1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_trans_priv.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_extfree_item.h"
18 #include "xfs_btree.h"
22 kmem_zone_t
*xfs_efi_zone
;
23 kmem_zone_t
*xfs_efd_zone
;
25 static inline struct xfs_efi_log_item
*EFI_ITEM(struct xfs_log_item
*lip
)
27 return container_of(lip
, struct xfs_efi_log_item
, efi_item
);
32 struct xfs_efi_log_item
*efip
)
34 kmem_free(efip
->efi_item
.li_lv_shadow
);
35 if (efip
->efi_format
.efi_nextents
> XFS_EFI_MAX_FAST_EXTENTS
)
38 kmem_zone_free(xfs_efi_zone
, efip
);
42 * Freeing the efi requires that we remove it from the AIL if it has already
43 * been placed there. However, the EFI may not yet have been placed in the AIL
44 * when called by xfs_efi_release() from EFD processing due to the ordering of
45 * committed vs unpin operations in bulk insert operations. Hence the reference
46 * count to ensure only the last caller frees the EFI.
50 struct xfs_efi_log_item
*efip
)
52 ASSERT(atomic_read(&efip
->efi_refcount
) > 0);
53 if (atomic_dec_and_test(&efip
->efi_refcount
)) {
54 xfs_trans_ail_remove(&efip
->efi_item
, SHUTDOWN_LOG_IO_ERROR
);
55 xfs_efi_item_free(efip
);
60 * This returns the number of iovecs needed to log the given efi item.
61 * We only need 1 iovec for an efi item. It just logs the efi_log_format
66 struct xfs_efi_log_item
*efip
)
68 return sizeof(struct xfs_efi_log_format
) +
69 (efip
->efi_format
.efi_nextents
- 1) * sizeof(xfs_extent_t
);
74 struct xfs_log_item
*lip
,
79 *nbytes
+= xfs_efi_item_sizeof(EFI_ITEM(lip
));
83 * This is called to fill in the vector of log iovecs for the
84 * given efi log item. We use only 1 iovec, and we point that
85 * at the efi_log_format structure embedded in the efi item.
86 * It is at this point that we assert that all of the extent
87 * slots in the efi item have been filled.
91 struct xfs_log_item
*lip
,
92 struct xfs_log_vec
*lv
)
94 struct xfs_efi_log_item
*efip
= EFI_ITEM(lip
);
95 struct xfs_log_iovec
*vecp
= NULL
;
97 ASSERT(atomic_read(&efip
->efi_next_extent
) ==
98 efip
->efi_format
.efi_nextents
);
100 efip
->efi_format
.efi_type
= XFS_LI_EFI
;
101 efip
->efi_format
.efi_size
= 1;
103 xlog_copy_iovec(lv
, &vecp
, XLOG_REG_TYPE_EFI_FORMAT
,
105 xfs_efi_item_sizeof(efip
));
110 * Pinning has no meaning for an efi item, so just return.
114 struct xfs_log_item
*lip
)
119 * The unpin operation is the last place an EFI is manipulated in the log. It is
120 * either inserted in the AIL or aborted in the event of a log I/O error. In
121 * either case, the EFI transaction has been successfully committed to make it
122 * this far. Therefore, we expect whoever committed the EFI to either construct
123 * and commit the EFD or drop the EFD's reference in the event of error. Simply
124 * drop the log's EFI reference now that the log is done with it.
128 struct xfs_log_item
*lip
,
131 struct xfs_efi_log_item
*efip
= EFI_ITEM(lip
);
132 xfs_efi_release(efip
);
136 * Efi items have no locking or pushing. However, since EFIs are pulled from
137 * the AIL when their corresponding EFDs are committed to disk, their situation
138 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
139 * will eventually flush the log. This should help in getting the EFI out of
144 struct xfs_log_item
*lip
,
145 struct list_head
*buffer_list
)
147 return XFS_ITEM_PINNED
;
151 * The EFI has been either committed or aborted if the transaction has been
152 * cancelled. If the transaction was cancelled, an EFD isn't going to be
153 * constructed and thus we free the EFI here directly.
157 struct xfs_log_item
*lip
)
159 if (test_bit(XFS_LI_ABORTED
, &lip
->li_flags
))
160 xfs_efi_release(EFI_ITEM(lip
));
164 * The EFI is logged only once and cannot be moved in the log, so simply return
165 * the lsn at which it's been logged.
168 xfs_efi_item_committed(
169 struct xfs_log_item
*lip
,
176 * The EFI dependency tracking op doesn't do squat. It can't because
177 * it doesn't know where the free extent is coming from. The dependency
178 * tracking has to be handled by the "enclosing" metadata object. For
179 * example, for inodes, the inode is locked throughout the extent freeing
180 * so the dependency should be recorded there.
183 xfs_efi_item_committing(
184 struct xfs_log_item
*lip
,
190 * This is the ops vector shared by all efi log items.
192 static const struct xfs_item_ops xfs_efi_item_ops
= {
193 .iop_size
= xfs_efi_item_size
,
194 .iop_format
= xfs_efi_item_format
,
195 .iop_pin
= xfs_efi_item_pin
,
196 .iop_unpin
= xfs_efi_item_unpin
,
197 .iop_unlock
= xfs_efi_item_unlock
,
198 .iop_committed
= xfs_efi_item_committed
,
199 .iop_push
= xfs_efi_item_push
,
200 .iop_committing
= xfs_efi_item_committing
205 * Allocate and initialize an efi item with the given number of extents.
207 struct xfs_efi_log_item
*
209 struct xfs_mount
*mp
,
213 struct xfs_efi_log_item
*efip
;
216 ASSERT(nextents
> 0);
217 if (nextents
> XFS_EFI_MAX_FAST_EXTENTS
) {
218 size
= (uint
)(sizeof(xfs_efi_log_item_t
) +
219 ((nextents
- 1) * sizeof(xfs_extent_t
)));
220 efip
= kmem_zalloc(size
, KM_SLEEP
);
222 efip
= kmem_zone_zalloc(xfs_efi_zone
, KM_SLEEP
);
225 xfs_log_item_init(mp
, &efip
->efi_item
, XFS_LI_EFI
, &xfs_efi_item_ops
);
226 efip
->efi_format
.efi_nextents
= nextents
;
227 efip
->efi_format
.efi_id
= (uintptr_t)(void *)efip
;
228 atomic_set(&efip
->efi_next_extent
, 0);
229 atomic_set(&efip
->efi_refcount
, 2);
235 * Copy an EFI format buffer from the given buf, and into the destination
236 * EFI format structure.
237 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
238 * one of which will be the native format for this kernel.
239 * It will handle the conversion of formats if necessary.
242 xfs_efi_copy_format(xfs_log_iovec_t
*buf
, xfs_efi_log_format_t
*dst_efi_fmt
)
244 xfs_efi_log_format_t
*src_efi_fmt
= buf
->i_addr
;
246 uint len
= sizeof(xfs_efi_log_format_t
) +
247 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_t
);
248 uint len32
= sizeof(xfs_efi_log_format_32_t
) +
249 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_32_t
);
250 uint len64
= sizeof(xfs_efi_log_format_64_t
) +
251 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_64_t
);
253 if (buf
->i_len
== len
) {
254 memcpy((char *)dst_efi_fmt
, (char*)src_efi_fmt
, len
);
256 } else if (buf
->i_len
== len32
) {
257 xfs_efi_log_format_32_t
*src_efi_fmt_32
= buf
->i_addr
;
259 dst_efi_fmt
->efi_type
= src_efi_fmt_32
->efi_type
;
260 dst_efi_fmt
->efi_size
= src_efi_fmt_32
->efi_size
;
261 dst_efi_fmt
->efi_nextents
= src_efi_fmt_32
->efi_nextents
;
262 dst_efi_fmt
->efi_id
= src_efi_fmt_32
->efi_id
;
263 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
264 dst_efi_fmt
->efi_extents
[i
].ext_start
=
265 src_efi_fmt_32
->efi_extents
[i
].ext_start
;
266 dst_efi_fmt
->efi_extents
[i
].ext_len
=
267 src_efi_fmt_32
->efi_extents
[i
].ext_len
;
270 } else if (buf
->i_len
== len64
) {
271 xfs_efi_log_format_64_t
*src_efi_fmt_64
= buf
->i_addr
;
273 dst_efi_fmt
->efi_type
= src_efi_fmt_64
->efi_type
;
274 dst_efi_fmt
->efi_size
= src_efi_fmt_64
->efi_size
;
275 dst_efi_fmt
->efi_nextents
= src_efi_fmt_64
->efi_nextents
;
276 dst_efi_fmt
->efi_id
= src_efi_fmt_64
->efi_id
;
277 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
278 dst_efi_fmt
->efi_extents
[i
].ext_start
=
279 src_efi_fmt_64
->efi_extents
[i
].ext_start
;
280 dst_efi_fmt
->efi_extents
[i
].ext_len
=
281 src_efi_fmt_64
->efi_extents
[i
].ext_len
;
285 return -EFSCORRUPTED
;
288 static inline struct xfs_efd_log_item
*EFD_ITEM(struct xfs_log_item
*lip
)
290 return container_of(lip
, struct xfs_efd_log_item
, efd_item
);
294 xfs_efd_item_free(struct xfs_efd_log_item
*efdp
)
296 kmem_free(efdp
->efd_item
.li_lv_shadow
);
297 if (efdp
->efd_format
.efd_nextents
> XFS_EFD_MAX_FAST_EXTENTS
)
300 kmem_zone_free(xfs_efd_zone
, efdp
);
304 * This returns the number of iovecs needed to log the given efd item.
305 * We only need 1 iovec for an efd item. It just logs the efd_log_format
310 struct xfs_efd_log_item
*efdp
)
312 return sizeof(xfs_efd_log_format_t
) +
313 (efdp
->efd_format
.efd_nextents
- 1) * sizeof(xfs_extent_t
);
318 struct xfs_log_item
*lip
,
323 *nbytes
+= xfs_efd_item_sizeof(EFD_ITEM(lip
));
327 * This is called to fill in the vector of log iovecs for the
328 * given efd log item. We use only 1 iovec, and we point that
329 * at the efd_log_format structure embedded in the efd item.
330 * It is at this point that we assert that all of the extent
331 * slots in the efd item have been filled.
335 struct xfs_log_item
*lip
,
336 struct xfs_log_vec
*lv
)
338 struct xfs_efd_log_item
*efdp
= EFD_ITEM(lip
);
339 struct xfs_log_iovec
*vecp
= NULL
;
341 ASSERT(efdp
->efd_next_extent
== efdp
->efd_format
.efd_nextents
);
343 efdp
->efd_format
.efd_type
= XFS_LI_EFD
;
344 efdp
->efd_format
.efd_size
= 1;
346 xlog_copy_iovec(lv
, &vecp
, XLOG_REG_TYPE_EFD_FORMAT
,
348 xfs_efd_item_sizeof(efdp
));
352 * Pinning has no meaning for an efd item, so just return.
356 struct xfs_log_item
*lip
)
361 * Since pinning has no meaning for an efd item, unpinning does
366 struct xfs_log_item
*lip
,
372 * There isn't much you can do to push on an efd item. It is simply stuck
373 * waiting for the log to be flushed to disk.
377 struct xfs_log_item
*lip
,
378 struct list_head
*buffer_list
)
380 return XFS_ITEM_PINNED
;
384 * The EFD is either committed or aborted if the transaction is cancelled. If
385 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
389 struct xfs_log_item
*lip
)
391 struct xfs_efd_log_item
*efdp
= EFD_ITEM(lip
);
393 if (test_bit(XFS_LI_ABORTED
, &lip
->li_flags
)) {
394 xfs_efi_release(efdp
->efd_efip
);
395 xfs_efd_item_free(efdp
);
400 * When the efd item is committed to disk, all we need to do is delete our
401 * reference to our partner efi item and then free ourselves. Since we're
402 * freeing ourselves we must return -1 to keep the transaction code from further
403 * referencing this item.
406 xfs_efd_item_committed(
407 struct xfs_log_item
*lip
,
410 struct xfs_efd_log_item
*efdp
= EFD_ITEM(lip
);
413 * Drop the EFI reference regardless of whether the EFD has been
414 * aborted. Once the EFD transaction is constructed, it is the sole
415 * responsibility of the EFD to release the EFI (even if the EFI is
416 * aborted due to log I/O error).
418 xfs_efi_release(efdp
->efd_efip
);
419 xfs_efd_item_free(efdp
);
421 return (xfs_lsn_t
)-1;
425 * The EFD dependency tracking op doesn't do squat. It can't because
426 * it doesn't know where the free extent is coming from. The dependency
427 * tracking has to be handled by the "enclosing" metadata object. For
428 * example, for inodes, the inode is locked throughout the extent freeing
429 * so the dependency should be recorded there.
432 xfs_efd_item_committing(
433 struct xfs_log_item
*lip
,
439 * This is the ops vector shared by all efd log items.
441 static const struct xfs_item_ops xfs_efd_item_ops
= {
442 .iop_size
= xfs_efd_item_size
,
443 .iop_format
= xfs_efd_item_format
,
444 .iop_pin
= xfs_efd_item_pin
,
445 .iop_unpin
= xfs_efd_item_unpin
,
446 .iop_unlock
= xfs_efd_item_unlock
,
447 .iop_committed
= xfs_efd_item_committed
,
448 .iop_push
= xfs_efd_item_push
,
449 .iop_committing
= xfs_efd_item_committing
453 * Allocate and initialize an efd item with the given number of extents.
455 struct xfs_efd_log_item
*
457 struct xfs_mount
*mp
,
458 struct xfs_efi_log_item
*efip
,
462 struct xfs_efd_log_item
*efdp
;
465 ASSERT(nextents
> 0);
466 if (nextents
> XFS_EFD_MAX_FAST_EXTENTS
) {
467 size
= (uint
)(sizeof(xfs_efd_log_item_t
) +
468 ((nextents
- 1) * sizeof(xfs_extent_t
)));
469 efdp
= kmem_zalloc(size
, KM_SLEEP
);
471 efdp
= kmem_zone_zalloc(xfs_efd_zone
, KM_SLEEP
);
474 xfs_log_item_init(mp
, &efdp
->efd_item
, XFS_LI_EFD
, &xfs_efd_item_ops
);
475 efdp
->efd_efip
= efip
;
476 efdp
->efd_format
.efd_nextents
= nextents
;
477 efdp
->efd_format
.efd_efi_id
= efip
->efi_format
.efi_id
;
483 * Process an extent free intent item that was recovered from
484 * the log. We need to free the extents that it describes.
488 struct xfs_mount
*mp
,
489 struct xfs_efi_log_item
*efip
)
491 struct xfs_efd_log_item
*efdp
;
492 struct xfs_trans
*tp
;
496 xfs_fsblock_t startblock_fsb
;
497 struct xfs_owner_info oinfo
;
499 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
502 * First check the validity of the extents described by the
503 * EFI. If any are bad, then assume that all are bad and
506 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
507 extp
= &efip
->efi_format
.efi_extents
[i
];
508 startblock_fsb
= XFS_BB_TO_FSB(mp
,
509 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
510 if (startblock_fsb
== 0 ||
511 extp
->ext_len
== 0 ||
512 startblock_fsb
>= mp
->m_sb
.sb_dblocks
||
513 extp
->ext_len
>= mp
->m_sb
.sb_agblocks
) {
515 * This will pull the EFI from the AIL and
516 * free the memory associated with it.
518 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
519 xfs_efi_release(efip
);
524 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
527 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
529 xfs_rmap_any_owner_update(&oinfo
);
530 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
531 extp
= &efip
->efi_format
.efi_extents
[i
];
532 error
= xfs_trans_free_extent(tp
, efdp
, extp
->ext_start
,
533 extp
->ext_len
, &oinfo
, false);
539 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
540 error
= xfs_trans_commit(tp
);
544 xfs_trans_cancel(tp
);