
1519 * @gfp: allocator flags
1521 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1522 * this function keeps retrying under memory pressure and fails iff @q is dead.
1524 * Must be called with @q->queue_lock held and,
1525 * Returns ERR_PTR on failure, with @q->queue_lock held.
1526 * Returns request pointer on success, with @q->queue_lock *not held*.
1528 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1529 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp
)
1531 const bool is_sync
= op_is_sync(op
);
1533 struct request_list
*rl
;
1536 lockdep_assert_held(q
->queue_lock
);
1537 WARN_ON_ONCE(q
->mq_ops
);
1539 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1541 rq
= __get_request(rl
, op
, bio
, flags
, gfp
);
1545 if (op
& REQ_NOWAIT
) {
1547 return ERR_PTR(-EAGAIN
);
1550 if ((flags
& BLK_MQ_REQ_NOWAIT
) || unlikely(blk_queue_dying(q
))) {
1555 /* wait on @rl and retry */
1556 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1557 TASK_UNINTERRUPTIBLE
);
1559 trace_block_sleeprq(q
, bio
, op
);
1561 spin_unlock_irq(q
->queue_lock
);
1565 * After sleeping, we become a "batching" process and will be able
1566 * to allocate at least one request, and up to a big batch of them
1567 * for a small period time. See ioc_batching, ioc_set_batching
1569 ioc_set_batching(q
, current
->io_context
);
1571 spin_lock_irq(q
->queue_lock
);
1572 finish_wait(&rl
->wait
[is_sync
], &wait
);
1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578 static struct request
*blk_old_get_request(struct request_queue
*q
,
1579 unsigned int op
, blk_mq_req_flags_t flags
)
1582 gfp_t gfp_mask
= flags
& BLK_MQ_REQ_NOWAIT
? GFP_ATOMIC
: GFP_NOIO
;
1585 WARN_ON_ONCE(q
->mq_ops
);
1587 /* create ioc upfront */
1588 create_io_context(gfp_mask
, q
->node
);
1590 ret
= blk_queue_enter(q
, flags
);
1592 return ERR_PTR(ret
);
1593 spin_lock_irq(q
->queue_lock
);
1594 rq
= get_request(q
, op
, NULL
, flags
, gfp_mask
);
1596 spin_unlock_irq(q
->queue_lock
);
1601 /* q->queue_lock is unlocked at this point */
1603 rq
->__sector
= (sector_t
) -1;
1604 rq
->bio
= rq
->biotail
= NULL
;
1609 * blk_get_request - allocate a request
1610 * @q: request queue to allocate a request for
1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1614 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
1615 blk_mq_req_flags_t flags
)
1617 struct request
*req
;
1619 WARN_ON_ONCE(op
& REQ_NOWAIT
);
1620 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
1623 req
= blk_mq_alloc_request(q
, op
, flags
);
1624 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
1625 q
->mq_ops
->initialize_rq_fn(req
);
1627 req
= blk_old_get_request(q
, op
, flags
);
1628 if (!IS_ERR(req
) && q
->initialize_rq_fn
)
1629 q
->initialize_rq_fn(req
);
1634 EXPORT_SYMBOL(blk_get_request
);
1637 * blk_requeue_request - put a request back on queue
1638 * @q: request queue where request should be inserted
1639 * @rq: request to be inserted
1642 * Drivers often keep queueing requests until the hardware cannot accept
1643 * more, when that condition happens we need to put the request back
1644 * on the queue. Must be called with queue lock held.
1646 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1648 lockdep_assert_held(q
->queue_lock
);
1649 WARN_ON_ONCE(q
->mq_ops
);
1651 blk_delete_timer(rq
);
1652 blk_clear_rq_complete(rq
);
1653 trace_block_rq_requeue(q
, rq
);
1654 rq_qos_requeue(q
, rq
);
1656 if (rq
->rq_flags
& RQF_QUEUED
)
1657 blk_queue_end_tag(q
, rq
);
1659 BUG_ON(blk_queued_rq(rq
));
1661 elv_requeue_request(q
, rq
);
1663 EXPORT_SYMBOL(blk_requeue_request
);
1665 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1668 blk_account_io_start(rq
, true);
1669 __elv_add_request(q
, rq
, where
);
1672 static void part_round_stats_single(struct request_queue
*q
, int cpu
,
1673 struct hd_struct
*part
, unsigned long now
,
1674 unsigned int inflight
)
1677 __part_stat_add(cpu
, part
, time_in_queue
,
1678 inflight
* (now
- part
->stamp
));
1679 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1685 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1686 * @q: target block queue
1687 * @cpu: cpu number for stats access
1688 * @part: target partition
1690 * The average IO queue length and utilisation statistics are maintained
1691 * by observing the current state of the queue length and the amount of
1692 * time it has been in this state for.
1694 * Normally, that accounting is done on IO completion, but that can result
1695 * in more than a second's worth of IO being accounted for within any one
1696 * second, leading to >100% utilisation. To deal with that, we call this
1697 * function to do a round-off before returning the results when reading
1698 * /proc/diskstats. This accounts immediately for all queue usage up to
1699 * the current jiffies and restarts the counters again.
1701 void part_round_stats(struct request_queue
*q
, int cpu
, struct hd_struct
*part
)
1703 struct hd_struct
*part2
= NULL
;
1704 unsigned long now
= jiffies
;
1705 unsigned int inflight
[2];
1708 if (part
->stamp
!= now
)
1712 part2
= &part_to_disk(part
)->part0
;
1713 if (part2
->stamp
!= now
)
1720 part_in_flight(q
, part
, inflight
);
1723 part_round_stats_single(q
, cpu
, part2
, now
, inflight
[1]);
1725 part_round_stats_single(q
, cpu
, part
, now
, inflight
[0]);
1727 EXPORT_SYMBOL_GPL(part_round_stats
);
1730 static void blk_pm_put_request(struct request
*rq
)
1732 if (rq
->q
->dev
&& !(rq
->rq_flags
& RQF_PM
) && !--rq
->q
->nr_pending
)
1733 pm_runtime_mark_last_busy(rq
->q
->dev
);
1736 static inline void blk_pm_put_request(struct request
*rq
) {}
1739 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1741 req_flags_t rq_flags
= req
->rq_flags
;
1747 blk_mq_free_request(req
);
1751 lockdep_assert_held(q
->queue_lock
);
1753 blk_req_zone_write_unlock(req
);
1754 blk_pm_put_request(req
);
1756 elv_completed_request(q
, req
);
1758 /* this is a bio leak */
1759 WARN_ON(req
->bio
!= NULL
);
1761 rq_qos_done(q
, req
);
1764 * Request may not have originated from ll_rw_blk. if not,
1765 * it didn't come out of our reserved rq pools
1767 if (rq_flags
& RQF_ALLOCED
) {
1768 struct request_list
*rl
= blk_rq_rl(req
);
1769 bool sync
= op_is_sync(req
->cmd_flags
);
1771 BUG_ON(!list_empty(&req
->queuelist
));
1772 BUG_ON(ELV_ON_HASH(req
));
1774 blk_free_request(rl
, req
);
1775 freed_request(rl
, sync
, rq_flags
);
1780 EXPORT_SYMBOL_GPL(__blk_put_request
);
1782 void blk_put_request(struct request
*req
)
1784 struct request_queue
*q
= req
->q
;
1787 blk_mq_free_request(req
);
1789 unsigned long flags
;
1791 spin_lock_irqsave(q
->queue_lock
, flags
);
1792 __blk_put_request(q
, req
);
1793 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1796 EXPORT_SYMBOL(blk_put_request
);
1798 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1801 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1803 if (!ll_back_merge_fn(q
, req
, bio
))
1806 trace_block_bio_backmerge(q
, req
, bio
);
1808 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1809 blk_rq_set_mixed_merge(req
);
1811 req
->biotail
->bi_next
= bio
;
1813 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1814 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1816 blk_account_io_start(req
, false);
1820 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1823 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1825 if (!ll_front_merge_fn(q
, req
, bio
))
1828 trace_block_bio_frontmerge(q
, req
, bio
);
1830 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1831 blk_rq_set_mixed_merge(req
);
1833 bio
->bi_next
= req
->bio
;
1836 req
->__sector
= bio
->bi_iter
.bi_sector
;
1837 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1838 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1840 blk_account_io_start(req
, false);
1844 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1847 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1849 if (segments
>= queue_max_discard_segments(q
))
1851 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1852 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1855 req
->biotail
->bi_next
= bio
;
1857 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1858 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1859 req
->nr_phys_segments
= segments
+ 1;
1861 blk_account_io_start(req
, false);
1864 req_set_nomerge(q
, req
);
1869 * blk_attempt_plug_merge - try to merge with %current's plugged list
1870 * @q: request_queue new bio is being queued at
1871 * @bio: new bio being queued
1872 * @request_count: out parameter for number of traversed plugged requests
1873 * @same_queue_rq: pointer to &struct request that gets filled in when
1874 * another request associated with @q is found on the plug list
1875 * (optional, may be %NULL)
1877 * Determine whether @bio being queued on @q can be merged with a request
1878 * on %current's plugged list. Returns %true if merge was successful,
1881 * Plugging coalesces IOs from the same issuer for the same purpose without
1882 * going through @q->queue_lock. As such it's more of an issuing mechanism
1883 * than scheduling, and the request, while may have elvpriv data, is not
1884 * added on the elevator at this point. In addition, we don't have
1885 * reliable access to the elevator outside queue lock. Only check basic
1886 * merging parameters without querying the elevator.
1888 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1890 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1891 unsigned int *request_count
,
1892 struct request
**same_queue_rq
)
1894 struct blk_plug
*plug
;
1896 struct list_head
*plug_list
;
1898 plug
= current
->plug
;
1904 plug_list
= &plug
->mq_list
;
1906 plug_list
= &plug
->list
;
1908 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1909 bool merged
= false;
1914 * Only blk-mq multiple hardware queues case checks the
1915 * rq in the same queue, there should be only one such
1919 *same_queue_rq
= rq
;
1922 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1925 switch (blk_try_merge(rq
, bio
)) {
1926 case ELEVATOR_BACK_MERGE
:
1927 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1929 case ELEVATOR_FRONT_MERGE
:
1930 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1932 case ELEVATOR_DISCARD_MERGE
:
1933 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1946 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1948 struct blk_plug
*plug
;
1950 struct list_head
*plug_list
;
1951 unsigned int ret
= 0;
1953 plug
= current
->plug
;
1958 plug_list
= &plug
->mq_list
;
1960 plug_list
= &plug
->list
;
1962 list_for_each_entry(rq
, plug_list
, queuelist
) {
1970 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
1972 struct io_context
*ioc
= rq_ioc(bio
);
1974 if (bio
->bi_opf
& REQ_RAHEAD
)
1975 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1977 req
->__sector
= bio
->bi_iter
.bi_sector
;
1978 if (ioprio_valid(bio_prio(bio
)))
1979 req
->ioprio
= bio_prio(bio
);
1981 req
->ioprio
= ioc
->ioprio
;
1983 req
->ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1984 req
->write_hint
= bio
->bi_write_hint
;
1985 blk_rq_bio_prep(req
->q
, req
, bio
);
1987 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
1989 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1991 struct blk_plug
*plug
;
1992 int where
= ELEVATOR_INSERT_SORT
;
1993 struct request
*req
, *free
;
1994 unsigned int request_count
= 0;
1997 * low level driver can indicate that it wants pages above a
1998 * certain limit bounced to low memory (ie for highmem, or even
1999 * ISA dma in theory)
2001 blk_queue_bounce(q
, &bio
);
2003 blk_queue_split(q
, &bio
);
2005 if (!bio_integrity_prep(bio
))
2006 return BLK_QC_T_NONE
;
2008 if (op_is_flush(bio
->bi_opf
)) {
2009 spin_lock_irq(q
->queue_lock
);
2010 where
= ELEVATOR_INSERT_FLUSH
;
2015 * Check if we can merge with the plugged list before grabbing
2018 if (!blk_queue_nomerges(q
)) {
2019 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
2020 return BLK_QC_T_NONE
;
2022 request_count
= blk_plug_queued_count(q
);
2024 spin_lock_irq(q
->queue_lock
);
2026 switch (elv_merge(q
, &req
, bio
)) {
2027 case ELEVATOR_BACK_MERGE
:
2028 if (!bio_attempt_back_merge(q
, req
, bio
))
2030 elv_bio_merged(q
, req
, bio
);
2031 free
= attempt_back_merge(q
, req
);
2033 __blk_put_request(q
, free
);
2035 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
2037 case ELEVATOR_FRONT_MERGE
:
2038 if (!bio_attempt_front_merge(q
, req
, bio
))
2040 elv_bio_merged(q
, req
, bio
);
2041 free
= attempt_front_merge(q
, req
);
2043 __blk_put_request(q
, free
);
2045 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
2052 rq_qos_throttle(q
, bio
, q
->queue_lock
);
2055 * Grab a free request. This is might sleep but can not fail.
2056 * Returns with the queue unlocked.
2058 blk_queue_enter_live(q
);
2059 req
= get_request(q
, bio
->bi_opf
, bio
, 0, GFP_NOIO
);
2062 rq_qos_cleanup(q
, bio
);
2063 if (PTR_ERR(req
) == -ENOMEM
)
2064 bio
->bi_status
= BLK_STS_RESOURCE
;
2066 bio
->bi_status
= BLK_STS_IOERR
;
2071 rq_qos_track(q
, req
, bio
);
2074 * After dropping the lock and possibly sleeping here, our request
2075 * may now be mergeable after it had proven unmergeable (above).
2076 * We don't worry about that case for efficiency. It won't happen
2077 * often, and the elevators are able to handle it.
2079 blk_init_request_from_bio(req
, bio
);
2081 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
2082 req
->cpu
= raw_smp_processor_id();
2084 plug
= current
->plug
;
2087 * If this is the first request added after a plug, fire
2090 * @request_count may become stale because of schedule
2091 * out, so check plug list again.
2093 if (!request_count
|| list_empty(&plug
->list
))
2094 trace_block_plug(q
);
2096 struct request
*last
= list_entry_rq(plug
->list
.prev
);
2097 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
2098 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
2099 blk_flush_plug_list(plug
, false);
2100 trace_block_plug(q
);
2103 list_add_tail(&req
->queuelist
, &plug
->list
);
2104 blk_account_io_start(req
, true);
2106 spin_lock_irq(q
->queue_lock
);
2107 add_acct_request(q
, req
, where
);
2110 spin_unlock_irq(q
->queue_lock
);
2113 return BLK_QC_T_NONE
;
2116 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
2118 char b
[BDEVNAME_SIZE
];
2120 printk(KERN_INFO
"attempt to access beyond end of device\n");
2121 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
2122 bio_devname(bio
, b
), bio
->bi_opf
,
2123 (unsigned long long)bio_end_sector(bio
),
2124 (long long)maxsector
);
2127 #ifdef CONFIG_FAIL_MAKE_REQUEST
2129 static DECLARE_FAULT_ATTR(fail_make_request
);
2131 static int __init
setup_fail_make_request(char *str
)
2133 return setup_fault_attr(&fail_make_request
, str
);
2135 __setup("fail_make_request=", setup_fail_make_request
);
2137 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
2139 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
2142 static int __init
fail_make_request_debugfs(void)
2144 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
2145 NULL
, &fail_make_request
);
2147 return PTR_ERR_OR_ZERO(dir
);
2150 late_initcall(fail_make_request_debugfs
);
2152 #else /* CONFIG_FAIL_MAKE_REQUEST */
2154 static inline bool should_fail_request(struct hd_struct
*part
,
2160 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2162 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
2164 const int op
= bio_op(bio
);
2166 if (part
->policy
&& op_is_write(op
)) {
2167 char b
[BDEVNAME_SIZE
];
2169 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
2173 "generic_make_request: Trying to write "
2174 "to read-only block-device %s (partno %d)\n",
2175 bio_devname(bio
, b
), part
->partno
);
2176 /* Older lvm-tools actually trigger this */
2183 static noinline
int should_fail_bio(struct bio
*bio
)
2185 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
2189 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
2192 * Check whether this bio extends beyond the end of the device or partition.
2193 * This may well happen - the kernel calls bread() without checking the size of
2194 * the device, e.g., when mounting a file system.
2196 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
2198 unsigned int nr_sectors
= bio_sectors(bio
);
2200 if (nr_sectors
&& maxsector
&&
2201 (nr_sectors
> maxsector
||
2202 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
2203 handle_bad_sector(bio
, maxsector
);
2210 * Remap block n of partition p to block n+start(p) of the disk.
2212 static inline int blk_partition_remap(struct bio
*bio
)
2214 struct hd_struct
*p
;
2218 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
2221 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
2223 if (unlikely(bio_check_ro(bio
, p
)))
2227 * Zone reset does not include bi_size so bio_sectors() is always 0.
2228 * Include a test for the reset op code and perform the remap if needed.
2230 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
2231 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
2233 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
2234 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
2235 bio
->bi_iter
.bi_sector
- p
->start_sect
);
2244 static noinline_for_stack
bool
2245 generic_make_request_checks(struct bio
*bio
)
2247 struct request_queue
*q
;
2248 int nr_sectors
= bio_sectors(bio
);
2249 blk_status_t status
= BLK_STS_IOERR
;
2250 char b
[BDEVNAME_SIZE
];
2254 q
= bio
->bi_disk
->queue
;
2257 "generic_make_request: Trying to access "
2258 "nonexistent block-device %s (%Lu)\n",
2259 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
2264 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2265 * if queue is not a request based queue.
2267 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_rq_based(q
))
2270 if (should_fail_bio(bio
))
2273 if (bio
->bi_partno
) {
2274 if (unlikely(blk_partition_remap(bio
)))
2277 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
2279 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
2284 * Filter flush bio's early so that make_request based
2285 * drivers without flush support don't have to worry
2288 if (op_is_flush(bio
->bi_opf
) &&
2289 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
2290 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
2292 status
= BLK_STS_OK
;
2297 switch (bio_op(bio
)) {
2298 case REQ_OP_DISCARD
:
2299 if (!blk_queue_discard(q
))
2302 case REQ_OP_SECURE_ERASE
:
2303 if (!blk_queue_secure_erase(q
))
2306 case REQ_OP_WRITE_SAME
:
2307 if (!q
->limits
.max_write_same_sectors
)
2310 case REQ_OP_ZONE_REPORT
:
2311 case REQ_OP_ZONE_RESET
:
2312 if (!blk_queue_is_zoned(q
))
2315 case REQ_OP_WRITE_ZEROES
:
2316 if (!q
->limits
.max_write_zeroes_sectors
)
2324 * Various block parts want %current->io_context and lazy ioc
2325 * allocation ends up trading a lot of pain for a small amount of
2326 * memory. Just allocate it upfront. This may fail and block
2327 * layer knows how to live with it.
2329 create_io_context(GFP_ATOMIC
, q
->node
);
2331 if (!blkcg_bio_issue_check(q
, bio
))
2334 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
2335 trace_block_bio_queue(q
, bio
);
2336 /* Now that enqueuing has been traced, we need to trace
2337 * completion as well.
2339 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
2344 status
= BLK_STS_NOTSUPP
;
2346 bio
->bi_status
= status
;
2352 * generic_make_request - hand a buffer to its device driver for I/O
2353 * @bio: The bio describing the location in memory and on the device.
2355 * generic_make_request() is used to make I/O requests of block
2356 * devices. It is passed a &struct bio, which describes the I/O that needs
2359 * generic_make_request() does not return any status. The
2360 * success/failure status of the request, along with notification of
2361 * completion, is delivered asynchronously through the bio->bi_end_io
2362 * function described (one day) else where.
2364 * The caller of generic_make_request must make sure that bi_io_vec
2365 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2366 * set to describe the device address, and the
2367 * bi_end_io and optionally bi_private are set to describe how
2368 * completion notification should be signaled.
2370 * generic_make_request and the drivers it calls may use bi_next if this
2371 * bio happens to be merged with someone else, and may resubmit the bio to
2372 * a lower device by calling into generic_make_request recursively, which
2373 * means the bio should NOT be touched after the call to ->make_request_fn.
2375 blk_qc_t
generic_make_request(struct bio
*bio
)
2378 * bio_list_on_stack[0] contains bios submitted by the current
2380 * bio_list_on_stack[1] contains bios that were submitted before
2381 * the current make_request_fn, but that haven't been processed
2384 struct bio_list bio_list_on_stack
[2];
2385 blk_mq_req_flags_t flags
= 0;
2386 struct request_queue
*q
= bio
->bi_disk
->queue
;
2387 blk_qc_t ret
= BLK_QC_T_NONE
;
2389 if (bio
->bi_opf
& REQ_NOWAIT
)
2390 flags
= BLK_MQ_REQ_NOWAIT
;
2391 if (bio_flagged(bio
, BIO_QUEUE_ENTERED
))
2392 blk_queue_enter_live(q
);
2393 else if (blk_queue_enter(q
, flags
) < 0) {
2394 if (!blk_queue_dying(q
) && (bio
->bi_opf
& REQ_NOWAIT
))
2395 bio_wouldblock_error(bio
);
2401 if (!generic_make_request_checks(bio
))
2405 * We only want one ->make_request_fn to be active at a time, else
2406 * stack usage with stacked devices could be a problem. So use
2407 * current->bio_list to keep a list of requests submited by a
2408 * make_request_fn function. current->bio_list is also used as a
2409 * flag to say if generic_make_request is currently active in this
2410 * task or not. If it is NULL, then no make_request is active. If
2411 * it is non-NULL, then a make_request is active, and new requests
2412 * should be added at the tail
2414 if (current
->bio_list
) {
2415 bio_list_add(¤t
->bio_list
[0], bio
);
2419 /* following loop may be a bit non-obvious, and so deserves some
2421 * Before entering the loop, bio->bi_next is NULL (as all callers
2422 * ensure that) so we have a list with a single bio.
2423 * We pretend that we have just taken it off a longer list, so
2424 * we assign bio_list to a pointer to the bio_list_on_stack,
2425 * thus initialising the bio_list of new bios to be
2426 * added. ->make_request() may indeed add some more bios
2427 * through a recursive call to generic_make_request. If it
2428 * did, we find a non-NULL value in bio_list and re-enter the loop
2429 * from the top. In this case we really did just take the bio
2430 * of the top of the list (no pretending) and so remove it from
2431 * bio_list, and call into ->make_request() again.
2433 BUG_ON(bio
->bi_next
);
2434 bio_list_init(&bio_list_on_stack
[0]);
2435 current
->bio_list
= bio_list_on_stack
;
2437 bool enter_succeeded
= true;
2439 if (unlikely(q
!= bio
->bi_disk
->queue
)) {
2442 q
= bio
->bi_disk
->queue
;
2444 if (bio
->bi_opf
& REQ_NOWAIT
)
2445 flags
= BLK_MQ_REQ_NOWAIT
;
2446 if (blk_queue_enter(q
, flags
) < 0) {
2447 enter_succeeded
= false;
2452 if (enter_succeeded
) {
2453 struct bio_list lower
, same
;
2455 /* Create a fresh bio_list for all subordinate requests */
2456 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2457 bio_list_init(&bio_list_on_stack
[0]);
2458 ret
= q
->make_request_fn(q
, bio
);
2460 /* sort new bios into those for a lower level
2461 * and those for the same level
2463 bio_list_init(&lower
);
2464 bio_list_init(&same
);
2465 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2466 if (q
== bio
->bi_disk
->queue
)
2467 bio_list_add(&same
, bio
);
2469 bio_list_add(&lower
, bio
);
2470 /* now assemble so we handle the lowest level first */
2471 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2472 bio_list_merge(&bio_list_on_stack
[0], &same
);
2473 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2475 if (unlikely(!blk_queue_dying(q
) &&
2476 (bio
->bi_opf
& REQ_NOWAIT
)))
2477 bio_wouldblock_error(bio
);
2481 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2483 current
->bio_list
= NULL
; /* deactivate */
2490 EXPORT_SYMBOL(generic_make_request
);
2493 * direct_make_request - hand a buffer directly to its device driver for I/O
2494 * @bio: The bio describing the location in memory and on the device.
2496 * This function behaves like generic_make_request(), but does not protect
2497 * against recursion. Must only be used if the called driver is known
2498 * to not call generic_make_request (or direct_make_request) again from
2499 * its make_request function. (Calling direct_make_request again from
2500 * a workqueue is perfectly fine as that doesn't recurse).
2502 blk_qc_t
direct_make_request(struct bio
*bio
)
2504 struct request_queue
*q
= bio
->bi_disk
->queue
;
2505 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
2508 if (!generic_make_request_checks(bio
))
2509 return BLK_QC_T_NONE
;
2511 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
2512 if (nowait
&& !blk_queue_dying(q
))
2513 bio
->bi_status
= BLK_STS_AGAIN
;
2515 bio
->bi_status
= BLK_STS_IOERR
;
2517 return BLK_QC_T_NONE
;
2520 ret
= q
->make_request_fn(q
, bio
);
2524 EXPORT_SYMBOL_GPL(direct_make_request
);
2527 * submit_bio - submit a bio to the block device layer for I/O
2528 * @bio: The &struct bio which describes the I/O
2530 * submit_bio() is very similar in purpose to generic_make_request(), and
2531 * uses that function to do most of the work. Both are fairly rough
2532 * interfaces; @bio must be presetup and ready for I/O.
2535 blk_qc_t
submit_bio(struct bio
*bio
)
2538 * If it's a regular read/write or a barrier with data attached,
2539 * go through the normal accounting stuff before submission.
2541 if (bio_has_data(bio
)) {
2544 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2545 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
2547 count
= bio_sectors(bio
);
2549 if (op_is_write(bio_op(bio
))) {
2550 count_vm_events(PGPGOUT
, count
);
2552 task_io_account_read(bio
->bi_iter
.bi_size
);
2553 count_vm_events(PGPGIN
, count
);
2556 if (unlikely(block_dump
)) {
2557 char b
[BDEVNAME_SIZE
];
2558 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2559 current
->comm
, task_pid_nr(current
),
2560 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2561 (unsigned long long)bio
->bi_iter
.bi_sector
,
2562 bio_devname(bio
, b
), count
);
2566 return generic_make_request(bio
);
2568 EXPORT_SYMBOL(submit_bio
);
2570 bool blk_poll(struct request_queue
*q
, blk_qc_t cookie
)
2572 if (!q
->poll_fn
|| !blk_qc_t_valid(cookie
))
2576 blk_flush_plug_list(current
->plug
, false);
2577 return q
->poll_fn(q
, cookie
);
2579 EXPORT_SYMBOL_GPL(blk_poll
);
2582 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2583 * for new the queue limits
2585 * @rq: the request being checked
2588 * @rq may have been made based on weaker limitations of upper-level queues
2589 * in request stacking drivers, and it may violate the limitation of @q.
2590 * Since the block layer and the underlying device driver trust @rq
2591 * after it is inserted to @q, it should be checked against @q before
2592 * the insertion using this generic function.
2594 * Request stacking drivers like request-based dm may change the queue
2595 * limits when retrying requests on other queues. Those requests need
2596 * to be checked against the new queue limits again during dispatch.
2598 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2601 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2602 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2607 * queue's settings related to segment counting like q->bounce_pfn
2608 * may differ from that of other stacking queues.
2609 * Recalculate it to check the request correctly on this queue's
2612 blk_recalc_rq_segments(rq
);
2613 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2614 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2623 * @q: the queue to submit the request
2624 * @rq: the request being queued
2626 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2628 unsigned long flags
;
2629 int where
= ELEVATOR_INSERT_BACK
;
2631 if (blk_cloned_rq_check_limits(q
, rq
))
2632 return BLK_STS_IOERR
;
2635 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2636 return BLK_STS_IOERR
;
2639 if (blk_queue_io_stat(q
))
2640 blk_account_io_start(rq
, true);
2642 * Since we have a scheduler attached on the top device,
2643 * bypass a potential scheduler on the bottom device for
2646 return blk_mq_request_issue_directly(rq
);
2649 spin_lock_irqsave(q
->queue_lock
, flags
);
2650 if (unlikely(blk_queue_dying(q
))) {
2651 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2652 return BLK_STS_IOERR
;
2656 * Submitting request must be dequeued before calling this function
2657 * because it will be linked to another request_queue
2659 BUG_ON(blk_queued_rq(rq
));
2661 if (op_is_flush(rq
->cmd_flags
))
2662 where
= ELEVATOR_INSERT_FLUSH
;
2664 add_acct_request(q
, rq
, where
);
2665 if (where
== ELEVATOR_INSERT_FLUSH
)
2667 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2671 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2674 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2675 * @rq: request to examine
2678 * A request could be merge of IOs which require different failure
2679 * handling. This function determines the number of bytes which
2680 * can be failed from the beginning of the request without
2681 * crossing into area which need to be retried further.
2684 * The number of bytes to fail.
2686 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2688 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2689 unsigned int bytes
= 0;
2692 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2693 return blk_rq_bytes(rq
);
2696 * Currently the only 'mixing' which can happen is between
2697 * different fastfail types. We can safely fail portions
2698 * which have all the failfast bits that the first one has -
2699 * the ones which are at least as eager to fail as the first
2702 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2703 if ((bio
->bi_opf
& ff
) != ff
)
2705 bytes
+= bio
->bi_iter
.bi_size
;
2708 /* this could lead to infinite loop */
2709 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2712 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2714 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2716 if (blk_do_io_stat(req
)) {
2717 const int sgrp
= op_stat_group(req_op(req
));
2718 struct hd_struct
*part
;
2721 cpu
= part_stat_lock();
2723 part_stat_add(cpu
, part
, sectors
[sgrp
], bytes
>> 9);
2728 void blk_account_io_done(struct request
*req
, u64 now
)
2731 * Account IO completion. flush_rq isn't accounted as a
2732 * normal IO on queueing nor completion. Accounting the
2733 * containing request is enough.
2735 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2736 unsigned long duration
;
2737 const int sgrp
= op_stat_group(req_op(req
));
2738 struct hd_struct
*part
;
2741 duration
= nsecs_to_jiffies(now
- req
->start_time_ns
);
2742 cpu
= part_stat_lock();
2745 part_stat_inc(cpu
, part
, ios
[sgrp
]);
2746 part_stat_add(cpu
, part
, ticks
[sgrp
], duration
);
2747 part_round_stats(req
->q
, cpu
, part
);
2748 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
2750 hd_struct_put(part
);
2757 * Don't process normal requests when queue is suspended
2758 * or in the process of suspending/resuming
2760 static bool blk_pm_allow_request(struct request
*rq
)
2762 switch (rq
->q
->rpm_status
) {
2764 case RPM_SUSPENDING
:
2765 return rq
->rq_flags
& RQF_PM
;
2773 static bool blk_pm_allow_request(struct request
*rq
)
2779 void blk_account_io_start(struct request
*rq
, bool new_io
)
2781 struct hd_struct
*part
;
2782 int rw
= rq_data_dir(rq
);
2785 if (!blk_do_io_stat(rq
))
2788 cpu
= part_stat_lock();
2792 part_stat_inc(cpu
, part
, merges
[rw
]);
2794 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2795 if (!hd_struct_try_get(part
)) {
2797 * The partition is already being removed,
2798 * the request will be accounted on the disk only
2800 * We take a reference on disk->part0 although that
2801 * partition will never be deleted, so we can treat
2802 * it as any other partition.
2804 part
= &rq
->rq_disk
->part0
;
2805 hd_struct_get(part
);
2807 part_round_stats(rq
->q
, cpu
, part
);
2808 part_inc_in_flight(rq
->q
, part
, rw
);
2815 static struct request
*elv_next_request(struct request_queue
*q
)
2818 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
2820 WARN_ON_ONCE(q
->mq_ops
);
2823 list_for_each_entry(rq
, &q
->queue_head
, queuelist
) {
2824 if (blk_pm_allow_request(rq
))
2827 if (rq
->rq_flags
& RQF_SOFTBARRIER
)
2832 * Flush request is running and flush request isn't queueable
2833 * in the drive, we can hold the queue till flush request is
2834 * finished. Even we don't do this, driver can't dispatch next
2835 * requests and will requeue them. And this can improve
2836 * throughput too. For example, we have request flush1, write1,
2837 * flush 2. flush1 is dispatched, then queue is hold, write1
2838 * isn't inserted to queue. After flush1 is finished, flush2
2839 * will be dispatched. Since disk cache is already clean,
2840 * flush2 will be finished very soon, so looks like flush2 is
2842 * Since the queue is hold, a flag is set to indicate the queue
2843 * should be restarted later. Please see flush_end_io() for
2846 if (fq
->flush_pending_idx
!= fq
->flush_running_idx
&&
2847 !queue_flush_queueable(q
)) {
2848 fq
->flush_queue_delayed
= 1;
2851 if (unlikely(blk_queue_bypass(q
)) ||
2852 !q
->elevator
->type
->ops
.sq
.elevator_dispatch_fn(q
, 0))
2858 * blk_peek_request - peek at the top of a request queue
2859 * @q: request queue to peek at
2862 * Return the request at the top of @q. The returned request
2863 * should be started using blk_start_request() before LLD starts
2867 * Pointer to the request at the top of @q if available. Null
2870 struct request
*blk_peek_request(struct request_queue
*q
)
2875 lockdep_assert_held(q
->queue_lock
);
2876 WARN_ON_ONCE(q
->mq_ops
);
2878 while ((rq
= elv_next_request(q
)) != NULL
) {
2879 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2881 * This is the first time the device driver
2882 * sees this request (possibly after
2883 * requeueing). Notify IO scheduler.
2885 if (rq
->rq_flags
& RQF_SORTED
)
2886 elv_activate_rq(q
, rq
);
2889 * just mark as started even if we don't start
2890 * it, a request that has been delayed should
2891 * not be passed by new incoming requests
2893 rq
->rq_flags
|= RQF_STARTED
;
2894 trace_block_rq_issue(q
, rq
);
2897 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2898 q
->end_sector
= rq_end_sector(rq
);
2899 q
->boundary_rq
= NULL
;
2902 if (rq
->rq_flags
& RQF_DONTPREP
)
2905 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2907 * make sure space for the drain appears we
2908 * know we can do this because max_hw_segments
2909 * has been adjusted to be one fewer than the
2912 rq
->nr_phys_segments
++;
2918 ret
= q
->prep_rq_fn(q
, rq
);
2919 if (ret
== BLKPREP_OK
) {
2921 } else if (ret
== BLKPREP_DEFER
) {
2923 * the request may have been (partially) prepped.
2924 * we need to keep this request in the front to
2925 * avoid resource deadlock. RQF_STARTED will
2926 * prevent other fs requests from passing this one.
2928 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2929 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2931 * remove the space for the drain we added
2932 * so that we don't add it again
2934 --rq
->nr_phys_segments
;
2939 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2940 rq
->rq_flags
|= RQF_QUIET
;
2942 * Mark this request as started so we don't trigger
2943 * any debug logic in the end I/O path.
2945 blk_start_request(rq
);
2946 __blk_end_request_all(rq
, ret
== BLKPREP_INVALID
?
2947 BLK_STS_TARGET
: BLK_STS_IOERR
);
2949 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2956 EXPORT_SYMBOL(blk_peek_request
);
2958 static void blk_dequeue_request(struct request
*rq
)
2960 struct request_queue
*q
= rq
->q
;
2962 BUG_ON(list_empty(&rq
->queuelist
));
2963 BUG_ON(ELV_ON_HASH(rq
));
2965 list_del_init(&rq
->queuelist
);
2968 * the time frame between a request being removed from the lists
2969 * and to it is freed is accounted as io that is in progress at
2972 if (blk_account_rq(rq
))
2973 q
->in_flight
[rq_is_sync(rq
)]++;
2977 * blk_start_request - start request processing on the driver
2978 * @req: request to dequeue
2981 * Dequeue @req and start timeout timer on it. This hands off the
2982 * request to the driver.
2984 void blk_start_request(struct request
*req
)
2986 lockdep_assert_held(req
->q
->queue_lock
);
2987 WARN_ON_ONCE(req
->q
->mq_ops
);
2989 blk_dequeue_request(req
);
2991 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2992 req
->io_start_time_ns
= ktime_get_ns();
2993 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2994 req
->throtl_size
= blk_rq_sectors(req
);
2996 req
->rq_flags
|= RQF_STATS
;
2997 rq_qos_issue(req
->q
, req
);
3000 BUG_ON(blk_rq_is_complete(req
));
3003 EXPORT_SYMBOL(blk_start_request
);
3006 * blk_fetch_request - fetch a request from a request queue
3007 * @q: request queue to fetch a request from
3010 * Return the request at the top of @q. The request is started on
3011 * return and LLD can start processing it immediately.
3014 * Pointer to the request at the top of @q if available. Null
3017 struct request
*blk_fetch_request(struct request_queue
*q
)
3021 lockdep_assert_held(q
->queue_lock
);
3022 WARN_ON_ONCE(q
->mq_ops
);
3024 rq
= blk_peek_request(q
);
3026 blk_start_request(rq
);
3029 EXPORT_SYMBOL(blk_fetch_request
);
3032 * Steal bios from a request and add them to a bio list.
3033 * The request must not have been partially completed before.
3035 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3039 list
->tail
->bi_next
= rq
->bio
;
3041 list
->head
= rq
->bio
;
3042 list
->tail
= rq
->biotail
;
3050 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3053 * blk_update_request - Special helper function for request stacking drivers
3054 * @req: the request being processed
3055 * @error: block status code
3056 * @nr_bytes: number of bytes to complete @req
3059 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3060 * the request structure even if @req doesn't have leftover.
3061 * If @req has leftover, sets it up for the next range of segments.
3063 * This special helper function is only for request stacking drivers
3064 * (e.g. request-based dm) so that they can handle partial completion.
3065 * Actual device drivers should use blk_end_request instead.
3067 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068 * %false return from this function.
3071 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3072 * blk_rq_bytes() and in blk_update_request().
3075 * %false - this request doesn't have any more data
3076 * %true - this request has more data
3078 bool blk_update_request(struct request
*req
, blk_status_t error
,
3079 unsigned int nr_bytes
)
3083 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
3088 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
3089 !(req
->rq_flags
& RQF_QUIET
)))
3090 print_req_error(req
, error
);
3092 blk_account_io_completion(req
, nr_bytes
);
3096 struct bio
*bio
= req
->bio
;
3097 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
3099 if (bio_bytes
== bio
->bi_iter
.bi_size
)
3100 req
->bio
= bio
->bi_next
;
3102 /* Completion has already been traced */
3103 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
3104 req_bio_endio(req
, bio
, bio_bytes
, error
);
3106 total_bytes
+= bio_bytes
;
3107 nr_bytes
-= bio_bytes
;
3118 * Reset counters so that the request stacking driver
3119 * can find how many bytes remain in the request
3122 req
->__data_len
= 0;
3126 req
->__data_len
-= total_bytes
;
3128 /* update sector only for requests with clear definition of sector */
3129 if (!blk_rq_is_passthrough(req
))
3130 req
->__sector
+= total_bytes
>> 9;
3132 /* mixed attributes always follow the first bio */
3133 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
3134 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
3135 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
3138 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
3140 * If total number of sectors is less than the first segment
3141 * size, something has gone terribly wrong.
3143 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
3144 blk_dump_rq_flags(req
, "request botched");
3145 req
->__data_len
= blk_rq_cur_bytes(req
);
3148 /* recalculate the number of segments */
3149 blk_recalc_rq_segments(req
);
3154 EXPORT_SYMBOL_GPL(blk_update_request
);
3156 static bool blk_update_bidi_request(struct request
*rq
, blk_status_t error
,
3157 unsigned int nr_bytes
,
3158 unsigned int bidi_bytes
)
3160 if (blk_update_request(rq
, error
, nr_bytes
))
3163 /* Bidi request must be completed as a whole */
3164 if (unlikely(blk_bidi_rq(rq
)) &&
3165 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
3168 if (blk_queue_add_random(rq
->q
))
3169 add_disk_randomness(rq
->rq_disk
);
3175 * blk_unprep_request - unprepare a request
3178 * This function makes a request ready for complete resubmission (or
3179 * completion). It happens only after all error handling is complete,
3180 * so represents the appropriate moment to deallocate any resources
3181 * that were allocated to the request in the prep_rq_fn. The queue
3182 * lock is held when calling this.
3184 void blk_unprep_request(struct request
*req
)
3186 struct request_queue
*q
= req
->q
;
3188 req
->rq_flags
&= ~RQF_DONTPREP
;
3189 if (q
->unprep_rq_fn
)
3190 q
->unprep_rq_fn(q
, req
);
3192 EXPORT_SYMBOL_GPL(blk_unprep_request
);
3194 void blk_finish_request(struct request
*req
, blk_status_t error
)
3196 struct request_queue
*q
= req
->q
;
3197 u64 now
= ktime_get_ns();
3199 lockdep_assert_held(req
->q
->queue_lock
);
3200 WARN_ON_ONCE(q
->mq_ops
);
3202 if (req
->rq_flags
& RQF_STATS
)
3203 blk_stat_add(req
, now
);
3205 if (req
->rq_flags
& RQF_QUEUED
)
3206 blk_queue_end_tag(q
, req
);
3208 BUG_ON(blk_queued_rq(req
));
3210 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
3211 laptop_io_completion(req
->q
->backing_dev_info
);
3213 blk_delete_timer(req
);
3215 if (req
->rq_flags
& RQF_DONTPREP
)
3216 blk_unprep_request(req
);
3218 blk_account_io_done(req
, now
);
3221 rq_qos_done(q
, req
);
3222 req
->end_io(req
, error
);
3224 if (blk_bidi_rq(req
))
3225 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
3227 __blk_put_request(q
, req
);
3230 EXPORT_SYMBOL(blk_finish_request
);
3233 * blk_end_bidi_request - Complete a bidi request
3234 * @rq: the request to complete
3235 * @error: block status code
3236 * @nr_bytes: number of bytes to complete @rq
3237 * @bidi_bytes: number of bytes to complete @rq->next_rq
3240 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3241 * Drivers that supports bidi can safely call this member for any
3242 * type of request, bidi or uni. In the later case @bidi_bytes is
3246 * %false - we are done with this request
3247 * %true - still buffers pending for this request
3249 static bool blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3250 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3252 struct request_queue
*q
= rq
->q
;
3253 unsigned long flags
;
3255 WARN_ON_ONCE(q
->mq_ops
);
3257 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3260 spin_lock_irqsave(q
->queue_lock
, flags
);
3261 blk_finish_request(rq
, error
);
3262 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3268 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3269 * @rq: the request to complete
3270 * @error: block status code
3271 * @nr_bytes: number of bytes to complete @rq
3272 * @bidi_bytes: number of bytes to complete @rq->next_rq
3275 * Identical to blk_end_bidi_request() except that queue lock is
3276 * assumed to be locked on entry and remains so on return.
3279 * %false - we are done with this request
3280 * %true - still buffers pending for this request
3282 static bool __blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3283 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3285 lockdep_assert_held(rq
->q
->queue_lock
);
3286 WARN_ON_ONCE(rq
->q
->mq_ops
);
3288 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3291 blk_finish_request(rq
, error
);
3297 * blk_end_request - Helper function for drivers to complete the request.
3298 * @rq: the request being processed
3299 * @error: block status code
3300 * @nr_bytes: number of bytes to complete
3303 * Ends I/O on a number of bytes attached to @rq.
3304 * If @rq has leftover, sets it up for the next range of segments.
3307 * %false - we are done with this request
3308 * %true - still buffers pending for this request
3310 bool blk_end_request(struct request
*rq
, blk_status_t error
,
3311 unsigned int nr_bytes
)
3313 WARN_ON_ONCE(rq
->q
->mq_ops
);
3314 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3316 EXPORT_SYMBOL(blk_end_request
);
3319 * blk_end_request_all - Helper function for drives to finish the request.
3320 * @rq: the request to finish
3321 * @error: block status code
3324 * Completely finish @rq.
3326 void blk_end_request_all(struct request
*rq
, blk_status_t error
)
3329 unsigned int bidi_bytes
= 0;
3331 if (unlikely(blk_bidi_rq(rq
)))
3332 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3334 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3337 EXPORT_SYMBOL(blk_end_request_all
);
3340 * __blk_end_request - Helper function for drivers to complete the request.
3341 * @rq: the request being processed
3342 * @error: block status code
3343 * @nr_bytes: number of bytes to complete
3346 * Must be called with queue lock held unlike blk_end_request().
3349 * %false - we are done with this request
3350 * %true - still buffers pending for this request
3352 bool __blk_end_request(struct request
*rq
, blk_status_t error
,
3353 unsigned int nr_bytes
)
3355 lockdep_assert_held(rq
->q
->queue_lock
);
3356 WARN_ON_ONCE(rq
->q
->mq_ops
);
3358 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3360 EXPORT_SYMBOL(__blk_end_request
);
3363 * __blk_end_request_all - Helper function for drives to finish the request.
3364 * @rq: the request to finish
3365 * @error: block status code
3368 * Completely finish @rq. Must be called with queue lock held.
3370 void __blk_end_request_all(struct request
*rq
, blk_status_t error
)
3373 unsigned int bidi_bytes
= 0;
3375 lockdep_assert_held(rq
->q
->queue_lock
);
3376 WARN_ON_ONCE(rq
->q
->mq_ops
);
3378 if (unlikely(blk_bidi_rq(rq
)))
3379 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3381 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3384 EXPORT_SYMBOL(__blk_end_request_all
);
3387 * __blk_end_request_cur - Helper function to finish the current request chunk.
3388 * @rq: the request to finish the current chunk for
3389 * @error: block status code
3392 * Complete the current consecutively mapped chunk from @rq. Must
3393 * be called with queue lock held.
3396 * %false - we are done with this request
3397 * %true - still buffers pending for this request
3399 bool __blk_end_request_cur(struct request
*rq
, blk_status_t error
)
3401 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
3403 EXPORT_SYMBOL(__blk_end_request_cur
);
3405 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3408 if (bio_has_data(bio
))
3409 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3410 else if (bio_op(bio
) == REQ_OP_DISCARD
)
3411 rq
->nr_phys_segments
= 1;
3413 rq
->__data_len
= bio
->bi_iter
.bi_size
;
3414 rq
->bio
= rq
->biotail
= bio
;
3417 rq
->rq_disk
= bio
->bi_disk
;
3420 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3422 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3423 * @rq: the request to be flushed
3426 * Flush all pages in @rq.
3428 void rq_flush_dcache_pages(struct request
*rq
)
3430 struct req_iterator iter
;
3431 struct bio_vec bvec
;
3433 rq_for_each_segment(bvec
, rq
, iter
)
3434 flush_dcache_page(bvec
.bv_page
);
3436 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
3440 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3441 * @q : the queue of the device being checked
3444 * Check if underlying low-level drivers of a device are busy.
3445 * If the drivers want to export their busy state, they must set own
3446 * exporting function using blk_queue_lld_busy() first.
3448 * Basically, this function is used only by request stacking drivers
3449 * to stop dispatching requests to underlying devices when underlying
3450 * devices are busy. This behavior helps more I/O merging on the queue
3451 * of the request stacking driver and prevents I/O throughput regression
3452 * on burst I/O load.
3455 * 0 - Not busy (The request stacking driver should dispatch request)
3456 * 1 - Busy (The request stacking driver should stop dispatching request)
3458 int blk_lld_busy(struct request_queue
*q
)
3461 return q
->lld_busy_fn(q
);
3465 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3468 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3469 * @rq: the clone request to be cleaned up
3472 * Free all bios in @rq for a cloned request.
3474 void blk_rq_unprep_clone(struct request
*rq
)
3478 while ((bio
= rq
->bio
) != NULL
) {
3479 rq
->bio
= bio
->bi_next
;
3484 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3487 * Copy attributes of the original request to the clone request.
3488 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3490 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3492 dst
->cpu
= src
->cpu
;
3493 dst
->__sector
= blk_rq_pos(src
);
3494 dst
->__data_len
= blk_rq_bytes(src
);
3495 if (src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
3496 dst
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
3497 dst
->special_vec
= src
->special_vec
;
3499 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3500 dst
->ioprio
= src
->ioprio
;
3501 dst
->extra_len
= src
->extra_len
;
3505 * blk_rq_prep_clone - Helper function to setup clone request
3506 * @rq: the request to be setup
3507 * @rq_src: original request to be cloned
3508 * @bs: bio_set that bios for clone are allocated from
3509 * @gfp_mask: memory allocation mask for bio
3510 * @bio_ctr: setup function to be called for each clone bio.
3511 * Returns %0 for success, non %0 for failure.
3512 * @data: private data to be passed to @bio_ctr
3515 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3516 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3517 * are not copied, and copying such parts is the caller's responsibility.
3518 * Also, pages which the original bios are pointing to are not copied
3519 * and the cloned bios just point same pages.
3520 * So cloned bios must be completed before original bios, which means
3521 * the caller must complete @rq before @rq_src.
3523 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3524 struct bio_set
*bs
, gfp_t gfp_mask
,
3525 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3528 struct bio
*bio
, *bio_src
;
3533 __rq_for_each_bio(bio_src
, rq_src
) {
3534 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3538 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3542 rq
->biotail
->bi_next
= bio
;
3545 rq
->bio
= rq
->biotail
= bio
;
3548 __blk_rq_prep_clone(rq
, rq_src
);
3555 blk_rq_unprep_clone(rq
);
3559 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3561 int kblockd_schedule_work(struct work_struct
*work
)
3563 return queue_work(kblockd_workqueue
, work
);
3565 EXPORT_SYMBOL(kblockd_schedule_work
);
3567 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3569 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3571 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3573 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3574 unsigned long delay
)
3576 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3578 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
3581 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3582 * @plug: The &struct blk_plug that needs to be initialized
3585 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3586 * pending I/O should the task end up blocking between blk_start_plug() and
3587 * blk_finish_plug(). This is important from a performance perspective, but
3588 * also ensures that we don't deadlock. For instance, if the task is blocking
3589 * for a memory allocation, memory reclaim could end up wanting to free a
3590 * page belonging to that request that is currently residing in our private
3591 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3592 * this kind of deadlock.
3594 void blk_start_plug(struct blk_plug
*plug
)
3596 struct task_struct
*tsk
= current
;
3599 * If this is a nested plug, don't actually assign it.
3604 INIT_LIST_HEAD(&plug
->list
);
3605 INIT_LIST_HEAD(&plug
->mq_list
);
3606 INIT_LIST_HEAD(&plug
->cb_list
);
3608 * Store ordering should not be needed here, since a potential
3609 * preempt will imply a full memory barrier
3613 EXPORT_SYMBOL(blk_start_plug
);
3615 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3617 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3618 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3620 return !(rqa
->q
< rqb
->q
||
3621 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3625 * If 'from_schedule' is true, then postpone the dispatch of requests
3626 * until a safe kblockd context. We due this to avoid accidental big
3627 * additional stack usage in driver dispatch, in places where the originally
3628 * plugger did not intend it.
3630 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3632 __releases(q
->queue_lock
)
3634 lockdep_assert_held(q
->queue_lock
);
3636 trace_block_unplug(q
, depth
, !from_schedule
);
3639 blk_run_queue_async(q
);
3642 spin_unlock_irq(q
->queue_lock
);
3645 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3647 LIST_HEAD(callbacks
);
3649 while (!list_empty(&plug
->cb_list
)) {
3650 list_splice_init(&plug
->cb_list
, &callbacks
);
3652 while (!list_empty(&callbacks
)) {
3653 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3656 list_del(&cb
->list
);
3657 cb
->callback(cb
, from_schedule
);
3662 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3665 struct blk_plug
*plug
= current
->plug
;
3666 struct blk_plug_cb
*cb
;
3671 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3672 if (cb
->callback
== unplug
&& cb
->data
== data
)
3675 /* Not currently on the callback list */
3676 BUG_ON(size
< sizeof(*cb
));
3677 cb
= kzalloc(size
, GFP_ATOMIC
);
3680 cb
->callback
= unplug
;
3681 list_add(&cb
->list
, &plug
->cb_list
);
3685 EXPORT_SYMBOL(blk_check_plugged
);
3687 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3689 struct request_queue
*q
;
3694 flush_plug_callbacks(plug
, from_schedule
);
3696 if (!list_empty(&plug
->mq_list
))
3697 blk_mq_flush_plug_list(plug
, from_schedule
);
3699 if (list_empty(&plug
->list
))
3702 list_splice_init(&plug
->list
, &list
);
3704 list_sort(NULL
, &list
, plug_rq_cmp
);
3709 while (!list_empty(&list
)) {
3710 rq
= list_entry_rq(list
.next
);
3711 list_del_init(&rq
->queuelist
);
3715 * This drops the queue lock
3718 queue_unplugged(q
, depth
, from_schedule
);
3721 spin_lock_irq(q
->queue_lock
);
3725 * Short-circuit if @q is dead
3727 if (unlikely(blk_queue_dying(q
))) {
3728 __blk_end_request_all(rq
, BLK_STS_IOERR
);
3733 * rq is already accounted, so use raw insert
3735 if (op_is_flush(rq
->cmd_flags
))
3736 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3738 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3744 * This drops the queue lock
3747 queue_unplugged(q
, depth
, from_schedule
);
3750 void blk_finish_plug(struct blk_plug
*plug
)
3752 if (plug
!= current
->plug
)
3754 blk_flush_plug_list(plug
, false);
3756 current
->plug
= NULL
;
3758 EXPORT_SYMBOL(blk_finish_plug
);
3762 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3763 * @q: the queue of the device
3764 * @dev: the device the queue belongs to
3767 * Initialize runtime-PM-related fields for @q and start auto suspend for
3768 * @dev. Drivers that want to take advantage of request-based runtime PM
3769 * should call this function after @dev has been initialized, and its
3770 * request queue @q has been allocated, and runtime PM for it can not happen
3771 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3772 * cases, driver should call this function before any I/O has taken place.
3774 * This function takes care of setting up using auto suspend for the device,
3775 * the autosuspend delay is set to -1 to make runtime suspend impossible
3776 * until an updated value is either set by user or by driver. Drivers do
3777 * not need to touch other autosuspend settings.
3779 * The block layer runtime PM is request based, so only works for drivers
3780 * that use request as their IO unit instead of those directly use bio's.
3782 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3784 /* Don't enable runtime PM for blk-mq until it is ready */
3786 pm_runtime_disable(dev
);
3791 q
->rpm_status
= RPM_ACTIVE
;
3792 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3793 pm_runtime_use_autosuspend(q
->dev
);
3795 EXPORT_SYMBOL(blk_pm_runtime_init
);
3798 * blk_pre_runtime_suspend - Pre runtime suspend check
3799 * @q: the queue of the device
3802 * This function will check if runtime suspend is allowed for the device
3803 * by examining if there are any requests pending in the queue. If there
3804 * are requests pending, the device can not be runtime suspended; otherwise,
3805 * the queue's status will be updated to SUSPENDING and the driver can
3806 * proceed to suspend the device.
3808 * For the not allowed case, we mark last busy for the device so that
3809 * runtime PM core will try to autosuspend it some time later.
3811 * This function should be called near the start of the device's
3812 * runtime_suspend callback.
3815 * 0 - OK to runtime suspend the device
3816 * -EBUSY - Device should not be runtime suspended
3818 int blk_pre_runtime_suspend(struct request_queue
*q
)
3825 spin_lock_irq(q
->queue_lock
);
3826 if (q
->nr_pending
) {
3828 pm_runtime_mark_last_busy(q
->dev
);
3830 q
->rpm_status
= RPM_SUSPENDING
;
3832 spin_unlock_irq(q
->queue_lock
);
3835 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3838 * blk_post_runtime_suspend - Post runtime suspend processing
3839 * @q: the queue of the device
3840 * @err: return value of the device's runtime_suspend function
3843 * Update the queue's runtime status according to the return value of the
3844 * device's runtime suspend function and mark last busy for the device so
3845 * that PM core will try to auto suspend the device at a later time.
3847 * This function should be called near the end of the device's
3848 * runtime_suspend callback.
3850 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3855 spin_lock_irq(q
->queue_lock
);
3857 q
->rpm_status
= RPM_SUSPENDED
;
3859 q
->rpm_status
= RPM_ACTIVE
;
3860 pm_runtime_mark_last_busy(q
->dev
);
3862 spin_unlock_irq(q
->queue_lock
);
3864 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3867 * blk_pre_runtime_resume - Pre runtime resume processing
3868 * @q: the queue of the device
3871 * Update the queue's runtime status to RESUMING in preparation for the
3872 * runtime resume of the device.
3874 * This function should be called near the start of the device's
3875 * runtime_resume callback.
3877 void blk_pre_runtime_resume(struct request_queue
*q
)
3882 spin_lock_irq(q
->queue_lock
);
3883 q
->rpm_status
= RPM_RESUMING
;
3884 spin_unlock_irq(q
->queue_lock
);
3886 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3889 * blk_post_runtime_resume - Post runtime resume processing
3890 * @q: the queue of the device
3891 * @err: return value of the device's runtime_resume function
3894 * Update the queue's runtime status according to the return value of the
3895 * device's runtime_resume function. If it is successfully resumed, process
3896 * the requests that are queued into the device's queue when it is resuming
3897 * and then mark last busy and initiate autosuspend for it.
3899 * This function should be called near the end of the device's
3900 * runtime_resume callback.
3902 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3907 spin_lock_irq(q
->queue_lock
);
3909 q
->rpm_status
= RPM_ACTIVE
;
3911 pm_runtime_mark_last_busy(q
->dev
);
3912 pm_request_autosuspend(q
->dev
);
3914 q
->rpm_status
= RPM_SUSPENDED
;
3916 spin_unlock_irq(q
->queue_lock
);
3918 EXPORT_SYMBOL(blk_post_runtime_resume
);
3921 * blk_set_runtime_active - Force runtime status of the queue to be active
3922 * @q: the queue of the device
3924 * If the device is left runtime suspended during system suspend the resume
3925 * hook typically resumes the device and corrects runtime status
3926 * accordingly. However, that does not affect the queue runtime PM status
3927 * which is still "suspended". This prevents processing requests from the
3930 * This function can be used in driver's resume hook to correct queue
3931 * runtime PM status and re-enable peeking requests from the queue. It
3932 * should be called before first request is added to the queue.
3934 void blk_set_runtime_active(struct request_queue
*q
)
3936 spin_lock_irq(q
->queue_lock
);
3937 q
->rpm_status
= RPM_ACTIVE
;
3938 pm_runtime_mark_last_busy(q
->dev
);
3939 pm_request_autosuspend(q
->dev
);
3940 spin_unlock_irq(q
->queue_lock
);
3942 EXPORT_SYMBOL(blk_set_runtime_active
);
3945 int __init
blk_dev_init(void)
3947 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3948 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3949 FIELD_SIZEOF(struct request
, cmd_flags
));
3950 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3951 FIELD_SIZEOF(struct bio
, bi_opf
));
3953 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3954 kblockd_workqueue
= alloc_workqueue("kblockd",
3955 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3956 if (!kblockd_workqueue
)
3957 panic("Failed to create kblockd\n");
3959 request_cachep
= kmem_cache_create("blkdev_requests",
3960 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3962 blk_requestq_cachep
= kmem_cache_create("request_queue",
3963 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3965 #ifdef CONFIG_DEBUG_FS
3966 blk_debugfs_root
= debugfs_create_dir("block", NULL
);