1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
40 #include "compression.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
49 struct btrfs_iget_args
{
50 struct btrfs_key
*location
;
51 struct btrfs_root
*root
;
54 struct btrfs_dio_data
{
56 u64 unsubmitted_oe_range_start
;
57 u64 unsubmitted_oe_range_end
;
61 static const struct inode_operations btrfs_dir_inode_operations
;
62 static const struct inode_operations btrfs_symlink_inode_operations
;
63 static const struct inode_operations btrfs_dir_ro_inode_operations
;
64 static const struct inode_operations btrfs_special_inode_operations
;
65 static const struct inode_operations btrfs_file_inode_operations
;
66 static const struct address_space_operations btrfs_aops
;
67 static const struct address_space_operations btrfs_symlink_aops
;
68 static const struct file_operations btrfs_dir_file_operations
;
69 static const struct extent_io_ops btrfs_extent_io_ops
;
71 static struct kmem_cache
*btrfs_inode_cachep
;
72 struct kmem_cache
*btrfs_trans_handle_cachep
;
73 struct kmem_cache
*btrfs_path_cachep
;
74 struct kmem_cache
*btrfs_free_space_cachep
;
77 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
78 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
79 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
80 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
81 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
82 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
83 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
84 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
87 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
88 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
90 static noinline
int cow_file_range(struct inode
*inode
,
91 struct page
*locked_page
,
92 u64 start
, u64 end
, u64 delalloc_end
,
93 int *page_started
, unsigned long *nr_written
,
94 int unlock
, struct btrfs_dedupe_hash
*hash
);
95 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
96 u64 orig_start
, u64 block_start
,
97 u64 block_len
, u64 orig_block_len
,
98 u64 ram_bytes
, int compress_type
,
101 static void __endio_write_update_ordered(struct inode
*inode
,
102 const u64 offset
, const u64 bytes
,
103 const bool uptodate
);
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
113 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114 * fill_delalloc() callback already does proper cleanup for the first page of
115 * the range, that is, it invokes the callback writepage_end_io_hook() for the
116 * range of the first page.
118 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
122 unsigned long index
= offset
>> PAGE_SHIFT
;
123 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
126 while (index
<= end_index
) {
127 page
= find_get_page(inode
->i_mapping
, index
);
131 ClearPagePrivate2(page
);
134 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
135 bytes
- PAGE_SIZE
, false);
138 static int btrfs_dirty_inode(struct inode
*inode
);
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode
*inode
)
143 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
147 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
148 struct inode
*inode
, struct inode
*dir
,
149 const struct qstr
*qstr
)
153 err
= btrfs_init_acl(trans
, inode
, dir
);
155 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
164 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
165 struct btrfs_path
*path
, int extent_inserted
,
166 struct btrfs_root
*root
, struct inode
*inode
,
167 u64 start
, size_t size
, size_t compressed_size
,
169 struct page
**compressed_pages
)
171 struct extent_buffer
*leaf
;
172 struct page
*page
= NULL
;
175 struct btrfs_file_extent_item
*ei
;
177 size_t cur_size
= size
;
178 unsigned long offset
;
180 if (compressed_size
&& compressed_pages
)
181 cur_size
= compressed_size
;
183 inode_add_bytes(inode
, size
);
185 if (!extent_inserted
) {
186 struct btrfs_key key
;
189 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
191 key
.type
= BTRFS_EXTENT_DATA_KEY
;
193 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
194 path
->leave_spinning
= 1;
195 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
200 leaf
= path
->nodes
[0];
201 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
202 struct btrfs_file_extent_item
);
203 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
204 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
205 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
206 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
207 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
208 ptr
= btrfs_file_extent_inline_start(ei
);
210 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
213 while (compressed_size
> 0) {
214 cpage
= compressed_pages
[i
];
215 cur_size
= min_t(unsigned long, compressed_size
,
218 kaddr
= kmap_atomic(cpage
);
219 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
220 kunmap_atomic(kaddr
);
224 compressed_size
-= cur_size
;
226 btrfs_set_file_extent_compression(leaf
, ei
,
229 page
= find_get_page(inode
->i_mapping
,
230 start
>> PAGE_SHIFT
);
231 btrfs_set_file_extent_compression(leaf
, ei
, 0);
232 kaddr
= kmap_atomic(page
);
233 offset
= start
& (PAGE_SIZE
- 1);
234 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
235 kunmap_atomic(kaddr
);
238 btrfs_mark_buffer_dirty(leaf
);
239 btrfs_release_path(path
);
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
250 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
251 ret
= btrfs_update_inode(trans
, root
, inode
);
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
263 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
264 u64 end
, size_t compressed_size
,
266 struct page
**compressed_pages
)
268 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
269 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
270 struct btrfs_trans_handle
*trans
;
271 u64 isize
= i_size_read(inode
);
272 u64 actual_end
= min(end
+ 1, isize
);
273 u64 inline_len
= actual_end
- start
;
274 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
275 u64 data_len
= inline_len
;
277 struct btrfs_path
*path
;
278 int extent_inserted
= 0;
279 u32 extent_item_size
;
282 data_len
= compressed_size
;
285 actual_end
> fs_info
->sectorsize
||
286 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
288 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
290 data_len
> fs_info
->max_inline
) {
294 path
= btrfs_alloc_path();
298 trans
= btrfs_join_transaction(root
);
300 btrfs_free_path(path
);
301 return PTR_ERR(trans
);
303 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
305 if (compressed_size
&& compressed_pages
)
306 extent_item_size
= btrfs_file_extent_calc_inline_size(
309 extent_item_size
= btrfs_file_extent_calc_inline_size(
312 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
313 start
, aligned_end
, NULL
,
314 1, 1, extent_item_size
, &extent_inserted
);
316 btrfs_abort_transaction(trans
, ret
);
320 if (isize
> actual_end
)
321 inline_len
= min_t(u64
, isize
, actual_end
);
322 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
324 inline_len
, compressed_size
,
325 compress_type
, compressed_pages
);
326 if (ret
&& ret
!= -ENOSPC
) {
327 btrfs_abort_transaction(trans
, ret
);
329 } else if (ret
== -ENOSPC
) {
334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
335 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
343 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
344 btrfs_free_path(path
);
345 btrfs_end_transaction(trans
);
349 struct async_extent
{
354 unsigned long nr_pages
;
356 struct list_head list
;
361 struct btrfs_root
*root
;
362 struct page
*locked_page
;
365 unsigned int write_flags
;
366 struct list_head extents
;
367 struct btrfs_work work
;
370 static noinline
int add_async_extent(struct async_cow
*cow
,
371 u64 start
, u64 ram_size
,
374 unsigned long nr_pages
,
377 struct async_extent
*async_extent
;
379 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
380 BUG_ON(!async_extent
); /* -ENOMEM */
381 async_extent
->start
= start
;
382 async_extent
->ram_size
= ram_size
;
383 async_extent
->compressed_size
= compressed_size
;
384 async_extent
->pages
= pages
;
385 async_extent
->nr_pages
= nr_pages
;
386 async_extent
->compress_type
= compress_type
;
387 list_add_tail(&async_extent
->list
, &cow
->extents
);
391 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
393 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
396 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
399 if (BTRFS_I(inode
)->defrag_compress
)
401 /* bad compression ratios */
402 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
404 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
405 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
406 BTRFS_I(inode
)->prop_compress
)
407 return btrfs_compress_heuristic(inode
, start
, end
);
411 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
412 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
414 /* If this is a small write inside eof, kick off a defrag */
415 if (num_bytes
< small_write
&&
416 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
417 btrfs_add_inode_defrag(NULL
, inode
);
421 * we create compressed extents in two phases. The first
422 * phase compresses a range of pages that have already been
423 * locked (both pages and state bits are locked).
425 * This is done inside an ordered work queue, and the compression
426 * is spread across many cpus. The actual IO submission is step
427 * two, and the ordered work queue takes care of making sure that
428 * happens in the same order things were put onto the queue by
429 * writepages and friends.
431 * If this code finds it can't get good compression, it puts an
432 * entry onto the work queue to write the uncompressed bytes. This
433 * makes sure that both compressed inodes and uncompressed inodes
434 * are written in the same order that the flusher thread sent them
437 static noinline
void compress_file_range(struct inode
*inode
,
438 struct page
*locked_page
,
440 struct async_cow
*async_cow
,
443 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
444 u64 blocksize
= fs_info
->sectorsize
;
446 u64 isize
= i_size_read(inode
);
448 struct page
**pages
= NULL
;
449 unsigned long nr_pages
;
450 unsigned long total_compressed
= 0;
451 unsigned long total_in
= 0;
454 int compress_type
= fs_info
->compress_type
;
457 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
460 actual_end
= min_t(u64
, isize
, end
+ 1);
463 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
465 nr_pages
= min_t(unsigned long, nr_pages
,
466 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
469 * we don't want to send crud past the end of i_size through
470 * compression, that's just a waste of CPU time. So, if the
471 * end of the file is before the start of our current
472 * requested range of bytes, we bail out to the uncompressed
473 * cleanup code that can deal with all of this.
475 * It isn't really the fastest way to fix things, but this is a
476 * very uncommon corner.
478 if (actual_end
<= start
)
479 goto cleanup_and_bail_uncompressed
;
481 total_compressed
= actual_end
- start
;
484 * skip compression for a small file range(<=blocksize) that
485 * isn't an inline extent, since it doesn't save disk space at all.
487 if (total_compressed
<= blocksize
&&
488 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
489 goto cleanup_and_bail_uncompressed
;
491 total_compressed
= min_t(unsigned long, total_compressed
,
492 BTRFS_MAX_UNCOMPRESSED
);
497 * we do compression for mount -o compress and when the
498 * inode has not been flagged as nocompress. This flag can
499 * change at any time if we discover bad compression ratios.
501 if (inode_need_compress(inode
, start
, end
)) {
503 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
505 /* just bail out to the uncompressed code */
509 if (BTRFS_I(inode
)->defrag_compress
)
510 compress_type
= BTRFS_I(inode
)->defrag_compress
;
511 else if (BTRFS_I(inode
)->prop_compress
)
512 compress_type
= BTRFS_I(inode
)->prop_compress
;
515 * we need to call clear_page_dirty_for_io on each
516 * page in the range. Otherwise applications with the file
517 * mmap'd can wander in and change the page contents while
518 * we are compressing them.
520 * If the compression fails for any reason, we set the pages
521 * dirty again later on.
523 * Note that the remaining part is redirtied, the start pointer
524 * has moved, the end is the original one.
527 extent_range_clear_dirty_for_io(inode
, start
, end
);
531 /* Compression level is applied here and only here */
532 ret
= btrfs_compress_pages(
533 compress_type
| (fs_info
->compress_level
<< 4),
534 inode
->i_mapping
, start
,
541 unsigned long offset
= total_compressed
&
543 struct page
*page
= pages
[nr_pages
- 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr
= kmap_atomic(page
);
551 memset(kaddr
+ offset
, 0,
553 kunmap_atomic(kaddr
);
560 /* lets try to make an inline extent */
561 if (ret
|| total_in
< actual_end
) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret
= cow_file_range_inline(inode
, start
, end
, 0,
566 BTRFS_COMPRESS_NONE
, NULL
);
568 /* try making a compressed inline extent */
569 ret
= cow_file_range_inline(inode
, start
, end
,
571 compress_type
, pages
);
574 unsigned long clear_flags
= EXTENT_DELALLOC
|
575 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
576 EXTENT_DO_ACCOUNTING
;
577 unsigned long page_error_op
;
579 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 * We use DO_ACCOUNTING here because we need the
587 * delalloc_release_metadata to be done _after_ we drop
588 * our outstanding extent for clearing delalloc for this
591 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
604 * we aren't doing an inline extent round the compressed size
605 * up to a block size boundary so the allocator does sane
608 total_compressed
= ALIGN(total_compressed
, blocksize
);
611 * one last check to make sure the compression is really a
612 * win, compare the page count read with the blocks on disk,
613 * compression must free at least one sector size
615 total_in
= ALIGN(total_in
, PAGE_SIZE
);
616 if (total_compressed
+ blocksize
<= total_in
) {
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
624 add_async_extent(async_cow
, start
, total_in
,
625 total_compressed
, pages
, nr_pages
,
628 if (start
+ total_in
< end
) {
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
642 for (i
= 0; i
< nr_pages
; i
++) {
643 WARN_ON(pages
[i
]->mapping
);
648 total_compressed
= 0;
651 /* flag the file so we don't compress in the future */
652 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
653 !(BTRFS_I(inode
)->prop_compress
)) {
654 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
657 cleanup_and_bail_uncompressed
:
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
664 if (page_offset(locked_page
) >= start
&&
665 page_offset(locked_page
) <= end
)
666 __set_page_dirty_nobuffers(locked_page
);
667 /* unlocked later on in the async handlers */
670 extent_range_redirty_for_io(inode
, start
, end
);
671 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
672 BTRFS_COMPRESS_NONE
);
678 for (i
= 0; i
< nr_pages
; i
++) {
679 WARN_ON(pages
[i
]->mapping
);
685 static void free_async_extent_pages(struct async_extent
*async_extent
)
689 if (!async_extent
->pages
)
692 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
693 WARN_ON(async_extent
->pages
[i
]->mapping
);
694 put_page(async_extent
->pages
[i
]);
696 kfree(async_extent
->pages
);
697 async_extent
->nr_pages
= 0;
698 async_extent
->pages
= NULL
;
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
707 static noinline
void submit_compressed_extents(struct inode
*inode
,
708 struct async_cow
*async_cow
)
710 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
711 struct async_extent
*async_extent
;
713 struct btrfs_key ins
;
714 struct extent_map
*em
;
715 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
716 struct extent_io_tree
*io_tree
;
720 while (!list_empty(&async_cow
->extents
)) {
721 async_extent
= list_entry(async_cow
->extents
.next
,
722 struct async_extent
, list
);
723 list_del(&async_extent
->list
);
725 io_tree
= &BTRFS_I(inode
)->io_tree
;
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent
->pages
) {
730 int page_started
= 0;
731 unsigned long nr_written
= 0;
733 lock_extent(io_tree
, async_extent
->start
,
734 async_extent
->start
+
735 async_extent
->ram_size
- 1);
737 /* allocate blocks */
738 ret
= cow_file_range(inode
, async_cow
->locked_page
,
740 async_extent
->start
+
741 async_extent
->ram_size
- 1,
742 async_extent
->start
+
743 async_extent
->ram_size
- 1,
744 &page_started
, &nr_written
, 0,
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
755 if (!page_started
&& !ret
)
756 extent_write_locked_range(inode
,
758 async_extent
->start
+
759 async_extent
->ram_size
- 1,
762 unlock_page(async_cow
->locked_page
);
768 lock_extent(io_tree
, async_extent
->start
,
769 async_extent
->start
+ async_extent
->ram_size
- 1);
771 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
772 async_extent
->compressed_size
,
773 async_extent
->compressed_size
,
774 0, alloc_hint
, &ins
, 1, 1);
776 free_async_extent_pages(async_extent
);
778 if (ret
== -ENOSPC
) {
779 unlock_extent(io_tree
, async_extent
->start
,
780 async_extent
->start
+
781 async_extent
->ram_size
- 1);
784 * we need to redirty the pages if we decide to
785 * fallback to uncompressed IO, otherwise we
786 * will not submit these pages down to lower
789 extent_range_redirty_for_io(inode
,
791 async_extent
->start
+
792 async_extent
->ram_size
- 1);
799 * here we're doing allocation and writeback of the
802 em
= create_io_em(inode
, async_extent
->start
,
803 async_extent
->ram_size
, /* len */
804 async_extent
->start
, /* orig_start */
805 ins
.objectid
, /* block_start */
806 ins
.offset
, /* block_len */
807 ins
.offset
, /* orig_block_len */
808 async_extent
->ram_size
, /* ram_bytes */
809 async_extent
->compress_type
,
810 BTRFS_ORDERED_COMPRESSED
);
812 /* ret value is not necessary due to void function */
813 goto out_free_reserve
;
816 ret
= btrfs_add_ordered_extent_compress(inode
,
819 async_extent
->ram_size
,
821 BTRFS_ORDERED_COMPRESSED
,
822 async_extent
->compress_type
);
824 btrfs_drop_extent_cache(BTRFS_I(inode
),
826 async_extent
->start
+
827 async_extent
->ram_size
- 1, 0);
828 goto out_free_reserve
;
830 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
836 async_extent
->start
+
837 async_extent
->ram_size
- 1,
838 async_extent
->start
+
839 async_extent
->ram_size
- 1,
840 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
841 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
843 if (btrfs_submit_compressed_write(inode
,
845 async_extent
->ram_size
,
847 ins
.offset
, async_extent
->pages
,
848 async_extent
->nr_pages
,
849 async_cow
->write_flags
)) {
850 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
851 struct page
*p
= async_extent
->pages
[0];
852 const u64 start
= async_extent
->start
;
853 const u64 end
= start
+ async_extent
->ram_size
- 1;
855 p
->mapping
= inode
->i_mapping
;
856 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
859 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
863 free_async_extent_pages(async_extent
);
865 alloc_hint
= ins
.objectid
+ ins
.offset
;
871 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
872 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
874 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
875 async_extent
->start
+
876 async_extent
->ram_size
- 1,
877 async_extent
->start
+
878 async_extent
->ram_size
- 1,
879 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
880 EXTENT_DELALLOC_NEW
|
881 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
882 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
883 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
885 free_async_extent_pages(async_extent
);
890 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
893 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
894 struct extent_map
*em
;
897 read_lock(&em_tree
->lock
);
898 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
905 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
907 em
= search_extent_mapping(em_tree
, 0, 0);
908 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
909 alloc_hint
= em
->block_start
;
913 alloc_hint
= em
->block_start
;
917 read_unlock(&em_tree
->lock
);
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
935 static noinline
int cow_file_range(struct inode
*inode
,
936 struct page
*locked_page
,
937 u64 start
, u64 end
, u64 delalloc_end
,
938 int *page_started
, unsigned long *nr_written
,
939 int unlock
, struct btrfs_dedupe_hash
*hash
)
941 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
945 unsigned long ram_size
;
946 u64 cur_alloc_size
= 0;
947 u64 blocksize
= fs_info
->sectorsize
;
948 struct btrfs_key ins
;
949 struct extent_map
*em
;
951 unsigned long page_ops
;
952 bool extent_reserved
= false;
955 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
961 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
962 num_bytes
= max(blocksize
, num_bytes
);
963 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
965 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
968 /* lets try to make an inline extent */
969 ret
= cow_file_range_inline(inode
, start
, end
, 0,
970 BTRFS_COMPRESS_NONE
, NULL
);
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
978 extent_clear_unlock_delalloc(inode
, start
, end
,
980 EXTENT_LOCKED
| EXTENT_DELALLOC
|
981 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
982 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
983 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
985 *nr_written
= *nr_written
+
986 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
989 } else if (ret
< 0) {
994 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
995 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
996 start
+ num_bytes
- 1, 0);
998 while (num_bytes
> 0) {
999 cur_alloc_size
= num_bytes
;
1000 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1001 fs_info
->sectorsize
, 0, alloc_hint
,
1005 cur_alloc_size
= ins
.offset
;
1006 extent_reserved
= true;
1008 ram_size
= ins
.offset
;
1009 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1010 start
, /* orig_start */
1011 ins
.objectid
, /* block_start */
1012 ins
.offset
, /* block_len */
1013 ins
.offset
, /* orig_block_len */
1014 ram_size
, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE
, /* compress_type */
1016 BTRFS_ORDERED_REGULAR
/* type */);
1021 free_extent_map(em
);
1023 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1024 ram_size
, cur_alloc_size
, 0);
1026 goto out_drop_extent_cache
;
1028 if (root
->root_key
.objectid
==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1030 ret
= btrfs_reloc_clone_csums(inode
, start
,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1045 start
+ ram_size
- 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1058 page_ops
|= PAGE_SET_PRIVATE2
;
1060 extent_clear_unlock_delalloc(inode
, start
,
1061 start
+ ram_size
- 1,
1062 delalloc_end
, locked_page
,
1063 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1065 if (num_bytes
< cur_alloc_size
)
1068 num_bytes
-= cur_alloc_size
;
1069 alloc_hint
= ins
.objectid
+ ins
.offset
;
1070 start
+= cur_alloc_size
;
1071 extent_reserved
= false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache
:
1085 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1088 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1090 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1091 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1092 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved
) {
1105 extent_clear_unlock_delalloc(inode
, start
,
1106 start
+ cur_alloc_size
,
1107 start
+ cur_alloc_size
,
1111 start
+= cur_alloc_size
;
1115 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1117 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1123 * work queue call back to started compression on a file and pages
1125 static noinline
void async_cow_start(struct btrfs_work
*work
)
1127 struct async_cow
*async_cow
;
1129 async_cow
= container_of(work
, struct async_cow
, work
);
1131 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1132 async_cow
->start
, async_cow
->end
, async_cow
,
1134 if (num_added
== 0) {
1135 btrfs_add_delayed_iput(async_cow
->inode
);
1136 async_cow
->inode
= NULL
;
1141 * work queue call back to submit previously compressed pages
1143 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1145 struct btrfs_fs_info
*fs_info
;
1146 struct async_cow
*async_cow
;
1147 struct btrfs_root
*root
;
1148 unsigned long nr_pages
;
1150 async_cow
= container_of(work
, struct async_cow
, work
);
1152 root
= async_cow
->root
;
1153 fs_info
= root
->fs_info
;
1154 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1157 /* atomic_sub_return implies a barrier */
1158 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1160 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1162 if (async_cow
->inode
)
1163 submit_compressed_extents(async_cow
->inode
, async_cow
);
1166 static noinline
void async_cow_free(struct btrfs_work
*work
)
1168 struct async_cow
*async_cow
;
1169 async_cow
= container_of(work
, struct async_cow
, work
);
1170 if (async_cow
->inode
)
1171 btrfs_add_delayed_iput(async_cow
->inode
);
1175 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1176 u64 start
, u64 end
, int *page_started
,
1177 unsigned long *nr_written
,
1178 unsigned int write_flags
)
1180 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1181 struct async_cow
*async_cow
;
1182 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1183 unsigned long nr_pages
;
1186 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1188 while (start
< end
) {
1189 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1190 BUG_ON(!async_cow
); /* -ENOMEM */
1191 async_cow
->inode
= igrab(inode
);
1192 async_cow
->root
= root
;
1193 async_cow
->locked_page
= locked_page
;
1194 async_cow
->start
= start
;
1195 async_cow
->write_flags
= write_flags
;
1197 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1198 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1201 cur_end
= min(end
, start
+ SZ_512K
- 1);
1203 async_cow
->end
= cur_end
;
1204 INIT_LIST_HEAD(&async_cow
->extents
);
1206 btrfs_init_work(&async_cow
->work
,
1207 btrfs_delalloc_helper
,
1208 async_cow_start
, async_cow_submit
,
1211 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1213 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1215 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1217 *nr_written
+= nr_pages
;
1218 start
= cur_end
+ 1;
1224 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1225 u64 bytenr
, u64 num_bytes
)
1228 struct btrfs_ordered_sum
*sums
;
1231 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1232 bytenr
+ num_bytes
- 1, &list
, 0);
1233 if (ret
== 0 && list_empty(&list
))
1236 while (!list_empty(&list
)) {
1237 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1238 list_del(&sums
->list
);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1254 struct page
*locked_page
,
1255 u64 start
, u64 end
, int *page_started
, int force
,
1256 unsigned long *nr_written
)
1258 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1259 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1260 struct extent_buffer
*leaf
;
1261 struct btrfs_path
*path
;
1262 struct btrfs_file_extent_item
*fi
;
1263 struct btrfs_key found_key
;
1264 struct extent_map
*em
;
1279 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1281 path
= btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1285 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1286 EXTENT_DO_ACCOUNTING
|
1287 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1289 PAGE_SET_WRITEBACK
|
1290 PAGE_END_WRITEBACK
);
1294 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1296 cow_start
= (u64
)-1;
1299 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1303 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1304 leaf
= path
->nodes
[0];
1305 btrfs_item_key_to_cpu(leaf
, &found_key
,
1306 path
->slots
[0] - 1);
1307 if (found_key
.objectid
== ino
&&
1308 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1313 leaf
= path
->nodes
[0];
1314 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1315 ret
= btrfs_next_leaf(root
, path
);
1317 if (cow_start
!= (u64
)-1)
1318 cur_offset
= cow_start
;
1323 leaf
= path
->nodes
[0];
1329 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1331 if (found_key
.objectid
> ino
)
1333 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1334 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1338 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1339 found_key
.offset
> end
)
1342 if (found_key
.offset
> cur_offset
) {
1343 extent_end
= found_key
.offset
;
1348 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1349 struct btrfs_file_extent_item
);
1350 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1352 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1353 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1354 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1355 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1356 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1357 extent_end
= found_key
.offset
+
1358 btrfs_file_extent_num_bytes(leaf
, fi
);
1360 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1361 if (extent_end
<= start
) {
1365 if (disk_bytenr
== 0)
1367 if (btrfs_file_extent_compression(leaf
, fi
) ||
1368 btrfs_file_extent_encryption(leaf
, fi
) ||
1369 btrfs_file_extent_other_encoding(leaf
, fi
))
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1375 if (btrfs_file_extent_generation(leaf
, fi
) <=
1376 btrfs_root_last_snapshot(&root
->root_item
))
1378 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1380 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1382 ret
= btrfs_cross_ref_exist(root
, ino
,
1384 extent_offset
, disk_bytenr
);
1387 * ret could be -EIO if the above fails to read
1391 if (cow_start
!= (u64
)-1)
1392 cur_offset
= cow_start
;
1396 WARN_ON_ONCE(nolock
);
1399 disk_bytenr
+= extent_offset
;
1400 disk_bytenr
+= cur_offset
- found_key
.offset
;
1401 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1406 if (!nolock
&& atomic_read(&root
->snapshot_force_cow
))
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1413 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1417 * ret could be -EIO if the above fails to read
1421 if (cow_start
!= (u64
)-1)
1422 cur_offset
= cow_start
;
1425 WARN_ON_ONCE(nolock
);
1428 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1431 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1432 extent_end
= found_key
.offset
+
1433 btrfs_file_extent_ram_bytes(leaf
, fi
);
1434 extent_end
= ALIGN(extent_end
,
1435 fs_info
->sectorsize
);
1440 if (extent_end
<= start
) {
1443 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1447 if (cow_start
== (u64
)-1)
1448 cow_start
= cur_offset
;
1449 cur_offset
= extent_end
;
1450 if (cur_offset
> end
)
1456 btrfs_release_path(path
);
1457 if (cow_start
!= (u64
)-1) {
1458 ret
= cow_file_range(inode
, locked_page
,
1459 cow_start
, found_key
.offset
- 1,
1460 end
, page_started
, nr_written
, 1,
1464 btrfs_dec_nocow_writers(fs_info
,
1468 cow_start
= (u64
)-1;
1471 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1472 u64 orig_start
= found_key
.offset
- extent_offset
;
1474 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1476 disk_bytenr
, /* block_start */
1477 num_bytes
, /* block_len */
1478 disk_num_bytes
, /* orig_block_len */
1479 ram_bytes
, BTRFS_COMPRESS_NONE
,
1480 BTRFS_ORDERED_PREALLOC
);
1483 btrfs_dec_nocow_writers(fs_info
,
1488 free_extent_map(em
);
1491 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1492 type
= BTRFS_ORDERED_PREALLOC
;
1494 type
= BTRFS_ORDERED_NOCOW
;
1497 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1498 num_bytes
, num_bytes
, type
);
1500 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1501 BUG_ON(ret
); /* -ENOMEM */
1503 if (root
->root_key
.objectid
==
1504 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1506 * Error handled later, as we must prevent
1507 * extent_clear_unlock_delalloc() in error handler
1508 * from freeing metadata of created ordered extent.
1510 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1513 extent_clear_unlock_delalloc(inode
, cur_offset
,
1514 cur_offset
+ num_bytes
- 1, end
,
1515 locked_page
, EXTENT_LOCKED
|
1517 EXTENT_CLEAR_DATA_RESV
,
1518 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1520 cur_offset
= extent_end
;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset
> end
)
1532 btrfs_release_path(path
);
1534 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1535 cow_start
= cur_offset
;
1539 if (cow_start
!= (u64
)-1) {
1540 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1541 page_started
, nr_written
, 1, NULL
);
1547 if (ret
&& cur_offset
< end
)
1548 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1549 locked_page
, EXTENT_LOCKED
|
1550 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1551 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1553 PAGE_SET_WRITEBACK
|
1554 PAGE_END_WRITEBACK
);
1555 btrfs_free_path(path
);
1559 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1562 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1563 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1571 if (BTRFS_I(inode
)->defrag_bytes
&&
1572 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1573 EXTENT_DEFRAG
, 0, NULL
))
1580 * extent_io.c call back to do delayed allocation processing
1582 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1583 u64 start
, u64 end
, int *page_started
,
1584 unsigned long *nr_written
,
1585 struct writeback_control
*wbc
)
1587 struct inode
*inode
= private_data
;
1589 int force_cow
= need_force_cow(inode
, start
, end
);
1590 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1592 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1593 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1594 page_started
, 1, nr_written
);
1595 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1596 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1597 page_started
, 0, nr_written
);
1598 } else if (!inode_need_compress(inode
, start
, end
)) {
1599 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1600 page_started
, nr_written
, 1, NULL
);
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1603 &BTRFS_I(inode
)->runtime_flags
);
1604 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1605 page_started
, nr_written
,
1609 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1613 static void btrfs_split_extent_hook(void *private_data
,
1614 struct extent_state
*orig
, u64 split
)
1616 struct inode
*inode
= private_data
;
1619 /* not delalloc, ignore it */
1620 if (!(orig
->state
& EXTENT_DELALLOC
))
1623 size
= orig
->end
- orig
->start
+ 1;
1624 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
1632 new_size
= orig
->end
- split
+ 1;
1633 num_extents
= count_max_extents(new_size
);
1634 new_size
= split
- orig
->start
;
1635 num_extents
+= count_max_extents(new_size
);
1636 if (count_max_extents(size
) >= num_extents
)
1640 spin_lock(&BTRFS_I(inode
)->lock
);
1641 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1642 spin_unlock(&BTRFS_I(inode
)->lock
);
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1651 static void btrfs_merge_extent_hook(void *private_data
,
1652 struct extent_state
*new,
1653 struct extent_state
*other
)
1655 struct inode
*inode
= private_data
;
1656 u64 new_size
, old_size
;
1659 /* not delalloc, ignore it */
1660 if (!(other
->state
& EXTENT_DELALLOC
))
1663 if (new->start
> other
->start
)
1664 new_size
= new->end
- other
->start
+ 1;
1666 new_size
= other
->end
- new->start
+ 1;
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1670 spin_lock(&BTRFS_I(inode
)->lock
);
1671 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1672 spin_unlock(&BTRFS_I(inode
)->lock
);
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1694 old_size
= other
->end
- other
->start
+ 1;
1695 num_extents
= count_max_extents(old_size
);
1696 old_size
= new->end
- new->start
+ 1;
1697 num_extents
+= count_max_extents(old_size
);
1698 if (count_max_extents(new_size
) >= num_extents
)
1701 spin_lock(&BTRFS_I(inode
)->lock
);
1702 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1703 spin_unlock(&BTRFS_I(inode
)->lock
);
1706 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1707 struct inode
*inode
)
1709 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1711 spin_lock(&root
->delalloc_lock
);
1712 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1713 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1714 &root
->delalloc_inodes
);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1716 &BTRFS_I(inode
)->runtime_flags
);
1717 root
->nr_delalloc_inodes
++;
1718 if (root
->nr_delalloc_inodes
== 1) {
1719 spin_lock(&fs_info
->delalloc_root_lock
);
1720 BUG_ON(!list_empty(&root
->delalloc_root
));
1721 list_add_tail(&root
->delalloc_root
,
1722 &fs_info
->delalloc_roots
);
1723 spin_unlock(&fs_info
->delalloc_root_lock
);
1726 spin_unlock(&root
->delalloc_lock
);
1730 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1731 struct btrfs_inode
*inode
)
1733 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1735 if (!list_empty(&inode
->delalloc_inodes
)) {
1736 list_del_init(&inode
->delalloc_inodes
);
1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1738 &inode
->runtime_flags
);
1739 root
->nr_delalloc_inodes
--;
1740 if (!root
->nr_delalloc_inodes
) {
1741 ASSERT(list_empty(&root
->delalloc_inodes
));
1742 spin_lock(&fs_info
->delalloc_root_lock
);
1743 BUG_ON(list_empty(&root
->delalloc_root
));
1744 list_del_init(&root
->delalloc_root
);
1745 spin_unlock(&fs_info
->delalloc_root_lock
);
1750 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1751 struct btrfs_inode
*inode
)
1753 spin_lock(&root
->delalloc_lock
);
1754 __btrfs_del_delalloc_inode(root
, inode
);
1755 spin_unlock(&root
->delalloc_lock
);
1759 * extent_io.c set_bit_hook, used to track delayed allocation
1760 * bytes in this file, and to maintain the list of inodes that
1761 * have pending delalloc work to be done.
1763 static void btrfs_set_bit_hook(void *private_data
,
1764 struct extent_state
*state
, unsigned *bits
)
1766 struct inode
*inode
= private_data
;
1768 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1770 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1773 * set_bit and clear bit hooks normally require _irqsave/restore
1774 * but in this case, we are only testing for the DELALLOC
1775 * bit, which is only set or cleared with irqs on
1777 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1778 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1779 u64 len
= state
->end
+ 1 - state
->start
;
1780 u32 num_extents
= count_max_extents(len
);
1781 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1783 spin_lock(&BTRFS_I(inode
)->lock
);
1784 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1785 spin_unlock(&BTRFS_I(inode
)->lock
);
1787 /* For sanity tests */
1788 if (btrfs_is_testing(fs_info
))
1791 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1792 fs_info
->delalloc_batch
);
1793 spin_lock(&BTRFS_I(inode
)->lock
);
1794 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1795 if (*bits
& EXTENT_DEFRAG
)
1796 BTRFS_I(inode
)->defrag_bytes
+= len
;
1797 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1798 &BTRFS_I(inode
)->runtime_flags
))
1799 btrfs_add_delalloc_inodes(root
, inode
);
1800 spin_unlock(&BTRFS_I(inode
)->lock
);
1803 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1804 (*bits
& EXTENT_DELALLOC_NEW
)) {
1805 spin_lock(&BTRFS_I(inode
)->lock
);
1806 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1808 spin_unlock(&BTRFS_I(inode
)->lock
);
1813 * extent_io.c clear_bit_hook, see set_bit_hook for why
1815 static void btrfs_clear_bit_hook(void *private_data
,
1816 struct extent_state
*state
,
1819 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1820 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1821 u64 len
= state
->end
+ 1 - state
->start
;
1822 u32 num_extents
= count_max_extents(len
);
1824 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1825 spin_lock(&inode
->lock
);
1826 inode
->defrag_bytes
-= len
;
1827 spin_unlock(&inode
->lock
);
1831 * set_bit and clear bit hooks normally require _irqsave/restore
1832 * but in this case, we are only testing for the DELALLOC
1833 * bit, which is only set or cleared with irqs on
1835 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1836 struct btrfs_root
*root
= inode
->root
;
1837 bool do_list
= !btrfs_is_free_space_inode(inode
);
1839 spin_lock(&inode
->lock
);
1840 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1841 spin_unlock(&inode
->lock
);
1844 * We don't reserve metadata space for space cache inodes so we
1845 * don't need to call dellalloc_release_metadata if there is an
1848 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1849 root
!= fs_info
->tree_root
)
1850 btrfs_delalloc_release_metadata(inode
, len
, false);
1852 /* For sanity tests. */
1853 if (btrfs_is_testing(fs_info
))
1856 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1857 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1858 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1859 btrfs_free_reserved_data_space_noquota(
1863 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1864 fs_info
->delalloc_batch
);
1865 spin_lock(&inode
->lock
);
1866 inode
->delalloc_bytes
-= len
;
1867 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1869 &inode
->runtime_flags
))
1870 btrfs_del_delalloc_inode(root
, inode
);
1871 spin_unlock(&inode
->lock
);
1874 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1875 (*bits
& EXTENT_DELALLOC_NEW
)) {
1876 spin_lock(&inode
->lock
);
1877 ASSERT(inode
->new_delalloc_bytes
>= len
);
1878 inode
->new_delalloc_bytes
-= len
;
1879 spin_unlock(&inode
->lock
);
1884 * Merge bio hook, this must check the chunk tree to make sure we don't create
1885 * bios that span stripes or chunks
1887 * return 1 if page cannot be merged to bio
1888 * return 0 if page can be merged to bio
1889 * return error otherwise
1891 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1892 size_t size
, struct bio
*bio
,
1893 unsigned long bio_flags
)
1895 struct inode
*inode
= page
->mapping
->host
;
1896 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1897 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1902 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1905 length
= bio
->bi_iter
.bi_size
;
1906 map_length
= length
;
1907 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1911 if (map_length
< length
+ size
)
1917 * in order to insert checksums into the metadata in large chunks,
1918 * we wait until bio submission time. All the pages in the bio are
1919 * checksummed and sums are attached onto the ordered extent record.
1921 * At IO completion time the cums attached on the ordered extent record
1922 * are inserted into the btree
1924 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1927 struct inode
*inode
= private_data
;
1928 blk_status_t ret
= 0;
1930 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1931 BUG_ON(ret
); /* -ENOMEM */
1936 * in order to insert checksums into the metadata in large chunks,
1937 * we wait until bio submission time. All the pages in the bio are
1938 * checksummed and sums are attached onto the ordered extent record.
1940 * At IO completion time the cums attached on the ordered extent record
1941 * are inserted into the btree
1943 blk_status_t
btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1946 struct inode
*inode
= private_data
;
1947 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1950 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1952 bio
->bi_status
= ret
;
1959 * extent_io.c submission hook. This does the right thing for csum calculation
1960 * on write, or reading the csums from the tree before a read.
1962 * Rules about async/sync submit,
1963 * a) read: sync submit
1965 * b) write without checksum: sync submit
1967 * c) write with checksum:
1968 * c-1) if bio is issued by fsync: sync submit
1969 * (sync_writers != 0)
1971 * c-2) if root is reloc root: sync submit
1972 * (only in case of buffered IO)
1974 * c-3) otherwise: async submit
1976 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1977 int mirror_num
, unsigned long bio_flags
,
1980 struct inode
*inode
= private_data
;
1981 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1982 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1983 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1984 blk_status_t ret
= 0;
1986 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1988 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1990 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1991 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1993 if (bio_op(bio
) != REQ_OP_WRITE
) {
1994 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1998 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1999 ret
= btrfs_submit_compressed_read(inode
, bio
,
2003 } else if (!skip_sum
) {
2004 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2009 } else if (async
&& !skip_sum
) {
2010 /* csum items have already been cloned */
2011 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2013 /* we're doing a write, do the async checksumming */
2014 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2016 btrfs_submit_bio_start
);
2018 } else if (!skip_sum
) {
2019 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2025 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2029 bio
->bi_status
= ret
;
2036 * given a list of ordered sums record them in the inode. This happens
2037 * at IO completion time based on sums calculated at bio submission time.
2039 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2040 struct inode
*inode
, struct list_head
*list
)
2042 struct btrfs_ordered_sum
*sum
;
2045 list_for_each_entry(sum
, list
, list
) {
2046 trans
->adding_csums
= true;
2047 ret
= btrfs_csum_file_blocks(trans
,
2048 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2049 trans
->adding_csums
= false;
2056 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2057 unsigned int extra_bits
,
2058 struct extent_state
**cached_state
, int dedupe
)
2060 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2061 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2062 extra_bits
, cached_state
);
2065 /* see btrfs_writepage_start_hook for details on why this is required */
2066 struct btrfs_writepage_fixup
{
2068 struct btrfs_work work
;
2071 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2073 struct btrfs_writepage_fixup
*fixup
;
2074 struct btrfs_ordered_extent
*ordered
;
2075 struct extent_state
*cached_state
= NULL
;
2076 struct extent_changeset
*data_reserved
= NULL
;
2078 struct inode
*inode
;
2083 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2087 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2088 ClearPageChecked(page
);
2092 inode
= page
->mapping
->host
;
2093 page_start
= page_offset(page
);
2094 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2096 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2099 /* already ordered? We're done */
2100 if (PagePrivate2(page
))
2103 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2106 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2107 page_end
, &cached_state
);
2109 btrfs_start_ordered_extent(inode
, ordered
, 1);
2110 btrfs_put_ordered_extent(ordered
);
2114 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2117 mapping_set_error(page
->mapping
, ret
);
2118 end_extent_writepage(page
, ret
, page_start
, page_end
);
2119 ClearPageChecked(page
);
2123 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2126 mapping_set_error(page
->mapping
, ret
);
2127 end_extent_writepage(page
, ret
, page_start
, page_end
);
2128 ClearPageChecked(page
);
2132 ClearPageChecked(page
);
2133 set_page_dirty(page
);
2134 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, false);
2136 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2142 extent_changeset_free(data_reserved
);
2146 * There are a few paths in the higher layers of the kernel that directly
2147 * set the page dirty bit without asking the filesystem if it is a
2148 * good idea. This causes problems because we want to make sure COW
2149 * properly happens and the data=ordered rules are followed.
2151 * In our case any range that doesn't have the ORDERED bit set
2152 * hasn't been properly setup for IO. We kick off an async process
2153 * to fix it up. The async helper will wait for ordered extents, set
2154 * the delalloc bit and make it safe to write the page.
2156 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2158 struct inode
*inode
= page
->mapping
->host
;
2159 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2160 struct btrfs_writepage_fixup
*fixup
;
2162 /* this page is properly in the ordered list */
2163 if (TestClearPagePrivate2(page
))
2166 if (PageChecked(page
))
2169 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2173 SetPageChecked(page
);
2175 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2176 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2178 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2182 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2183 struct inode
*inode
, u64 file_pos
,
2184 u64 disk_bytenr
, u64 disk_num_bytes
,
2185 u64 num_bytes
, u64 ram_bytes
,
2186 u8 compression
, u8 encryption
,
2187 u16 other_encoding
, int extent_type
)
2189 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2190 struct btrfs_file_extent_item
*fi
;
2191 struct btrfs_path
*path
;
2192 struct extent_buffer
*leaf
;
2193 struct btrfs_key ins
;
2195 int extent_inserted
= 0;
2198 path
= btrfs_alloc_path();
2203 * we may be replacing one extent in the tree with another.
2204 * The new extent is pinned in the extent map, and we don't want
2205 * to drop it from the cache until it is completely in the btree.
2207 * So, tell btrfs_drop_extents to leave this extent in the cache.
2208 * the caller is expected to unpin it and allow it to be merged
2211 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2212 file_pos
+ num_bytes
, NULL
, 0,
2213 1, sizeof(*fi
), &extent_inserted
);
2217 if (!extent_inserted
) {
2218 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2219 ins
.offset
= file_pos
;
2220 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2222 path
->leave_spinning
= 1;
2223 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2228 leaf
= path
->nodes
[0];
2229 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2230 struct btrfs_file_extent_item
);
2231 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2232 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2233 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2234 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2235 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2236 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2237 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2238 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2239 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2240 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2242 btrfs_mark_buffer_dirty(leaf
);
2243 btrfs_release_path(path
);
2245 inode_add_bytes(inode
, num_bytes
);
2247 ins
.objectid
= disk_bytenr
;
2248 ins
.offset
= disk_num_bytes
;
2249 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2252 * Release the reserved range from inode dirty range map, as it is
2253 * already moved into delayed_ref_head
2255 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2259 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2260 btrfs_ino(BTRFS_I(inode
)),
2261 file_pos
, qg_released
, &ins
);
2263 btrfs_free_path(path
);
2268 /* snapshot-aware defrag */
2269 struct sa_defrag_extent_backref
{
2270 struct rb_node node
;
2271 struct old_sa_defrag_extent
*old
;
2280 struct old_sa_defrag_extent
{
2281 struct list_head list
;
2282 struct new_sa_defrag_extent
*new;
2291 struct new_sa_defrag_extent
{
2292 struct rb_root root
;
2293 struct list_head head
;
2294 struct btrfs_path
*path
;
2295 struct inode
*inode
;
2303 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2304 struct sa_defrag_extent_backref
*b2
)
2306 if (b1
->root_id
< b2
->root_id
)
2308 else if (b1
->root_id
> b2
->root_id
)
2311 if (b1
->inum
< b2
->inum
)
2313 else if (b1
->inum
> b2
->inum
)
2316 if (b1
->file_pos
< b2
->file_pos
)
2318 else if (b1
->file_pos
> b2
->file_pos
)
2322 * [------------------------------] ===> (a range of space)
2323 * |<--->| |<---->| =============> (fs/file tree A)
2324 * |<---------------------------->| ===> (fs/file tree B)
2326 * A range of space can refer to two file extents in one tree while
2327 * refer to only one file extent in another tree.
2329 * So we may process a disk offset more than one time(two extents in A)
2330 * and locate at the same extent(one extent in B), then insert two same
2331 * backrefs(both refer to the extent in B).
2336 static void backref_insert(struct rb_root
*root
,
2337 struct sa_defrag_extent_backref
*backref
)
2339 struct rb_node
**p
= &root
->rb_node
;
2340 struct rb_node
*parent
= NULL
;
2341 struct sa_defrag_extent_backref
*entry
;
2346 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2348 ret
= backref_comp(backref
, entry
);
2352 p
= &(*p
)->rb_right
;
2355 rb_link_node(&backref
->node
, parent
, p
);
2356 rb_insert_color(&backref
->node
, root
);
2360 * Note the backref might has changed, and in this case we just return 0.
2362 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2365 struct btrfs_file_extent_item
*extent
;
2366 struct old_sa_defrag_extent
*old
= ctx
;
2367 struct new_sa_defrag_extent
*new = old
->new;
2368 struct btrfs_path
*path
= new->path
;
2369 struct btrfs_key key
;
2370 struct btrfs_root
*root
;
2371 struct sa_defrag_extent_backref
*backref
;
2372 struct extent_buffer
*leaf
;
2373 struct inode
*inode
= new->inode
;
2374 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2380 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2381 inum
== btrfs_ino(BTRFS_I(inode
)))
2384 key
.objectid
= root_id
;
2385 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2386 key
.offset
= (u64
)-1;
2388 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2390 if (PTR_ERR(root
) == -ENOENT
)
2393 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2394 inum
, offset
, root_id
);
2395 return PTR_ERR(root
);
2398 key
.objectid
= inum
;
2399 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2400 if (offset
> (u64
)-1 << 32)
2403 key
.offset
= offset
;
2405 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2406 if (WARN_ON(ret
< 0))
2413 leaf
= path
->nodes
[0];
2414 slot
= path
->slots
[0];
2416 if (slot
>= btrfs_header_nritems(leaf
)) {
2417 ret
= btrfs_next_leaf(root
, path
);
2420 } else if (ret
> 0) {
2429 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2431 if (key
.objectid
> inum
)
2434 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2437 extent
= btrfs_item_ptr(leaf
, slot
,
2438 struct btrfs_file_extent_item
);
2440 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2444 * 'offset' refers to the exact key.offset,
2445 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2446 * (key.offset - extent_offset).
2448 if (key
.offset
!= offset
)
2451 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2452 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2454 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2455 old
->len
|| extent_offset
+ num_bytes
<=
2456 old
->extent_offset
+ old
->offset
)
2461 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2467 backref
->root_id
= root_id
;
2468 backref
->inum
= inum
;
2469 backref
->file_pos
= offset
;
2470 backref
->num_bytes
= num_bytes
;
2471 backref
->extent_offset
= extent_offset
;
2472 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2474 backref_insert(&new->root
, backref
);
2477 btrfs_release_path(path
);
2482 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2483 struct new_sa_defrag_extent
*new)
2485 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2486 struct old_sa_defrag_extent
*old
, *tmp
;
2491 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2492 ret
= iterate_inodes_from_logical(old
->bytenr
+
2493 old
->extent_offset
, fs_info
,
2494 path
, record_one_backref
,
2496 if (ret
< 0 && ret
!= -ENOENT
)
2499 /* no backref to be processed for this extent */
2501 list_del(&old
->list
);
2506 if (list_empty(&new->head
))
2512 static int relink_is_mergable(struct extent_buffer
*leaf
,
2513 struct btrfs_file_extent_item
*fi
,
2514 struct new_sa_defrag_extent
*new)
2516 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2519 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2522 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2525 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2526 btrfs_file_extent_other_encoding(leaf
, fi
))
2533 * Note the backref might has changed, and in this case we just return 0.
2535 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2536 struct sa_defrag_extent_backref
*prev
,
2537 struct sa_defrag_extent_backref
*backref
)
2539 struct btrfs_file_extent_item
*extent
;
2540 struct btrfs_file_extent_item
*item
;
2541 struct btrfs_ordered_extent
*ordered
;
2542 struct btrfs_trans_handle
*trans
;
2543 struct btrfs_root
*root
;
2544 struct btrfs_key key
;
2545 struct extent_buffer
*leaf
;
2546 struct old_sa_defrag_extent
*old
= backref
->old
;
2547 struct new_sa_defrag_extent
*new = old
->new;
2548 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2549 struct inode
*inode
;
2550 struct extent_state
*cached
= NULL
;
2559 if (prev
&& prev
->root_id
== backref
->root_id
&&
2560 prev
->inum
== backref
->inum
&&
2561 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2564 /* step 1: get root */
2565 key
.objectid
= backref
->root_id
;
2566 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2567 key
.offset
= (u64
)-1;
2569 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2571 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2573 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2574 if (PTR_ERR(root
) == -ENOENT
)
2576 return PTR_ERR(root
);
2579 if (btrfs_root_readonly(root
)) {
2580 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2584 /* step 2: get inode */
2585 key
.objectid
= backref
->inum
;
2586 key
.type
= BTRFS_INODE_ITEM_KEY
;
2589 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2590 if (IS_ERR(inode
)) {
2591 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2595 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2597 /* step 3: relink backref */
2598 lock_start
= backref
->file_pos
;
2599 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2600 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2603 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2605 btrfs_put_ordered_extent(ordered
);
2609 trans
= btrfs_join_transaction(root
);
2610 if (IS_ERR(trans
)) {
2611 ret
= PTR_ERR(trans
);
2615 key
.objectid
= backref
->inum
;
2616 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2617 key
.offset
= backref
->file_pos
;
2619 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2622 } else if (ret
> 0) {
2627 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2628 struct btrfs_file_extent_item
);
2630 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2631 backref
->generation
)
2634 btrfs_release_path(path
);
2636 start
= backref
->file_pos
;
2637 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2638 start
+= old
->extent_offset
+ old
->offset
-
2639 backref
->extent_offset
;
2641 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2642 old
->extent_offset
+ old
->offset
+ old
->len
);
2643 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2645 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2650 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2651 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2654 path
->leave_spinning
= 1;
2656 struct btrfs_file_extent_item
*fi
;
2658 struct btrfs_key found_key
;
2660 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2665 leaf
= path
->nodes
[0];
2666 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2668 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2669 struct btrfs_file_extent_item
);
2670 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2672 if (extent_len
+ found_key
.offset
== start
&&
2673 relink_is_mergable(leaf
, fi
, new)) {
2674 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2676 btrfs_mark_buffer_dirty(leaf
);
2677 inode_add_bytes(inode
, len
);
2683 btrfs_release_path(path
);
2688 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2691 btrfs_abort_transaction(trans
, ret
);
2695 leaf
= path
->nodes
[0];
2696 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2697 struct btrfs_file_extent_item
);
2698 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2699 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2700 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2701 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2702 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2703 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2704 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2705 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2706 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2707 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2709 btrfs_mark_buffer_dirty(leaf
);
2710 inode_add_bytes(inode
, len
);
2711 btrfs_release_path(path
);
2713 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2715 backref
->root_id
, backref
->inum
,
2716 new->file_pos
); /* start - extent_offset */
2718 btrfs_abort_transaction(trans
, ret
);
2724 btrfs_release_path(path
);
2725 path
->leave_spinning
= 0;
2726 btrfs_end_transaction(trans
);
2728 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2734 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2736 struct old_sa_defrag_extent
*old
, *tmp
;
2741 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2747 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2749 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2750 struct btrfs_path
*path
;
2751 struct sa_defrag_extent_backref
*backref
;
2752 struct sa_defrag_extent_backref
*prev
= NULL
;
2753 struct inode
*inode
;
2754 struct rb_node
*node
;
2759 path
= btrfs_alloc_path();
2763 if (!record_extent_backrefs(path
, new)) {
2764 btrfs_free_path(path
);
2767 btrfs_release_path(path
);
2770 node
= rb_first(&new->root
);
2773 rb_erase(node
, &new->root
);
2775 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2777 ret
= relink_extent_backref(path
, prev
, backref
);
2790 btrfs_free_path(path
);
2792 free_sa_defrag_extent(new);
2794 atomic_dec(&fs_info
->defrag_running
);
2795 wake_up(&fs_info
->transaction_wait
);
2798 static struct new_sa_defrag_extent
*
2799 record_old_file_extents(struct inode
*inode
,
2800 struct btrfs_ordered_extent
*ordered
)
2802 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2803 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2804 struct btrfs_path
*path
;
2805 struct btrfs_key key
;
2806 struct old_sa_defrag_extent
*old
;
2807 struct new_sa_defrag_extent
*new;
2810 new = kmalloc(sizeof(*new), GFP_NOFS
);
2815 new->file_pos
= ordered
->file_offset
;
2816 new->len
= ordered
->len
;
2817 new->bytenr
= ordered
->start
;
2818 new->disk_len
= ordered
->disk_len
;
2819 new->compress_type
= ordered
->compress_type
;
2820 new->root
= RB_ROOT
;
2821 INIT_LIST_HEAD(&new->head
);
2823 path
= btrfs_alloc_path();
2827 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2828 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2829 key
.offset
= new->file_pos
;
2831 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2834 if (ret
> 0 && path
->slots
[0] > 0)
2837 /* find out all the old extents for the file range */
2839 struct btrfs_file_extent_item
*extent
;
2840 struct extent_buffer
*l
;
2849 slot
= path
->slots
[0];
2851 if (slot
>= btrfs_header_nritems(l
)) {
2852 ret
= btrfs_next_leaf(root
, path
);
2860 btrfs_item_key_to_cpu(l
, &key
, slot
);
2862 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2864 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2866 if (key
.offset
>= new->file_pos
+ new->len
)
2869 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2871 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2872 if (key
.offset
+ num_bytes
< new->file_pos
)
2875 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2879 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2881 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2885 offset
= max(new->file_pos
, key
.offset
);
2886 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2888 old
->bytenr
= disk_bytenr
;
2889 old
->extent_offset
= extent_offset
;
2890 old
->offset
= offset
- key
.offset
;
2891 old
->len
= end
- offset
;
2894 list_add_tail(&old
->list
, &new->head
);
2900 btrfs_free_path(path
);
2901 atomic_inc(&fs_info
->defrag_running
);
2906 btrfs_free_path(path
);
2908 free_sa_defrag_extent(new);
2912 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2915 struct btrfs_block_group_cache
*cache
;
2917 cache
= btrfs_lookup_block_group(fs_info
, start
);
2920 spin_lock(&cache
->lock
);
2921 cache
->delalloc_bytes
-= len
;
2922 spin_unlock(&cache
->lock
);
2924 btrfs_put_block_group(cache
);
2927 /* as ordered data IO finishes, this gets called so we can finish
2928 * an ordered extent if the range of bytes in the file it covers are
2931 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2933 struct inode
*inode
= ordered_extent
->inode
;
2934 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2935 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2936 struct btrfs_trans_handle
*trans
= NULL
;
2937 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2938 struct extent_state
*cached_state
= NULL
;
2939 struct new_sa_defrag_extent
*new = NULL
;
2940 int compress_type
= 0;
2942 u64 logical_len
= ordered_extent
->len
;
2944 bool truncated
= false;
2945 bool range_locked
= false;
2946 bool clear_new_delalloc_bytes
= false;
2948 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2949 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2950 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2951 clear_new_delalloc_bytes
= true;
2953 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2955 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2960 btrfs_free_io_failure_record(BTRFS_I(inode
),
2961 ordered_extent
->file_offset
,
2962 ordered_extent
->file_offset
+
2963 ordered_extent
->len
- 1);
2965 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2967 logical_len
= ordered_extent
->truncated_len
;
2968 /* Truncated the entire extent, don't bother adding */
2973 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2974 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2977 * For mwrite(mmap + memset to write) case, we still reserve
2978 * space for NOCOW range.
2979 * As NOCOW won't cause a new delayed ref, just free the space
2981 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2982 ordered_extent
->len
);
2983 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2985 trans
= btrfs_join_transaction_nolock(root
);
2987 trans
= btrfs_join_transaction(root
);
2988 if (IS_ERR(trans
)) {
2989 ret
= PTR_ERR(trans
);
2993 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2994 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2995 if (ret
) /* -ENOMEM or corruption */
2996 btrfs_abort_transaction(trans
, ret
);
3000 range_locked
= true;
3001 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
3002 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3005 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
3006 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3007 EXTENT_DEFRAG
, 0, cached_state
);
3009 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
3010 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
3011 /* the inode is shared */
3012 new = record_old_file_extents(inode
, ordered_extent
);
3014 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
3015 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3016 EXTENT_DEFRAG
, 0, 0, &cached_state
);
3020 trans
= btrfs_join_transaction_nolock(root
);
3022 trans
= btrfs_join_transaction(root
);
3023 if (IS_ERR(trans
)) {
3024 ret
= PTR_ERR(trans
);
3029 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3031 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3032 compress_type
= ordered_extent
->compress_type
;
3033 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3034 BUG_ON(compress_type
);
3035 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3036 ordered_extent
->len
);
3037 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3038 ordered_extent
->file_offset
,
3039 ordered_extent
->file_offset
+
3042 BUG_ON(root
== fs_info
->tree_root
);
3043 ret
= insert_reserved_file_extent(trans
, inode
,
3044 ordered_extent
->file_offset
,
3045 ordered_extent
->start
,
3046 ordered_extent
->disk_len
,
3047 logical_len
, logical_len
,
3048 compress_type
, 0, 0,
3049 BTRFS_FILE_EXTENT_REG
);
3051 btrfs_release_delalloc_bytes(fs_info
,
3052 ordered_extent
->start
,
3053 ordered_extent
->disk_len
);
3055 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3056 ordered_extent
->file_offset
, ordered_extent
->len
,
3059 btrfs_abort_transaction(trans
, ret
);
3063 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3065 btrfs_abort_transaction(trans
, ret
);
3069 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3070 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3071 if (ret
) { /* -ENOMEM or corruption */
3072 btrfs_abort_transaction(trans
, ret
);
3077 if (range_locked
|| clear_new_delalloc_bytes
) {
3078 unsigned int clear_bits
= 0;
3081 clear_bits
|= EXTENT_LOCKED
;
3082 if (clear_new_delalloc_bytes
)
3083 clear_bits
|= EXTENT_DELALLOC_NEW
;
3084 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3085 ordered_extent
->file_offset
,
3086 ordered_extent
->file_offset
+
3087 ordered_extent
->len
- 1,
3089 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3094 btrfs_end_transaction(trans
);
3096 if (ret
|| truncated
) {
3100 start
= ordered_extent
->file_offset
+ logical_len
;
3102 start
= ordered_extent
->file_offset
;
3103 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3104 clear_extent_uptodate(io_tree
, start
, end
, NULL
);
3106 /* Drop the cache for the part of the extent we didn't write. */
3107 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3110 * If the ordered extent had an IOERR or something else went
3111 * wrong we need to return the space for this ordered extent
3112 * back to the allocator. We only free the extent in the
3113 * truncated case if we didn't write out the extent at all.
3115 if ((ret
|| !logical_len
) &&
3116 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3117 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3118 btrfs_free_reserved_extent(fs_info
,
3119 ordered_extent
->start
,
3120 ordered_extent
->disk_len
, 1);
3125 * This needs to be done to make sure anybody waiting knows we are done
3126 * updating everything for this ordered extent.
3128 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3130 /* for snapshot-aware defrag */
3133 free_sa_defrag_extent(new);
3134 atomic_dec(&fs_info
->defrag_running
);
3136 relink_file_extents(new);
3141 btrfs_put_ordered_extent(ordered_extent
);
3142 /* once for the tree */
3143 btrfs_put_ordered_extent(ordered_extent
);
3145 /* Try to release some metadata so we don't get an OOM but don't wait */
3146 btrfs_btree_balance_dirty_nodelay(fs_info
);
3151 static void finish_ordered_fn(struct btrfs_work
*work
)
3153 struct btrfs_ordered_extent
*ordered_extent
;
3154 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3155 btrfs_finish_ordered_io(ordered_extent
);
3158 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3159 struct extent_state
*state
, int uptodate
)
3161 struct inode
*inode
= page
->mapping
->host
;
3162 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3163 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3164 struct btrfs_workqueue
*wq
;
3165 btrfs_work_func_t func
;
3167 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3169 ClearPagePrivate2(page
);
3170 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3171 end
- start
+ 1, uptodate
))
3174 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3175 wq
= fs_info
->endio_freespace_worker
;
3176 func
= btrfs_freespace_write_helper
;
3178 wq
= fs_info
->endio_write_workers
;
3179 func
= btrfs_endio_write_helper
;
3182 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3184 btrfs_queue_work(wq
, &ordered_extent
->work
);
3187 static int __readpage_endio_check(struct inode
*inode
,
3188 struct btrfs_io_bio
*io_bio
,
3189 int icsum
, struct page
*page
,
3190 int pgoff
, u64 start
, size_t len
)
3196 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3198 kaddr
= kmap_atomic(page
);
3199 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3200 btrfs_csum_final(csum
, (u8
*)&csum
);
3201 if (csum
!= csum_expected
)
3204 kunmap_atomic(kaddr
);
3207 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3208 io_bio
->mirror_num
);
3209 memset(kaddr
+ pgoff
, 1, len
);
3210 flush_dcache_page(page
);
3211 kunmap_atomic(kaddr
);
3216 * when reads are done, we need to check csums to verify the data is correct
3217 * if there's a match, we allow the bio to finish. If not, the code in
3218 * extent_io.c will try to find good copies for us.
3220 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3221 u64 phy_offset
, struct page
*page
,
3222 u64 start
, u64 end
, int mirror
)
3224 size_t offset
= start
- page_offset(page
);
3225 struct inode
*inode
= page
->mapping
->host
;
3226 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3229 if (PageChecked(page
)) {
3230 ClearPageChecked(page
);
3234 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3237 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3238 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3239 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3243 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3244 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3245 start
, (size_t)(end
- start
+ 1));
3249 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3251 * @inode: The inode we want to perform iput on
3253 * This function uses the generic vfs_inode::i_count to track whether we should
3254 * just decrement it (in case it's > 1) or if this is the last iput then link
3255 * the inode to the delayed iput machinery. Delayed iputs are processed at
3256 * transaction commit time/superblock commit/cleaner kthread.
3258 void btrfs_add_delayed_iput(struct inode
*inode
)
3260 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3261 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3263 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3266 spin_lock(&fs_info
->delayed_iput_lock
);
3267 ASSERT(list_empty(&binode
->delayed_iput
));
3268 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3269 spin_unlock(&fs_info
->delayed_iput_lock
);
3272 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3275 spin_lock(&fs_info
->delayed_iput_lock
);
3276 while (!list_empty(&fs_info
->delayed_iputs
)) {
3277 struct btrfs_inode
*inode
;
3279 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3280 struct btrfs_inode
, delayed_iput
);
3281 list_del_init(&inode
->delayed_iput
);
3282 spin_unlock(&fs_info
->delayed_iput_lock
);
3283 iput(&inode
->vfs_inode
);
3284 spin_lock(&fs_info
->delayed_iput_lock
);
3286 spin_unlock(&fs_info
->delayed_iput_lock
);
3290 * This creates an orphan entry for the given inode in case something goes wrong
3291 * in the middle of an unlink.
3293 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3294 struct btrfs_inode
*inode
)
3298 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3299 if (ret
&& ret
!= -EEXIST
) {
3300 btrfs_abort_transaction(trans
, ret
);
3308 * We have done the delete so we can go ahead and remove the orphan item for
3309 * this particular inode.
3311 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3312 struct btrfs_inode
*inode
)
3314 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3318 * this cleans up any orphans that may be left on the list from the last use
3321 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3323 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3324 struct btrfs_path
*path
;
3325 struct extent_buffer
*leaf
;
3326 struct btrfs_key key
, found_key
;
3327 struct btrfs_trans_handle
*trans
;
3328 struct inode
*inode
;
3329 u64 last_objectid
= 0;
3330 int ret
= 0, nr_unlink
= 0;
3332 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3335 path
= btrfs_alloc_path();
3340 path
->reada
= READA_BACK
;
3342 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3343 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3344 key
.offset
= (u64
)-1;
3347 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3352 * if ret == 0 means we found what we were searching for, which
3353 * is weird, but possible, so only screw with path if we didn't
3354 * find the key and see if we have stuff that matches
3358 if (path
->slots
[0] == 0)
3363 /* pull out the item */
3364 leaf
= path
->nodes
[0];
3365 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3367 /* make sure the item matches what we want */
3368 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3370 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3373 /* release the path since we're done with it */
3374 btrfs_release_path(path
);
3377 * this is where we are basically btrfs_lookup, without the
3378 * crossing root thing. we store the inode number in the
3379 * offset of the orphan item.
3382 if (found_key
.offset
== last_objectid
) {
3384 "Error removing orphan entry, stopping orphan cleanup");
3389 last_objectid
= found_key
.offset
;
3391 found_key
.objectid
= found_key
.offset
;
3392 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3393 found_key
.offset
= 0;
3394 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3395 ret
= PTR_ERR_OR_ZERO(inode
);
3396 if (ret
&& ret
!= -ENOENT
)
3399 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3400 struct btrfs_root
*dead_root
;
3401 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3402 int is_dead_root
= 0;
3405 * this is an orphan in the tree root. Currently these
3406 * could come from 2 sources:
3407 * a) a snapshot deletion in progress
3408 * b) a free space cache inode
3409 * We need to distinguish those two, as the snapshot
3410 * orphan must not get deleted.
3411 * find_dead_roots already ran before us, so if this
3412 * is a snapshot deletion, we should find the root
3413 * in the dead_roots list
3415 spin_lock(&fs_info
->trans_lock
);
3416 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3418 if (dead_root
->root_key
.objectid
==
3419 found_key
.objectid
) {
3424 spin_unlock(&fs_info
->trans_lock
);
3426 /* prevent this orphan from being found again */
3427 key
.offset
= found_key
.objectid
- 1;
3434 * If we have an inode with links, there are a couple of
3435 * possibilities. Old kernels (before v3.12) used to create an
3436 * orphan item for truncate indicating that there were possibly
3437 * extent items past i_size that needed to be deleted. In v3.12,
3438 * truncate was changed to update i_size in sync with the extent
3439 * items, but the (useless) orphan item was still created. Since
3440 * v4.18, we don't create the orphan item for truncate at all.
3442 * So, this item could mean that we need to do a truncate, but
3443 * only if this filesystem was last used on a pre-v3.12 kernel
3444 * and was not cleanly unmounted. The odds of that are quite
3445 * slim, and it's a pain to do the truncate now, so just delete
3448 * It's also possible that this orphan item was supposed to be
3449 * deleted but wasn't. The inode number may have been reused,
3450 * but either way, we can delete the orphan item.
3452 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3455 trans
= btrfs_start_transaction(root
, 1);
3456 if (IS_ERR(trans
)) {
3457 ret
= PTR_ERR(trans
);
3460 btrfs_debug(fs_info
, "auto deleting %Lu",
3461 found_key
.objectid
);
3462 ret
= btrfs_del_orphan_item(trans
, root
,
3463 found_key
.objectid
);
3464 btrfs_end_transaction(trans
);
3472 /* this will do delete_inode and everything for us */
3477 /* release the path since we're done with it */
3478 btrfs_release_path(path
);
3480 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3482 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3483 trans
= btrfs_join_transaction(root
);
3485 btrfs_end_transaction(trans
);
3489 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3493 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3494 btrfs_free_path(path
);
3499 * very simple check to peek ahead in the leaf looking for xattrs. If we
3500 * don't find any xattrs, we know there can't be any acls.
3502 * slot is the slot the inode is in, objectid is the objectid of the inode
3504 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3505 int slot
, u64 objectid
,
3506 int *first_xattr_slot
)
3508 u32 nritems
= btrfs_header_nritems(leaf
);
3509 struct btrfs_key found_key
;
3510 static u64 xattr_access
= 0;
3511 static u64 xattr_default
= 0;
3514 if (!xattr_access
) {
3515 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3516 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3517 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3518 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3522 *first_xattr_slot
= -1;
3523 while (slot
< nritems
) {
3524 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3526 /* we found a different objectid, there must not be acls */
3527 if (found_key
.objectid
!= objectid
)
3530 /* we found an xattr, assume we've got an acl */
3531 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3532 if (*first_xattr_slot
== -1)
3533 *first_xattr_slot
= slot
;
3534 if (found_key
.offset
== xattr_access
||
3535 found_key
.offset
== xattr_default
)
3540 * we found a key greater than an xattr key, there can't
3541 * be any acls later on
3543 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3550 * it goes inode, inode backrefs, xattrs, extents,
3551 * so if there are a ton of hard links to an inode there can
3552 * be a lot of backrefs. Don't waste time searching too hard,
3553 * this is just an optimization
3558 /* we hit the end of the leaf before we found an xattr or
3559 * something larger than an xattr. We have to assume the inode
3562 if (*first_xattr_slot
== -1)
3563 *first_xattr_slot
= slot
;
3568 * read an inode from the btree into the in-memory inode
3570 static int btrfs_read_locked_inode(struct inode
*inode
)
3572 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3573 struct btrfs_path
*path
;
3574 struct extent_buffer
*leaf
;
3575 struct btrfs_inode_item
*inode_item
;
3576 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3577 struct btrfs_key location
;
3582 bool filled
= false;
3583 int first_xattr_slot
;
3585 ret
= btrfs_fill_inode(inode
, &rdev
);
3589 path
= btrfs_alloc_path();
3593 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3595 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3597 btrfs_free_path(path
);
3601 leaf
= path
->nodes
[0];
3606 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3607 struct btrfs_inode_item
);
3608 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3609 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3610 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3611 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3612 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3614 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3615 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3617 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3618 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3620 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3621 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3623 BTRFS_I(inode
)->i_otime
.tv_sec
=
3624 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3625 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3626 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3628 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3629 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3630 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3632 inode_set_iversion_queried(inode
,
3633 btrfs_inode_sequence(leaf
, inode_item
));
3634 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3636 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3638 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3639 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3643 * If we were modified in the current generation and evicted from memory
3644 * and then re-read we need to do a full sync since we don't have any
3645 * idea about which extents were modified before we were evicted from
3648 * This is required for both inode re-read from disk and delayed inode
3649 * in delayed_nodes_tree.
3651 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3652 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3653 &BTRFS_I(inode
)->runtime_flags
);
3656 * We don't persist the id of the transaction where an unlink operation
3657 * against the inode was last made. So here we assume the inode might
3658 * have been evicted, and therefore the exact value of last_unlink_trans
3659 * lost, and set it to last_trans to avoid metadata inconsistencies
3660 * between the inode and its parent if the inode is fsync'ed and the log
3661 * replayed. For example, in the scenario:
3664 * ln mydir/foo mydir/bar
3667 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3668 * xfs_io -c fsync mydir/foo
3670 * mount fs, triggers fsync log replay
3672 * We must make sure that when we fsync our inode foo we also log its
3673 * parent inode, otherwise after log replay the parent still has the
3674 * dentry with the "bar" name but our inode foo has a link count of 1
3675 * and doesn't have an inode ref with the name "bar" anymore.
3677 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3678 * but it guarantees correctness at the expense of occasional full
3679 * transaction commits on fsync if our inode is a directory, or if our
3680 * inode is not a directory, logging its parent unnecessarily.
3682 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3685 if (inode
->i_nlink
!= 1 ||
3686 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3689 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3690 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3693 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3694 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3695 struct btrfs_inode_ref
*ref
;
3697 ref
= (struct btrfs_inode_ref
*)ptr
;
3698 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3699 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3700 struct btrfs_inode_extref
*extref
;
3702 extref
= (struct btrfs_inode_extref
*)ptr
;
3703 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3708 * try to precache a NULL acl entry for files that don't have
3709 * any xattrs or acls
3711 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3712 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3713 if (first_xattr_slot
!= -1) {
3714 path
->slots
[0] = first_xattr_slot
;
3715 ret
= btrfs_load_inode_props(inode
, path
);
3718 "error loading props for ino %llu (root %llu): %d",
3719 btrfs_ino(BTRFS_I(inode
)),
3720 root
->root_key
.objectid
, ret
);
3722 btrfs_free_path(path
);
3725 cache_no_acl(inode
);
3727 switch (inode
->i_mode
& S_IFMT
) {
3729 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3730 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3731 inode
->i_fop
= &btrfs_file_operations
;
3732 inode
->i_op
= &btrfs_file_inode_operations
;
3735 inode
->i_fop
= &btrfs_dir_file_operations
;
3736 inode
->i_op
= &btrfs_dir_inode_operations
;
3739 inode
->i_op
= &btrfs_symlink_inode_operations
;
3740 inode_nohighmem(inode
);
3741 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3744 inode
->i_op
= &btrfs_special_inode_operations
;
3745 init_special_inode(inode
, inode
->i_mode
, rdev
);
3749 btrfs_sync_inode_flags_to_i_flags(inode
);
3754 * given a leaf and an inode, copy the inode fields into the leaf
3756 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3757 struct extent_buffer
*leaf
,
3758 struct btrfs_inode_item
*item
,
3759 struct inode
*inode
)
3761 struct btrfs_map_token token
;
3763 btrfs_init_map_token(&token
);
3765 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3766 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3767 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3769 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3770 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3772 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3773 inode
->i_atime
.tv_sec
, &token
);
3774 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3775 inode
->i_atime
.tv_nsec
, &token
);
3777 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3778 inode
->i_mtime
.tv_sec
, &token
);
3779 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3780 inode
->i_mtime
.tv_nsec
, &token
);
3782 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3783 inode
->i_ctime
.tv_sec
, &token
);
3784 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3785 inode
->i_ctime
.tv_nsec
, &token
);
3787 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3788 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3789 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3790 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3792 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3794 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3796 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3798 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3799 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3800 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3801 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3805 * copy everything in the in-memory inode into the btree.
3807 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3808 struct btrfs_root
*root
, struct inode
*inode
)
3810 struct btrfs_inode_item
*inode_item
;
3811 struct btrfs_path
*path
;
3812 struct extent_buffer
*leaf
;
3815 path
= btrfs_alloc_path();
3819 path
->leave_spinning
= 1;
3820 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3828 leaf
= path
->nodes
[0];
3829 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3830 struct btrfs_inode_item
);
3832 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3833 btrfs_mark_buffer_dirty(leaf
);
3834 btrfs_set_inode_last_trans(trans
, inode
);
3837 btrfs_free_path(path
);
3842 * copy everything in the in-memory inode into the btree.
3844 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3845 struct btrfs_root
*root
, struct inode
*inode
)
3847 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3851 * If the inode is a free space inode, we can deadlock during commit
3852 * if we put it into the delayed code.
3854 * The data relocation inode should also be directly updated
3857 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3858 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3859 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3860 btrfs_update_root_times(trans
, root
);
3862 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3864 btrfs_set_inode_last_trans(trans
, inode
);
3868 return btrfs_update_inode_item(trans
, root
, inode
);
3871 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3872 struct btrfs_root
*root
,
3873 struct inode
*inode
)
3877 ret
= btrfs_update_inode(trans
, root
, inode
);
3879 return btrfs_update_inode_item(trans
, root
, inode
);
3884 * unlink helper that gets used here in inode.c and in the tree logging
3885 * recovery code. It remove a link in a directory with a given name, and
3886 * also drops the back refs in the inode to the directory
3888 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3889 struct btrfs_root
*root
,
3890 struct btrfs_inode
*dir
,
3891 struct btrfs_inode
*inode
,
3892 const char *name
, int name_len
)
3894 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3895 struct btrfs_path
*path
;
3897 struct extent_buffer
*leaf
;
3898 struct btrfs_dir_item
*di
;
3899 struct btrfs_key key
;
3901 u64 ino
= btrfs_ino(inode
);
3902 u64 dir_ino
= btrfs_ino(dir
);
3904 path
= btrfs_alloc_path();
3910 path
->leave_spinning
= 1;
3911 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3912 name
, name_len
, -1);
3921 leaf
= path
->nodes
[0];
3922 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3923 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3926 btrfs_release_path(path
);
3929 * If we don't have dir index, we have to get it by looking up
3930 * the inode ref, since we get the inode ref, remove it directly,
3931 * it is unnecessary to do delayed deletion.
3933 * But if we have dir index, needn't search inode ref to get it.
3934 * Since the inode ref is close to the inode item, it is better
3935 * that we delay to delete it, and just do this deletion when
3936 * we update the inode item.
3938 if (inode
->dir_index
) {
3939 ret
= btrfs_delayed_delete_inode_ref(inode
);
3941 index
= inode
->dir_index
;
3946 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3950 "failed to delete reference to %.*s, inode %llu parent %llu",
3951 name_len
, name
, ino
, dir_ino
);
3952 btrfs_abort_transaction(trans
, ret
);
3956 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
3958 btrfs_abort_transaction(trans
, ret
);
3962 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3964 if (ret
!= 0 && ret
!= -ENOENT
) {
3965 btrfs_abort_transaction(trans
, ret
);
3969 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
3974 btrfs_abort_transaction(trans
, ret
);
3976 btrfs_free_path(path
);
3980 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
3981 inode_inc_iversion(&inode
->vfs_inode
);
3982 inode_inc_iversion(&dir
->vfs_inode
);
3983 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
3984 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
3985 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
3990 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3991 struct btrfs_root
*root
,
3992 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
3993 const char *name
, int name_len
)
3996 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3998 drop_nlink(&inode
->vfs_inode
);
3999 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4005 * helper to start transaction for unlink and rmdir.
4007 * unlink and rmdir are special in btrfs, they do not always free space, so
4008 * if we cannot make our reservations the normal way try and see if there is
4009 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4010 * allow the unlink to occur.
4012 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4014 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4017 * 1 for the possible orphan item
4018 * 1 for the dir item
4019 * 1 for the dir index
4020 * 1 for the inode ref
4023 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4026 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4028 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4029 struct btrfs_trans_handle
*trans
;
4030 struct inode
*inode
= d_inode(dentry
);
4033 trans
= __unlink_start_trans(dir
);
4035 return PTR_ERR(trans
);
4037 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4040 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4041 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4042 dentry
->d_name
.len
);
4046 if (inode
->i_nlink
== 0) {
4047 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4053 btrfs_end_transaction(trans
);
4054 btrfs_btree_balance_dirty(root
->fs_info
);
4058 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4059 struct inode
*dir
, u64 objectid
,
4060 const char *name
, int name_len
)
4062 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4063 struct btrfs_path
*path
;
4064 struct extent_buffer
*leaf
;
4065 struct btrfs_dir_item
*di
;
4066 struct btrfs_key key
;
4069 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4071 path
= btrfs_alloc_path();
4075 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4076 name
, name_len
, -1);
4077 if (IS_ERR_OR_NULL(di
)) {
4085 leaf
= path
->nodes
[0];
4086 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4087 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4088 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4090 btrfs_abort_transaction(trans
, ret
);
4093 btrfs_release_path(path
);
4095 ret
= btrfs_del_root_ref(trans
, objectid
, root
->root_key
.objectid
,
4096 dir_ino
, &index
, name
, name_len
);
4098 if (ret
!= -ENOENT
) {
4099 btrfs_abort_transaction(trans
, ret
);
4102 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4104 if (IS_ERR_OR_NULL(di
)) {
4109 btrfs_abort_transaction(trans
, ret
);
4113 leaf
= path
->nodes
[0];
4114 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4117 btrfs_release_path(path
);
4119 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
4121 btrfs_abort_transaction(trans
, ret
);
4125 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4126 inode_inc_iversion(dir
);
4127 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4128 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4130 btrfs_abort_transaction(trans
, ret
);
4132 btrfs_free_path(path
);
4137 * Helper to check if the subvolume references other subvolumes or if it's
4140 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
4142 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4143 struct btrfs_path
*path
;
4144 struct btrfs_dir_item
*di
;
4145 struct btrfs_key key
;
4149 path
= btrfs_alloc_path();
4153 /* Make sure this root isn't set as the default subvol */
4154 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4155 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
4156 dir_id
, "default", 7, 0);
4157 if (di
&& !IS_ERR(di
)) {
4158 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
4159 if (key
.objectid
== root
->root_key
.objectid
) {
4162 "deleting default subvolume %llu is not allowed",
4166 btrfs_release_path(path
);
4169 key
.objectid
= root
->root_key
.objectid
;
4170 key
.type
= BTRFS_ROOT_REF_KEY
;
4171 key
.offset
= (u64
)-1;
4173 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4179 if (path
->slots
[0] > 0) {
4181 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
4182 if (key
.objectid
== root
->root_key
.objectid
&&
4183 key
.type
== BTRFS_ROOT_REF_KEY
)
4187 btrfs_free_path(path
);
4191 /* Delete all dentries for inodes belonging to the root */
4192 static void btrfs_prune_dentries(struct btrfs_root
*root
)
4194 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4195 struct rb_node
*node
;
4196 struct rb_node
*prev
;
4197 struct btrfs_inode
*entry
;
4198 struct inode
*inode
;
4201 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4202 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4204 spin_lock(&root
->inode_lock
);
4206 node
= root
->inode_tree
.rb_node
;
4210 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4212 if (objectid
< btrfs_ino(entry
))
4213 node
= node
->rb_left
;
4214 else if (objectid
> btrfs_ino(entry
))
4215 node
= node
->rb_right
;
4221 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4222 if (objectid
<= btrfs_ino(entry
)) {
4226 prev
= rb_next(prev
);
4230 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4231 objectid
= btrfs_ino(entry
) + 1;
4232 inode
= igrab(&entry
->vfs_inode
);
4234 spin_unlock(&root
->inode_lock
);
4235 if (atomic_read(&inode
->i_count
) > 1)
4236 d_prune_aliases(inode
);
4238 * btrfs_drop_inode will have it removed from the inode
4239 * cache when its usage count hits zero.
4243 spin_lock(&root
->inode_lock
);
4247 if (cond_resched_lock(&root
->inode_lock
))
4250 node
= rb_next(node
);
4252 spin_unlock(&root
->inode_lock
);
4255 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
4257 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
4258 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4259 struct inode
*inode
= d_inode(dentry
);
4260 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
4261 struct btrfs_trans_handle
*trans
;
4262 struct btrfs_block_rsv block_rsv
;
4268 * Don't allow to delete a subvolume with send in progress. This is
4269 * inside the inode lock so the error handling that has to drop the bit
4270 * again is not run concurrently.
4272 spin_lock(&dest
->root_item_lock
);
4273 root_flags
= btrfs_root_flags(&dest
->root_item
);
4274 if (dest
->send_in_progress
== 0) {
4275 btrfs_set_root_flags(&dest
->root_item
,
4276 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
4277 spin_unlock(&dest
->root_item_lock
);
4279 spin_unlock(&dest
->root_item_lock
);
4281 "attempt to delete subvolume %llu during send",
4282 dest
->root_key
.objectid
);
4286 down_write(&fs_info
->subvol_sem
);
4288 err
= may_destroy_subvol(dest
);
4292 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
4294 * One for dir inode,
4295 * two for dir entries,
4296 * two for root ref/backref.
4298 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
4302 trans
= btrfs_start_transaction(root
, 0);
4303 if (IS_ERR(trans
)) {
4304 err
= PTR_ERR(trans
);
4307 trans
->block_rsv
= &block_rsv
;
4308 trans
->bytes_reserved
= block_rsv
.size
;
4310 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
4312 ret
= btrfs_unlink_subvol(trans
, dir
, dest
->root_key
.objectid
,
4313 dentry
->d_name
.name
, dentry
->d_name
.len
);
4316 btrfs_abort_transaction(trans
, ret
);
4320 btrfs_record_root_in_trans(trans
, dest
);
4322 memset(&dest
->root_item
.drop_progress
, 0,
4323 sizeof(dest
->root_item
.drop_progress
));
4324 dest
->root_item
.drop_level
= 0;
4325 btrfs_set_root_refs(&dest
->root_item
, 0);
4327 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
4328 ret
= btrfs_insert_orphan_item(trans
,
4330 dest
->root_key
.objectid
);
4332 btrfs_abort_transaction(trans
, ret
);
4338 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
4339 BTRFS_UUID_KEY_SUBVOL
,
4340 dest
->root_key
.objectid
);
4341 if (ret
&& ret
!= -ENOENT
) {
4342 btrfs_abort_transaction(trans
, ret
);
4346 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
4347 ret
= btrfs_uuid_tree_remove(trans
,
4348 dest
->root_item
.received_uuid
,
4349 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4350 dest
->root_key
.objectid
);
4351 if (ret
&& ret
!= -ENOENT
) {
4352 btrfs_abort_transaction(trans
, ret
);
4359 trans
->block_rsv
= NULL
;
4360 trans
->bytes_reserved
= 0;
4361 ret
= btrfs_end_transaction(trans
);
4364 inode
->i_flags
|= S_DEAD
;
4366 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
4368 up_write(&fs_info
->subvol_sem
);
4370 spin_lock(&dest
->root_item_lock
);
4371 root_flags
= btrfs_root_flags(&dest
->root_item
);
4372 btrfs_set_root_flags(&dest
->root_item
,
4373 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
4374 spin_unlock(&dest
->root_item_lock
);
4376 d_invalidate(dentry
);
4377 btrfs_prune_dentries(dest
);
4378 ASSERT(dest
->send_in_progress
== 0);
4381 if (dest
->ino_cache_inode
) {
4382 iput(dest
->ino_cache_inode
);
4383 dest
->ino_cache_inode
= NULL
;
4390 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4392 struct inode
*inode
= d_inode(dentry
);
4394 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4395 struct btrfs_trans_handle
*trans
;
4396 u64 last_unlink_trans
;
4398 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4400 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4401 return btrfs_delete_subvolume(dir
, dentry
);
4403 trans
= __unlink_start_trans(dir
);
4405 return PTR_ERR(trans
);
4407 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4408 err
= btrfs_unlink_subvol(trans
, dir
,
4409 BTRFS_I(inode
)->location
.objectid
,
4410 dentry
->d_name
.name
,
4411 dentry
->d_name
.len
);
4415 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4419 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4421 /* now the directory is empty */
4422 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4423 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4424 dentry
->d_name
.len
);
4426 btrfs_i_size_write(BTRFS_I(inode
), 0);
4428 * Propagate the last_unlink_trans value of the deleted dir to
4429 * its parent directory. This is to prevent an unrecoverable
4430 * log tree in the case we do something like this:
4432 * 2) create snapshot under dir foo
4433 * 3) delete the snapshot
4436 * 6) fsync foo or some file inside foo
4438 if (last_unlink_trans
>= trans
->transid
)
4439 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4442 btrfs_end_transaction(trans
);
4443 btrfs_btree_balance_dirty(root
->fs_info
);
4448 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4449 struct btrfs_root
*root
,
4452 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4456 * This is only used to apply pressure to the enospc system, we don't
4457 * intend to use this reservation at all.
4459 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4460 bytes_deleted
*= fs_info
->nodesize
;
4461 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4462 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4464 trace_btrfs_space_reservation(fs_info
, "transaction",
4467 trans
->bytes_reserved
+= bytes_deleted
;
4474 * Return this if we need to call truncate_block for the last bit of the
4477 #define NEED_TRUNCATE_BLOCK 1
4480 * this can truncate away extent items, csum items and directory items.
4481 * It starts at a high offset and removes keys until it can't find
4482 * any higher than new_size
4484 * csum items that cross the new i_size are truncated to the new size
4487 * min_type is the minimum key type to truncate down to. If set to 0, this
4488 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4490 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4491 struct btrfs_root
*root
,
4492 struct inode
*inode
,
4493 u64 new_size
, u32 min_type
)
4495 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4496 struct btrfs_path
*path
;
4497 struct extent_buffer
*leaf
;
4498 struct btrfs_file_extent_item
*fi
;
4499 struct btrfs_key key
;
4500 struct btrfs_key found_key
;
4501 u64 extent_start
= 0;
4502 u64 extent_num_bytes
= 0;
4503 u64 extent_offset
= 0;
4505 u64 last_size
= new_size
;
4506 u32 found_type
= (u8
)-1;
4509 int pending_del_nr
= 0;
4510 int pending_del_slot
= 0;
4511 int extent_type
= -1;
4513 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4514 u64 bytes_deleted
= 0;
4515 bool be_nice
= false;
4516 bool should_throttle
= false;
4517 bool should_end
= false;
4519 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4522 * for non-free space inodes and ref cows, we want to back off from
4525 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4526 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4529 path
= btrfs_alloc_path();
4532 path
->reada
= READA_BACK
;
4535 * We want to drop from the next block forward in case this new size is
4536 * not block aligned since we will be keeping the last block of the
4537 * extent just the way it is.
4539 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4540 root
== fs_info
->tree_root
)
4541 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4542 fs_info
->sectorsize
),
4546 * This function is also used to drop the items in the log tree before
4547 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4548 * it is used to drop the loged items. So we shouldn't kill the delayed
4551 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4552 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4555 key
.offset
= (u64
)-1;
4560 * with a 16K leaf size and 128MB extents, you can actually queue
4561 * up a huge file in a single leaf. Most of the time that
4562 * bytes_deleted is > 0, it will be huge by the time we get here
4564 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4565 btrfs_should_end_transaction(trans
)) {
4570 path
->leave_spinning
= 1;
4571 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4577 /* there are no items in the tree for us to truncate, we're
4580 if (path
->slots
[0] == 0)
4587 leaf
= path
->nodes
[0];
4588 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4589 found_type
= found_key
.type
;
4591 if (found_key
.objectid
!= ino
)
4594 if (found_type
< min_type
)
4597 item_end
= found_key
.offset
;
4598 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4599 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4600 struct btrfs_file_extent_item
);
4601 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4602 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4604 btrfs_file_extent_num_bytes(leaf
, fi
);
4606 trace_btrfs_truncate_show_fi_regular(
4607 BTRFS_I(inode
), leaf
, fi
,
4609 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4610 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4613 trace_btrfs_truncate_show_fi_inline(
4614 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4619 if (found_type
> min_type
) {
4622 if (item_end
< new_size
)
4624 if (found_key
.offset
>= new_size
)
4630 /* FIXME, shrink the extent if the ref count is only 1 */
4631 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4634 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4636 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4638 u64 orig_num_bytes
=
4639 btrfs_file_extent_num_bytes(leaf
, fi
);
4640 extent_num_bytes
= ALIGN(new_size
-
4642 fs_info
->sectorsize
);
4643 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4645 num_dec
= (orig_num_bytes
-
4647 if (test_bit(BTRFS_ROOT_REF_COWS
,
4650 inode_sub_bytes(inode
, num_dec
);
4651 btrfs_mark_buffer_dirty(leaf
);
4654 btrfs_file_extent_disk_num_bytes(leaf
,
4656 extent_offset
= found_key
.offset
-
4657 btrfs_file_extent_offset(leaf
, fi
);
4659 /* FIXME blocksize != 4096 */
4660 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4661 if (extent_start
!= 0) {
4663 if (test_bit(BTRFS_ROOT_REF_COWS
,
4665 inode_sub_bytes(inode
, num_dec
);
4668 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4670 * we can't truncate inline items that have had
4674 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4675 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4676 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4677 u32 size
= (u32
)(new_size
- found_key
.offset
);
4679 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4680 size
= btrfs_file_extent_calc_inline_size(size
);
4681 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4682 } else if (!del_item
) {
4684 * We have to bail so the last_size is set to
4685 * just before this extent.
4687 ret
= NEED_TRUNCATE_BLOCK
;
4691 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4692 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4696 last_size
= found_key
.offset
;
4698 last_size
= new_size
;
4700 if (!pending_del_nr
) {
4701 /* no pending yet, add ourselves */
4702 pending_del_slot
= path
->slots
[0];
4704 } else if (pending_del_nr
&&
4705 path
->slots
[0] + 1 == pending_del_slot
) {
4706 /* hop on the pending chunk */
4708 pending_del_slot
= path
->slots
[0];
4715 should_throttle
= false;
4718 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4719 root
== fs_info
->tree_root
)) {
4720 btrfs_set_path_blocking(path
);
4721 bytes_deleted
+= extent_num_bytes
;
4722 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4723 extent_num_bytes
, 0,
4724 btrfs_header_owner(leaf
),
4725 ino
, extent_offset
);
4727 btrfs_abort_transaction(trans
, ret
);
4730 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4731 btrfs_async_run_delayed_refs(fs_info
,
4732 trans
->delayed_ref_updates
* 2,
4735 if (truncate_space_check(trans
, root
,
4736 extent_num_bytes
)) {
4739 if (btrfs_should_throttle_delayed_refs(trans
,
4741 should_throttle
= true;
4745 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4748 if (path
->slots
[0] == 0 ||
4749 path
->slots
[0] != pending_del_slot
||
4750 should_throttle
|| should_end
) {
4751 if (pending_del_nr
) {
4752 ret
= btrfs_del_items(trans
, root
, path
,
4756 btrfs_abort_transaction(trans
, ret
);
4761 btrfs_release_path(path
);
4762 if (should_throttle
) {
4763 unsigned long updates
= trans
->delayed_ref_updates
;
4765 trans
->delayed_ref_updates
= 0;
4766 ret
= btrfs_run_delayed_refs(trans
,
4773 * if we failed to refill our space rsv, bail out
4774 * and let the transaction restart
4786 if (ret
>= 0 && pending_del_nr
) {
4789 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4792 btrfs_abort_transaction(trans
, err
);
4796 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4797 ASSERT(last_size
>= new_size
);
4798 if (!ret
&& last_size
> new_size
)
4799 last_size
= new_size
;
4800 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4803 btrfs_free_path(path
);
4805 if (be_nice
&& bytes_deleted
> SZ_32M
&& (ret
>= 0 || ret
== -EAGAIN
)) {
4806 unsigned long updates
= trans
->delayed_ref_updates
;
4810 trans
->delayed_ref_updates
= 0;
4811 err
= btrfs_run_delayed_refs(trans
, updates
* 2);
4820 * btrfs_truncate_block - read, zero a chunk and write a block
4821 * @inode - inode that we're zeroing
4822 * @from - the offset to start zeroing
4823 * @len - the length to zero, 0 to zero the entire range respective to the
4825 * @front - zero up to the offset instead of from the offset on
4827 * This will find the block for the "from" offset and cow the block and zero the
4828 * part we want to zero. This is used with truncate and hole punching.
4830 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4833 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4834 struct address_space
*mapping
= inode
->i_mapping
;
4835 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4836 struct btrfs_ordered_extent
*ordered
;
4837 struct extent_state
*cached_state
= NULL
;
4838 struct extent_changeset
*data_reserved
= NULL
;
4840 u32 blocksize
= fs_info
->sectorsize
;
4841 pgoff_t index
= from
>> PAGE_SHIFT
;
4842 unsigned offset
= from
& (blocksize
- 1);
4844 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4849 if (IS_ALIGNED(offset
, blocksize
) &&
4850 (!len
|| IS_ALIGNED(len
, blocksize
)))
4853 block_start
= round_down(from
, blocksize
);
4854 block_end
= block_start
+ blocksize
- 1;
4856 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4857 block_start
, blocksize
);
4862 page
= find_or_create_page(mapping
, index
, mask
);
4864 btrfs_delalloc_release_space(inode
, data_reserved
,
4865 block_start
, blocksize
, true);
4866 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, true);
4871 if (!PageUptodate(page
)) {
4872 ret
= btrfs_readpage(NULL
, page
);
4874 if (page
->mapping
!= mapping
) {
4879 if (!PageUptodate(page
)) {
4884 wait_on_page_writeback(page
);
4886 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4887 set_page_extent_mapped(page
);
4889 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4891 unlock_extent_cached(io_tree
, block_start
, block_end
,
4895 btrfs_start_ordered_extent(inode
, ordered
, 1);
4896 btrfs_put_ordered_extent(ordered
);
4900 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4901 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4902 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4903 0, 0, &cached_state
);
4905 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4908 unlock_extent_cached(io_tree
, block_start
, block_end
,
4913 if (offset
!= blocksize
) {
4915 len
= blocksize
- offset
;
4918 memset(kaddr
+ (block_start
- page_offset(page
)),
4921 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4923 flush_dcache_page(page
);
4926 ClearPageChecked(page
);
4927 set_page_dirty(page
);
4928 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4932 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4934 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, (ret
!= 0));
4938 extent_changeset_free(data_reserved
);
4942 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4943 u64 offset
, u64 len
)
4945 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4946 struct btrfs_trans_handle
*trans
;
4950 * Still need to make sure the inode looks like it's been updated so
4951 * that any holes get logged if we fsync.
4953 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4954 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4955 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4956 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4961 * 1 - for the one we're dropping
4962 * 1 - for the one we're adding
4963 * 1 - for updating the inode.
4965 trans
= btrfs_start_transaction(root
, 3);
4967 return PTR_ERR(trans
);
4969 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4971 btrfs_abort_transaction(trans
, ret
);
4972 btrfs_end_transaction(trans
);
4976 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4977 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4979 btrfs_abort_transaction(trans
, ret
);
4981 btrfs_update_inode(trans
, root
, inode
);
4982 btrfs_end_transaction(trans
);
4987 * This function puts in dummy file extents for the area we're creating a hole
4988 * for. So if we are truncating this file to a larger size we need to insert
4989 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4990 * the range between oldsize and size
4992 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4994 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4995 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4996 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4997 struct extent_map
*em
= NULL
;
4998 struct extent_state
*cached_state
= NULL
;
4999 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5000 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
5001 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
5008 * If our size started in the middle of a block we need to zero out the
5009 * rest of the block before we expand the i_size, otherwise we could
5010 * expose stale data.
5012 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
5016 if (size
<= hole_start
)
5020 struct btrfs_ordered_extent
*ordered
;
5022 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
5024 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
5025 block_end
- hole_start
);
5028 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
5030 btrfs_start_ordered_extent(inode
, ordered
, 1);
5031 btrfs_put_ordered_extent(ordered
);
5034 cur_offset
= hole_start
;
5036 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
5037 block_end
- cur_offset
, 0);
5043 last_byte
= min(extent_map_end(em
), block_end
);
5044 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
5045 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
5046 struct extent_map
*hole_em
;
5047 hole_size
= last_byte
- cur_offset
;
5049 err
= maybe_insert_hole(root
, inode
, cur_offset
,
5053 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
5054 cur_offset
+ hole_size
- 1, 0);
5055 hole_em
= alloc_extent_map();
5057 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5058 &BTRFS_I(inode
)->runtime_flags
);
5061 hole_em
->start
= cur_offset
;
5062 hole_em
->len
= hole_size
;
5063 hole_em
->orig_start
= cur_offset
;
5065 hole_em
->block_start
= EXTENT_MAP_HOLE
;
5066 hole_em
->block_len
= 0;
5067 hole_em
->orig_block_len
= 0;
5068 hole_em
->ram_bytes
= hole_size
;
5069 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
5070 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
5071 hole_em
->generation
= fs_info
->generation
;
5074 write_lock(&em_tree
->lock
);
5075 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5076 write_unlock(&em_tree
->lock
);
5079 btrfs_drop_extent_cache(BTRFS_I(inode
),
5084 free_extent_map(hole_em
);
5087 free_extent_map(em
);
5089 cur_offset
= last_byte
;
5090 if (cur_offset
>= block_end
)
5093 free_extent_map(em
);
5094 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
5098 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5100 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5101 struct btrfs_trans_handle
*trans
;
5102 loff_t oldsize
= i_size_read(inode
);
5103 loff_t newsize
= attr
->ia_size
;
5104 int mask
= attr
->ia_valid
;
5108 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5109 * special case where we need to update the times despite not having
5110 * these flags set. For all other operations the VFS set these flags
5111 * explicitly if it wants a timestamp update.
5113 if (newsize
!= oldsize
) {
5114 inode_inc_iversion(inode
);
5115 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5116 inode
->i_ctime
= inode
->i_mtime
=
5117 current_time(inode
);
5120 if (newsize
> oldsize
) {
5122 * Don't do an expanding truncate while snapshotting is ongoing.
5123 * This is to ensure the snapshot captures a fully consistent
5124 * state of this file - if the snapshot captures this expanding
5125 * truncation, it must capture all writes that happened before
5128 btrfs_wait_for_snapshot_creation(root
);
5129 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5131 btrfs_end_write_no_snapshotting(root
);
5135 trans
= btrfs_start_transaction(root
, 1);
5136 if (IS_ERR(trans
)) {
5137 btrfs_end_write_no_snapshotting(root
);
5138 return PTR_ERR(trans
);
5141 i_size_write(inode
, newsize
);
5142 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5143 pagecache_isize_extended(inode
, oldsize
, newsize
);
5144 ret
= btrfs_update_inode(trans
, root
, inode
);
5145 btrfs_end_write_no_snapshotting(root
);
5146 btrfs_end_transaction(trans
);
5150 * We're truncating a file that used to have good data down to
5151 * zero. Make sure it gets into the ordered flush list so that
5152 * any new writes get down to disk quickly.
5155 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5156 &BTRFS_I(inode
)->runtime_flags
);
5158 truncate_setsize(inode
, newsize
);
5160 /* Disable nonlocked read DIO to avoid the end less truncate */
5161 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5162 inode_dio_wait(inode
);
5163 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5165 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
5166 if (ret
&& inode
->i_nlink
) {
5170 * Truncate failed, so fix up the in-memory size. We
5171 * adjusted disk_i_size down as we removed extents, so
5172 * wait for disk_i_size to be stable and then update the
5173 * in-memory size to match.
5175 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5178 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5185 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5187 struct inode
*inode
= d_inode(dentry
);
5188 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5191 if (btrfs_root_readonly(root
))
5194 err
= setattr_prepare(dentry
, attr
);
5198 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5199 err
= btrfs_setsize(inode
, attr
);
5204 if (attr
->ia_valid
) {
5205 setattr_copy(inode
, attr
);
5206 inode_inc_iversion(inode
);
5207 err
= btrfs_dirty_inode(inode
);
5209 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5210 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5217 * While truncating the inode pages during eviction, we get the VFS calling
5218 * btrfs_invalidatepage() against each page of the inode. This is slow because
5219 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5220 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5221 * extent_state structures over and over, wasting lots of time.
5223 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5224 * those expensive operations on a per page basis and do only the ordered io
5225 * finishing, while we release here the extent_map and extent_state structures,
5226 * without the excessive merging and splitting.
5228 static void evict_inode_truncate_pages(struct inode
*inode
)
5230 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5231 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5232 struct rb_node
*node
;
5234 ASSERT(inode
->i_state
& I_FREEING
);
5235 truncate_inode_pages_final(&inode
->i_data
);
5237 write_lock(&map_tree
->lock
);
5238 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5239 struct extent_map
*em
;
5241 node
= rb_first(&map_tree
->map
);
5242 em
= rb_entry(node
, struct extent_map
, rb_node
);
5243 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5244 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5245 remove_extent_mapping(map_tree
, em
);
5246 free_extent_map(em
);
5247 if (need_resched()) {
5248 write_unlock(&map_tree
->lock
);
5250 write_lock(&map_tree
->lock
);
5253 write_unlock(&map_tree
->lock
);
5256 * Keep looping until we have no more ranges in the io tree.
5257 * We can have ongoing bios started by readpages (called from readahead)
5258 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5259 * still in progress (unlocked the pages in the bio but did not yet
5260 * unlocked the ranges in the io tree). Therefore this means some
5261 * ranges can still be locked and eviction started because before
5262 * submitting those bios, which are executed by a separate task (work
5263 * queue kthread), inode references (inode->i_count) were not taken
5264 * (which would be dropped in the end io callback of each bio).
5265 * Therefore here we effectively end up waiting for those bios and
5266 * anyone else holding locked ranges without having bumped the inode's
5267 * reference count - if we don't do it, when they access the inode's
5268 * io_tree to unlock a range it may be too late, leading to an
5269 * use-after-free issue.
5271 spin_lock(&io_tree
->lock
);
5272 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5273 struct extent_state
*state
;
5274 struct extent_state
*cached_state
= NULL
;
5278 node
= rb_first(&io_tree
->state
);
5279 state
= rb_entry(node
, struct extent_state
, rb_node
);
5280 start
= state
->start
;
5282 spin_unlock(&io_tree
->lock
);
5284 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5287 * If still has DELALLOC flag, the extent didn't reach disk,
5288 * and its reserved space won't be freed by delayed_ref.
5289 * So we need to free its reserved space here.
5290 * (Refer to comment in btrfs_invalidatepage, case 2)
5292 * Note, end is the bytenr of last byte, so we need + 1 here.
5294 if (state
->state
& EXTENT_DELALLOC
)
5295 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5297 clear_extent_bit(io_tree
, start
, end
,
5298 EXTENT_LOCKED
| EXTENT_DIRTY
|
5299 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5300 EXTENT_DEFRAG
, 1, 1, &cached_state
);
5303 spin_lock(&io_tree
->lock
);
5305 spin_unlock(&io_tree
->lock
);
5308 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
5309 struct btrfs_block_rsv
*rsv
,
5312 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5313 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5317 struct btrfs_trans_handle
*trans
;
5320 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5321 BTRFS_RESERVE_FLUSH_LIMIT
);
5323 if (ret
&& ++failures
> 2) {
5325 "could not allocate space for a delete; will truncate on mount");
5326 return ERR_PTR(-ENOSPC
);
5329 trans
= btrfs_join_transaction(root
);
5330 if (IS_ERR(trans
) || !ret
)
5334 * Try to steal from the global reserve if there is space for
5337 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
) &&
5338 !btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
, 0))
5341 /* If not, commit and try again. */
5342 ret
= btrfs_commit_transaction(trans
);
5344 return ERR_PTR(ret
);
5348 void btrfs_evict_inode(struct inode
*inode
)
5350 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5351 struct btrfs_trans_handle
*trans
;
5352 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5353 struct btrfs_block_rsv
*rsv
;
5357 trace_btrfs_inode_evict(inode
);
5364 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5366 evict_inode_truncate_pages(inode
);
5368 if (inode
->i_nlink
&&
5369 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5370 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5371 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5374 if (is_bad_inode(inode
))
5376 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5377 if (!special_file(inode
->i_mode
))
5378 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5380 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5382 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
5385 if (inode
->i_nlink
> 0) {
5386 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5387 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5391 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5395 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5398 rsv
->size
= min_size
;
5401 btrfs_i_size_write(BTRFS_I(inode
), 0);
5404 trans
= evict_refill_and_join(root
, rsv
, min_size
);
5408 trans
->block_rsv
= rsv
;
5410 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5411 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5412 btrfs_end_transaction(trans
);
5413 btrfs_btree_balance_dirty(fs_info
);
5414 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5421 * Errors here aren't a big deal, it just means we leave orphan items in
5422 * the tree. They will be cleaned up on the next mount. If the inode
5423 * number gets reused, cleanup deletes the orphan item without doing
5424 * anything, and unlink reuses the existing orphan item.
5426 * If it turns out that we are dropping too many of these, we might want
5427 * to add a mechanism for retrying these after a commit.
5429 trans
= evict_refill_and_join(root
, rsv
, min_size
);
5430 if (!IS_ERR(trans
)) {
5431 trans
->block_rsv
= rsv
;
5432 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5433 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5434 btrfs_end_transaction(trans
);
5437 if (!(root
== fs_info
->tree_root
||
5438 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5439 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5442 btrfs_free_block_rsv(fs_info
, rsv
);
5445 * If we didn't successfully delete, the orphan item will still be in
5446 * the tree and we'll retry on the next mount. Again, we might also want
5447 * to retry these periodically in the future.
5449 btrfs_remove_delayed_node(BTRFS_I(inode
));
5454 * this returns the key found in the dir entry in the location pointer.
5455 * If no dir entries were found, returns -ENOENT.
5456 * If found a corrupted location in dir entry, returns -EUCLEAN.
5458 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5459 struct btrfs_key
*location
)
5461 const char *name
= dentry
->d_name
.name
;
5462 int namelen
= dentry
->d_name
.len
;
5463 struct btrfs_dir_item
*di
;
5464 struct btrfs_path
*path
;
5465 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5468 path
= btrfs_alloc_path();
5472 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5483 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5484 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5485 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5487 btrfs_warn(root
->fs_info
,
5488 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5489 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5490 location
->objectid
, location
->type
, location
->offset
);
5493 btrfs_free_path(path
);
5498 * when we hit a tree root in a directory, the btrfs part of the inode
5499 * needs to be changed to reflect the root directory of the tree root. This
5500 * is kind of like crossing a mount point.
5502 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5504 struct dentry
*dentry
,
5505 struct btrfs_key
*location
,
5506 struct btrfs_root
**sub_root
)
5508 struct btrfs_path
*path
;
5509 struct btrfs_root
*new_root
;
5510 struct btrfs_root_ref
*ref
;
5511 struct extent_buffer
*leaf
;
5512 struct btrfs_key key
;
5516 path
= btrfs_alloc_path();
5523 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5524 key
.type
= BTRFS_ROOT_REF_KEY
;
5525 key
.offset
= location
->objectid
;
5527 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5534 leaf
= path
->nodes
[0];
5535 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5536 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5537 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5540 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5541 (unsigned long)(ref
+ 1),
5542 dentry
->d_name
.len
);
5546 btrfs_release_path(path
);
5548 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5549 if (IS_ERR(new_root
)) {
5550 err
= PTR_ERR(new_root
);
5554 *sub_root
= new_root
;
5555 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5556 location
->type
= BTRFS_INODE_ITEM_KEY
;
5557 location
->offset
= 0;
5560 btrfs_free_path(path
);
5564 static void inode_tree_add(struct inode
*inode
)
5566 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5567 struct btrfs_inode
*entry
;
5569 struct rb_node
*parent
;
5570 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5571 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5573 if (inode_unhashed(inode
))
5576 spin_lock(&root
->inode_lock
);
5577 p
= &root
->inode_tree
.rb_node
;
5580 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5582 if (ino
< btrfs_ino(entry
))
5583 p
= &parent
->rb_left
;
5584 else if (ino
> btrfs_ino(entry
))
5585 p
= &parent
->rb_right
;
5587 WARN_ON(!(entry
->vfs_inode
.i_state
&
5588 (I_WILL_FREE
| I_FREEING
)));
5589 rb_replace_node(parent
, new, &root
->inode_tree
);
5590 RB_CLEAR_NODE(parent
);
5591 spin_unlock(&root
->inode_lock
);
5595 rb_link_node(new, parent
, p
);
5596 rb_insert_color(new, &root
->inode_tree
);
5597 spin_unlock(&root
->inode_lock
);
5600 static void inode_tree_del(struct inode
*inode
)
5602 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5603 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5606 spin_lock(&root
->inode_lock
);
5607 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5608 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5609 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5610 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5612 spin_unlock(&root
->inode_lock
);
5614 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5615 synchronize_srcu(&fs_info
->subvol_srcu
);
5616 spin_lock(&root
->inode_lock
);
5617 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5618 spin_unlock(&root
->inode_lock
);
5620 btrfs_add_dead_root(root
);
5625 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5627 struct btrfs_iget_args
*args
= p
;
5628 inode
->i_ino
= args
->location
->objectid
;
5629 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5630 sizeof(*args
->location
));
5631 BTRFS_I(inode
)->root
= args
->root
;
5635 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5637 struct btrfs_iget_args
*args
= opaque
;
5638 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5639 args
->root
== BTRFS_I(inode
)->root
;
5642 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5643 struct btrfs_key
*location
,
5644 struct btrfs_root
*root
)
5646 struct inode
*inode
;
5647 struct btrfs_iget_args args
;
5648 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5650 args
.location
= location
;
5653 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5654 btrfs_init_locked_inode
,
5659 /* Get an inode object given its location and corresponding root.
5660 * Returns in *is_new if the inode was read from disk
5662 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5663 struct btrfs_root
*root
, int *new)
5665 struct inode
*inode
;
5667 inode
= btrfs_iget_locked(s
, location
, root
);
5669 return ERR_PTR(-ENOMEM
);
5671 if (inode
->i_state
& I_NEW
) {
5674 ret
= btrfs_read_locked_inode(inode
);
5676 inode_tree_add(inode
);
5677 unlock_new_inode(inode
);
5683 * ret > 0 can come from btrfs_search_slot called by
5684 * btrfs_read_locked_inode, this means the inode item
5689 inode
= ERR_PTR(ret
);
5696 static struct inode
*new_simple_dir(struct super_block
*s
,
5697 struct btrfs_key
*key
,
5698 struct btrfs_root
*root
)
5700 struct inode
*inode
= new_inode(s
);
5703 return ERR_PTR(-ENOMEM
);
5705 BTRFS_I(inode
)->root
= root
;
5706 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5707 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5709 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5710 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5711 inode
->i_opflags
&= ~IOP_XATTR
;
5712 inode
->i_fop
= &simple_dir_operations
;
5713 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5714 inode
->i_mtime
= current_time(inode
);
5715 inode
->i_atime
= inode
->i_mtime
;
5716 inode
->i_ctime
= inode
->i_mtime
;
5717 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5722 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5724 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5725 struct inode
*inode
;
5726 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5727 struct btrfs_root
*sub_root
= root
;
5728 struct btrfs_key location
;
5732 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5733 return ERR_PTR(-ENAMETOOLONG
);
5735 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5737 return ERR_PTR(ret
);
5739 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5740 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5744 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5745 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5746 &location
, &sub_root
);
5749 inode
= ERR_PTR(ret
);
5751 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5753 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5755 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5757 if (!IS_ERR(inode
) && root
!= sub_root
) {
5758 down_read(&fs_info
->cleanup_work_sem
);
5759 if (!sb_rdonly(inode
->i_sb
))
5760 ret
= btrfs_orphan_cleanup(sub_root
);
5761 up_read(&fs_info
->cleanup_work_sem
);
5764 inode
= ERR_PTR(ret
);
5771 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5773 struct btrfs_root
*root
;
5774 struct inode
*inode
= d_inode(dentry
);
5776 if (!inode
&& !IS_ROOT(dentry
))
5777 inode
= d_inode(dentry
->d_parent
);
5780 root
= BTRFS_I(inode
)->root
;
5781 if (btrfs_root_refs(&root
->root_item
) == 0)
5784 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5790 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5793 struct inode
*inode
;
5795 inode
= btrfs_lookup_dentry(dir
, dentry
);
5796 if (IS_ERR(inode
)) {
5797 if (PTR_ERR(inode
) == -ENOENT
)
5800 return ERR_CAST(inode
);
5803 return d_splice_alias(inode
, dentry
);
5806 unsigned char btrfs_filetype_table
[] = {
5807 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5811 * All this infrastructure exists because dir_emit can fault, and we are holding
5812 * the tree lock when doing readdir. For now just allocate a buffer and copy
5813 * our information into that, and then dir_emit from the buffer. This is
5814 * similar to what NFS does, only we don't keep the buffer around in pagecache
5815 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5816 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5819 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5821 struct btrfs_file_private
*private;
5823 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5826 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5827 if (!private->filldir_buf
) {
5831 file
->private_data
= private;
5842 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5845 struct dir_entry
*entry
= addr
;
5846 char *name
= (char *)(entry
+ 1);
5848 ctx
->pos
= get_unaligned(&entry
->offset
);
5849 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5850 get_unaligned(&entry
->ino
),
5851 get_unaligned(&entry
->type
)))
5853 addr
+= sizeof(struct dir_entry
) +
5854 get_unaligned(&entry
->name_len
);
5860 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5862 struct inode
*inode
= file_inode(file
);
5863 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5864 struct btrfs_file_private
*private = file
->private_data
;
5865 struct btrfs_dir_item
*di
;
5866 struct btrfs_key key
;
5867 struct btrfs_key found_key
;
5868 struct btrfs_path
*path
;
5870 struct list_head ins_list
;
5871 struct list_head del_list
;
5873 struct extent_buffer
*leaf
;
5880 struct btrfs_key location
;
5882 if (!dir_emit_dots(file
, ctx
))
5885 path
= btrfs_alloc_path();
5889 addr
= private->filldir_buf
;
5890 path
->reada
= READA_FORWARD
;
5892 INIT_LIST_HEAD(&ins_list
);
5893 INIT_LIST_HEAD(&del_list
);
5894 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5897 key
.type
= BTRFS_DIR_INDEX_KEY
;
5898 key
.offset
= ctx
->pos
;
5899 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5901 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5906 struct dir_entry
*entry
;
5908 leaf
= path
->nodes
[0];
5909 slot
= path
->slots
[0];
5910 if (slot
>= btrfs_header_nritems(leaf
)) {
5911 ret
= btrfs_next_leaf(root
, path
);
5919 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5921 if (found_key
.objectid
!= key
.objectid
)
5923 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5925 if (found_key
.offset
< ctx
->pos
)
5927 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5929 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5930 name_len
= btrfs_dir_name_len(leaf
, di
);
5931 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5933 btrfs_release_path(path
);
5934 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5937 addr
= private->filldir_buf
;
5944 put_unaligned(name_len
, &entry
->name_len
);
5945 name_ptr
= (char *)(entry
+ 1);
5946 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5948 put_unaligned(btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)],
5950 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5951 put_unaligned(location
.objectid
, &entry
->ino
);
5952 put_unaligned(found_key
.offset
, &entry
->offset
);
5954 addr
+= sizeof(struct dir_entry
) + name_len
;
5955 total_len
+= sizeof(struct dir_entry
) + name_len
;
5959 btrfs_release_path(path
);
5961 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5965 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5970 * Stop new entries from being returned after we return the last
5973 * New directory entries are assigned a strictly increasing
5974 * offset. This means that new entries created during readdir
5975 * are *guaranteed* to be seen in the future by that readdir.
5976 * This has broken buggy programs which operate on names as
5977 * they're returned by readdir. Until we re-use freed offsets
5978 * we have this hack to stop new entries from being returned
5979 * under the assumption that they'll never reach this huge
5982 * This is being careful not to overflow 32bit loff_t unless the
5983 * last entry requires it because doing so has broken 32bit apps
5986 if (ctx
->pos
>= INT_MAX
)
5987 ctx
->pos
= LLONG_MAX
;
5994 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5995 btrfs_free_path(path
);
6000 * This is somewhat expensive, updating the tree every time the
6001 * inode changes. But, it is most likely to find the inode in cache.
6002 * FIXME, needs more benchmarking...there are no reasons other than performance
6003 * to keep or drop this code.
6005 static int btrfs_dirty_inode(struct inode
*inode
)
6007 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6008 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6009 struct btrfs_trans_handle
*trans
;
6012 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6015 trans
= btrfs_join_transaction(root
);
6017 return PTR_ERR(trans
);
6019 ret
= btrfs_update_inode(trans
, root
, inode
);
6020 if (ret
&& ret
== -ENOSPC
) {
6021 /* whoops, lets try again with the full transaction */
6022 btrfs_end_transaction(trans
);
6023 trans
= btrfs_start_transaction(root
, 1);
6025 return PTR_ERR(trans
);
6027 ret
= btrfs_update_inode(trans
, root
, inode
);
6029 btrfs_end_transaction(trans
);
6030 if (BTRFS_I(inode
)->delayed_node
)
6031 btrfs_balance_delayed_items(fs_info
);
6037 * This is a copy of file_update_time. We need this so we can return error on
6038 * ENOSPC for updating the inode in the case of file write and mmap writes.
6040 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
6043 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6044 bool dirty
= flags
& ~S_VERSION
;
6046 if (btrfs_root_readonly(root
))
6049 if (flags
& S_VERSION
)
6050 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
6051 if (flags
& S_CTIME
)
6052 inode
->i_ctime
= *now
;
6053 if (flags
& S_MTIME
)
6054 inode
->i_mtime
= *now
;
6055 if (flags
& S_ATIME
)
6056 inode
->i_atime
= *now
;
6057 return dirty
? btrfs_dirty_inode(inode
) : 0;
6061 * find the highest existing sequence number in a directory
6062 * and then set the in-memory index_cnt variable to reflect
6063 * free sequence numbers
6065 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6067 struct btrfs_root
*root
= inode
->root
;
6068 struct btrfs_key key
, found_key
;
6069 struct btrfs_path
*path
;
6070 struct extent_buffer
*leaf
;
6073 key
.objectid
= btrfs_ino(inode
);
6074 key
.type
= BTRFS_DIR_INDEX_KEY
;
6075 key
.offset
= (u64
)-1;
6077 path
= btrfs_alloc_path();
6081 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6084 /* FIXME: we should be able to handle this */
6090 * MAGIC NUMBER EXPLANATION:
6091 * since we search a directory based on f_pos we have to start at 2
6092 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6093 * else has to start at 2
6095 if (path
->slots
[0] == 0) {
6096 inode
->index_cnt
= 2;
6102 leaf
= path
->nodes
[0];
6103 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6105 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6106 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6107 inode
->index_cnt
= 2;
6111 inode
->index_cnt
= found_key
.offset
+ 1;
6113 btrfs_free_path(path
);
6118 * helper to find a free sequence number in a given directory. This current
6119 * code is very simple, later versions will do smarter things in the btree
6121 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6125 if (dir
->index_cnt
== (u64
)-1) {
6126 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6128 ret
= btrfs_set_inode_index_count(dir
);
6134 *index
= dir
->index_cnt
;
6140 static int btrfs_insert_inode_locked(struct inode
*inode
)
6142 struct btrfs_iget_args args
;
6143 args
.location
= &BTRFS_I(inode
)->location
;
6144 args
.root
= BTRFS_I(inode
)->root
;
6146 return insert_inode_locked4(inode
,
6147 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6148 btrfs_find_actor
, &args
);
6152 * Inherit flags from the parent inode.
6154 * Currently only the compression flags and the cow flags are inherited.
6156 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6163 flags
= BTRFS_I(dir
)->flags
;
6165 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6166 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6167 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6168 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6169 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6170 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6173 if (flags
& BTRFS_INODE_NODATACOW
) {
6174 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6175 if (S_ISREG(inode
->i_mode
))
6176 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6179 btrfs_sync_inode_flags_to_i_flags(inode
);
6182 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6183 struct btrfs_root
*root
,
6185 const char *name
, int name_len
,
6186 u64 ref_objectid
, u64 objectid
,
6187 umode_t mode
, u64
*index
)
6189 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6190 struct inode
*inode
;
6191 struct btrfs_inode_item
*inode_item
;
6192 struct btrfs_key
*location
;
6193 struct btrfs_path
*path
;
6194 struct btrfs_inode_ref
*ref
;
6195 struct btrfs_key key
[2];
6197 int nitems
= name
? 2 : 1;
6201 path
= btrfs_alloc_path();
6203 return ERR_PTR(-ENOMEM
);
6205 inode
= new_inode(fs_info
->sb
);
6207 btrfs_free_path(path
);
6208 return ERR_PTR(-ENOMEM
);
6212 * O_TMPFILE, set link count to 0, so that after this point,
6213 * we fill in an inode item with the correct link count.
6216 set_nlink(inode
, 0);
6219 * we have to initialize this early, so we can reclaim the inode
6220 * number if we fail afterwards in this function.
6222 inode
->i_ino
= objectid
;
6225 trace_btrfs_inode_request(dir
);
6227 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6229 btrfs_free_path(path
);
6231 return ERR_PTR(ret
);
6237 * index_cnt is ignored for everything but a dir,
6238 * btrfs_set_inode_index_count has an explanation for the magic
6241 BTRFS_I(inode
)->index_cnt
= 2;
6242 BTRFS_I(inode
)->dir_index
= *index
;
6243 BTRFS_I(inode
)->root
= root
;
6244 BTRFS_I(inode
)->generation
= trans
->transid
;
6245 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6248 * We could have gotten an inode number from somebody who was fsynced
6249 * and then removed in this same transaction, so let's just set full
6250 * sync since it will be a full sync anyway and this will blow away the
6251 * old info in the log.
6253 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6255 key
[0].objectid
= objectid
;
6256 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6259 sizes
[0] = sizeof(struct btrfs_inode_item
);
6263 * Start new inodes with an inode_ref. This is slightly more
6264 * efficient for small numbers of hard links since they will
6265 * be packed into one item. Extended refs will kick in if we
6266 * add more hard links than can fit in the ref item.
6268 key
[1].objectid
= objectid
;
6269 key
[1].type
= BTRFS_INODE_REF_KEY
;
6270 key
[1].offset
= ref_objectid
;
6272 sizes
[1] = name_len
+ sizeof(*ref
);
6275 location
= &BTRFS_I(inode
)->location
;
6276 location
->objectid
= objectid
;
6277 location
->offset
= 0;
6278 location
->type
= BTRFS_INODE_ITEM_KEY
;
6280 ret
= btrfs_insert_inode_locked(inode
);
6286 path
->leave_spinning
= 1;
6287 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6291 inode_init_owner(inode
, dir
, mode
);
6292 inode_set_bytes(inode
, 0);
6294 inode
->i_mtime
= current_time(inode
);
6295 inode
->i_atime
= inode
->i_mtime
;
6296 inode
->i_ctime
= inode
->i_mtime
;
6297 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6299 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6300 struct btrfs_inode_item
);
6301 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6302 sizeof(*inode_item
));
6303 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6306 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6307 struct btrfs_inode_ref
);
6308 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6309 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6310 ptr
= (unsigned long)(ref
+ 1);
6311 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6314 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6315 btrfs_free_path(path
);
6317 btrfs_inherit_iflags(inode
, dir
);
6319 if (S_ISREG(mode
)) {
6320 if (btrfs_test_opt(fs_info
, NODATASUM
))
6321 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6322 if (btrfs_test_opt(fs_info
, NODATACOW
))
6323 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6324 BTRFS_INODE_NODATASUM
;
6327 inode_tree_add(inode
);
6329 trace_btrfs_inode_new(inode
);
6330 btrfs_set_inode_last_trans(trans
, inode
);
6332 btrfs_update_root_times(trans
, root
);
6334 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6337 "error inheriting props for ino %llu (root %llu): %d",
6338 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6343 discard_new_inode(inode
);
6346 BTRFS_I(dir
)->index_cnt
--;
6347 btrfs_free_path(path
);
6348 return ERR_PTR(ret
);
6351 static inline u8
btrfs_inode_type(struct inode
*inode
)
6353 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6357 * utility function to add 'inode' into 'parent_inode' with
6358 * a give name and a given sequence number.
6359 * if 'add_backref' is true, also insert a backref from the
6360 * inode to the parent directory.
6362 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6363 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6364 const char *name
, int name_len
, int add_backref
, u64 index
)
6367 struct btrfs_key key
;
6368 struct btrfs_root
*root
= parent_inode
->root
;
6369 u64 ino
= btrfs_ino(inode
);
6370 u64 parent_ino
= btrfs_ino(parent_inode
);
6372 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6373 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6376 key
.type
= BTRFS_INODE_ITEM_KEY
;
6380 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6381 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
6382 root
->root_key
.objectid
, parent_ino
,
6383 index
, name
, name_len
);
6384 } else if (add_backref
) {
6385 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6389 /* Nothing to clean up yet */
6393 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6395 btrfs_inode_type(&inode
->vfs_inode
), index
);
6396 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6399 btrfs_abort_transaction(trans
, ret
);
6403 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6405 inode_inc_iversion(&parent_inode
->vfs_inode
);
6406 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6407 current_time(&parent_inode
->vfs_inode
);
6408 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6410 btrfs_abort_transaction(trans
, ret
);
6414 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6417 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6418 root
->root_key
.objectid
, parent_ino
,
6419 &local_index
, name
, name_len
);
6421 } else if (add_backref
) {
6425 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6426 ino
, parent_ino
, &local_index
);
6431 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6432 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6433 struct btrfs_inode
*inode
, int backref
, u64 index
)
6435 int err
= btrfs_add_link(trans
, dir
, inode
,
6436 dentry
->d_name
.name
, dentry
->d_name
.len
,
6443 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6444 umode_t mode
, dev_t rdev
)
6446 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6447 struct btrfs_trans_handle
*trans
;
6448 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6449 struct inode
*inode
= NULL
;
6455 * 2 for inode item and ref
6457 * 1 for xattr if selinux is on
6459 trans
= btrfs_start_transaction(root
, 5);
6461 return PTR_ERR(trans
);
6463 err
= btrfs_find_free_ino(root
, &objectid
);
6467 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6468 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6470 if (IS_ERR(inode
)) {
6471 err
= PTR_ERR(inode
);
6477 * If the active LSM wants to access the inode during
6478 * d_instantiate it needs these. Smack checks to see
6479 * if the filesystem supports xattrs by looking at the
6482 inode
->i_op
= &btrfs_special_inode_operations
;
6483 init_special_inode(inode
, inode
->i_mode
, rdev
);
6485 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6489 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6494 btrfs_update_inode(trans
, root
, inode
);
6495 d_instantiate_new(dentry
, inode
);
6498 btrfs_end_transaction(trans
);
6499 btrfs_btree_balance_dirty(fs_info
);
6501 inode_dec_link_count(inode
);
6502 discard_new_inode(inode
);
6507 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6508 umode_t mode
, bool excl
)
6510 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6511 struct btrfs_trans_handle
*trans
;
6512 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6513 struct inode
*inode
= NULL
;
6519 * 2 for inode item and ref
6521 * 1 for xattr if selinux is on
6523 trans
= btrfs_start_transaction(root
, 5);
6525 return PTR_ERR(trans
);
6527 err
= btrfs_find_free_ino(root
, &objectid
);
6531 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6532 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6534 if (IS_ERR(inode
)) {
6535 err
= PTR_ERR(inode
);
6540 * If the active LSM wants to access the inode during
6541 * d_instantiate it needs these. Smack checks to see
6542 * if the filesystem supports xattrs by looking at the
6545 inode
->i_fop
= &btrfs_file_operations
;
6546 inode
->i_op
= &btrfs_file_inode_operations
;
6547 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6549 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6553 err
= btrfs_update_inode(trans
, root
, inode
);
6557 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6562 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6563 d_instantiate_new(dentry
, inode
);
6566 btrfs_end_transaction(trans
);
6568 inode_dec_link_count(inode
);
6569 discard_new_inode(inode
);
6571 btrfs_btree_balance_dirty(fs_info
);
6575 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6576 struct dentry
*dentry
)
6578 struct btrfs_trans_handle
*trans
= NULL
;
6579 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6580 struct inode
*inode
= d_inode(old_dentry
);
6581 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6586 /* do not allow sys_link's with other subvols of the same device */
6587 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6590 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6593 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6598 * 2 items for inode and inode ref
6599 * 2 items for dir items
6600 * 1 item for parent inode
6601 * 1 item for orphan item deletion if O_TMPFILE
6603 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6604 if (IS_ERR(trans
)) {
6605 err
= PTR_ERR(trans
);
6610 /* There are several dir indexes for this inode, clear the cache. */
6611 BTRFS_I(inode
)->dir_index
= 0ULL;
6613 inode_inc_iversion(inode
);
6614 inode
->i_ctime
= current_time(inode
);
6616 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6618 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6624 struct dentry
*parent
= dentry
->d_parent
;
6627 err
= btrfs_update_inode(trans
, root
, inode
);
6630 if (inode
->i_nlink
== 1) {
6632 * If new hard link count is 1, it's a file created
6633 * with open(2) O_TMPFILE flag.
6635 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6639 d_instantiate(dentry
, inode
);
6640 ret
= btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
,
6642 if (ret
== BTRFS_NEED_TRANS_COMMIT
) {
6643 err
= btrfs_commit_transaction(trans
);
6650 btrfs_end_transaction(trans
);
6652 inode_dec_link_count(inode
);
6655 btrfs_btree_balance_dirty(fs_info
);
6659 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6661 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6662 struct inode
*inode
= NULL
;
6663 struct btrfs_trans_handle
*trans
;
6664 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6666 int drop_on_err
= 0;
6671 * 2 items for inode and ref
6672 * 2 items for dir items
6673 * 1 for xattr if selinux is on
6675 trans
= btrfs_start_transaction(root
, 5);
6677 return PTR_ERR(trans
);
6679 err
= btrfs_find_free_ino(root
, &objectid
);
6683 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6684 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6685 S_IFDIR
| mode
, &index
);
6686 if (IS_ERR(inode
)) {
6687 err
= PTR_ERR(inode
);
6693 /* these must be set before we unlock the inode */
6694 inode
->i_op
= &btrfs_dir_inode_operations
;
6695 inode
->i_fop
= &btrfs_dir_file_operations
;
6697 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6701 btrfs_i_size_write(BTRFS_I(inode
), 0);
6702 err
= btrfs_update_inode(trans
, root
, inode
);
6706 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6707 dentry
->d_name
.name
,
6708 dentry
->d_name
.len
, 0, index
);
6712 d_instantiate_new(dentry
, inode
);
6716 btrfs_end_transaction(trans
);
6718 inode_dec_link_count(inode
);
6719 discard_new_inode(inode
);
6721 btrfs_btree_balance_dirty(fs_info
);
6725 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6727 size_t pg_offset
, u64 extent_offset
,
6728 struct btrfs_file_extent_item
*item
)
6731 struct extent_buffer
*leaf
= path
->nodes
[0];
6734 unsigned long inline_size
;
6738 WARN_ON(pg_offset
!= 0);
6739 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6740 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6741 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6742 btrfs_item_nr(path
->slots
[0]));
6743 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6746 ptr
= btrfs_file_extent_inline_start(item
);
6748 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6750 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6751 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6752 extent_offset
, inline_size
, max_size
);
6755 * decompression code contains a memset to fill in any space between the end
6756 * of the uncompressed data and the end of max_size in case the decompressed
6757 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6758 * the end of an inline extent and the beginning of the next block, so we
6759 * cover that region here.
6762 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6763 char *map
= kmap(page
);
6764 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6772 * a bit scary, this does extent mapping from logical file offset to the disk.
6773 * the ugly parts come from merging extents from the disk with the in-ram
6774 * representation. This gets more complex because of the data=ordered code,
6775 * where the in-ram extents might be locked pending data=ordered completion.
6777 * This also copies inline extents directly into the page.
6779 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6781 size_t pg_offset
, u64 start
, u64 len
,
6784 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6787 u64 extent_start
= 0;
6789 u64 objectid
= btrfs_ino(inode
);
6791 struct btrfs_path
*path
= NULL
;
6792 struct btrfs_root
*root
= inode
->root
;
6793 struct btrfs_file_extent_item
*item
;
6794 struct extent_buffer
*leaf
;
6795 struct btrfs_key found_key
;
6796 struct extent_map
*em
= NULL
;
6797 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6798 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6799 const bool new_inline
= !page
|| create
;
6801 read_lock(&em_tree
->lock
);
6802 em
= lookup_extent_mapping(em_tree
, start
, len
);
6804 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6805 read_unlock(&em_tree
->lock
);
6808 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6809 free_extent_map(em
);
6810 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6811 free_extent_map(em
);
6815 em
= alloc_extent_map();
6820 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6821 em
->start
= EXTENT_MAP_HOLE
;
6822 em
->orig_start
= EXTENT_MAP_HOLE
;
6824 em
->block_len
= (u64
)-1;
6827 path
= btrfs_alloc_path();
6833 * Chances are we'll be called again, so go ahead and do
6836 path
->reada
= READA_FORWARD
;
6839 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6846 if (path
->slots
[0] == 0)
6851 leaf
= path
->nodes
[0];
6852 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6853 struct btrfs_file_extent_item
);
6854 /* are we inside the extent that was found? */
6855 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6856 found_type
= found_key
.type
;
6857 if (found_key
.objectid
!= objectid
||
6858 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6860 * If we backup past the first extent we want to move forward
6861 * and see if there is an extent in front of us, otherwise we'll
6862 * say there is a hole for our whole search range which can
6869 found_type
= btrfs_file_extent_type(leaf
, item
);
6870 extent_start
= found_key
.offset
;
6871 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6872 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6873 extent_end
= extent_start
+
6874 btrfs_file_extent_num_bytes(leaf
, item
);
6876 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6878 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6881 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6882 extent_end
= ALIGN(extent_start
+ size
,
6883 fs_info
->sectorsize
);
6885 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6890 if (start
>= extent_end
) {
6892 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6893 ret
= btrfs_next_leaf(root
, path
);
6900 leaf
= path
->nodes
[0];
6902 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6903 if (found_key
.objectid
!= objectid
||
6904 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6906 if (start
+ len
<= found_key
.offset
)
6908 if (start
> found_key
.offset
)
6911 em
->orig_start
= start
;
6912 em
->len
= found_key
.offset
- start
;
6916 btrfs_extent_item_to_extent_map(inode
, path
, item
,
6919 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6920 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6922 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6926 size_t extent_offset
;
6932 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6933 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6934 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6935 size
- extent_offset
);
6936 em
->start
= extent_start
+ extent_offset
;
6937 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6938 em
->orig_block_len
= em
->len
;
6939 em
->orig_start
= em
->start
;
6940 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6941 if (!PageUptodate(page
)) {
6942 if (btrfs_file_extent_compression(leaf
, item
) !=
6943 BTRFS_COMPRESS_NONE
) {
6944 ret
= uncompress_inline(path
, page
, pg_offset
,
6945 extent_offset
, item
);
6952 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6954 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6955 memset(map
+ pg_offset
+ copy_size
, 0,
6956 PAGE_SIZE
- pg_offset
-
6961 flush_dcache_page(page
);
6963 set_extent_uptodate(io_tree
, em
->start
,
6964 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6969 em
->orig_start
= start
;
6972 em
->block_start
= EXTENT_MAP_HOLE
;
6974 btrfs_release_path(path
);
6975 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6977 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6978 em
->start
, em
->len
, start
, len
);
6984 write_lock(&em_tree
->lock
);
6985 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
6986 write_unlock(&em_tree
->lock
);
6989 trace_btrfs_get_extent(root
, inode
, em
);
6991 btrfs_free_path(path
);
6993 free_extent_map(em
);
6994 return ERR_PTR(err
);
6996 BUG_ON(!em
); /* Error is always set */
7000 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7002 size_t pg_offset
, u64 start
, u64 len
,
7005 struct extent_map
*em
;
7006 struct extent_map
*hole_em
= NULL
;
7007 u64 range_start
= start
;
7013 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7017 * If our em maps to:
7019 * - a pre-alloc extent,
7020 * there might actually be delalloc bytes behind it.
7022 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7023 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7028 /* check to see if we've wrapped (len == -1 or similar) */
7037 /* ok, we didn't find anything, lets look for delalloc */
7038 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7039 end
, len
, EXTENT_DELALLOC
, 1);
7040 found_end
= range_start
+ found
;
7041 if (found_end
< range_start
)
7042 found_end
= (u64
)-1;
7045 * we didn't find anything useful, return
7046 * the original results from get_extent()
7048 if (range_start
> end
|| found_end
<= start
) {
7054 /* adjust the range_start to make sure it doesn't
7055 * go backwards from the start they passed in
7057 range_start
= max(start
, range_start
);
7058 found
= found_end
- range_start
;
7061 u64 hole_start
= start
;
7064 em
= alloc_extent_map();
7070 * when btrfs_get_extent can't find anything it
7071 * returns one huge hole
7073 * make sure what it found really fits our range, and
7074 * adjust to make sure it is based on the start from
7078 u64 calc_end
= extent_map_end(hole_em
);
7080 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7081 free_extent_map(hole_em
);
7084 hole_start
= max(hole_em
->start
, start
);
7085 hole_len
= calc_end
- hole_start
;
7089 if (hole_em
&& range_start
> hole_start
) {
7090 /* our hole starts before our delalloc, so we
7091 * have to return just the parts of the hole
7092 * that go until the delalloc starts
7094 em
->len
= min(hole_len
,
7095 range_start
- hole_start
);
7096 em
->start
= hole_start
;
7097 em
->orig_start
= hole_start
;
7099 * don't adjust block start at all,
7100 * it is fixed at EXTENT_MAP_HOLE
7102 em
->block_start
= hole_em
->block_start
;
7103 em
->block_len
= hole_len
;
7104 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7105 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7107 em
->start
= range_start
;
7109 em
->orig_start
= range_start
;
7110 em
->block_start
= EXTENT_MAP_DELALLOC
;
7111 em
->block_len
= found
;
7118 free_extent_map(hole_em
);
7120 free_extent_map(em
);
7121 return ERR_PTR(err
);
7126 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7129 const u64 orig_start
,
7130 const u64 block_start
,
7131 const u64 block_len
,
7132 const u64 orig_block_len
,
7133 const u64 ram_bytes
,
7136 struct extent_map
*em
= NULL
;
7139 if (type
!= BTRFS_ORDERED_NOCOW
) {
7140 em
= create_io_em(inode
, start
, len
, orig_start
,
7141 block_start
, block_len
, orig_block_len
,
7143 BTRFS_COMPRESS_NONE
, /* compress_type */
7148 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7149 len
, block_len
, type
);
7152 free_extent_map(em
);
7153 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7154 start
+ len
- 1, 0);
7163 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7166 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7167 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7168 struct extent_map
*em
;
7169 struct btrfs_key ins
;
7173 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7174 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7175 0, alloc_hint
, &ins
, 1, 1);
7177 return ERR_PTR(ret
);
7179 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7180 ins
.objectid
, ins
.offset
, ins
.offset
,
7181 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7182 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7184 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7191 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7192 * block must be cow'd
7194 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7195 u64
*orig_start
, u64
*orig_block_len
,
7198 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7199 struct btrfs_path
*path
;
7201 struct extent_buffer
*leaf
;
7202 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7203 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7204 struct btrfs_file_extent_item
*fi
;
7205 struct btrfs_key key
;
7212 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7214 path
= btrfs_alloc_path();
7218 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7219 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7223 slot
= path
->slots
[0];
7226 /* can't find the item, must cow */
7233 leaf
= path
->nodes
[0];
7234 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7235 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7236 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7237 /* not our file or wrong item type, must cow */
7241 if (key
.offset
> offset
) {
7242 /* Wrong offset, must cow */
7246 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7247 found_type
= btrfs_file_extent_type(leaf
, fi
);
7248 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7249 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7250 /* not a regular extent, must cow */
7254 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7257 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7258 if (extent_end
<= offset
)
7261 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7262 if (disk_bytenr
== 0)
7265 if (btrfs_file_extent_compression(leaf
, fi
) ||
7266 btrfs_file_extent_encryption(leaf
, fi
) ||
7267 btrfs_file_extent_other_encoding(leaf
, fi
))
7271 * Do the same check as in btrfs_cross_ref_exist but without the
7272 * unnecessary search.
7274 if (btrfs_file_extent_generation(leaf
, fi
) <=
7275 btrfs_root_last_snapshot(&root
->root_item
))
7278 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7281 *orig_start
= key
.offset
- backref_offset
;
7282 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7283 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7286 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7289 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7290 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7293 range_end
= round_up(offset
+ num_bytes
,
7294 root
->fs_info
->sectorsize
) - 1;
7295 ret
= test_range_bit(io_tree
, offset
, range_end
,
7296 EXTENT_DELALLOC
, 0, NULL
);
7303 btrfs_release_path(path
);
7306 * look for other files referencing this extent, if we
7307 * find any we must cow
7310 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7311 key
.offset
- backref_offset
, disk_bytenr
);
7318 * adjust disk_bytenr and num_bytes to cover just the bytes
7319 * in this extent we are about to write. If there
7320 * are any csums in that range we have to cow in order
7321 * to keep the csums correct
7323 disk_bytenr
+= backref_offset
;
7324 disk_bytenr
+= offset
- key
.offset
;
7325 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7328 * all of the above have passed, it is safe to overwrite this extent
7334 btrfs_free_path(path
);
7338 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7339 struct extent_state
**cached_state
, int writing
)
7341 struct btrfs_ordered_extent
*ordered
;
7345 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7348 * We're concerned with the entire range that we're going to be
7349 * doing DIO to, so we need to make sure there's no ordered
7350 * extents in this range.
7352 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7353 lockend
- lockstart
+ 1);
7356 * We need to make sure there are no buffered pages in this
7357 * range either, we could have raced between the invalidate in
7358 * generic_file_direct_write and locking the extent. The
7359 * invalidate needs to happen so that reads after a write do not
7363 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7364 lockstart
, lockend
)))
7367 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7372 * If we are doing a DIO read and the ordered extent we
7373 * found is for a buffered write, we can not wait for it
7374 * to complete and retry, because if we do so we can
7375 * deadlock with concurrent buffered writes on page
7376 * locks. This happens only if our DIO read covers more
7377 * than one extent map, if at this point has already
7378 * created an ordered extent for a previous extent map
7379 * and locked its range in the inode's io tree, and a
7380 * concurrent write against that previous extent map's
7381 * range and this range started (we unlock the ranges
7382 * in the io tree only when the bios complete and
7383 * buffered writes always lock pages before attempting
7384 * to lock range in the io tree).
7387 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7388 btrfs_start_ordered_extent(inode
, ordered
, 1);
7391 btrfs_put_ordered_extent(ordered
);
7394 * We could trigger writeback for this range (and wait
7395 * for it to complete) and then invalidate the pages for
7396 * this range (through invalidate_inode_pages2_range()),
7397 * but that can lead us to a deadlock with a concurrent
7398 * call to readpages() (a buffered read or a defrag call
7399 * triggered a readahead) on a page lock due to an
7400 * ordered dio extent we created before but did not have
7401 * yet a corresponding bio submitted (whence it can not
7402 * complete), which makes readpages() wait for that
7403 * ordered extent to complete while holding a lock on
7418 /* The callers of this must take lock_extent() */
7419 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7420 u64 orig_start
, u64 block_start
,
7421 u64 block_len
, u64 orig_block_len
,
7422 u64 ram_bytes
, int compress_type
,
7425 struct extent_map_tree
*em_tree
;
7426 struct extent_map
*em
;
7427 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7430 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7431 type
== BTRFS_ORDERED_COMPRESSED
||
7432 type
== BTRFS_ORDERED_NOCOW
||
7433 type
== BTRFS_ORDERED_REGULAR
);
7435 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7436 em
= alloc_extent_map();
7438 return ERR_PTR(-ENOMEM
);
7441 em
->orig_start
= orig_start
;
7443 em
->block_len
= block_len
;
7444 em
->block_start
= block_start
;
7445 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7446 em
->orig_block_len
= orig_block_len
;
7447 em
->ram_bytes
= ram_bytes
;
7448 em
->generation
= -1;
7449 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7450 if (type
== BTRFS_ORDERED_PREALLOC
) {
7451 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7452 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7453 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7454 em
->compress_type
= compress_type
;
7458 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7459 em
->start
+ em
->len
- 1, 0);
7460 write_lock(&em_tree
->lock
);
7461 ret
= add_extent_mapping(em_tree
, em
, 1);
7462 write_unlock(&em_tree
->lock
);
7464 * The caller has taken lock_extent(), who could race with us
7467 } while (ret
== -EEXIST
);
7470 free_extent_map(em
);
7471 return ERR_PTR(ret
);
7474 /* em got 2 refs now, callers needs to do free_extent_map once. */
7479 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7480 struct buffer_head
*bh_result
,
7481 struct inode
*inode
,
7484 if (em
->block_start
== EXTENT_MAP_HOLE
||
7485 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7488 len
= min(len
, em
->len
- (start
- em
->start
));
7490 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7492 bh_result
->b_size
= len
;
7493 bh_result
->b_bdev
= em
->bdev
;
7494 set_buffer_mapped(bh_result
);
7499 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7500 struct buffer_head
*bh_result
,
7501 struct inode
*inode
,
7502 struct btrfs_dio_data
*dio_data
,
7505 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7506 struct extent_map
*em
= *map
;
7510 * We don't allocate a new extent in the following cases
7512 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7514 * 2) The extent is marked as PREALLOC. We're good to go here and can
7515 * just use the extent.
7518 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7519 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7520 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7522 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7524 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7525 type
= BTRFS_ORDERED_PREALLOC
;
7527 type
= BTRFS_ORDERED_NOCOW
;
7528 len
= min(len
, em
->len
- (start
- em
->start
));
7529 block_start
= em
->block_start
+ (start
- em
->start
);
7531 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7532 &orig_block_len
, &ram_bytes
) == 1 &&
7533 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7534 struct extent_map
*em2
;
7536 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7537 orig_start
, block_start
,
7538 len
, orig_block_len
,
7540 btrfs_dec_nocow_writers(fs_info
, block_start
);
7541 if (type
== BTRFS_ORDERED_PREALLOC
) {
7542 free_extent_map(em
);
7546 if (em2
&& IS_ERR(em2
)) {
7551 * For inode marked NODATACOW or extent marked PREALLOC,
7552 * use the existing or preallocated extent, so does not
7553 * need to adjust btrfs_space_info's bytes_may_use.
7555 btrfs_free_reserved_data_space_noquota(inode
, start
,
7561 /* this will cow the extent */
7562 len
= bh_result
->b_size
;
7563 free_extent_map(em
);
7564 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7570 len
= min(len
, em
->len
- (start
- em
->start
));
7573 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7575 bh_result
->b_size
= len
;
7576 bh_result
->b_bdev
= em
->bdev
;
7577 set_buffer_mapped(bh_result
);
7579 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7580 set_buffer_new(bh_result
);
7583 * Need to update the i_size under the extent lock so buffered
7584 * readers will get the updated i_size when we unlock.
7586 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7587 i_size_write(inode
, start
+ len
);
7589 WARN_ON(dio_data
->reserve
< len
);
7590 dio_data
->reserve
-= len
;
7591 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7592 current
->journal_info
= dio_data
;
7597 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7598 struct buffer_head
*bh_result
, int create
)
7600 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7601 struct extent_map
*em
;
7602 struct extent_state
*cached_state
= NULL
;
7603 struct btrfs_dio_data
*dio_data
= NULL
;
7604 u64 start
= iblock
<< inode
->i_blkbits
;
7605 u64 lockstart
, lockend
;
7606 u64 len
= bh_result
->b_size
;
7607 int unlock_bits
= EXTENT_LOCKED
;
7611 unlock_bits
|= EXTENT_DIRTY
;
7613 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7616 lockend
= start
+ len
- 1;
7618 if (current
->journal_info
) {
7620 * Need to pull our outstanding extents and set journal_info to NULL so
7621 * that anything that needs to check if there's a transaction doesn't get
7624 dio_data
= current
->journal_info
;
7625 current
->journal_info
= NULL
;
7629 * If this errors out it's because we couldn't invalidate pagecache for
7630 * this range and we need to fallback to buffered.
7632 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7638 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7645 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7646 * io. INLINE is special, and we could probably kludge it in here, but
7647 * it's still buffered so for safety lets just fall back to the generic
7650 * For COMPRESSED we _have_ to read the entire extent in so we can
7651 * decompress it, so there will be buffering required no matter what we
7652 * do, so go ahead and fallback to buffered.
7654 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7655 * to buffered IO. Don't blame me, this is the price we pay for using
7658 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7659 em
->block_start
== EXTENT_MAP_INLINE
) {
7660 free_extent_map(em
);
7666 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7667 dio_data
, start
, len
);
7671 /* clear and unlock the entire range */
7672 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7673 unlock_bits
, 1, 0, &cached_state
);
7675 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7677 /* Can be negative only if we read from a hole */
7680 free_extent_map(em
);
7684 * We need to unlock only the end area that we aren't using.
7685 * The rest is going to be unlocked by the endio routine.
7687 lockstart
= start
+ bh_result
->b_size
;
7688 if (lockstart
< lockend
) {
7689 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7690 lockend
, unlock_bits
, 1, 0,
7693 free_extent_state(cached_state
);
7697 free_extent_map(em
);
7702 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7703 unlock_bits
, 1, 0, &cached_state
);
7706 current
->journal_info
= dio_data
;
7710 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7714 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7717 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7719 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7723 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7728 static int btrfs_check_dio_repairable(struct inode
*inode
,
7729 struct bio
*failed_bio
,
7730 struct io_failure_record
*failrec
,
7733 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7736 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7737 if (num_copies
== 1) {
7739 * we only have a single copy of the data, so don't bother with
7740 * all the retry and error correction code that follows. no
7741 * matter what the error is, it is very likely to persist.
7743 btrfs_debug(fs_info
,
7744 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7745 num_copies
, failrec
->this_mirror
, failed_mirror
);
7749 failrec
->failed_mirror
= failed_mirror
;
7750 failrec
->this_mirror
++;
7751 if (failrec
->this_mirror
== failed_mirror
)
7752 failrec
->this_mirror
++;
7754 if (failrec
->this_mirror
> num_copies
) {
7755 btrfs_debug(fs_info
,
7756 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7757 num_copies
, failrec
->this_mirror
, failed_mirror
);
7764 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7765 struct page
*page
, unsigned int pgoff
,
7766 u64 start
, u64 end
, int failed_mirror
,
7767 bio_end_io_t
*repair_endio
, void *repair_arg
)
7769 struct io_failure_record
*failrec
;
7770 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7771 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7774 unsigned int read_mode
= 0;
7777 blk_status_t status
;
7778 struct bio_vec bvec
;
7780 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7782 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7784 return errno_to_blk_status(ret
);
7786 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7789 free_io_failure(failure_tree
, io_tree
, failrec
);
7790 return BLK_STS_IOERR
;
7793 segs
= bio_segments(failed_bio
);
7794 bio_get_first_bvec(failed_bio
, &bvec
);
7796 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7797 read_mode
|= REQ_FAILFAST_DEV
;
7799 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7800 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7801 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7802 pgoff
, isector
, repair_endio
, repair_arg
);
7803 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
7805 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7806 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7807 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7809 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7811 free_io_failure(failure_tree
, io_tree
, failrec
);
7818 struct btrfs_retry_complete
{
7819 struct completion done
;
7820 struct inode
*inode
;
7825 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7827 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7828 struct inode
*inode
= done
->inode
;
7829 struct bio_vec
*bvec
;
7830 struct extent_io_tree
*io_tree
, *failure_tree
;
7836 ASSERT(bio
->bi_vcnt
== 1);
7837 io_tree
= &BTRFS_I(inode
)->io_tree
;
7838 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7839 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7842 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7843 bio_for_each_segment_all(bvec
, bio
, i
)
7844 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7845 io_tree
, done
->start
, bvec
->bv_page
,
7846 btrfs_ino(BTRFS_I(inode
)), 0);
7848 complete(&done
->done
);
7852 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7853 struct btrfs_io_bio
*io_bio
)
7855 struct btrfs_fs_info
*fs_info
;
7856 struct bio_vec bvec
;
7857 struct bvec_iter iter
;
7858 struct btrfs_retry_complete done
;
7864 blk_status_t err
= BLK_STS_OK
;
7866 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7867 sectorsize
= fs_info
->sectorsize
;
7869 start
= io_bio
->logical
;
7871 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7873 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7874 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7875 pgoff
= bvec
.bv_offset
;
7877 next_block_or_try_again
:
7880 init_completion(&done
.done
);
7882 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7883 pgoff
, start
, start
+ sectorsize
- 1,
7885 btrfs_retry_endio_nocsum
, &done
);
7891 wait_for_completion_io(&done
.done
);
7893 if (!done
.uptodate
) {
7894 /* We might have another mirror, so try again */
7895 goto next_block_or_try_again
;
7899 start
+= sectorsize
;
7903 pgoff
+= sectorsize
;
7904 ASSERT(pgoff
< PAGE_SIZE
);
7905 goto next_block_or_try_again
;
7912 static void btrfs_retry_endio(struct bio
*bio
)
7914 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7915 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7916 struct extent_io_tree
*io_tree
, *failure_tree
;
7917 struct inode
*inode
= done
->inode
;
7918 struct bio_vec
*bvec
;
7928 ASSERT(bio
->bi_vcnt
== 1);
7929 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
7931 io_tree
= &BTRFS_I(inode
)->io_tree
;
7932 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7934 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7935 bio_for_each_segment_all(bvec
, bio
, i
) {
7936 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7937 bvec
->bv_offset
, done
->start
,
7940 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
7941 failure_tree
, io_tree
, done
->start
,
7943 btrfs_ino(BTRFS_I(inode
)),
7949 done
->uptodate
= uptodate
;
7951 complete(&done
->done
);
7955 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
7956 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7958 struct btrfs_fs_info
*fs_info
;
7959 struct bio_vec bvec
;
7960 struct bvec_iter iter
;
7961 struct btrfs_retry_complete done
;
7968 bool uptodate
= (err
== 0);
7970 blk_status_t status
;
7972 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7973 sectorsize
= fs_info
->sectorsize
;
7976 start
= io_bio
->logical
;
7978 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7980 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7981 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7983 pgoff
= bvec
.bv_offset
;
7986 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
7987 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
7988 bvec
.bv_page
, pgoff
, start
, sectorsize
);
7995 init_completion(&done
.done
);
7997 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7998 pgoff
, start
, start
+ sectorsize
- 1,
7999 io_bio
->mirror_num
, btrfs_retry_endio
,
8006 wait_for_completion_io(&done
.done
);
8008 if (!done
.uptodate
) {
8009 /* We might have another mirror, so try again */
8013 offset
+= sectorsize
;
8014 start
+= sectorsize
;
8020 pgoff
+= sectorsize
;
8021 ASSERT(pgoff
< PAGE_SIZE
);
8029 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8030 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8032 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8036 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8040 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8044 static void btrfs_endio_direct_read(struct bio
*bio
)
8046 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8047 struct inode
*inode
= dip
->inode
;
8048 struct bio
*dio_bio
;
8049 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8050 blk_status_t err
= bio
->bi_status
;
8052 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8053 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8055 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8056 dip
->logical_offset
+ dip
->bytes
- 1);
8057 dio_bio
= dip
->dio_bio
;
8061 dio_bio
->bi_status
= err
;
8062 dio_end_io(dio_bio
);
8065 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8069 static void __endio_write_update_ordered(struct inode
*inode
,
8070 const u64 offset
, const u64 bytes
,
8071 const bool uptodate
)
8073 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8074 struct btrfs_ordered_extent
*ordered
= NULL
;
8075 struct btrfs_workqueue
*wq
;
8076 btrfs_work_func_t func
;
8077 u64 ordered_offset
= offset
;
8078 u64 ordered_bytes
= bytes
;
8081 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8082 wq
= fs_info
->endio_freespace_worker
;
8083 func
= btrfs_freespace_write_helper
;
8085 wq
= fs_info
->endio_write_workers
;
8086 func
= btrfs_endio_write_helper
;
8089 while (ordered_offset
< offset
+ bytes
) {
8090 last_offset
= ordered_offset
;
8091 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8095 btrfs_init_work(&ordered
->work
, func
,
8098 btrfs_queue_work(wq
, &ordered
->work
);
8101 * If btrfs_dec_test_ordered_pending does not find any ordered
8102 * extent in the range, we can exit.
8104 if (ordered_offset
== last_offset
)
8107 * Our bio might span multiple ordered extents. In this case
8108 * we keep goin until we have accounted the whole dio.
8110 if (ordered_offset
< offset
+ bytes
) {
8111 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8117 static void btrfs_endio_direct_write(struct bio
*bio
)
8119 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8120 struct bio
*dio_bio
= dip
->dio_bio
;
8122 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8123 dip
->bytes
, !bio
->bi_status
);
8127 dio_bio
->bi_status
= bio
->bi_status
;
8128 dio_end_io(dio_bio
);
8132 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
8133 struct bio
*bio
, u64 offset
)
8135 struct inode
*inode
= private_data
;
8137 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8138 BUG_ON(ret
); /* -ENOMEM */
8142 static void btrfs_end_dio_bio(struct bio
*bio
)
8144 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8145 blk_status_t err
= bio
->bi_status
;
8148 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8149 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8150 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8152 (unsigned long long)bio
->bi_iter
.bi_sector
,
8153 bio
->bi_iter
.bi_size
, err
);
8155 if (dip
->subio_endio
)
8156 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8160 * We want to perceive the errors flag being set before
8161 * decrementing the reference count. We don't need a barrier
8162 * since atomic operations with a return value are fully
8163 * ordered as per atomic_t.txt
8168 /* if there are more bios still pending for this dio, just exit */
8169 if (!atomic_dec_and_test(&dip
->pending_bios
))
8173 bio_io_error(dip
->orig_bio
);
8175 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8176 bio_endio(dip
->orig_bio
);
8182 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8183 struct btrfs_dio_private
*dip
,
8187 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8188 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8192 * We load all the csum data we need when we submit
8193 * the first bio to reduce the csum tree search and
8196 if (dip
->logical_offset
== file_offset
) {
8197 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8203 if (bio
== dip
->orig_bio
)
8206 file_offset
-= dip
->logical_offset
;
8207 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8208 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8213 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
8214 struct inode
*inode
, u64 file_offset
, int async_submit
)
8216 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8217 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8218 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8221 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8223 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8226 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8231 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8234 if (write
&& async_submit
) {
8235 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8237 btrfs_submit_bio_start_direct_io
);
8241 * If we aren't doing async submit, calculate the csum of the
8244 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8248 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8254 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8259 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8261 struct inode
*inode
= dip
->inode
;
8262 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8264 struct bio
*orig_bio
= dip
->orig_bio
;
8265 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8266 u64 file_offset
= dip
->logical_offset
;
8268 int async_submit
= 0;
8270 int clone_offset
= 0;
8273 blk_status_t status
;
8275 map_length
= orig_bio
->bi_iter
.bi_size
;
8276 submit_len
= map_length
;
8277 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8278 &map_length
, NULL
, 0);
8282 if (map_length
>= submit_len
) {
8284 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8288 /* async crcs make it difficult to collect full stripe writes. */
8289 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8295 ASSERT(map_length
<= INT_MAX
);
8296 atomic_inc(&dip
->pending_bios
);
8298 clone_len
= min_t(int, submit_len
, map_length
);
8301 * This will never fail as it's passing GPF_NOFS and
8302 * the allocation is backed by btrfs_bioset.
8304 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8306 bio
->bi_private
= dip
;
8307 bio
->bi_end_io
= btrfs_end_dio_bio
;
8308 btrfs_io_bio(bio
)->logical
= file_offset
;
8310 ASSERT(submit_len
>= clone_len
);
8311 submit_len
-= clone_len
;
8312 if (submit_len
== 0)
8316 * Increase the count before we submit the bio so we know
8317 * the end IO handler won't happen before we increase the
8318 * count. Otherwise, the dip might get freed before we're
8319 * done setting it up.
8321 atomic_inc(&dip
->pending_bios
);
8323 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8327 atomic_dec(&dip
->pending_bios
);
8331 clone_offset
+= clone_len
;
8332 start_sector
+= clone_len
>> 9;
8333 file_offset
+= clone_len
;
8335 map_length
= submit_len
;
8336 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8337 start_sector
<< 9, &map_length
, NULL
, 0);
8340 } while (submit_len
> 0);
8343 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8351 * Before atomic variable goto zero, we must make sure dip->errors is
8352 * perceived to be set. This ordering is ensured by the fact that an
8353 * atomic operations with a return value are fully ordered as per
8356 if (atomic_dec_and_test(&dip
->pending_bios
))
8357 bio_io_error(dip
->orig_bio
);
8359 /* bio_end_io() will handle error, so we needn't return it */
8363 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8366 struct btrfs_dio_private
*dip
= NULL
;
8367 struct bio
*bio
= NULL
;
8368 struct btrfs_io_bio
*io_bio
;
8369 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8372 bio
= btrfs_bio_clone(dio_bio
);
8374 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8380 dip
->private = dio_bio
->bi_private
;
8382 dip
->logical_offset
= file_offset
;
8383 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8384 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8385 bio
->bi_private
= dip
;
8386 dip
->orig_bio
= bio
;
8387 dip
->dio_bio
= dio_bio
;
8388 atomic_set(&dip
->pending_bios
, 0);
8389 io_bio
= btrfs_io_bio(bio
);
8390 io_bio
->logical
= file_offset
;
8393 bio
->bi_end_io
= btrfs_endio_direct_write
;
8395 bio
->bi_end_io
= btrfs_endio_direct_read
;
8396 dip
->subio_endio
= btrfs_subio_endio_read
;
8400 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8401 * even if we fail to submit a bio, because in such case we do the
8402 * corresponding error handling below and it must not be done a second
8403 * time by btrfs_direct_IO().
8406 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8408 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8410 dio_data
->unsubmitted_oe_range_start
=
8411 dio_data
->unsubmitted_oe_range_end
;
8414 ret
= btrfs_submit_direct_hook(dip
);
8419 io_bio
->end_io(io_bio
, ret
);
8423 * If we arrived here it means either we failed to submit the dip
8424 * or we either failed to clone the dio_bio or failed to allocate the
8425 * dip. If we cloned the dio_bio and allocated the dip, we can just
8426 * call bio_endio against our io_bio so that we get proper resource
8427 * cleanup if we fail to submit the dip, otherwise, we must do the
8428 * same as btrfs_endio_direct_[write|read] because we can't call these
8429 * callbacks - they require an allocated dip and a clone of dio_bio.
8434 * The end io callbacks free our dip, do the final put on bio
8435 * and all the cleanup and final put for dio_bio (through
8442 __endio_write_update_ordered(inode
,
8444 dio_bio
->bi_iter
.bi_size
,
8447 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8448 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8450 dio_bio
->bi_status
= BLK_STS_IOERR
;
8452 * Releases and cleans up our dio_bio, no need to bio_put()
8453 * nor bio_endio()/bio_io_error() against dio_bio.
8455 dio_end_io(dio_bio
);
8462 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8463 const struct iov_iter
*iter
, loff_t offset
)
8467 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8468 ssize_t retval
= -EINVAL
;
8470 if (offset
& blocksize_mask
)
8473 if (iov_iter_alignment(iter
) & blocksize_mask
)
8476 /* If this is a write we don't need to check anymore */
8477 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8480 * Check to make sure we don't have duplicate iov_base's in this
8481 * iovec, if so return EINVAL, otherwise we'll get csum errors
8482 * when reading back.
8484 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8485 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8486 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8495 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8497 struct file
*file
= iocb
->ki_filp
;
8498 struct inode
*inode
= file
->f_mapping
->host
;
8499 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8500 struct btrfs_dio_data dio_data
= { 0 };
8501 struct extent_changeset
*data_reserved
= NULL
;
8502 loff_t offset
= iocb
->ki_pos
;
8506 bool relock
= false;
8509 if (check_direct_IO(fs_info
, iter
, offset
))
8512 inode_dio_begin(inode
);
8515 * The generic stuff only does filemap_write_and_wait_range, which
8516 * isn't enough if we've written compressed pages to this area, so
8517 * we need to flush the dirty pages again to make absolutely sure
8518 * that any outstanding dirty pages are on disk.
8520 count
= iov_iter_count(iter
);
8521 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8522 &BTRFS_I(inode
)->runtime_flags
))
8523 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8524 offset
+ count
- 1);
8526 if (iov_iter_rw(iter
) == WRITE
) {
8528 * If the write DIO is beyond the EOF, we need update
8529 * the isize, but it is protected by i_mutex. So we can
8530 * not unlock the i_mutex at this case.
8532 if (offset
+ count
<= inode
->i_size
) {
8533 dio_data
.overwrite
= 1;
8534 inode_unlock(inode
);
8536 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8540 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8546 * We need to know how many extents we reserved so that we can
8547 * do the accounting properly if we go over the number we
8548 * originally calculated. Abuse current->journal_info for this.
8550 dio_data
.reserve
= round_up(count
,
8551 fs_info
->sectorsize
);
8552 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8553 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8554 current
->journal_info
= &dio_data
;
8555 down_read(&BTRFS_I(inode
)->dio_sem
);
8556 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8557 &BTRFS_I(inode
)->runtime_flags
)) {
8558 inode_dio_end(inode
);
8559 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8563 ret
= __blockdev_direct_IO(iocb
, inode
,
8564 fs_info
->fs_devices
->latest_bdev
,
8565 iter
, btrfs_get_blocks_direct
, NULL
,
8566 btrfs_submit_direct
, flags
);
8567 if (iov_iter_rw(iter
) == WRITE
) {
8568 up_read(&BTRFS_I(inode
)->dio_sem
);
8569 current
->journal_info
= NULL
;
8570 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8571 if (dio_data
.reserve
)
8572 btrfs_delalloc_release_space(inode
, data_reserved
,
8573 offset
, dio_data
.reserve
, true);
8575 * On error we might have left some ordered extents
8576 * without submitting corresponding bios for them, so
8577 * cleanup them up to avoid other tasks getting them
8578 * and waiting for them to complete forever.
8580 if (dio_data
.unsubmitted_oe_range_start
<
8581 dio_data
.unsubmitted_oe_range_end
)
8582 __endio_write_update_ordered(inode
,
8583 dio_data
.unsubmitted_oe_range_start
,
8584 dio_data
.unsubmitted_oe_range_end
-
8585 dio_data
.unsubmitted_oe_range_start
,
8587 } else if (ret
>= 0 && (size_t)ret
< count
)
8588 btrfs_delalloc_release_space(inode
, data_reserved
,
8589 offset
, count
- (size_t)ret
, true);
8590 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
, false);
8594 inode_dio_end(inode
);
8598 extent_changeset_free(data_reserved
);
8602 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8604 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8605 __u64 start
, __u64 len
)
8609 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8613 return extent_fiemap(inode
, fieinfo
, start
, len
);
8616 int btrfs_readpage(struct file
*file
, struct page
*page
)
8618 struct extent_io_tree
*tree
;
8619 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8620 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8623 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8625 struct inode
*inode
= page
->mapping
->host
;
8628 if (current
->flags
& PF_MEMALLOC
) {
8629 redirty_page_for_writepage(wbc
, page
);
8635 * If we are under memory pressure we will call this directly from the
8636 * VM, we need to make sure we have the inode referenced for the ordered
8637 * extent. If not just return like we didn't do anything.
8639 if (!igrab(inode
)) {
8640 redirty_page_for_writepage(wbc
, page
);
8641 return AOP_WRITEPAGE_ACTIVATE
;
8643 ret
= extent_write_full_page(page
, wbc
);
8644 btrfs_add_delayed_iput(inode
);
8648 static int btrfs_writepages(struct address_space
*mapping
,
8649 struct writeback_control
*wbc
)
8651 return extent_writepages(mapping
, wbc
);
8655 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8656 struct list_head
*pages
, unsigned nr_pages
)
8658 return extent_readpages(mapping
, pages
, nr_pages
);
8661 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8663 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8665 ClearPagePrivate(page
);
8666 set_page_private(page
, 0);
8672 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8674 if (PageWriteback(page
) || PageDirty(page
))
8676 return __btrfs_releasepage(page
, gfp_flags
);
8679 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8680 unsigned int length
)
8682 struct inode
*inode
= page
->mapping
->host
;
8683 struct extent_io_tree
*tree
;
8684 struct btrfs_ordered_extent
*ordered
;
8685 struct extent_state
*cached_state
= NULL
;
8686 u64 page_start
= page_offset(page
);
8687 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8690 int inode_evicting
= inode
->i_state
& I_FREEING
;
8693 * we have the page locked, so new writeback can't start,
8694 * and the dirty bit won't be cleared while we are here.
8696 * Wait for IO on this page so that we can safely clear
8697 * the PagePrivate2 bit and do ordered accounting
8699 wait_on_page_writeback(page
);
8701 tree
= &BTRFS_I(inode
)->io_tree
;
8703 btrfs_releasepage(page
, GFP_NOFS
);
8707 if (!inode_evicting
)
8708 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8711 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8712 page_end
- start
+ 1);
8714 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8716 * IO on this page will never be started, so we need
8717 * to account for any ordered extents now
8719 if (!inode_evicting
)
8720 clear_extent_bit(tree
, start
, end
,
8721 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8722 EXTENT_DELALLOC_NEW
|
8723 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8724 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8726 * whoever cleared the private bit is responsible
8727 * for the finish_ordered_io
8729 if (TestClearPagePrivate2(page
)) {
8730 struct btrfs_ordered_inode_tree
*tree
;
8733 tree
= &BTRFS_I(inode
)->ordered_tree
;
8735 spin_lock_irq(&tree
->lock
);
8736 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8737 new_len
= start
- ordered
->file_offset
;
8738 if (new_len
< ordered
->truncated_len
)
8739 ordered
->truncated_len
= new_len
;
8740 spin_unlock_irq(&tree
->lock
);
8742 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8744 end
- start
+ 1, 1))
8745 btrfs_finish_ordered_io(ordered
);
8747 btrfs_put_ordered_extent(ordered
);
8748 if (!inode_evicting
) {
8749 cached_state
= NULL
;
8750 lock_extent_bits(tree
, start
, end
,
8755 if (start
< page_end
)
8760 * Qgroup reserved space handler
8761 * Page here will be either
8762 * 1) Already written to disk
8763 * In this case, its reserved space is released from data rsv map
8764 * and will be freed by delayed_ref handler finally.
8765 * So even we call qgroup_free_data(), it won't decrease reserved
8767 * 2) Not written to disk
8768 * This means the reserved space should be freed here. However,
8769 * if a truncate invalidates the page (by clearing PageDirty)
8770 * and the page is accounted for while allocating extent
8771 * in btrfs_check_data_free_space() we let delayed_ref to
8772 * free the entire extent.
8774 if (PageDirty(page
))
8775 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8776 if (!inode_evicting
) {
8777 clear_extent_bit(tree
, page_start
, page_end
,
8778 EXTENT_LOCKED
| EXTENT_DIRTY
|
8779 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8780 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8783 __btrfs_releasepage(page
, GFP_NOFS
);
8786 ClearPageChecked(page
);
8787 if (PagePrivate(page
)) {
8788 ClearPagePrivate(page
);
8789 set_page_private(page
, 0);
8795 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8796 * called from a page fault handler when a page is first dirtied. Hence we must
8797 * be careful to check for EOF conditions here. We set the page up correctly
8798 * for a written page which means we get ENOSPC checking when writing into
8799 * holes and correct delalloc and unwritten extent mapping on filesystems that
8800 * support these features.
8802 * We are not allowed to take the i_mutex here so we have to play games to
8803 * protect against truncate races as the page could now be beyond EOF. Because
8804 * truncate_setsize() writes the inode size before removing pages, once we have
8805 * the page lock we can determine safely if the page is beyond EOF. If it is not
8806 * beyond EOF, then the page is guaranteed safe against truncation until we
8809 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8811 struct page
*page
= vmf
->page
;
8812 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8813 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8814 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8815 struct btrfs_ordered_extent
*ordered
;
8816 struct extent_state
*cached_state
= NULL
;
8817 struct extent_changeset
*data_reserved
= NULL
;
8819 unsigned long zero_start
;
8829 reserved_space
= PAGE_SIZE
;
8831 sb_start_pagefault(inode
->i_sb
);
8832 page_start
= page_offset(page
);
8833 page_end
= page_start
+ PAGE_SIZE
- 1;
8837 * Reserving delalloc space after obtaining the page lock can lead to
8838 * deadlock. For example, if a dirty page is locked by this function
8839 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8840 * dirty page write out, then the btrfs_writepage() function could
8841 * end up waiting indefinitely to get a lock on the page currently
8842 * being processed by btrfs_page_mkwrite() function.
8844 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8847 ret2
= file_update_time(vmf
->vma
->vm_file
);
8851 ret
= vmf_error(ret2
);
8857 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8860 size
= i_size_read(inode
);
8862 if ((page
->mapping
!= inode
->i_mapping
) ||
8863 (page_start
>= size
)) {
8864 /* page got truncated out from underneath us */
8867 wait_on_page_writeback(page
);
8869 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8870 set_page_extent_mapped(page
);
8873 * we can't set the delalloc bits if there are pending ordered
8874 * extents. Drop our locks and wait for them to finish
8876 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8879 unlock_extent_cached(io_tree
, page_start
, page_end
,
8882 btrfs_start_ordered_extent(inode
, ordered
, 1);
8883 btrfs_put_ordered_extent(ordered
);
8887 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8888 reserved_space
= round_up(size
- page_start
,
8889 fs_info
->sectorsize
);
8890 if (reserved_space
< PAGE_SIZE
) {
8891 end
= page_start
+ reserved_space
- 1;
8892 btrfs_delalloc_release_space(inode
, data_reserved
,
8893 page_start
, PAGE_SIZE
- reserved_space
,
8899 * page_mkwrite gets called when the page is firstly dirtied after it's
8900 * faulted in, but write(2) could also dirty a page and set delalloc
8901 * bits, thus in this case for space account reason, we still need to
8902 * clear any delalloc bits within this page range since we have to
8903 * reserve data&meta space before lock_page() (see above comments).
8905 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8906 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8907 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8908 0, 0, &cached_state
);
8910 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8913 unlock_extent_cached(io_tree
, page_start
, page_end
,
8915 ret
= VM_FAULT_SIGBUS
;
8920 /* page is wholly or partially inside EOF */
8921 if (page_start
+ PAGE_SIZE
> size
)
8922 zero_start
= size
& ~PAGE_MASK
;
8924 zero_start
= PAGE_SIZE
;
8926 if (zero_start
!= PAGE_SIZE
) {
8928 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8929 flush_dcache_page(page
);
8932 ClearPageChecked(page
);
8933 set_page_dirty(page
);
8934 SetPageUptodate(page
);
8936 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8937 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8938 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8940 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8943 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, true);
8944 sb_end_pagefault(inode
->i_sb
);
8945 extent_changeset_free(data_reserved
);
8946 return VM_FAULT_LOCKED
;
8952 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, (ret
!= 0));
8953 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
8954 reserved_space
, (ret
!= 0));
8956 sb_end_pagefault(inode
->i_sb
);
8957 extent_changeset_free(data_reserved
);
8961 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
8963 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8964 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8965 struct btrfs_block_rsv
*rsv
;
8967 struct btrfs_trans_handle
*trans
;
8968 u64 mask
= fs_info
->sectorsize
- 1;
8969 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
8971 if (!skip_writeback
) {
8972 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8979 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8980 * things going on here:
8982 * 1) We need to reserve space to update our inode.
8984 * 2) We need to have something to cache all the space that is going to
8985 * be free'd up by the truncate operation, but also have some slack
8986 * space reserved in case it uses space during the truncate (thank you
8987 * very much snapshotting).
8989 * And we need these to be separate. The fact is we can use a lot of
8990 * space doing the truncate, and we have no earthly idea how much space
8991 * we will use, so we need the truncate reservation to be separate so it
8992 * doesn't end up using space reserved for updating the inode. We also
8993 * need to be able to stop the transaction and start a new one, which
8994 * means we need to be able to update the inode several times, and we
8995 * have no idea of knowing how many times that will be, so we can't just
8996 * reserve 1 item for the entirety of the operation, so that has to be
8997 * done separately as well.
8999 * So that leaves us with
9001 * 1) rsv - for the truncate reservation, which we will steal from the
9002 * transaction reservation.
9003 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9004 * updating the inode.
9006 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9009 rsv
->size
= min_size
;
9013 * 1 for the truncate slack space
9014 * 1 for updating the inode.
9016 trans
= btrfs_start_transaction(root
, 2);
9017 if (IS_ERR(trans
)) {
9018 ret
= PTR_ERR(trans
);
9022 /* Migrate the slack space for the truncate to our reserve */
9023 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9028 * So if we truncate and then write and fsync we normally would just
9029 * write the extents that changed, which is a problem if we need to
9030 * first truncate that entire inode. So set this flag so we write out
9031 * all of the extents in the inode to the sync log so we're completely
9034 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9035 trans
->block_rsv
= rsv
;
9038 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9040 BTRFS_EXTENT_DATA_KEY
);
9041 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9042 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
9045 ret
= btrfs_update_inode(trans
, root
, inode
);
9049 btrfs_end_transaction(trans
);
9050 btrfs_btree_balance_dirty(fs_info
);
9052 trans
= btrfs_start_transaction(root
, 2);
9053 if (IS_ERR(trans
)) {
9054 ret
= PTR_ERR(trans
);
9059 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9060 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9062 BUG_ON(ret
); /* shouldn't happen */
9063 trans
->block_rsv
= rsv
;
9067 * We can't call btrfs_truncate_block inside a trans handle as we could
9068 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9069 * we've truncated everything except the last little bit, and can do
9070 * btrfs_truncate_block and then update the disk_i_size.
9072 if (ret
== NEED_TRUNCATE_BLOCK
) {
9073 btrfs_end_transaction(trans
);
9074 btrfs_btree_balance_dirty(fs_info
);
9076 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9079 trans
= btrfs_start_transaction(root
, 1);
9080 if (IS_ERR(trans
)) {
9081 ret
= PTR_ERR(trans
);
9084 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9090 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9091 ret2
= btrfs_update_inode(trans
, root
, inode
);
9095 ret2
= btrfs_end_transaction(trans
);
9098 btrfs_btree_balance_dirty(fs_info
);
9101 btrfs_free_block_rsv(fs_info
, rsv
);
9107 * create a new subvolume directory/inode (helper for the ioctl).
9109 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9110 struct btrfs_root
*new_root
,
9111 struct btrfs_root
*parent_root
,
9114 struct inode
*inode
;
9118 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9119 new_dirid
, new_dirid
,
9120 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9123 return PTR_ERR(inode
);
9124 inode
->i_op
= &btrfs_dir_inode_operations
;
9125 inode
->i_fop
= &btrfs_dir_file_operations
;
9127 set_nlink(inode
, 1);
9128 btrfs_i_size_write(BTRFS_I(inode
), 0);
9129 unlock_new_inode(inode
);
9131 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9133 btrfs_err(new_root
->fs_info
,
9134 "error inheriting subvolume %llu properties: %d",
9135 new_root
->root_key
.objectid
, err
);
9137 err
= btrfs_update_inode(trans
, new_root
, inode
);
9143 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9145 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9146 struct btrfs_inode
*ei
;
9147 struct inode
*inode
;
9149 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
9156 ei
->last_sub_trans
= 0;
9157 ei
->logged_trans
= 0;
9158 ei
->delalloc_bytes
= 0;
9159 ei
->new_delalloc_bytes
= 0;
9160 ei
->defrag_bytes
= 0;
9161 ei
->disk_i_size
= 0;
9164 ei
->index_cnt
= (u64
)-1;
9166 ei
->last_unlink_trans
= 0;
9167 ei
->last_log_commit
= 0;
9169 spin_lock_init(&ei
->lock
);
9170 ei
->outstanding_extents
= 0;
9171 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9172 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9173 BTRFS_BLOCK_RSV_DELALLOC
);
9174 ei
->runtime_flags
= 0;
9175 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9176 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9178 ei
->delayed_node
= NULL
;
9180 ei
->i_otime
.tv_sec
= 0;
9181 ei
->i_otime
.tv_nsec
= 0;
9183 inode
= &ei
->vfs_inode
;
9184 extent_map_tree_init(&ei
->extent_tree
);
9185 extent_io_tree_init(&ei
->io_tree
, inode
);
9186 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9187 ei
->io_tree
.track_uptodate
= 1;
9188 ei
->io_failure_tree
.track_uptodate
= 1;
9189 atomic_set(&ei
->sync_writers
, 0);
9190 mutex_init(&ei
->log_mutex
);
9191 mutex_init(&ei
->delalloc_mutex
);
9192 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9193 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9194 INIT_LIST_HEAD(&ei
->delayed_iput
);
9195 RB_CLEAR_NODE(&ei
->rb_node
);
9196 init_rwsem(&ei
->dio_sem
);
9201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9202 void btrfs_test_destroy_inode(struct inode
*inode
)
9204 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9205 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9209 static void btrfs_i_callback(struct rcu_head
*head
)
9211 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9212 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9215 void btrfs_destroy_inode(struct inode
*inode
)
9217 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9218 struct btrfs_ordered_extent
*ordered
;
9219 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9221 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9222 WARN_ON(inode
->i_data
.nrpages
);
9223 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9224 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9225 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9226 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9227 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9228 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9229 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9232 * This can happen where we create an inode, but somebody else also
9233 * created the same inode and we need to destroy the one we already
9240 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9245 "found ordered extent %llu %llu on inode cleanup",
9246 ordered
->file_offset
, ordered
->len
);
9247 btrfs_remove_ordered_extent(inode
, ordered
);
9248 btrfs_put_ordered_extent(ordered
);
9249 btrfs_put_ordered_extent(ordered
);
9252 btrfs_qgroup_check_reserved_leak(inode
);
9253 inode_tree_del(inode
);
9254 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9256 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9259 int btrfs_drop_inode(struct inode
*inode
)
9261 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9266 /* the snap/subvol tree is on deleting */
9267 if (btrfs_root_refs(&root
->root_item
) == 0)
9270 return generic_drop_inode(inode
);
9273 static void init_once(void *foo
)
9275 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9277 inode_init_once(&ei
->vfs_inode
);
9280 void __cold
btrfs_destroy_cachep(void)
9283 * Make sure all delayed rcu free inodes are flushed before we
9287 kmem_cache_destroy(btrfs_inode_cachep
);
9288 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9289 kmem_cache_destroy(btrfs_path_cachep
);
9290 kmem_cache_destroy(btrfs_free_space_cachep
);
9293 int __init
btrfs_init_cachep(void)
9295 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9296 sizeof(struct btrfs_inode
), 0,
9297 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9299 if (!btrfs_inode_cachep
)
9302 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9303 sizeof(struct btrfs_trans_handle
), 0,
9304 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9305 if (!btrfs_trans_handle_cachep
)
9308 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9309 sizeof(struct btrfs_path
), 0,
9310 SLAB_MEM_SPREAD
, NULL
);
9311 if (!btrfs_path_cachep
)
9314 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9315 sizeof(struct btrfs_free_space
), 0,
9316 SLAB_MEM_SPREAD
, NULL
);
9317 if (!btrfs_free_space_cachep
)
9322 btrfs_destroy_cachep();
9326 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9327 u32 request_mask
, unsigned int flags
)
9330 struct inode
*inode
= d_inode(path
->dentry
);
9331 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9332 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9334 stat
->result_mask
|= STATX_BTIME
;
9335 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9336 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9337 if (bi_flags
& BTRFS_INODE_APPEND
)
9338 stat
->attributes
|= STATX_ATTR_APPEND
;
9339 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9340 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9341 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9342 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9343 if (bi_flags
& BTRFS_INODE_NODUMP
)
9344 stat
->attributes
|= STATX_ATTR_NODUMP
;
9346 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9347 STATX_ATTR_COMPRESSED
|
9348 STATX_ATTR_IMMUTABLE
|
9351 generic_fillattr(inode
, stat
);
9352 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9354 spin_lock(&BTRFS_I(inode
)->lock
);
9355 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9356 spin_unlock(&BTRFS_I(inode
)->lock
);
9357 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9358 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9362 static int btrfs_rename_exchange(struct inode
*old_dir
,
9363 struct dentry
*old_dentry
,
9364 struct inode
*new_dir
,
9365 struct dentry
*new_dentry
)
9367 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9368 struct btrfs_trans_handle
*trans
;
9369 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9370 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9371 struct inode
*new_inode
= new_dentry
->d_inode
;
9372 struct inode
*old_inode
= old_dentry
->d_inode
;
9373 struct timespec64 ctime
= current_time(old_inode
);
9374 struct dentry
*parent
;
9375 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9376 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9381 bool root_log_pinned
= false;
9382 bool dest_log_pinned
= false;
9383 struct btrfs_log_ctx ctx_root
;
9384 struct btrfs_log_ctx ctx_dest
;
9385 bool sync_log_root
= false;
9386 bool sync_log_dest
= false;
9387 bool commit_transaction
= false;
9389 /* we only allow rename subvolume link between subvolumes */
9390 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9393 btrfs_init_log_ctx(&ctx_root
, old_inode
);
9394 btrfs_init_log_ctx(&ctx_dest
, new_inode
);
9396 /* close the race window with snapshot create/destroy ioctl */
9397 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9398 down_read(&fs_info
->subvol_sem
);
9399 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9400 down_read(&fs_info
->subvol_sem
);
9403 * We want to reserve the absolute worst case amount of items. So if
9404 * both inodes are subvols and we need to unlink them then that would
9405 * require 4 item modifications, but if they are both normal inodes it
9406 * would require 5 item modifications, so we'll assume their normal
9407 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9408 * should cover the worst case number of items we'll modify.
9410 trans
= btrfs_start_transaction(root
, 12);
9411 if (IS_ERR(trans
)) {
9412 ret
= PTR_ERR(trans
);
9417 * We need to find a free sequence number both in the source and
9418 * in the destination directory for the exchange.
9420 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9423 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9427 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9428 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9430 /* Reference for the source. */
9431 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9432 /* force full log commit if subvolume involved. */
9433 btrfs_set_log_full_commit(fs_info
, trans
);
9435 btrfs_pin_log_trans(root
);
9436 root_log_pinned
= true;
9437 ret
= btrfs_insert_inode_ref(trans
, dest
,
9438 new_dentry
->d_name
.name
,
9439 new_dentry
->d_name
.len
,
9441 btrfs_ino(BTRFS_I(new_dir
)),
9447 /* And now for the dest. */
9448 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9449 /* force full log commit if subvolume involved. */
9450 btrfs_set_log_full_commit(fs_info
, trans
);
9452 btrfs_pin_log_trans(dest
);
9453 dest_log_pinned
= true;
9454 ret
= btrfs_insert_inode_ref(trans
, root
,
9455 old_dentry
->d_name
.name
,
9456 old_dentry
->d_name
.len
,
9458 btrfs_ino(BTRFS_I(old_dir
)),
9464 /* Update inode version and ctime/mtime. */
9465 inode_inc_iversion(old_dir
);
9466 inode_inc_iversion(new_dir
);
9467 inode_inc_iversion(old_inode
);
9468 inode_inc_iversion(new_inode
);
9469 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9470 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9471 old_inode
->i_ctime
= ctime
;
9472 new_inode
->i_ctime
= ctime
;
9474 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9475 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9476 BTRFS_I(old_inode
), 1);
9477 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9478 BTRFS_I(new_inode
), 1);
9481 /* src is a subvolume */
9482 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9483 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9484 ret
= btrfs_unlink_subvol(trans
, old_dir
, root_objectid
,
9485 old_dentry
->d_name
.name
,
9486 old_dentry
->d_name
.len
);
9487 } else { /* src is an inode */
9488 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9489 BTRFS_I(old_dentry
->d_inode
),
9490 old_dentry
->d_name
.name
,
9491 old_dentry
->d_name
.len
);
9493 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9496 btrfs_abort_transaction(trans
, ret
);
9500 /* dest is a subvolume */
9501 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9502 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9503 ret
= btrfs_unlink_subvol(trans
, new_dir
, root_objectid
,
9504 new_dentry
->d_name
.name
,
9505 new_dentry
->d_name
.len
);
9506 } else { /* dest is an inode */
9507 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9508 BTRFS_I(new_dentry
->d_inode
),
9509 new_dentry
->d_name
.name
,
9510 new_dentry
->d_name
.len
);
9512 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9515 btrfs_abort_transaction(trans
, ret
);
9519 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9520 new_dentry
->d_name
.name
,
9521 new_dentry
->d_name
.len
, 0, old_idx
);
9523 btrfs_abort_transaction(trans
, ret
);
9527 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9528 old_dentry
->d_name
.name
,
9529 old_dentry
->d_name
.len
, 0, new_idx
);
9531 btrfs_abort_transaction(trans
, ret
);
9535 if (old_inode
->i_nlink
== 1)
9536 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9537 if (new_inode
->i_nlink
== 1)
9538 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9540 if (root_log_pinned
) {
9541 parent
= new_dentry
->d_parent
;
9542 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9543 BTRFS_I(old_dir
), parent
,
9545 if (ret
== BTRFS_NEED_LOG_SYNC
)
9546 sync_log_root
= true;
9547 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9548 commit_transaction
= true;
9550 btrfs_end_log_trans(root
);
9551 root_log_pinned
= false;
9553 if (dest_log_pinned
) {
9554 if (!commit_transaction
) {
9555 parent
= old_dentry
->d_parent
;
9556 ret
= btrfs_log_new_name(trans
, BTRFS_I(new_inode
),
9557 BTRFS_I(new_dir
), parent
,
9559 if (ret
== BTRFS_NEED_LOG_SYNC
)
9560 sync_log_dest
= true;
9561 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9562 commit_transaction
= true;
9565 btrfs_end_log_trans(dest
);
9566 dest_log_pinned
= false;
9570 * If we have pinned a log and an error happened, we unpin tasks
9571 * trying to sync the log and force them to fallback to a transaction
9572 * commit if the log currently contains any of the inodes involved in
9573 * this rename operation (to ensure we do not persist a log with an
9574 * inconsistent state for any of these inodes or leading to any
9575 * inconsistencies when replayed). If the transaction was aborted, the
9576 * abortion reason is propagated to userspace when attempting to commit
9577 * the transaction. If the log does not contain any of these inodes, we
9578 * allow the tasks to sync it.
9580 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9581 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9582 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9583 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9585 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9586 btrfs_set_log_full_commit(fs_info
, trans
);
9588 if (root_log_pinned
) {
9589 btrfs_end_log_trans(root
);
9590 root_log_pinned
= false;
9592 if (dest_log_pinned
) {
9593 btrfs_end_log_trans(dest
);
9594 dest_log_pinned
= false;
9597 if (!ret
&& sync_log_root
&& !commit_transaction
) {
9598 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
,
9601 commit_transaction
= true;
9603 if (!ret
&& sync_log_dest
&& !commit_transaction
) {
9604 ret
= btrfs_sync_log(trans
, BTRFS_I(new_inode
)->root
,
9607 commit_transaction
= true;
9609 if (commit_transaction
) {
9610 ret
= btrfs_commit_transaction(trans
);
9614 ret2
= btrfs_end_transaction(trans
);
9615 ret
= ret
? ret
: ret2
;
9618 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9619 up_read(&fs_info
->subvol_sem
);
9620 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9621 up_read(&fs_info
->subvol_sem
);
9626 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9627 struct btrfs_root
*root
,
9629 struct dentry
*dentry
)
9632 struct inode
*inode
;
9636 ret
= btrfs_find_free_ino(root
, &objectid
);
9640 inode
= btrfs_new_inode(trans
, root
, dir
,
9641 dentry
->d_name
.name
,
9643 btrfs_ino(BTRFS_I(dir
)),
9645 S_IFCHR
| WHITEOUT_MODE
,
9648 if (IS_ERR(inode
)) {
9649 ret
= PTR_ERR(inode
);
9653 inode
->i_op
= &btrfs_special_inode_operations
;
9654 init_special_inode(inode
, inode
->i_mode
,
9657 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9662 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9663 BTRFS_I(inode
), 0, index
);
9667 ret
= btrfs_update_inode(trans
, root
, inode
);
9669 unlock_new_inode(inode
);
9671 inode_dec_link_count(inode
);
9677 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9678 struct inode
*new_dir
, struct dentry
*new_dentry
,
9681 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9682 struct btrfs_trans_handle
*trans
;
9683 unsigned int trans_num_items
;
9684 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9685 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9686 struct inode
*new_inode
= d_inode(new_dentry
);
9687 struct inode
*old_inode
= d_inode(old_dentry
);
9691 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9692 bool log_pinned
= false;
9693 struct btrfs_log_ctx ctx
;
9694 bool sync_log
= false;
9695 bool commit_transaction
= false;
9697 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9700 /* we only allow rename subvolume link between subvolumes */
9701 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9704 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9705 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9708 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9709 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9713 /* check for collisions, even if the name isn't there */
9714 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9715 new_dentry
->d_name
.name
,
9716 new_dentry
->d_name
.len
);
9719 if (ret
== -EEXIST
) {
9721 * eexist without a new_inode */
9722 if (WARN_ON(!new_inode
)) {
9726 /* maybe -EOVERFLOW */
9733 * we're using rename to replace one file with another. Start IO on it
9734 * now so we don't add too much work to the end of the transaction
9736 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9737 filemap_flush(old_inode
->i_mapping
);
9739 /* close the racy window with snapshot create/destroy ioctl */
9740 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9741 down_read(&fs_info
->subvol_sem
);
9743 * We want to reserve the absolute worst case amount of items. So if
9744 * both inodes are subvols and we need to unlink them then that would
9745 * require 4 item modifications, but if they are both normal inodes it
9746 * would require 5 item modifications, so we'll assume they are normal
9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 * should cover the worst case number of items we'll modify.
9749 * If our rename has the whiteout flag, we need more 5 units for the
9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 * when selinux is enabled).
9753 trans_num_items
= 11;
9754 if (flags
& RENAME_WHITEOUT
)
9755 trans_num_items
+= 5;
9756 trans
= btrfs_start_transaction(root
, trans_num_items
);
9757 if (IS_ERR(trans
)) {
9758 ret
= PTR_ERR(trans
);
9763 btrfs_record_root_in_trans(trans
, dest
);
9765 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9769 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9770 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9771 /* force full log commit if subvolume involved. */
9772 btrfs_set_log_full_commit(fs_info
, trans
);
9774 btrfs_pin_log_trans(root
);
9776 ret
= btrfs_insert_inode_ref(trans
, dest
,
9777 new_dentry
->d_name
.name
,
9778 new_dentry
->d_name
.len
,
9780 btrfs_ino(BTRFS_I(new_dir
)), index
);
9785 inode_inc_iversion(old_dir
);
9786 inode_inc_iversion(new_dir
);
9787 inode_inc_iversion(old_inode
);
9788 old_dir
->i_ctime
= old_dir
->i_mtime
=
9789 new_dir
->i_ctime
= new_dir
->i_mtime
=
9790 old_inode
->i_ctime
= current_time(old_dir
);
9792 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9793 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9794 BTRFS_I(old_inode
), 1);
9796 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9797 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9798 ret
= btrfs_unlink_subvol(trans
, old_dir
, root_objectid
,
9799 old_dentry
->d_name
.name
,
9800 old_dentry
->d_name
.len
);
9802 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9803 BTRFS_I(d_inode(old_dentry
)),
9804 old_dentry
->d_name
.name
,
9805 old_dentry
->d_name
.len
);
9807 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9810 btrfs_abort_transaction(trans
, ret
);
9815 inode_inc_iversion(new_inode
);
9816 new_inode
->i_ctime
= current_time(new_inode
);
9817 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9818 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9819 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9820 ret
= btrfs_unlink_subvol(trans
, new_dir
, root_objectid
,
9821 new_dentry
->d_name
.name
,
9822 new_dentry
->d_name
.len
);
9823 BUG_ON(new_inode
->i_nlink
== 0);
9825 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9826 BTRFS_I(d_inode(new_dentry
)),
9827 new_dentry
->d_name
.name
,
9828 new_dentry
->d_name
.len
);
9830 if (!ret
&& new_inode
->i_nlink
== 0)
9831 ret
= btrfs_orphan_add(trans
,
9832 BTRFS_I(d_inode(new_dentry
)));
9834 btrfs_abort_transaction(trans
, ret
);
9839 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9840 new_dentry
->d_name
.name
,
9841 new_dentry
->d_name
.len
, 0, index
);
9843 btrfs_abort_transaction(trans
, ret
);
9847 if (old_inode
->i_nlink
== 1)
9848 BTRFS_I(old_inode
)->dir_index
= index
;
9851 struct dentry
*parent
= new_dentry
->d_parent
;
9853 btrfs_init_log_ctx(&ctx
, old_inode
);
9854 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9855 BTRFS_I(old_dir
), parent
,
9857 if (ret
== BTRFS_NEED_LOG_SYNC
)
9859 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9860 commit_transaction
= true;
9862 btrfs_end_log_trans(root
);
9866 if (flags
& RENAME_WHITEOUT
) {
9867 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9871 btrfs_abort_transaction(trans
, ret
);
9877 * If we have pinned the log and an error happened, we unpin tasks
9878 * trying to sync the log and force them to fallback to a transaction
9879 * commit if the log currently contains any of the inodes involved in
9880 * this rename operation (to ensure we do not persist a log with an
9881 * inconsistent state for any of these inodes or leading to any
9882 * inconsistencies when replayed). If the transaction was aborted, the
9883 * abortion reason is propagated to userspace when attempting to commit
9884 * the transaction. If the log does not contain any of these inodes, we
9885 * allow the tasks to sync it.
9887 if (ret
&& log_pinned
) {
9888 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9889 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9890 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9892 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9893 btrfs_set_log_full_commit(fs_info
, trans
);
9895 btrfs_end_log_trans(root
);
9898 if (!ret
&& sync_log
) {
9899 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
, &ctx
);
9901 commit_transaction
= true;
9903 if (commit_transaction
) {
9904 ret
= btrfs_commit_transaction(trans
);
9908 ret2
= btrfs_end_transaction(trans
);
9909 ret
= ret
? ret
: ret2
;
9912 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9913 up_read(&fs_info
->subvol_sem
);
9918 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9919 struct inode
*new_dir
, struct dentry
*new_dentry
,
9922 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9925 if (flags
& RENAME_EXCHANGE
)
9926 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9929 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9932 struct btrfs_delalloc_work
{
9933 struct inode
*inode
;
9934 struct completion completion
;
9935 struct list_head list
;
9936 struct btrfs_work work
;
9939 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9941 struct btrfs_delalloc_work
*delalloc_work
;
9942 struct inode
*inode
;
9944 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9946 inode
= delalloc_work
->inode
;
9947 filemap_flush(inode
->i_mapping
);
9948 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9949 &BTRFS_I(inode
)->runtime_flags
))
9950 filemap_flush(inode
->i_mapping
);
9953 complete(&delalloc_work
->completion
);
9956 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9958 struct btrfs_delalloc_work
*work
;
9960 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9964 init_completion(&work
->completion
);
9965 INIT_LIST_HEAD(&work
->list
);
9966 work
->inode
= inode
;
9967 WARN_ON_ONCE(!inode
);
9968 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
9969 btrfs_run_delalloc_work
, NULL
, NULL
);
9975 * some fairly slow code that needs optimization. This walks the list
9976 * of all the inodes with pending delalloc and forces them to disk.
9978 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
)
9980 struct btrfs_inode
*binode
;
9981 struct inode
*inode
;
9982 struct btrfs_delalloc_work
*work
, *next
;
9983 struct list_head works
;
9984 struct list_head splice
;
9987 INIT_LIST_HEAD(&works
);
9988 INIT_LIST_HEAD(&splice
);
9990 mutex_lock(&root
->delalloc_mutex
);
9991 spin_lock(&root
->delalloc_lock
);
9992 list_splice_init(&root
->delalloc_inodes
, &splice
);
9993 while (!list_empty(&splice
)) {
9994 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9997 list_move_tail(&binode
->delalloc_inodes
,
9998 &root
->delalloc_inodes
);
9999 inode
= igrab(&binode
->vfs_inode
);
10001 cond_resched_lock(&root
->delalloc_lock
);
10004 spin_unlock(&root
->delalloc_lock
);
10006 work
= btrfs_alloc_delalloc_work(inode
);
10012 list_add_tail(&work
->list
, &works
);
10013 btrfs_queue_work(root
->fs_info
->flush_workers
,
10016 if (nr
!= -1 && ret
>= nr
)
10019 spin_lock(&root
->delalloc_lock
);
10021 spin_unlock(&root
->delalloc_lock
);
10024 list_for_each_entry_safe(work
, next
, &works
, list
) {
10025 list_del_init(&work
->list
);
10026 wait_for_completion(&work
->completion
);
10030 if (!list_empty(&splice
)) {
10031 spin_lock(&root
->delalloc_lock
);
10032 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10033 spin_unlock(&root
->delalloc_lock
);
10035 mutex_unlock(&root
->delalloc_mutex
);
10039 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
10041 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10044 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10047 ret
= start_delalloc_inodes(root
, -1);
10053 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
10055 struct btrfs_root
*root
;
10056 struct list_head splice
;
10059 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10062 INIT_LIST_HEAD(&splice
);
10064 mutex_lock(&fs_info
->delalloc_root_mutex
);
10065 spin_lock(&fs_info
->delalloc_root_lock
);
10066 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10067 while (!list_empty(&splice
) && nr
) {
10068 root
= list_first_entry(&splice
, struct btrfs_root
,
10070 root
= btrfs_grab_fs_root(root
);
10072 list_move_tail(&root
->delalloc_root
,
10073 &fs_info
->delalloc_roots
);
10074 spin_unlock(&fs_info
->delalloc_root_lock
);
10076 ret
= start_delalloc_inodes(root
, nr
);
10077 btrfs_put_fs_root(root
);
10085 spin_lock(&fs_info
->delalloc_root_lock
);
10087 spin_unlock(&fs_info
->delalloc_root_lock
);
10091 if (!list_empty(&splice
)) {
10092 spin_lock(&fs_info
->delalloc_root_lock
);
10093 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10094 spin_unlock(&fs_info
->delalloc_root_lock
);
10096 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10100 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10101 const char *symname
)
10103 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10104 struct btrfs_trans_handle
*trans
;
10105 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10106 struct btrfs_path
*path
;
10107 struct btrfs_key key
;
10108 struct inode
*inode
= NULL
;
10115 struct btrfs_file_extent_item
*ei
;
10116 struct extent_buffer
*leaf
;
10118 name_len
= strlen(symname
);
10119 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10120 return -ENAMETOOLONG
;
10123 * 2 items for inode item and ref
10124 * 2 items for dir items
10125 * 1 item for updating parent inode item
10126 * 1 item for the inline extent item
10127 * 1 item for xattr if selinux is on
10129 trans
= btrfs_start_transaction(root
, 7);
10131 return PTR_ERR(trans
);
10133 err
= btrfs_find_free_ino(root
, &objectid
);
10137 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10138 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10139 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10140 if (IS_ERR(inode
)) {
10141 err
= PTR_ERR(inode
);
10147 * If the active LSM wants to access the inode during
10148 * d_instantiate it needs these. Smack checks to see
10149 * if the filesystem supports xattrs by looking at the
10152 inode
->i_fop
= &btrfs_file_operations
;
10153 inode
->i_op
= &btrfs_file_inode_operations
;
10154 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10155 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10157 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10161 path
= btrfs_alloc_path();
10166 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10168 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10169 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10170 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10173 btrfs_free_path(path
);
10176 leaf
= path
->nodes
[0];
10177 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10178 struct btrfs_file_extent_item
);
10179 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10180 btrfs_set_file_extent_type(leaf
, ei
,
10181 BTRFS_FILE_EXTENT_INLINE
);
10182 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10184 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10185 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10187 ptr
= btrfs_file_extent_inline_start(ei
);
10188 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10189 btrfs_mark_buffer_dirty(leaf
);
10190 btrfs_free_path(path
);
10192 inode
->i_op
= &btrfs_symlink_inode_operations
;
10193 inode_nohighmem(inode
);
10194 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10195 inode_set_bytes(inode
, name_len
);
10196 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10197 err
= btrfs_update_inode(trans
, root
, inode
);
10199 * Last step, add directory indexes for our symlink inode. This is the
10200 * last step to avoid extra cleanup of these indexes if an error happens
10204 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10205 BTRFS_I(inode
), 0, index
);
10209 d_instantiate_new(dentry
, inode
);
10212 btrfs_end_transaction(trans
);
10213 if (err
&& inode
) {
10214 inode_dec_link_count(inode
);
10215 discard_new_inode(inode
);
10217 btrfs_btree_balance_dirty(fs_info
);
10221 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10222 u64 start
, u64 num_bytes
, u64 min_size
,
10223 loff_t actual_len
, u64
*alloc_hint
,
10224 struct btrfs_trans_handle
*trans
)
10226 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10227 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10228 struct extent_map
*em
;
10229 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10230 struct btrfs_key ins
;
10231 u64 cur_offset
= start
;
10234 u64 last_alloc
= (u64
)-1;
10236 bool own_trans
= true;
10237 u64 end
= start
+ num_bytes
- 1;
10241 while (num_bytes
> 0) {
10243 trans
= btrfs_start_transaction(root
, 3);
10244 if (IS_ERR(trans
)) {
10245 ret
= PTR_ERR(trans
);
10250 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10251 cur_bytes
= max(cur_bytes
, min_size
);
10253 * If we are severely fragmented we could end up with really
10254 * small allocations, so if the allocator is returning small
10255 * chunks lets make its job easier by only searching for those
10258 cur_bytes
= min(cur_bytes
, last_alloc
);
10259 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10260 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10263 btrfs_end_transaction(trans
);
10266 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10268 last_alloc
= ins
.offset
;
10269 ret
= insert_reserved_file_extent(trans
, inode
,
10270 cur_offset
, ins
.objectid
,
10271 ins
.offset
, ins
.offset
,
10272 ins
.offset
, 0, 0, 0,
10273 BTRFS_FILE_EXTENT_PREALLOC
);
10275 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10277 btrfs_abort_transaction(trans
, ret
);
10279 btrfs_end_transaction(trans
);
10283 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10284 cur_offset
+ ins
.offset
-1, 0);
10286 em
= alloc_extent_map();
10288 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10289 &BTRFS_I(inode
)->runtime_flags
);
10293 em
->start
= cur_offset
;
10294 em
->orig_start
= cur_offset
;
10295 em
->len
= ins
.offset
;
10296 em
->block_start
= ins
.objectid
;
10297 em
->block_len
= ins
.offset
;
10298 em
->orig_block_len
= ins
.offset
;
10299 em
->ram_bytes
= ins
.offset
;
10300 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10301 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10302 em
->generation
= trans
->transid
;
10305 write_lock(&em_tree
->lock
);
10306 ret
= add_extent_mapping(em_tree
, em
, 1);
10307 write_unlock(&em_tree
->lock
);
10308 if (ret
!= -EEXIST
)
10310 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10311 cur_offset
+ ins
.offset
- 1,
10314 free_extent_map(em
);
10316 num_bytes
-= ins
.offset
;
10317 cur_offset
+= ins
.offset
;
10318 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10320 inode_inc_iversion(inode
);
10321 inode
->i_ctime
= current_time(inode
);
10322 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10323 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10324 (actual_len
> inode
->i_size
) &&
10325 (cur_offset
> inode
->i_size
)) {
10326 if (cur_offset
> actual_len
)
10327 i_size
= actual_len
;
10329 i_size
= cur_offset
;
10330 i_size_write(inode
, i_size
);
10331 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10334 ret
= btrfs_update_inode(trans
, root
, inode
);
10337 btrfs_abort_transaction(trans
, ret
);
10339 btrfs_end_transaction(trans
);
10344 btrfs_end_transaction(trans
);
10346 if (cur_offset
< end
)
10347 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10348 end
- cur_offset
+ 1);
10352 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10353 u64 start
, u64 num_bytes
, u64 min_size
,
10354 loff_t actual_len
, u64
*alloc_hint
)
10356 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10357 min_size
, actual_len
, alloc_hint
,
10361 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10362 struct btrfs_trans_handle
*trans
, int mode
,
10363 u64 start
, u64 num_bytes
, u64 min_size
,
10364 loff_t actual_len
, u64
*alloc_hint
)
10366 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10367 min_size
, actual_len
, alloc_hint
, trans
);
10370 static int btrfs_set_page_dirty(struct page
*page
)
10372 return __set_page_dirty_nobuffers(page
);
10375 static int btrfs_permission(struct inode
*inode
, int mask
)
10377 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10378 umode_t mode
= inode
->i_mode
;
10380 if (mask
& MAY_WRITE
&&
10381 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10382 if (btrfs_root_readonly(root
))
10384 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10387 return generic_permission(inode
, mask
);
10390 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10392 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10393 struct btrfs_trans_handle
*trans
;
10394 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10395 struct inode
*inode
= NULL
;
10401 * 5 units required for adding orphan entry
10403 trans
= btrfs_start_transaction(root
, 5);
10405 return PTR_ERR(trans
);
10407 ret
= btrfs_find_free_ino(root
, &objectid
);
10411 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10412 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10413 if (IS_ERR(inode
)) {
10414 ret
= PTR_ERR(inode
);
10419 inode
->i_fop
= &btrfs_file_operations
;
10420 inode
->i_op
= &btrfs_file_inode_operations
;
10422 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10423 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10425 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10429 ret
= btrfs_update_inode(trans
, root
, inode
);
10432 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10437 * We set number of links to 0 in btrfs_new_inode(), and here we set
10438 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10441 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10443 set_nlink(inode
, 1);
10444 d_tmpfile(dentry
, inode
);
10445 unlock_new_inode(inode
);
10446 mark_inode_dirty(inode
);
10448 btrfs_end_transaction(trans
);
10450 discard_new_inode(inode
);
10451 btrfs_btree_balance_dirty(fs_info
);
10455 __attribute__((const))
10456 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10461 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10462 u64 start
, u64 end
)
10464 struct inode
*inode
= private_data
;
10467 isize
= i_size_read(inode
);
10468 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10469 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10470 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10471 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10475 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
10477 struct inode
*inode
= tree
->private_data
;
10478 unsigned long index
= start
>> PAGE_SHIFT
;
10479 unsigned long end_index
= end
>> PAGE_SHIFT
;
10482 while (index
<= end_index
) {
10483 page
= find_get_page(inode
->i_mapping
, index
);
10484 ASSERT(page
); /* Pages should be in the extent_io_tree */
10485 set_page_writeback(page
);
10491 static const struct inode_operations btrfs_dir_inode_operations
= {
10492 .getattr
= btrfs_getattr
,
10493 .lookup
= btrfs_lookup
,
10494 .create
= btrfs_create
,
10495 .unlink
= btrfs_unlink
,
10496 .link
= btrfs_link
,
10497 .mkdir
= btrfs_mkdir
,
10498 .rmdir
= btrfs_rmdir
,
10499 .rename
= btrfs_rename2
,
10500 .symlink
= btrfs_symlink
,
10501 .setattr
= btrfs_setattr
,
10502 .mknod
= btrfs_mknod
,
10503 .listxattr
= btrfs_listxattr
,
10504 .permission
= btrfs_permission
,
10505 .get_acl
= btrfs_get_acl
,
10506 .set_acl
= btrfs_set_acl
,
10507 .update_time
= btrfs_update_time
,
10508 .tmpfile
= btrfs_tmpfile
,
10510 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10511 .lookup
= btrfs_lookup
,
10512 .permission
= btrfs_permission
,
10513 .update_time
= btrfs_update_time
,
10516 static const struct file_operations btrfs_dir_file_operations
= {
10517 .llseek
= generic_file_llseek
,
10518 .read
= generic_read_dir
,
10519 .iterate_shared
= btrfs_real_readdir
,
10520 .open
= btrfs_opendir
,
10521 .unlocked_ioctl
= btrfs_ioctl
,
10522 #ifdef CONFIG_COMPAT
10523 .compat_ioctl
= btrfs_compat_ioctl
,
10525 .release
= btrfs_release_file
,
10526 .fsync
= btrfs_sync_file
,
10529 static const struct extent_io_ops btrfs_extent_io_ops
= {
10530 /* mandatory callbacks */
10531 .submit_bio_hook
= btrfs_submit_bio_hook
,
10532 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10533 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10535 /* optional callbacks */
10536 .fill_delalloc
= run_delalloc_range
,
10537 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10538 .writepage_start_hook
= btrfs_writepage_start_hook
,
10539 .set_bit_hook
= btrfs_set_bit_hook
,
10540 .clear_bit_hook
= btrfs_clear_bit_hook
,
10541 .merge_extent_hook
= btrfs_merge_extent_hook
,
10542 .split_extent_hook
= btrfs_split_extent_hook
,
10543 .check_extent_io_range
= btrfs_check_extent_io_range
,
10547 * btrfs doesn't support the bmap operation because swapfiles
10548 * use bmap to make a mapping of extents in the file. They assume
10549 * these extents won't change over the life of the file and they
10550 * use the bmap result to do IO directly to the drive.
10552 * the btrfs bmap call would return logical addresses that aren't
10553 * suitable for IO and they also will change frequently as COW
10554 * operations happen. So, swapfile + btrfs == corruption.
10556 * For now we're avoiding this by dropping bmap.
10558 static const struct address_space_operations btrfs_aops
= {
10559 .readpage
= btrfs_readpage
,
10560 .writepage
= btrfs_writepage
,
10561 .writepages
= btrfs_writepages
,
10562 .readpages
= btrfs_readpages
,
10563 .direct_IO
= btrfs_direct_IO
,
10564 .invalidatepage
= btrfs_invalidatepage
,
10565 .releasepage
= btrfs_releasepage
,
10566 .set_page_dirty
= btrfs_set_page_dirty
,
10567 .error_remove_page
= generic_error_remove_page
,
10570 static const struct address_space_operations btrfs_symlink_aops
= {
10571 .readpage
= btrfs_readpage
,
10572 .writepage
= btrfs_writepage
,
10573 .invalidatepage
= btrfs_invalidatepage
,
10574 .releasepage
= btrfs_releasepage
,
10577 static const struct inode_operations btrfs_file_inode_operations
= {
10578 .getattr
= btrfs_getattr
,
10579 .setattr
= btrfs_setattr
,
10580 .listxattr
= btrfs_listxattr
,
10581 .permission
= btrfs_permission
,
10582 .fiemap
= btrfs_fiemap
,
10583 .get_acl
= btrfs_get_acl
,
10584 .set_acl
= btrfs_set_acl
,
10585 .update_time
= btrfs_update_time
,
10587 static const struct inode_operations btrfs_special_inode_operations
= {
10588 .getattr
= btrfs_getattr
,
10589 .setattr
= btrfs_setattr
,
10590 .permission
= btrfs_permission
,
10591 .listxattr
= btrfs_listxattr
,
10592 .get_acl
= btrfs_get_acl
,
10593 .set_acl
= btrfs_set_acl
,
10594 .update_time
= btrfs_update_time
,
10596 static const struct inode_operations btrfs_symlink_inode_operations
= {
10597 .get_link
= page_get_link
,
10598 .getattr
= btrfs_getattr
,
10599 .setattr
= btrfs_setattr
,
10600 .permission
= btrfs_permission
,
10601 .listxattr
= btrfs_listxattr
,
10602 .update_time
= btrfs_update_time
,
10605 const struct dentry_operations btrfs_dentry_operations
= {
10606 .d_delete
= btrfs_dentry_delete
,