1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_log_recover.h"
20 #include "xfs_inode.h"
21 #include "xfs_trace.h"
22 #include "xfs_fsops.h"
23 #include "xfs_cksum.h"
24 #include "xfs_sysfs.h"
27 kmem_zone_t
*xfs_log_ticket_zone
;
29 /* Local miscellaneous function prototypes */
33 struct xlog_ticket
*ticket
,
34 struct xlog_in_core
**iclog
,
35 xfs_lsn_t
*commitlsnp
);
40 struct xfs_buftarg
*log_target
,
41 xfs_daddr_t blk_offset
,
50 struct xlog_in_core
*iclog
);
55 /* local state machine functions */
56 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
58 xlog_state_do_callback(
61 struct xlog_in_core
*iclog
);
63 xlog_state_get_iclog_space(
66 struct xlog_in_core
**iclog
,
67 struct xlog_ticket
*ticket
,
71 xlog_state_release_iclog(
73 struct xlog_in_core
*iclog
);
75 xlog_state_switch_iclogs(
77 struct xlog_in_core
*iclog
,
82 struct xlog_in_core
*iclog
);
89 xlog_regrant_reserve_log_space(
91 struct xlog_ticket
*ticket
);
93 xlog_ungrant_log_space(
95 struct xlog_ticket
*ticket
);
103 xlog_verify_grant_tail(
108 struct xlog_in_core
*iclog
,
112 xlog_verify_tail_lsn(
114 struct xlog_in_core
*iclog
,
117 #define xlog_verify_dest_ptr(a,b)
118 #define xlog_verify_grant_tail(a)
119 #define xlog_verify_iclog(a,b,c,d)
120 #define xlog_verify_tail_lsn(a,b,c)
128 xlog_grant_sub_space(
133 int64_t head_val
= atomic64_read(head
);
139 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
143 space
+= log
->l_logsize
;
148 new = xlog_assign_grant_head_val(cycle
, space
);
149 head_val
= atomic64_cmpxchg(head
, old
, new);
150 } while (head_val
!= old
);
154 xlog_grant_add_space(
159 int64_t head_val
= atomic64_read(head
);
166 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
168 tmp
= log
->l_logsize
- space
;
177 new = xlog_assign_grant_head_val(cycle
, space
);
178 head_val
= atomic64_cmpxchg(head
, old
, new);
179 } while (head_val
!= old
);
183 xlog_grant_head_init(
184 struct xlog_grant_head
*head
)
186 xlog_assign_grant_head(&head
->grant
, 1, 0);
187 INIT_LIST_HEAD(&head
->waiters
);
188 spin_lock_init(&head
->lock
);
192 xlog_grant_head_wake_all(
193 struct xlog_grant_head
*head
)
195 struct xlog_ticket
*tic
;
197 spin_lock(&head
->lock
);
198 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
199 wake_up_process(tic
->t_task
);
200 spin_unlock(&head
->lock
);
204 xlog_ticket_reservation(
206 struct xlog_grant_head
*head
,
207 struct xlog_ticket
*tic
)
209 if (head
== &log
->l_write_head
) {
210 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
211 return tic
->t_unit_res
;
213 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
214 return tic
->t_unit_res
* tic
->t_cnt
;
216 return tic
->t_unit_res
;
221 xlog_grant_head_wake(
223 struct xlog_grant_head
*head
,
226 struct xlog_ticket
*tic
;
229 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
230 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
231 if (*free_bytes
< need_bytes
)
234 *free_bytes
-= need_bytes
;
235 trace_xfs_log_grant_wake_up(log
, tic
);
236 wake_up_process(tic
->t_task
);
243 xlog_grant_head_wait(
245 struct xlog_grant_head
*head
,
246 struct xlog_ticket
*tic
,
247 int need_bytes
) __releases(&head
->lock
)
248 __acquires(&head
->lock
)
250 list_add_tail(&tic
->t_queue
, &head
->waiters
);
253 if (XLOG_FORCED_SHUTDOWN(log
))
255 xlog_grant_push_ail(log
, need_bytes
);
257 __set_current_state(TASK_UNINTERRUPTIBLE
);
258 spin_unlock(&head
->lock
);
260 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
262 trace_xfs_log_grant_sleep(log
, tic
);
264 trace_xfs_log_grant_wake(log
, tic
);
266 spin_lock(&head
->lock
);
267 if (XLOG_FORCED_SHUTDOWN(log
))
269 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
271 list_del_init(&tic
->t_queue
);
274 list_del_init(&tic
->t_queue
);
279 * Atomically get the log space required for a log ticket.
281 * Once a ticket gets put onto head->waiters, it will only return after the
282 * needed reservation is satisfied.
284 * This function is structured so that it has a lock free fast path. This is
285 * necessary because every new transaction reservation will come through this
286 * path. Hence any lock will be globally hot if we take it unconditionally on
289 * As tickets are only ever moved on and off head->waiters under head->lock, we
290 * only need to take that lock if we are going to add the ticket to the queue
291 * and sleep. We can avoid taking the lock if the ticket was never added to
292 * head->waiters because the t_queue list head will be empty and we hold the
293 * only reference to it so it can safely be checked unlocked.
296 xlog_grant_head_check(
298 struct xlog_grant_head
*head
,
299 struct xlog_ticket
*tic
,
305 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
308 * If there are other waiters on the queue then give them a chance at
309 * logspace before us. Wake up the first waiters, if we do not wake
310 * up all the waiters then go to sleep waiting for more free space,
311 * otherwise try to get some space for this transaction.
313 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
314 free_bytes
= xlog_space_left(log
, &head
->grant
);
315 if (!list_empty_careful(&head
->waiters
)) {
316 spin_lock(&head
->lock
);
317 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
318 free_bytes
< *need_bytes
) {
319 error
= xlog_grant_head_wait(log
, head
, tic
,
322 spin_unlock(&head
->lock
);
323 } else if (free_bytes
< *need_bytes
) {
324 spin_lock(&head
->lock
);
325 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
326 spin_unlock(&head
->lock
);
333 xlog_tic_reset_res(xlog_ticket_t
*tic
)
336 tic
->t_res_arr_sum
= 0;
337 tic
->t_res_num_ophdrs
= 0;
341 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
343 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
344 /* add to overflow and start again */
345 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
347 tic
->t_res_arr_sum
= 0;
350 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
351 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
352 tic
->t_res_arr_sum
+= len
;
357 * Replenish the byte reservation required by moving the grant write head.
361 struct xfs_mount
*mp
,
362 struct xlog_ticket
*tic
)
364 struct xlog
*log
= mp
->m_log
;
368 if (XLOG_FORCED_SHUTDOWN(log
))
371 XFS_STATS_INC(mp
, xs_try_logspace
);
374 * This is a new transaction on the ticket, so we need to change the
375 * transaction ID so that the next transaction has a different TID in
376 * the log. Just add one to the existing tid so that we can see chains
377 * of rolling transactions in the log easily.
381 xlog_grant_push_ail(log
, tic
->t_unit_res
);
383 tic
->t_curr_res
= tic
->t_unit_res
;
384 xlog_tic_reset_res(tic
);
389 trace_xfs_log_regrant(log
, tic
);
391 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
396 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
397 trace_xfs_log_regrant_exit(log
, tic
);
398 xlog_verify_grant_tail(log
);
403 * If we are failing, make sure the ticket doesn't have any current
404 * reservations. We don't want to add this back when the ticket/
405 * transaction gets cancelled.
408 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
413 * Reserve log space and return a ticket corresponding to the reservation.
415 * Each reservation is going to reserve extra space for a log record header.
416 * When writes happen to the on-disk log, we don't subtract the length of the
417 * log record header from any reservation. By wasting space in each
418 * reservation, we prevent over allocation problems.
422 struct xfs_mount
*mp
,
425 struct xlog_ticket
**ticp
,
429 struct xlog
*log
= mp
->m_log
;
430 struct xlog_ticket
*tic
;
434 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
436 if (XLOG_FORCED_SHUTDOWN(log
))
439 XFS_STATS_INC(mp
, xs_try_logspace
);
441 ASSERT(*ticp
== NULL
);
442 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
443 KM_SLEEP
| KM_MAYFAIL
);
449 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
452 trace_xfs_log_reserve(log
, tic
);
454 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
459 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
460 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
461 trace_xfs_log_reserve_exit(log
, tic
);
462 xlog_verify_grant_tail(log
);
467 * If we are failing, make sure the ticket doesn't have any current
468 * reservations. We don't want to add this back when the ticket/
469 * transaction gets cancelled.
472 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
480 * 1. currblock field gets updated at startup and after in-core logs
481 * marked as with WANT_SYNC.
485 * This routine is called when a user of a log manager ticket is done with
486 * the reservation. If the ticket was ever used, then a commit record for
487 * the associated transaction is written out as a log operation header with
488 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
489 * a given ticket. If the ticket was one with a permanent reservation, then
490 * a few operations are done differently. Permanent reservation tickets by
491 * default don't release the reservation. They just commit the current
492 * transaction with the belief that the reservation is still needed. A flag
493 * must be passed in before permanent reservations are actually released.
494 * When these type of tickets are not released, they need to be set into
495 * the inited state again. By doing this, a start record will be written
496 * out when the next write occurs.
500 struct xfs_mount
*mp
,
501 struct xlog_ticket
*ticket
,
502 struct xlog_in_core
**iclog
,
505 struct xlog
*log
= mp
->m_log
;
508 if (XLOG_FORCED_SHUTDOWN(log
) ||
510 * If nothing was ever written, don't write out commit record.
511 * If we get an error, just continue and give back the log ticket.
513 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
514 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
515 lsn
= (xfs_lsn_t
) -1;
521 trace_xfs_log_done_nonperm(log
, ticket
);
524 * Release ticket if not permanent reservation or a specific
525 * request has been made to release a permanent reservation.
527 xlog_ungrant_log_space(log
, ticket
);
529 trace_xfs_log_done_perm(log
, ticket
);
531 xlog_regrant_reserve_log_space(log
, ticket
);
532 /* If this ticket was a permanent reservation and we aren't
533 * trying to release it, reset the inited flags; so next time
534 * we write, a start record will be written out.
536 ticket
->t_flags
|= XLOG_TIC_INITED
;
539 xfs_log_ticket_put(ticket
);
544 * Attaches a new iclog I/O completion callback routine during
545 * transaction commit. If the log is in error state, a non-zero
546 * return code is handed back and the caller is responsible for
547 * executing the callback at an appropriate time.
551 struct xlog_in_core
*iclog
,
552 xfs_log_callback_t
*cb
)
556 spin_lock(&iclog
->ic_callback_lock
);
557 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
559 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
560 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
562 *(iclog
->ic_callback_tail
) = cb
;
563 iclog
->ic_callback_tail
= &(cb
->cb_next
);
565 spin_unlock(&iclog
->ic_callback_lock
);
570 xfs_log_release_iclog(
571 struct xfs_mount
*mp
,
572 struct xlog_in_core
*iclog
)
574 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
575 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
583 * Mount a log filesystem
585 * mp - ubiquitous xfs mount point structure
586 * log_target - buftarg of on-disk log device
587 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
588 * num_bblocks - Number of BBSIZE blocks in on-disk log
590 * Return error or zero.
595 xfs_buftarg_t
*log_target
,
596 xfs_daddr_t blk_offset
,
599 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
603 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
604 xfs_notice(mp
, "Mounting V%d Filesystem",
605 XFS_SB_VERSION_NUM(&mp
->m_sb
));
608 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
609 XFS_SB_VERSION_NUM(&mp
->m_sb
));
610 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
613 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
614 if (IS_ERR(mp
->m_log
)) {
615 error
= PTR_ERR(mp
->m_log
);
620 * Validate the given log space and drop a critical message via syslog
621 * if the log size is too small that would lead to some unexpected
622 * situations in transaction log space reservation stage.
624 * Note: we can't just reject the mount if the validation fails. This
625 * would mean that people would have to downgrade their kernel just to
626 * remedy the situation as there is no way to grow the log (short of
627 * black magic surgery with xfs_db).
629 * We can, however, reject mounts for CRC format filesystems, as the
630 * mkfs binary being used to make the filesystem should never create a
631 * filesystem with a log that is too small.
633 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
635 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
637 "Log size %d blocks too small, minimum size is %d blocks",
638 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
640 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
642 "Log size %d blocks too large, maximum size is %lld blocks",
643 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
645 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
647 "log size %lld bytes too large, maximum size is %lld bytes",
648 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
651 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
652 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
654 "log stripe unit %u bytes must be a multiple of block size",
655 mp
->m_sb
.sb_logsunit
);
661 * Log check errors are always fatal on v5; or whenever bad
662 * metadata leads to a crash.
665 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
669 xfs_crit(mp
, "Log size out of supported range.");
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
675 * Initialize the AIL now we have a log.
677 error
= xfs_trans_ail_init(mp
);
679 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
682 mp
->m_log
->l_ailp
= mp
->m_ail
;
685 * skip log recovery on a norecovery mount. pretend it all
688 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
689 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
692 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
694 error
= xlog_recover(mp
->m_log
);
697 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
699 xfs_warn(mp
, "log mount/recovery failed: error %d",
701 xlog_recover_cancel(mp
->m_log
);
702 goto out_destroy_ail
;
706 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
709 goto out_destroy_ail
;
711 /* Normal transactions can now occur */
712 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
719 xlog_cil_init_post_recovery(mp
->m_log
);
724 xfs_trans_ail_destroy(mp
);
726 xlog_dealloc_log(mp
->m_log
);
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
742 xfs_log_mount_finish(
743 struct xfs_mount
*mp
)
746 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
747 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
749 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
750 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
752 } else if (readonly
) {
753 /* Allow unlinked processing to proceed */
754 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
758 * During the second phase of log recovery, we need iget and
759 * iput to behave like they do for an active filesystem.
760 * xfs_fs_drop_inode needs to be able to prevent the deletion
761 * of inodes before we're done replaying log items on those
762 * inodes. Turn it off immediately after recovery finishes
763 * so that we don't leak the quota inodes if subsequent mount
766 * We let all inodes involved in redo item processing end up on
767 * the LRU instead of being evicted immediately so that if we do
768 * something to an unlinked inode, the irele won't cause
769 * premature truncation and freeing of the inode, which results
770 * in log recovery failure. We have to evict the unreferenced
771 * lru inodes after clearing SB_ACTIVE because we don't
772 * otherwise clean up the lru if there's a subsequent failure in
773 * xfs_mountfs, which leads to us leaking the inodes if nothing
774 * else (e.g. quotacheck) references the inodes before the
775 * mount failure occurs.
777 mp
->m_super
->s_flags
|= SB_ACTIVE
;
778 error
= xlog_recover_finish(mp
->m_log
);
780 xfs_log_work_queue(mp
);
781 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
782 evict_inodes(mp
->m_super
);
785 * Drain the buffer LRU after log recovery. This is required for v4
786 * filesystems to avoid leaving around buffers with NULL verifier ops,
787 * but we do it unconditionally to make sure we're always in a clean
788 * cache state after mount.
790 * Don't push in the error case because the AIL may have pending intents
791 * that aren't removed until recovery is cancelled.
793 if (!error
&& recovered
) {
794 xfs_log_force(mp
, XFS_LOG_SYNC
);
795 xfs_ail_push_all_sync(mp
->m_ail
);
797 xfs_wait_buftarg(mp
->m_ddev_targp
);
800 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
806 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
810 xfs_log_mount_cancel(
811 struct xfs_mount
*mp
)
815 error
= xlog_recover_cancel(mp
->m_log
);
822 * Final log writes as part of unmount.
824 * Mark the filesystem clean as unmount happens. Note that during relocation
825 * this routine needs to be executed as part of source-bag while the
826 * deallocation must not be done until source-end.
829 /* Actually write the unmount record to disk. */
831 xfs_log_write_unmount_record(
832 struct xfs_mount
*mp
)
834 /* the data section must be 32 bit size aligned */
835 struct xfs_unmount_log_format magic
= {
836 .magic
= XLOG_UNMOUNT_TYPE
,
838 struct xfs_log_iovec reg
= {
840 .i_len
= sizeof(magic
),
841 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
843 struct xfs_log_vec vec
= {
847 struct xlog
*log
= mp
->m_log
;
848 struct xlog_in_core
*iclog
;
849 struct xlog_ticket
*tic
= NULL
;
851 uint flags
= XLOG_UNMOUNT_TRANS
;
854 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
859 * If we think the summary counters are bad, clear the unmount header
860 * flag in the unmount record so that the summary counters will be
861 * recalculated during log recovery at next mount. Refer to
862 * xlog_check_unmount_rec for more details.
864 if (XFS_TEST_ERROR((mp
->m_flags
& XFS_MOUNT_BAD_SUMMARY
), mp
,
865 XFS_ERRTAG_FORCE_SUMMARY_RECALC
)) {
866 xfs_alert(mp
, "%s: will fix summary counters at next mount",
868 flags
&= ~XLOG_UNMOUNT_TRANS
;
871 /* remove inited flag, and account for space used */
873 tic
->t_curr_res
-= sizeof(magic
);
874 error
= xlog_write(log
, &vec
, tic
, &lsn
, NULL
, flags
);
876 * At this point, we're umounting anyway, so there's no point in
877 * transitioning log state to IOERROR. Just continue...
881 xfs_alert(mp
, "%s: unmount record failed", __func__
);
883 spin_lock(&log
->l_icloglock
);
884 iclog
= log
->l_iclog
;
885 atomic_inc(&iclog
->ic_refcnt
);
886 xlog_state_want_sync(log
, iclog
);
887 spin_unlock(&log
->l_icloglock
);
888 error
= xlog_state_release_iclog(log
, iclog
);
890 spin_lock(&log
->l_icloglock
);
891 switch (iclog
->ic_state
) {
893 if (!XLOG_FORCED_SHUTDOWN(log
)) {
894 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
898 case XLOG_STATE_ACTIVE
:
899 case XLOG_STATE_DIRTY
:
900 spin_unlock(&log
->l_icloglock
);
905 trace_xfs_log_umount_write(log
, tic
);
906 xlog_ungrant_log_space(log
, tic
);
907 xfs_log_ticket_put(tic
);
912 * Unmount record used to have a string "Unmount filesystem--" in the
913 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
914 * We just write the magic number now since that particular field isn't
915 * currently architecture converted and "Unmount" is a bit foo.
916 * As far as I know, there weren't any dependencies on the old behaviour.
920 xfs_log_unmount_write(xfs_mount_t
*mp
)
922 struct xlog
*log
= mp
->m_log
;
923 xlog_in_core_t
*iclog
;
925 xlog_in_core_t
*first_iclog
;
930 * Don't write out unmount record on norecovery mounts or ro devices.
931 * Or, if we are doing a forced umount (typically because of IO errors).
933 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
934 xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
935 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
939 error
= xfs_log_force(mp
, XFS_LOG_SYNC
);
940 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
943 first_iclog
= iclog
= log
->l_iclog
;
945 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
946 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
947 ASSERT(iclog
->ic_offset
== 0);
949 iclog
= iclog
->ic_next
;
950 } while (iclog
!= first_iclog
);
952 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
953 xfs_log_write_unmount_record(mp
);
956 * We're already in forced_shutdown mode, couldn't
957 * even attempt to write out the unmount transaction.
959 * Go through the motions of sync'ing and releasing
960 * the iclog, even though no I/O will actually happen,
961 * we need to wait for other log I/Os that may already
962 * be in progress. Do this as a separate section of
963 * code so we'll know if we ever get stuck here that
964 * we're in this odd situation of trying to unmount
965 * a file system that went into forced_shutdown as
966 * the result of an unmount..
968 spin_lock(&log
->l_icloglock
);
969 iclog
= log
->l_iclog
;
970 atomic_inc(&iclog
->ic_refcnt
);
972 xlog_state_want_sync(log
, iclog
);
973 spin_unlock(&log
->l_icloglock
);
974 error
= xlog_state_release_iclog(log
, iclog
);
976 spin_lock(&log
->l_icloglock
);
978 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
979 || iclog
->ic_state
== XLOG_STATE_DIRTY
980 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
982 xlog_wait(&iclog
->ic_force_wait
,
985 spin_unlock(&log
->l_icloglock
);
990 } /* xfs_log_unmount_write */
993 * Empty the log for unmount/freeze.
995 * To do this, we first need to shut down the background log work so it is not
996 * trying to cover the log as we clean up. We then need to unpin all objects in
997 * the log so we can then flush them out. Once they have completed their IO and
998 * run the callbacks removing themselves from the AIL, we can write the unmount
1003 struct xfs_mount
*mp
)
1005 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
1006 xfs_log_force(mp
, XFS_LOG_SYNC
);
1009 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1010 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1011 * xfs_buf_iowait() cannot be used because it was pushed with the
1012 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1013 * the IO to complete.
1015 xfs_ail_push_all_sync(mp
->m_ail
);
1016 xfs_wait_buftarg(mp
->m_ddev_targp
);
1017 xfs_buf_lock(mp
->m_sb_bp
);
1018 xfs_buf_unlock(mp
->m_sb_bp
);
1020 xfs_log_unmount_write(mp
);
1024 * Shut down and release the AIL and Log.
1026 * During unmount, we need to ensure we flush all the dirty metadata objects
1027 * from the AIL so that the log is empty before we write the unmount record to
1028 * the log. Once this is done, we can tear down the AIL and the log.
1032 struct xfs_mount
*mp
)
1034 xfs_log_quiesce(mp
);
1036 xfs_trans_ail_destroy(mp
);
1038 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1040 xlog_dealloc_log(mp
->m_log
);
1045 struct xfs_mount
*mp
,
1046 struct xfs_log_item
*item
,
1048 const struct xfs_item_ops
*ops
)
1050 item
->li_mountp
= mp
;
1051 item
->li_ailp
= mp
->m_ail
;
1052 item
->li_type
= type
;
1056 INIT_LIST_HEAD(&item
->li_ail
);
1057 INIT_LIST_HEAD(&item
->li_cil
);
1058 INIT_LIST_HEAD(&item
->li_bio_list
);
1059 INIT_LIST_HEAD(&item
->li_trans
);
1063 * Wake up processes waiting for log space after we have moved the log tail.
1067 struct xfs_mount
*mp
)
1069 struct xlog
*log
= mp
->m_log
;
1072 if (XLOG_FORCED_SHUTDOWN(log
))
1075 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1076 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1078 spin_lock(&log
->l_write_head
.lock
);
1079 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1080 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1081 spin_unlock(&log
->l_write_head
.lock
);
1084 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1085 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1087 spin_lock(&log
->l_reserve_head
.lock
);
1088 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1089 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1090 spin_unlock(&log
->l_reserve_head
.lock
);
1095 * Determine if we have a transaction that has gone to disk that needs to be
1096 * covered. To begin the transition to the idle state firstly the log needs to
1097 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1098 * we start attempting to cover the log.
1100 * Only if we are then in a state where covering is needed, the caller is
1101 * informed that dummy transactions are required to move the log into the idle
1104 * If there are any items in the AIl or CIL, then we do not want to attempt to
1105 * cover the log as we may be in a situation where there isn't log space
1106 * available to run a dummy transaction and this can lead to deadlocks when the
1107 * tail of the log is pinned by an item that is modified in the CIL. Hence
1108 * there's no point in running a dummy transaction at this point because we
1109 * can't start trying to idle the log until both the CIL and AIL are empty.
1112 xfs_log_need_covered(xfs_mount_t
*mp
)
1114 struct xlog
*log
= mp
->m_log
;
1117 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1120 if (!xlog_cil_empty(log
))
1123 spin_lock(&log
->l_icloglock
);
1124 switch (log
->l_covered_state
) {
1125 case XLOG_STATE_COVER_DONE
:
1126 case XLOG_STATE_COVER_DONE2
:
1127 case XLOG_STATE_COVER_IDLE
:
1129 case XLOG_STATE_COVER_NEED
:
1130 case XLOG_STATE_COVER_NEED2
:
1131 if (xfs_ail_min_lsn(log
->l_ailp
))
1133 if (!xlog_iclogs_empty(log
))
1137 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1138 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1140 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1146 spin_unlock(&log
->l_icloglock
);
1151 * We may be holding the log iclog lock upon entering this routine.
1154 xlog_assign_tail_lsn_locked(
1155 struct xfs_mount
*mp
)
1157 struct xlog
*log
= mp
->m_log
;
1158 struct xfs_log_item
*lip
;
1161 assert_spin_locked(&mp
->m_ail
->ail_lock
);
1164 * To make sure we always have a valid LSN for the log tail we keep
1165 * track of the last LSN which was committed in log->l_last_sync_lsn,
1166 * and use that when the AIL was empty.
1168 lip
= xfs_ail_min(mp
->m_ail
);
1170 tail_lsn
= lip
->li_lsn
;
1172 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1173 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1174 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1179 xlog_assign_tail_lsn(
1180 struct xfs_mount
*mp
)
1184 spin_lock(&mp
->m_ail
->ail_lock
);
1185 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1186 spin_unlock(&mp
->m_ail
->ail_lock
);
1192 * Return the space in the log between the tail and the head. The head
1193 * is passed in the cycle/bytes formal parms. In the special case where
1194 * the reserve head has wrapped passed the tail, this calculation is no
1195 * longer valid. In this case, just return 0 which means there is no space
1196 * in the log. This works for all places where this function is called
1197 * with the reserve head. Of course, if the write head were to ever
1198 * wrap the tail, we should blow up. Rather than catch this case here,
1199 * we depend on other ASSERTions in other parts of the code. XXXmiken
1201 * This code also handles the case where the reservation head is behind
1202 * the tail. The details of this case are described below, but the end
1203 * result is that we return the size of the log as the amount of space left.
1216 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1217 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1218 tail_bytes
= BBTOB(tail_bytes
);
1219 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1220 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1221 else if (tail_cycle
+ 1 < head_cycle
)
1223 else if (tail_cycle
< head_cycle
) {
1224 ASSERT(tail_cycle
== (head_cycle
- 1));
1225 free_bytes
= tail_bytes
- head_bytes
;
1228 * The reservation head is behind the tail.
1229 * In this case we just want to return the size of the
1230 * log as the amount of space left.
1232 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1233 xfs_alert(log
->l_mp
,
1234 " tail_cycle = %d, tail_bytes = %d",
1235 tail_cycle
, tail_bytes
);
1236 xfs_alert(log
->l_mp
,
1237 " GH cycle = %d, GH bytes = %d",
1238 head_cycle
, head_bytes
);
1240 free_bytes
= log
->l_logsize
;
1247 * Log function which is called when an io completes.
1249 * The log manager needs its own routine, in order to control what
1250 * happens with the buffer after the write completes.
1253 xlog_iodone(xfs_buf_t
*bp
)
1255 struct xlog_in_core
*iclog
= bp
->b_log_item
;
1256 struct xlog
*l
= iclog
->ic_log
;
1260 * Race to shutdown the filesystem if we see an error or the iclog is in
1261 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1262 * CRC errors into log recovery.
1264 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
) ||
1265 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1266 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1267 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1269 xfs_buf_ioerror_alert(bp
, __func__
);
1271 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1273 * This flag will be propagated to the trans-committed
1274 * callback routines to let them know that the log-commit
1277 aborted
= XFS_LI_ABORTED
;
1278 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1279 aborted
= XFS_LI_ABORTED
;
1282 /* log I/O is always issued ASYNC */
1283 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1284 xlog_state_done_syncing(iclog
, aborted
);
1287 * drop the buffer lock now that we are done. Nothing references
1288 * the buffer after this, so an unmount waiting on this lock can now
1289 * tear it down safely. As such, it is unsafe to reference the buffer
1290 * (bp) after the unlock as we could race with it being freed.
1296 * Return size of each in-core log record buffer.
1298 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1300 * If the filesystem blocksize is too large, we may need to choose a
1301 * larger size since the directory code currently logs entire blocks.
1305 xlog_get_iclog_buffer_size(
1306 struct xfs_mount
*mp
,
1312 if (mp
->m_logbufs
<= 0)
1313 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1315 log
->l_iclog_bufs
= mp
->m_logbufs
;
1318 * Buffer size passed in from mount system call.
1320 if (mp
->m_logbsize
> 0) {
1321 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1322 log
->l_iclog_size_log
= 0;
1324 log
->l_iclog_size_log
++;
1328 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1329 /* # headers = size / 32k
1330 * one header holds cycles from 32k of data
1333 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1334 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1336 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1337 log
->l_iclog_heads
= xhdrs
;
1339 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1340 log
->l_iclog_hsize
= BBSIZE
;
1341 log
->l_iclog_heads
= 1;
1346 /* All machines use 32kB buffers by default. */
1347 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1348 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1350 /* the default log size is 16k or 32k which is one header sector */
1351 log
->l_iclog_hsize
= BBSIZE
;
1352 log
->l_iclog_heads
= 1;
1355 /* are we being asked to make the sizes selected above visible? */
1356 if (mp
->m_logbufs
== 0)
1357 mp
->m_logbufs
= log
->l_iclog_bufs
;
1358 if (mp
->m_logbsize
== 0)
1359 mp
->m_logbsize
= log
->l_iclog_size
;
1360 } /* xlog_get_iclog_buffer_size */
1365 struct xfs_mount
*mp
)
1367 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1368 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1372 * Every sync period we need to unpin all items in the AIL and push them to
1373 * disk. If there is nothing dirty, then we might need to cover the log to
1374 * indicate that the filesystem is idle.
1378 struct work_struct
*work
)
1380 struct xlog
*log
= container_of(to_delayed_work(work
),
1381 struct xlog
, l_work
);
1382 struct xfs_mount
*mp
= log
->l_mp
;
1384 /* dgc: errors ignored - not fatal and nowhere to report them */
1385 if (xfs_log_need_covered(mp
)) {
1387 * Dump a transaction into the log that contains no real change.
1388 * This is needed to stamp the current tail LSN into the log
1389 * during the covering operation.
1391 * We cannot use an inode here for this - that will push dirty
1392 * state back up into the VFS and then periodic inode flushing
1393 * will prevent log covering from making progress. Hence we
1394 * synchronously log the superblock instead to ensure the
1395 * superblock is immediately unpinned and can be written back.
1397 xfs_sync_sb(mp
, true);
1399 xfs_log_force(mp
, 0);
1401 /* start pushing all the metadata that is currently dirty */
1402 xfs_ail_push_all(mp
->m_ail
);
1404 /* queue us up again */
1405 xfs_log_work_queue(mp
);
1409 * This routine initializes some of the log structure for a given mount point.
1410 * Its primary purpose is to fill in enough, so recovery can occur. However,
1411 * some other stuff may be filled in too.
1413 STATIC
struct xlog
*
1415 struct xfs_mount
*mp
,
1416 struct xfs_buftarg
*log_target
,
1417 xfs_daddr_t blk_offset
,
1421 xlog_rec_header_t
*head
;
1422 xlog_in_core_t
**iclogp
;
1423 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1426 int error
= -ENOMEM
;
1429 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1431 xfs_warn(mp
, "Log allocation failed: No memory!");
1436 log
->l_targ
= log_target
;
1437 log
->l_logsize
= BBTOB(num_bblks
);
1438 log
->l_logBBstart
= blk_offset
;
1439 log
->l_logBBsize
= num_bblks
;
1440 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1441 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1442 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1444 log
->l_prev_block
= -1;
1445 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1446 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1447 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1448 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1450 xlog_grant_head_init(&log
->l_reserve_head
);
1451 xlog_grant_head_init(&log
->l_write_head
);
1453 error
= -EFSCORRUPTED
;
1454 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1455 log2_size
= mp
->m_sb
.sb_logsectlog
;
1456 if (log2_size
< BBSHIFT
) {
1457 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1458 log2_size
, BBSHIFT
);
1462 log2_size
-= BBSHIFT
;
1463 if (log2_size
> mp
->m_sectbb_log
) {
1464 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1465 log2_size
, mp
->m_sectbb_log
);
1469 /* for larger sector sizes, must have v2 or external log */
1470 if (log2_size
&& log
->l_logBBstart
> 0 &&
1471 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1473 "log sector size (0x%x) invalid for configuration.",
1478 log
->l_sectBBsize
= 1 << log2_size
;
1480 xlog_get_iclog_buffer_size(mp
, log
);
1483 * Use a NULL block for the extra log buffer used during splits so that
1484 * it will trigger errors if we ever try to do IO on it without first
1485 * having set it up properly.
1488 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1489 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1494 * The iclogbuf buffer locks are held over IO but we are not going to do
1495 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1496 * when appropriately.
1498 ASSERT(xfs_buf_islocked(bp
));
1501 /* use high priority wq for log I/O completion */
1502 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1503 bp
->b_iodone
= xlog_iodone
;
1506 spin_lock_init(&log
->l_icloglock
);
1507 init_waitqueue_head(&log
->l_flush_wait
);
1509 iclogp
= &log
->l_iclog
;
1511 * The amount of memory to allocate for the iclog structure is
1512 * rather funky due to the way the structure is defined. It is
1513 * done this way so that we can use different sizes for machines
1514 * with different amounts of memory. See the definition of
1515 * xlog_in_core_t in xfs_log_priv.h for details.
1517 ASSERT(log
->l_iclog_size
>= 4096);
1518 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1519 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1521 goto out_free_iclog
;
1524 iclog
->ic_prev
= prev_iclog
;
1527 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1528 BTOBB(log
->l_iclog_size
),
1531 goto out_free_iclog
;
1533 ASSERT(xfs_buf_islocked(bp
));
1536 /* use high priority wq for log I/O completion */
1537 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1538 bp
->b_iodone
= xlog_iodone
;
1540 iclog
->ic_data
= bp
->b_addr
;
1542 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1544 head
= &iclog
->ic_header
;
1545 memset(head
, 0, sizeof(xlog_rec_header_t
));
1546 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1547 head
->h_version
= cpu_to_be32(
1548 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1549 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1551 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1552 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1554 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1555 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1556 iclog
->ic_log
= log
;
1557 atomic_set(&iclog
->ic_refcnt
, 0);
1558 spin_lock_init(&iclog
->ic_callback_lock
);
1559 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1560 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1562 init_waitqueue_head(&iclog
->ic_force_wait
);
1563 init_waitqueue_head(&iclog
->ic_write_wait
);
1565 iclogp
= &iclog
->ic_next
;
1567 *iclogp
= log
->l_iclog
; /* complete ring */
1568 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1570 error
= xlog_cil_init(log
);
1572 goto out_free_iclog
;
1576 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1577 prev_iclog
= iclog
->ic_next
;
1579 xfs_buf_free(iclog
->ic_bp
);
1582 spinlock_destroy(&log
->l_icloglock
);
1583 xfs_buf_free(log
->l_xbuf
);
1587 return ERR_PTR(error
);
1588 } /* xlog_alloc_log */
1592 * Write out the commit record of a transaction associated with the given
1593 * ticket. Return the lsn of the commit record.
1598 struct xlog_ticket
*ticket
,
1599 struct xlog_in_core
**iclog
,
1600 xfs_lsn_t
*commitlsnp
)
1602 struct xfs_mount
*mp
= log
->l_mp
;
1604 struct xfs_log_iovec reg
= {
1607 .i_type
= XLOG_REG_TYPE_COMMIT
,
1609 struct xfs_log_vec vec
= {
1614 ASSERT_ALWAYS(iclog
);
1615 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1618 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1623 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1624 * log space. This code pushes on the lsn which would supposedly free up
1625 * the 25% which we want to leave free. We may need to adopt a policy which
1626 * pushes on an lsn which is further along in the log once we reach the high
1627 * water mark. In this manner, we would be creating a low water mark.
1630 xlog_grant_push_ail(
1634 xfs_lsn_t threshold_lsn
= 0;
1635 xfs_lsn_t last_sync_lsn
;
1638 int threshold_block
;
1639 int threshold_cycle
;
1642 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1644 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1645 free_blocks
= BTOBBT(free_bytes
);
1648 * Set the threshold for the minimum number of free blocks in the
1649 * log to the maximum of what the caller needs, one quarter of the
1650 * log, and 256 blocks.
1652 free_threshold
= BTOBB(need_bytes
);
1653 free_threshold
= max(free_threshold
, (log
->l_logBBsize
>> 2));
1654 free_threshold
= max(free_threshold
, 256);
1655 if (free_blocks
>= free_threshold
)
1658 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1660 threshold_block
+= free_threshold
;
1661 if (threshold_block
>= log
->l_logBBsize
) {
1662 threshold_block
-= log
->l_logBBsize
;
1663 threshold_cycle
+= 1;
1665 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1668 * Don't pass in an lsn greater than the lsn of the last
1669 * log record known to be on disk. Use a snapshot of the last sync lsn
1670 * so that it doesn't change between the compare and the set.
1672 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1673 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1674 threshold_lsn
= last_sync_lsn
;
1677 * Get the transaction layer to kick the dirty buffers out to
1678 * disk asynchronously. No point in trying to do this if
1679 * the filesystem is shutting down.
1681 if (!XLOG_FORCED_SHUTDOWN(log
))
1682 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1686 * Stamp cycle number in every block
1691 struct xlog_in_core
*iclog
,
1695 int size
= iclog
->ic_offset
+ roundoff
;
1699 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1701 dp
= iclog
->ic_datap
;
1702 for (i
= 0; i
< BTOBB(size
); i
++) {
1703 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1705 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1706 *(__be32
*)dp
= cycle_lsn
;
1710 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1711 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1713 for ( ; i
< BTOBB(size
); i
++) {
1714 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1715 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1716 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1717 *(__be32
*)dp
= cycle_lsn
;
1721 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1722 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1727 * Calculate the checksum for a log buffer.
1729 * This is a little more complicated than it should be because the various
1730 * headers and the actual data are non-contiguous.
1735 struct xlog_rec_header
*rhead
,
1741 /* first generate the crc for the record header ... */
1742 crc
= xfs_start_cksum_update((char *)rhead
,
1743 sizeof(struct xlog_rec_header
),
1744 offsetof(struct xlog_rec_header
, h_crc
));
1746 /* ... then for additional cycle data for v2 logs ... */
1747 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1748 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1752 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1753 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1756 for (i
= 1; i
< xheads
; i
++) {
1757 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1758 sizeof(struct xlog_rec_ext_header
));
1762 /* ... and finally for the payload */
1763 crc
= crc32c(crc
, dp
, size
);
1765 return xfs_end_cksum(crc
);
1769 * The bdstrat callback function for log bufs. This gives us a central
1770 * place to trap bufs in case we get hit by a log I/O error and need to
1771 * shutdown. Actually, in practice, even when we didn't get a log error,
1772 * we transition the iclogs to IOERROR state *after* flushing all existing
1773 * iclogs to disk. This is because we don't want anymore new transactions to be
1774 * started or completed afterwards.
1776 * We lock the iclogbufs here so that we can serialise against IO completion
1777 * during unmount. We might be processing a shutdown triggered during unmount,
1778 * and that can occur asynchronously to the unmount thread, and hence we need to
1779 * ensure that completes before tearing down the iclogbufs. Hence we need to
1780 * hold the buffer lock across the log IO to acheive that.
1786 struct xlog_in_core
*iclog
= bp
->b_log_item
;
1789 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1790 xfs_buf_ioerror(bp
, -EIO
);
1794 * It would seem logical to return EIO here, but we rely on
1795 * the log state machine to propagate I/O errors instead of
1796 * doing it here. Similarly, IO completion will unlock the
1797 * buffer, so we don't do it here.
1807 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1808 * fashion. Previously, we should have moved the current iclog
1809 * ptr in the log to point to the next available iclog. This allows further
1810 * write to continue while this code syncs out an iclog ready to go.
1811 * Before an in-core log can be written out, the data section must be scanned
1812 * to save away the 1st word of each BBSIZE block into the header. We replace
1813 * it with the current cycle count. Each BBSIZE block is tagged with the
1814 * cycle count because there in an implicit assumption that drives will
1815 * guarantee that entire 512 byte blocks get written at once. In other words,
1816 * we can't have part of a 512 byte block written and part not written. By
1817 * tagging each block, we will know which blocks are valid when recovering
1818 * after an unclean shutdown.
1820 * This routine is single threaded on the iclog. No other thread can be in
1821 * this routine with the same iclog. Changing contents of iclog can there-
1822 * fore be done without grabbing the state machine lock. Updating the global
1823 * log will require grabbing the lock though.
1825 * The entire log manager uses a logical block numbering scheme. Only
1826 * log_sync (and then only bwrite()) know about the fact that the log may
1827 * not start with block zero on a given device. The log block start offset
1828 * is added immediately before calling bwrite().
1834 struct xlog_in_core
*iclog
)
1838 uint count
; /* byte count of bwrite */
1839 uint count_init
; /* initial count before roundup */
1840 int roundoff
; /* roundoff to BB or stripe */
1841 int split
= 0; /* split write into two regions */
1843 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1846 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1847 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1849 /* Add for LR header */
1850 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1852 /* Round out the log write size */
1853 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1854 /* we have a v2 stripe unit to use */
1855 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1857 count
= BBTOB(BTOBB(count_init
));
1859 roundoff
= count
- count_init
;
1860 ASSERT(roundoff
>= 0);
1861 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1862 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1864 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1865 roundoff
< BBTOB(1)));
1867 /* move grant heads by roundoff in sync */
1868 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1869 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1871 /* put cycle number in every block */
1872 xlog_pack_data(log
, iclog
, roundoff
);
1874 /* real byte length */
1875 size
= iclog
->ic_offset
;
1878 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1881 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1883 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1885 /* Do we need to split this write into 2 parts? */
1886 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1889 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1890 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1891 iclog
->ic_bwritecnt
= 2;
1894 * Bump the cycle numbers at the start of each block in the
1895 * part of the iclog that ends up in the buffer that gets
1896 * written to the start of the log.
1898 * Watch out for the header magic number case, though.
1900 dptr
= (char *)&iclog
->ic_header
+ count
;
1901 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1902 uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1903 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1905 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1910 iclog
->ic_bwritecnt
= 1;
1913 /* calculcate the checksum */
1914 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1915 iclog
->ic_datap
, size
);
1917 * Intentionally corrupt the log record CRC based on the error injection
1918 * frequency, if defined. This facilitates testing log recovery in the
1919 * event of torn writes. Hence, set the IOABORT state to abort the log
1920 * write on I/O completion and shutdown the fs. The subsequent mount
1921 * detects the bad CRC and attempts to recover.
1923 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1924 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1925 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1927 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1928 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1931 bp
->b_io_length
= BTOBB(count
);
1932 bp
->b_log_item
= iclog
;
1933 bp
->b_flags
&= ~XBF_FLUSH
;
1934 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1937 * Flush the data device before flushing the log to make sure all meta
1938 * data written back from the AIL actually made it to disk before
1939 * stamping the new log tail LSN into the log buffer. For an external
1940 * log we need to issue the flush explicitly, and unfortunately
1941 * synchronously here; for an internal log we can simply use the block
1942 * layer state machine for preflushes.
1944 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1945 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1947 bp
->b_flags
|= XBF_FLUSH
;
1949 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1950 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1952 xlog_verify_iclog(log
, iclog
, count
, true);
1954 /* account for log which doesn't start at block #0 */
1955 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1958 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1961 error
= xlog_bdstrat(bp
);
1963 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1967 bp
= iclog
->ic_log
->l_xbuf
;
1968 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1969 xfs_buf_associate_memory(bp
,
1970 (char *)&iclog
->ic_header
+ count
, split
);
1971 bp
->b_log_item
= iclog
;
1972 bp
->b_flags
&= ~XBF_FLUSH
;
1973 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1975 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1976 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1978 /* account for internal log which doesn't start at block #0 */
1979 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1980 error
= xlog_bdstrat(bp
);
1982 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1990 * Deallocate a log structure
1996 xlog_in_core_t
*iclog
, *next_iclog
;
1999 xlog_cil_destroy(log
);
2002 * Cycle all the iclogbuf locks to make sure all log IO completion
2003 * is done before we tear down these buffers.
2005 iclog
= log
->l_iclog
;
2006 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2007 xfs_buf_lock(iclog
->ic_bp
);
2008 xfs_buf_unlock(iclog
->ic_bp
);
2009 iclog
= iclog
->ic_next
;
2013 * Always need to ensure that the extra buffer does not point to memory
2014 * owned by another log buffer before we free it. Also, cycle the lock
2015 * first to ensure we've completed IO on it.
2017 xfs_buf_lock(log
->l_xbuf
);
2018 xfs_buf_unlock(log
->l_xbuf
);
2019 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
2020 xfs_buf_free(log
->l_xbuf
);
2022 iclog
= log
->l_iclog
;
2023 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2024 xfs_buf_free(iclog
->ic_bp
);
2025 next_iclog
= iclog
->ic_next
;
2029 spinlock_destroy(&log
->l_icloglock
);
2031 log
->l_mp
->m_log
= NULL
;
2033 } /* xlog_dealloc_log */
2036 * Update counters atomically now that memcpy is done.
2040 xlog_state_finish_copy(
2042 struct xlog_in_core
*iclog
,
2046 spin_lock(&log
->l_icloglock
);
2048 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2049 iclog
->ic_offset
+= copy_bytes
;
2051 spin_unlock(&log
->l_icloglock
);
2052 } /* xlog_state_finish_copy */
2058 * print out info relating to regions written which consume
2063 struct xfs_mount
*mp
,
2064 struct xlog_ticket
*ticket
)
2067 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2069 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2070 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2071 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2072 REG_TYPE_STR(BFORMAT
, "bformat"),
2073 REG_TYPE_STR(BCHUNK
, "bchunk"),
2074 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2075 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2076 REG_TYPE_STR(IFORMAT
, "iformat"),
2077 REG_TYPE_STR(ICORE
, "icore"),
2078 REG_TYPE_STR(IEXT
, "iext"),
2079 REG_TYPE_STR(IBROOT
, "ibroot"),
2080 REG_TYPE_STR(ILOCAL
, "ilocal"),
2081 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2082 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2083 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2084 REG_TYPE_STR(QFORMAT
, "qformat"),
2085 REG_TYPE_STR(DQUOT
, "dquot"),
2086 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2087 REG_TYPE_STR(LRHEADER
, "LR header"),
2088 REG_TYPE_STR(UNMOUNT
, "unmount"),
2089 REG_TYPE_STR(COMMIT
, "commit"),
2090 REG_TYPE_STR(TRANSHDR
, "trans header"),
2091 REG_TYPE_STR(ICREATE
, "inode create")
2095 xfs_warn(mp
, "ticket reservation summary:");
2096 xfs_warn(mp
, " unit res = %d bytes",
2097 ticket
->t_unit_res
);
2098 xfs_warn(mp
, " current res = %d bytes",
2099 ticket
->t_curr_res
);
2100 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2101 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2102 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2103 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2104 xfs_warn(mp
, " ophdr + reg = %u bytes",
2105 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2106 xfs_warn(mp
, " num regions = %u",
2109 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2110 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2111 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2112 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2113 "bad-rtype" : res_type_str
[r_type
]),
2114 ticket
->t_res_arr
[i
].r_len
);
2119 * Print a summary of the transaction.
2123 struct xfs_trans
*tp
)
2125 struct xfs_mount
*mp
= tp
->t_mountp
;
2126 struct xfs_log_item
*lip
;
2128 /* dump core transaction and ticket info */
2129 xfs_warn(mp
, "transaction summary:");
2130 xfs_warn(mp
, " log res = %d", tp
->t_log_res
);
2131 xfs_warn(mp
, " log count = %d", tp
->t_log_count
);
2132 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2134 xlog_print_tic_res(mp
, tp
->t_ticket
);
2136 /* dump each log item */
2137 list_for_each_entry(lip
, &tp
->t_items
, li_trans
) {
2138 struct xfs_log_vec
*lv
= lip
->li_lv
;
2139 struct xfs_log_iovec
*vec
;
2142 xfs_warn(mp
, "log item: ");
2143 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2144 xfs_warn(mp
, " flags = 0x%lx", lip
->li_flags
);
2147 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2148 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2149 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2150 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2152 /* dump each iovec for the log item */
2153 vec
= lv
->lv_iovecp
;
2154 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2155 int dumplen
= min(vec
->i_len
, 32);
2157 xfs_warn(mp
, " iovec[%d]", i
);
2158 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2159 xfs_warn(mp
, " len = %d", vec
->i_len
);
2160 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2161 xfs_hex_dump(vec
->i_addr
, dumplen
);
2169 * Calculate the potential space needed by the log vector. Each region gets
2170 * its own xlog_op_header_t and may need to be double word aligned.
2173 xlog_write_calc_vec_length(
2174 struct xlog_ticket
*ticket
,
2175 struct xfs_log_vec
*log_vector
)
2177 struct xfs_log_vec
*lv
;
2182 /* acct for start rec of xact */
2183 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2186 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2187 /* we don't write ordered log vectors */
2188 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2191 headers
+= lv
->lv_niovecs
;
2193 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2194 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2197 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2201 ticket
->t_res_num_ophdrs
+= headers
;
2202 len
+= headers
* sizeof(struct xlog_op_header
);
2208 * If first write for transaction, insert start record We can't be trying to
2209 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2212 xlog_write_start_rec(
2213 struct xlog_op_header
*ophdr
,
2214 struct xlog_ticket
*ticket
)
2216 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2219 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2220 ophdr
->oh_clientid
= ticket
->t_clientid
;
2222 ophdr
->oh_flags
= XLOG_START_TRANS
;
2225 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2227 return sizeof(struct xlog_op_header
);
2230 static xlog_op_header_t
*
2231 xlog_write_setup_ophdr(
2233 struct xlog_op_header
*ophdr
,
2234 struct xlog_ticket
*ticket
,
2237 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2238 ophdr
->oh_clientid
= ticket
->t_clientid
;
2241 /* are we copying a commit or unmount record? */
2242 ophdr
->oh_flags
= flags
;
2245 * We've seen logs corrupted with bad transaction client ids. This
2246 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2247 * and shut down the filesystem.
2249 switch (ophdr
->oh_clientid
) {
2250 case XFS_TRANSACTION
:
2256 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT
,
2257 ophdr
->oh_clientid
, ticket
);
2265 * Set up the parameters of the region copy into the log. This has
2266 * to handle region write split across multiple log buffers - this
2267 * state is kept external to this function so that this code can
2268 * be written in an obvious, self documenting manner.
2271 xlog_write_setup_copy(
2272 struct xlog_ticket
*ticket
,
2273 struct xlog_op_header
*ophdr
,
2274 int space_available
,
2278 int *last_was_partial_copy
,
2279 int *bytes_consumed
)
2283 still_to_copy
= space_required
- *bytes_consumed
;
2284 *copy_off
= *bytes_consumed
;
2286 if (still_to_copy
<= space_available
) {
2287 /* write of region completes here */
2288 *copy_len
= still_to_copy
;
2289 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2290 if (*last_was_partial_copy
)
2291 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2292 *last_was_partial_copy
= 0;
2293 *bytes_consumed
= 0;
2297 /* partial write of region, needs extra log op header reservation */
2298 *copy_len
= space_available
;
2299 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2300 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2301 if (*last_was_partial_copy
)
2302 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2303 *bytes_consumed
+= *copy_len
;
2304 (*last_was_partial_copy
)++;
2306 /* account for new log op header */
2307 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2308 ticket
->t_res_num_ophdrs
++;
2310 return sizeof(struct xlog_op_header
);
2314 xlog_write_copy_finish(
2316 struct xlog_in_core
*iclog
,
2321 int *partial_copy_len
,
2323 struct xlog_in_core
**commit_iclog
)
2325 if (*partial_copy
) {
2327 * This iclog has already been marked WANT_SYNC by
2328 * xlog_state_get_iclog_space.
2330 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2333 return xlog_state_release_iclog(log
, iclog
);
2337 *partial_copy_len
= 0;
2339 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2340 /* no more space in this iclog - push it. */
2341 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2345 spin_lock(&log
->l_icloglock
);
2346 xlog_state_want_sync(log
, iclog
);
2347 spin_unlock(&log
->l_icloglock
);
2350 return xlog_state_release_iclog(log
, iclog
);
2351 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2352 *commit_iclog
= iclog
;
2359 * Write some region out to in-core log
2361 * This will be called when writing externally provided regions or when
2362 * writing out a commit record for a given transaction.
2364 * General algorithm:
2365 * 1. Find total length of this write. This may include adding to the
2366 * lengths passed in.
2367 * 2. Check whether we violate the tickets reservation.
2368 * 3. While writing to this iclog
2369 * A. Reserve as much space in this iclog as can get
2370 * B. If this is first write, save away start lsn
2371 * C. While writing this region:
2372 * 1. If first write of transaction, write start record
2373 * 2. Write log operation header (header per region)
2374 * 3. Find out if we can fit entire region into this iclog
2375 * 4. Potentially, verify destination memcpy ptr
2376 * 5. Memcpy (partial) region
2377 * 6. If partial copy, release iclog; otherwise, continue
2378 * copying more regions into current iclog
2379 * 4. Mark want sync bit (in simulation mode)
2380 * 5. Release iclog for potential flush to on-disk log.
2383 * 1. Panic if reservation is overrun. This should never happen since
2384 * reservation amounts are generated internal to the filesystem.
2386 * 1. Tickets are single threaded data structures.
2387 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2388 * syncing routine. When a single log_write region needs to span
2389 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2390 * on all log operation writes which don't contain the end of the
2391 * region. The XLOG_END_TRANS bit is used for the in-core log
2392 * operation which contains the end of the continued log_write region.
2393 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2394 * we don't really know exactly how much space will be used. As a result,
2395 * we don't update ic_offset until the end when we know exactly how many
2396 * bytes have been written out.
2401 struct xfs_log_vec
*log_vector
,
2402 struct xlog_ticket
*ticket
,
2403 xfs_lsn_t
*start_lsn
,
2404 struct xlog_in_core
**commit_iclog
,
2407 struct xlog_in_core
*iclog
= NULL
;
2408 struct xfs_log_iovec
*vecp
;
2409 struct xfs_log_vec
*lv
;
2412 int partial_copy
= 0;
2413 int partial_copy_len
= 0;
2421 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2424 * Region headers and bytes are already accounted for.
2425 * We only need to take into account start records and
2426 * split regions in this function.
2428 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2429 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2432 * Commit record headers need to be accounted for. These
2433 * come in as separate writes so are easy to detect.
2435 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2436 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2438 if (ticket
->t_curr_res
< 0) {
2439 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2440 "ctx ticket reservation ran out. Need to up reservation");
2441 xlog_print_tic_res(log
->l_mp
, ticket
);
2442 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2447 vecp
= lv
->lv_iovecp
;
2448 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2452 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2453 &contwr
, &log_offset
);
2457 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2458 ptr
= iclog
->ic_datap
+ log_offset
;
2460 /* start_lsn is the first lsn written to. That's all we need. */
2462 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2465 * This loop writes out as many regions as can fit in the amount
2466 * of space which was allocated by xlog_state_get_iclog_space().
2468 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2469 struct xfs_log_iovec
*reg
;
2470 struct xlog_op_header
*ophdr
;
2474 bool ordered
= false;
2476 /* ordered log vectors have no regions to write */
2477 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2478 ASSERT(lv
->lv_niovecs
== 0);
2484 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2485 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2487 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2488 if (start_rec_copy
) {
2490 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2494 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2498 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2499 sizeof(struct xlog_op_header
));
2501 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2502 iclog
->ic_size
-log_offset
,
2504 ©_off
, ©_len
,
2507 xlog_verify_dest_ptr(log
, ptr
);
2512 * Unmount records just log an opheader, so can have
2513 * empty payloads with no data region to copy. Hence we
2514 * only copy the payload if the vector says it has data
2517 ASSERT(copy_len
>= 0);
2519 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2520 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2523 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2525 data_cnt
+= contwr
? copy_len
: 0;
2527 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2528 &record_cnt
, &data_cnt
,
2537 * if we had a partial copy, we need to get more iclog
2538 * space but we don't want to increment the region
2539 * index because there is still more is this region to
2542 * If we completed writing this region, and we flushed
2543 * the iclog (indicated by resetting of the record
2544 * count), then we also need to get more log space. If
2545 * this was the last record, though, we are done and
2551 if (++index
== lv
->lv_niovecs
) {
2556 vecp
= lv
->lv_iovecp
;
2558 if (record_cnt
== 0 && !ordered
) {
2568 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2570 return xlog_state_release_iclog(log
, iclog
);
2572 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2573 *commit_iclog
= iclog
;
2578 /*****************************************************************************
2580 * State Machine functions
2582 *****************************************************************************
2585 /* Clean iclogs starting from the head. This ordering must be
2586 * maintained, so an iclog doesn't become ACTIVE beyond one that
2587 * is SYNCING. This is also required to maintain the notion that we use
2588 * a ordered wait queue to hold off would be writers to the log when every
2589 * iclog is trying to sync to disk.
2591 * State Change: DIRTY -> ACTIVE
2594 xlog_state_clean_log(
2597 xlog_in_core_t
*iclog
;
2600 iclog
= log
->l_iclog
;
2602 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2603 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2604 iclog
->ic_offset
= 0;
2605 ASSERT(iclog
->ic_callback
== NULL
);
2607 * If the number of ops in this iclog indicate it just
2608 * contains the dummy transaction, we can
2609 * change state into IDLE (the second time around).
2610 * Otherwise we should change the state into
2612 * We don't need to cover the dummy.
2615 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2620 * We have two dirty iclogs so start over
2621 * This could also be num of ops indicates
2622 * this is not the dummy going out.
2626 iclog
->ic_header
.h_num_logops
= 0;
2627 memset(iclog
->ic_header
.h_cycle_data
, 0,
2628 sizeof(iclog
->ic_header
.h_cycle_data
));
2629 iclog
->ic_header
.h_lsn
= 0;
2630 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2633 break; /* stop cleaning */
2634 iclog
= iclog
->ic_next
;
2635 } while (iclog
!= log
->l_iclog
);
2637 /* log is locked when we are called */
2639 * Change state for the dummy log recording.
2640 * We usually go to NEED. But we go to NEED2 if the changed indicates
2641 * we are done writing the dummy record.
2642 * If we are done with the second dummy recored (DONE2), then
2646 switch (log
->l_covered_state
) {
2647 case XLOG_STATE_COVER_IDLE
:
2648 case XLOG_STATE_COVER_NEED
:
2649 case XLOG_STATE_COVER_NEED2
:
2650 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2653 case XLOG_STATE_COVER_DONE
:
2655 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2657 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2660 case XLOG_STATE_COVER_DONE2
:
2662 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2664 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2671 } /* xlog_state_clean_log */
2674 xlog_get_lowest_lsn(
2677 xlog_in_core_t
*lsn_log
;
2678 xfs_lsn_t lowest_lsn
, lsn
;
2680 lsn_log
= log
->l_iclog
;
2683 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2684 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2685 if ((lsn
&& !lowest_lsn
) ||
2686 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2690 lsn_log
= lsn_log
->ic_next
;
2691 } while (lsn_log
!= log
->l_iclog
);
2697 xlog_state_do_callback(
2700 struct xlog_in_core
*ciclog
)
2702 xlog_in_core_t
*iclog
;
2703 xlog_in_core_t
*first_iclog
; /* used to know when we've
2704 * processed all iclogs once */
2705 xfs_log_callback_t
*cb
, *cb_next
;
2707 xfs_lsn_t lowest_lsn
;
2708 int ioerrors
; /* counter: iclogs with errors */
2709 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2710 int funcdidcallbacks
; /* flag: function did callbacks */
2711 int repeats
; /* for issuing console warnings if
2712 * looping too many times */
2715 spin_lock(&log
->l_icloglock
);
2716 first_iclog
= iclog
= log
->l_iclog
;
2718 funcdidcallbacks
= 0;
2723 * Scan all iclogs starting with the one pointed to by the
2724 * log. Reset this starting point each time the log is
2725 * unlocked (during callbacks).
2727 * Keep looping through iclogs until one full pass is made
2728 * without running any callbacks.
2730 first_iclog
= log
->l_iclog
;
2731 iclog
= log
->l_iclog
;
2732 loopdidcallbacks
= 0;
2737 /* skip all iclogs in the ACTIVE & DIRTY states */
2738 if (iclog
->ic_state
&
2739 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2740 iclog
= iclog
->ic_next
;
2745 * Between marking a filesystem SHUTDOWN and stopping
2746 * the log, we do flush all iclogs to disk (if there
2747 * wasn't a log I/O error). So, we do want things to
2748 * go smoothly in case of just a SHUTDOWN w/o a
2751 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2753 * Can only perform callbacks in order. Since
2754 * this iclog is not in the DONE_SYNC/
2755 * DO_CALLBACK state, we skip the rest and
2756 * just try to clean up. If we set our iclog
2757 * to DO_CALLBACK, we will not process it when
2758 * we retry since a previous iclog is in the
2759 * CALLBACK and the state cannot change since
2760 * we are holding the l_icloglock.
2762 if (!(iclog
->ic_state
&
2763 (XLOG_STATE_DONE_SYNC
|
2764 XLOG_STATE_DO_CALLBACK
))) {
2765 if (ciclog
&& (ciclog
->ic_state
==
2766 XLOG_STATE_DONE_SYNC
)) {
2767 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2772 * We now have an iclog that is in either the
2773 * DO_CALLBACK or DONE_SYNC states. The other
2774 * states (WANT_SYNC, SYNCING, or CALLBACK were
2775 * caught by the above if and are going to
2776 * clean (i.e. we aren't doing their callbacks)
2781 * We will do one more check here to see if we
2782 * have chased our tail around.
2785 lowest_lsn
= xlog_get_lowest_lsn(log
);
2787 XFS_LSN_CMP(lowest_lsn
,
2788 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2789 iclog
= iclog
->ic_next
;
2790 continue; /* Leave this iclog for
2794 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2798 * Completion of a iclog IO does not imply that
2799 * a transaction has completed, as transactions
2800 * can be large enough to span many iclogs. We
2801 * cannot change the tail of the log half way
2802 * through a transaction as this may be the only
2803 * transaction in the log and moving th etail to
2804 * point to the middle of it will prevent
2805 * recovery from finding the start of the
2806 * transaction. Hence we should only update the
2807 * last_sync_lsn if this iclog contains
2808 * transaction completion callbacks on it.
2810 * We have to do this before we drop the
2811 * icloglock to ensure we are the only one that
2814 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2815 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2816 if (iclog
->ic_callback
)
2817 atomic64_set(&log
->l_last_sync_lsn
,
2818 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2823 spin_unlock(&log
->l_icloglock
);
2826 * Keep processing entries in the callback list until
2827 * we come around and it is empty. We need to
2828 * atomically see that the list is empty and change the
2829 * state to DIRTY so that we don't miss any more
2830 * callbacks being added.
2832 spin_lock(&iclog
->ic_callback_lock
);
2833 cb
= iclog
->ic_callback
;
2835 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2836 iclog
->ic_callback
= NULL
;
2837 spin_unlock(&iclog
->ic_callback_lock
);
2839 /* perform callbacks in the order given */
2840 for (; cb
; cb
= cb_next
) {
2841 cb_next
= cb
->cb_next
;
2842 cb
->cb_func(cb
->cb_arg
, aborted
);
2844 spin_lock(&iclog
->ic_callback_lock
);
2845 cb
= iclog
->ic_callback
;
2851 spin_lock(&log
->l_icloglock
);
2852 ASSERT(iclog
->ic_callback
== NULL
);
2853 spin_unlock(&iclog
->ic_callback_lock
);
2854 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2855 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2858 * Transition from DIRTY to ACTIVE if applicable.
2859 * NOP if STATE_IOERROR.
2861 xlog_state_clean_log(log
);
2863 /* wake up threads waiting in xfs_log_force() */
2864 wake_up_all(&iclog
->ic_force_wait
);
2866 iclog
= iclog
->ic_next
;
2867 } while (first_iclog
!= iclog
);
2869 if (repeats
> 5000) {
2870 flushcnt
+= repeats
;
2873 "%s: possible infinite loop (%d iterations)",
2874 __func__
, flushcnt
);
2876 } while (!ioerrors
&& loopdidcallbacks
);
2880 * Make one last gasp attempt to see if iclogs are being left in limbo.
2881 * If the above loop finds an iclog earlier than the current iclog and
2882 * in one of the syncing states, the current iclog is put into
2883 * DO_CALLBACK and the callbacks are deferred to the completion of the
2884 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2885 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2888 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2889 * for ic_state == SYNCING.
2891 if (funcdidcallbacks
) {
2892 first_iclog
= iclog
= log
->l_iclog
;
2894 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2896 * Terminate the loop if iclogs are found in states
2897 * which will cause other threads to clean up iclogs.
2899 * SYNCING - i/o completion will go through logs
2900 * DONE_SYNC - interrupt thread should be waiting for
2902 * IOERROR - give up hope all ye who enter here
2904 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2905 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2906 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2907 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2909 iclog
= iclog
->ic_next
;
2910 } while (first_iclog
!= iclog
);
2914 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2916 spin_unlock(&log
->l_icloglock
);
2919 wake_up_all(&log
->l_flush_wait
);
2924 * Finish transitioning this iclog to the dirty state.
2926 * Make sure that we completely execute this routine only when this is
2927 * the last call to the iclog. There is a good chance that iclog flushes,
2928 * when we reach the end of the physical log, get turned into 2 separate
2929 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2930 * routine. By using the reference count bwritecnt, we guarantee that only
2931 * the second completion goes through.
2933 * Callbacks could take time, so they are done outside the scope of the
2934 * global state machine log lock.
2937 xlog_state_done_syncing(
2938 xlog_in_core_t
*iclog
,
2941 struct xlog
*log
= iclog
->ic_log
;
2943 spin_lock(&log
->l_icloglock
);
2945 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2946 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2947 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2948 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2952 * If we got an error, either on the first buffer, or in the case of
2953 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2954 * and none should ever be attempted to be written to disk
2957 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2958 if (--iclog
->ic_bwritecnt
== 1) {
2959 spin_unlock(&log
->l_icloglock
);
2962 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2966 * Someone could be sleeping prior to writing out the next
2967 * iclog buffer, we wake them all, one will get to do the
2968 * I/O, the others get to wait for the result.
2970 wake_up_all(&iclog
->ic_write_wait
);
2971 spin_unlock(&log
->l_icloglock
);
2972 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2973 } /* xlog_state_done_syncing */
2977 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2978 * sleep. We wait on the flush queue on the head iclog as that should be
2979 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2980 * we will wait here and all new writes will sleep until a sync completes.
2982 * The in-core logs are used in a circular fashion. They are not used
2983 * out-of-order even when an iclog past the head is free.
2986 * * log_offset where xlog_write() can start writing into the in-core
2988 * * in-core log pointer to which xlog_write() should write.
2989 * * boolean indicating this is a continued write to an in-core log.
2990 * If this is the last write, then the in-core log's offset field
2991 * needs to be incremented, depending on the amount of data which
2995 xlog_state_get_iclog_space(
2998 struct xlog_in_core
**iclogp
,
2999 struct xlog_ticket
*ticket
,
3000 int *continued_write
,
3004 xlog_rec_header_t
*head
;
3005 xlog_in_core_t
*iclog
;
3009 spin_lock(&log
->l_icloglock
);
3010 if (XLOG_FORCED_SHUTDOWN(log
)) {
3011 spin_unlock(&log
->l_icloglock
);
3015 iclog
= log
->l_iclog
;
3016 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
3017 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
3019 /* Wait for log writes to have flushed */
3020 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
3024 head
= &iclog
->ic_header
;
3026 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
3027 log_offset
= iclog
->ic_offset
;
3029 /* On the 1st write to an iclog, figure out lsn. This works
3030 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3031 * committing to. If the offset is set, that's how many blocks
3034 if (log_offset
== 0) {
3035 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3036 xlog_tic_add_region(ticket
,
3038 XLOG_REG_TYPE_LRHEADER
);
3039 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3040 head
->h_lsn
= cpu_to_be64(
3041 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3042 ASSERT(log
->l_curr_block
>= 0);
3045 /* If there is enough room to write everything, then do it. Otherwise,
3046 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3047 * bit is on, so this will get flushed out. Don't update ic_offset
3048 * until you know exactly how many bytes get copied. Therefore, wait
3049 * until later to update ic_offset.
3051 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3052 * can fit into remaining data section.
3054 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3055 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3058 * If I'm the only one writing to this iclog, sync it to disk.
3059 * We need to do an atomic compare and decrement here to avoid
3060 * racing with concurrent atomic_dec_and_lock() calls in
3061 * xlog_state_release_iclog() when there is more than one
3062 * reference to the iclog.
3064 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
3065 /* we are the only one */
3066 spin_unlock(&log
->l_icloglock
);
3067 error
= xlog_state_release_iclog(log
, iclog
);
3071 spin_unlock(&log
->l_icloglock
);
3076 /* Do we have enough room to write the full amount in the remainder
3077 * of this iclog? Or must we continue a write on the next iclog and
3078 * mark this iclog as completely taken? In the case where we switch
3079 * iclogs (to mark it taken), this particular iclog will release/sync
3080 * to disk in xlog_write().
3082 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3083 *continued_write
= 0;
3084 iclog
->ic_offset
+= len
;
3086 *continued_write
= 1;
3087 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3091 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3092 spin_unlock(&log
->l_icloglock
);
3094 *logoffsetp
= log_offset
;
3096 } /* xlog_state_get_iclog_space */
3098 /* The first cnt-1 times through here we don't need to
3099 * move the grant write head because the permanent
3100 * reservation has reserved cnt times the unit amount.
3101 * Release part of current permanent unit reservation and
3102 * reset current reservation to be one units worth. Also
3103 * move grant reservation head forward.
3106 xlog_regrant_reserve_log_space(
3108 struct xlog_ticket
*ticket
)
3110 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3112 if (ticket
->t_cnt
> 0)
3115 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3116 ticket
->t_curr_res
);
3117 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3118 ticket
->t_curr_res
);
3119 ticket
->t_curr_res
= ticket
->t_unit_res
;
3120 xlog_tic_reset_res(ticket
);
3122 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3124 /* just return if we still have some of the pre-reserved space */
3125 if (ticket
->t_cnt
> 0)
3128 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3129 ticket
->t_unit_res
);
3131 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3133 ticket
->t_curr_res
= ticket
->t_unit_res
;
3134 xlog_tic_reset_res(ticket
);
3135 } /* xlog_regrant_reserve_log_space */
3139 * Give back the space left from a reservation.
3141 * All the information we need to make a correct determination of space left
3142 * is present. For non-permanent reservations, things are quite easy. The
3143 * count should have been decremented to zero. We only need to deal with the
3144 * space remaining in the current reservation part of the ticket. If the
3145 * ticket contains a permanent reservation, there may be left over space which
3146 * needs to be released. A count of N means that N-1 refills of the current
3147 * reservation can be done before we need to ask for more space. The first
3148 * one goes to fill up the first current reservation. Once we run out of
3149 * space, the count will stay at zero and the only space remaining will be
3150 * in the current reservation field.
3153 xlog_ungrant_log_space(
3155 struct xlog_ticket
*ticket
)
3159 if (ticket
->t_cnt
> 0)
3162 trace_xfs_log_ungrant_enter(log
, ticket
);
3163 trace_xfs_log_ungrant_sub(log
, ticket
);
3166 * If this is a permanent reservation ticket, we may be able to free
3167 * up more space based on the remaining count.
3169 bytes
= ticket
->t_curr_res
;
3170 if (ticket
->t_cnt
> 0) {
3171 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3172 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3175 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3176 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3178 trace_xfs_log_ungrant_exit(log
, ticket
);
3180 xfs_log_space_wake(log
->l_mp
);
3184 * Flush iclog to disk if this is the last reference to the given iclog and
3185 * the WANT_SYNC bit is set.
3187 * When this function is entered, the iclog is not necessarily in the
3188 * WANT_SYNC state. It may be sitting around waiting to get filled.
3193 xlog_state_release_iclog(
3195 struct xlog_in_core
*iclog
)
3197 int sync
= 0; /* do we sync? */
3199 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3202 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3203 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3206 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3207 spin_unlock(&log
->l_icloglock
);
3210 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3211 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3213 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3214 /* update tail before writing to iclog */
3215 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3217 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3218 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3219 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3220 /* cycle incremented when incrementing curr_block */
3222 spin_unlock(&log
->l_icloglock
);
3225 * We let the log lock go, so it's possible that we hit a log I/O
3226 * error or some other SHUTDOWN condition that marks the iclog
3227 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3228 * this iclog has consistent data, so we ignore IOERROR
3229 * flags after this point.
3232 return xlog_sync(log
, iclog
);
3234 } /* xlog_state_release_iclog */
3238 * This routine will mark the current iclog in the ring as WANT_SYNC
3239 * and move the current iclog pointer to the next iclog in the ring.
3240 * When this routine is called from xlog_state_get_iclog_space(), the
3241 * exact size of the iclog has not yet been determined. All we know is
3242 * that every data block. We have run out of space in this log record.
3245 xlog_state_switch_iclogs(
3247 struct xlog_in_core
*iclog
,
3250 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3252 eventual_size
= iclog
->ic_offset
;
3253 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3254 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3255 log
->l_prev_block
= log
->l_curr_block
;
3256 log
->l_prev_cycle
= log
->l_curr_cycle
;
3258 /* roll log?: ic_offset changed later */
3259 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3261 /* Round up to next log-sunit */
3262 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3263 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3264 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3265 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3268 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3270 * Rewind the current block before the cycle is bumped to make
3271 * sure that the combined LSN never transiently moves forward
3272 * when the log wraps to the next cycle. This is to support the
3273 * unlocked sample of these fields from xlog_valid_lsn(). Most
3274 * other cases should acquire l_icloglock.
3276 log
->l_curr_block
-= log
->l_logBBsize
;
3277 ASSERT(log
->l_curr_block
>= 0);
3279 log
->l_curr_cycle
++;
3280 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3281 log
->l_curr_cycle
++;
3283 ASSERT(iclog
== log
->l_iclog
);
3284 log
->l_iclog
= iclog
->ic_next
;
3285 } /* xlog_state_switch_iclogs */
3288 * Write out all data in the in-core log as of this exact moment in time.
3290 * Data may be written to the in-core log during this call. However,
3291 * we don't guarantee this data will be written out. A change from past
3292 * implementation means this routine will *not* write out zero length LRs.
3294 * Basically, we try and perform an intelligent scan of the in-core logs.
3295 * If we determine there is no flushable data, we just return. There is no
3296 * flushable data if:
3298 * 1. the current iclog is active and has no data; the previous iclog
3299 * is in the active or dirty state.
3300 * 2. the current iclog is drity, and the previous iclog is in the
3301 * active or dirty state.
3305 * 1. the current iclog is not in the active nor dirty state.
3306 * 2. the current iclog dirty, and the previous iclog is not in the
3307 * active nor dirty state.
3308 * 3. the current iclog is active, and there is another thread writing
3309 * to this particular iclog.
3310 * 4. a) the current iclog is active and has no other writers
3311 * b) when we return from flushing out this iclog, it is still
3312 * not in the active nor dirty state.
3316 struct xfs_mount
*mp
,
3319 struct xlog
*log
= mp
->m_log
;
3320 struct xlog_in_core
*iclog
;
3323 XFS_STATS_INC(mp
, xs_log_force
);
3324 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3326 xlog_cil_force(log
);
3328 spin_lock(&log
->l_icloglock
);
3329 iclog
= log
->l_iclog
;
3330 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3333 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3334 (iclog
->ic_state
== XLOG_STATE_ACTIVE
&&
3335 atomic_read(&iclog
->ic_refcnt
) == 0 && iclog
->ic_offset
== 0)) {
3337 * If the head is dirty or (active and empty), then we need to
3338 * look at the previous iclog.
3340 * If the previous iclog is active or dirty we are done. There
3341 * is nothing to sync out. Otherwise, we attach ourselves to the
3342 * previous iclog and go to sleep.
3344 iclog
= iclog
->ic_prev
;
3345 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3346 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3348 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3349 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3351 * We are the only one with access to this iclog.
3353 * Flush it out now. There should be a roundoff of zero
3354 * to show that someone has already taken care of the
3355 * roundoff from the previous sync.
3357 atomic_inc(&iclog
->ic_refcnt
);
3358 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3359 xlog_state_switch_iclogs(log
, iclog
, 0);
3360 spin_unlock(&log
->l_icloglock
);
3362 if (xlog_state_release_iclog(log
, iclog
))
3365 spin_lock(&log
->l_icloglock
);
3366 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
||
3367 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3371 * Someone else is writing to this iclog.
3373 * Use its call to flush out the data. However, the
3374 * other thread may not force out this LR, so we mark
3377 xlog_state_switch_iclogs(log
, iclog
, 0);
3381 * If the head iclog is not active nor dirty, we just attach
3382 * ourselves to the head and go to sleep if necessary.
3387 if (!(flags
& XFS_LOG_SYNC
))
3390 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3392 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3393 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3394 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3399 spin_unlock(&log
->l_icloglock
);
3402 spin_unlock(&log
->l_icloglock
);
3407 __xfs_log_force_lsn(
3408 struct xfs_mount
*mp
,
3414 struct xlog
*log
= mp
->m_log
;
3415 struct xlog_in_core
*iclog
;
3417 spin_lock(&log
->l_icloglock
);
3418 iclog
= log
->l_iclog
;
3419 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3422 while (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3423 iclog
= iclog
->ic_next
;
3424 if (iclog
== log
->l_iclog
)
3428 if (iclog
->ic_state
== XLOG_STATE_DIRTY
)
3431 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3433 * We sleep here if we haven't already slept (e.g. this is the
3434 * first time we've looked at the correct iclog buf) and the
3435 * buffer before us is going to be sync'ed. The reason for this
3436 * is that if we are doing sync transactions here, by waiting
3437 * for the previous I/O to complete, we can allow a few more
3438 * transactions into this iclog before we close it down.
3440 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3441 * refcnt so we can release the log (which drops the ref count).
3442 * The state switch keeps new transaction commits from using
3443 * this buffer. When the current commits finish writing into
3444 * the buffer, the refcount will drop to zero and the buffer
3447 if (!already_slept
&&
3448 (iclog
->ic_prev
->ic_state
&
3449 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3450 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3452 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3454 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3458 atomic_inc(&iclog
->ic_refcnt
);
3459 xlog_state_switch_iclogs(log
, iclog
, 0);
3460 spin_unlock(&log
->l_icloglock
);
3461 if (xlog_state_release_iclog(log
, iclog
))
3465 spin_lock(&log
->l_icloglock
);
3468 if (!(flags
& XFS_LOG_SYNC
) ||
3469 (iclog
->ic_state
& (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
)))
3472 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3475 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3476 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3477 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3482 spin_unlock(&log
->l_icloglock
);
3485 spin_unlock(&log
->l_icloglock
);
3490 * Force the in-core log to disk for a specific LSN.
3492 * Find in-core log with lsn.
3493 * If it is in the DIRTY state, just return.
3494 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3495 * state and go to sleep or return.
3496 * If it is in any other state, go to sleep or return.
3498 * Synchronous forces are implemented with a wait queue. All callers trying
3499 * to force a given lsn to disk must wait on the queue attached to the
3500 * specific in-core log. When given in-core log finally completes its write
3501 * to disk, that thread will wake up all threads waiting on the queue.
3505 struct xfs_mount
*mp
,
3513 XFS_STATS_INC(mp
, xs_log_force
);
3514 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3516 lsn
= xlog_cil_force_lsn(mp
->m_log
, lsn
);
3517 if (lsn
== NULLCOMMITLSN
)
3520 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, false);
3522 ret
= __xfs_log_force_lsn(mp
, lsn
, flags
, log_flushed
, true);
3527 * Called when we want to mark the current iclog as being ready to sync to
3531 xlog_state_want_sync(
3533 struct xlog_in_core
*iclog
)
3535 assert_spin_locked(&log
->l_icloglock
);
3537 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3538 xlog_state_switch_iclogs(log
, iclog
, 0);
3540 ASSERT(iclog
->ic_state
&
3541 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3546 /*****************************************************************************
3550 *****************************************************************************
3554 * Free a used ticket when its refcount falls to zero.
3558 xlog_ticket_t
*ticket
)
3560 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3561 if (atomic_dec_and_test(&ticket
->t_ref
))
3562 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3567 xlog_ticket_t
*ticket
)
3569 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3570 atomic_inc(&ticket
->t_ref
);
3575 * Figure out the total log space unit (in bytes) that would be
3576 * required for a log ticket.
3579 xfs_log_calc_unit_res(
3580 struct xfs_mount
*mp
,
3583 struct xlog
*log
= mp
->m_log
;
3588 * Permanent reservations have up to 'cnt'-1 active log operations
3589 * in the log. A unit in this case is the amount of space for one
3590 * of these log operations. Normal reservations have a cnt of 1
3591 * and their unit amount is the total amount of space required.
3593 * The following lines of code account for non-transaction data
3594 * which occupy space in the on-disk log.
3596 * Normal form of a transaction is:
3597 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3598 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3600 * We need to account for all the leadup data and trailer data
3601 * around the transaction data.
3602 * And then we need to account for the worst case in terms of using
3604 * The worst case will happen if:
3605 * - the placement of the transaction happens to be such that the
3606 * roundoff is at its maximum
3607 * - the transaction data is synced before the commit record is synced
3608 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3609 * Therefore the commit record is in its own Log Record.
3610 * This can happen as the commit record is called with its
3611 * own region to xlog_write().
3612 * This then means that in the worst case, roundoff can happen for
3613 * the commit-rec as well.
3614 * The commit-rec is smaller than padding in this scenario and so it is
3615 * not added separately.
3618 /* for trans header */
3619 unit_bytes
+= sizeof(xlog_op_header_t
);
3620 unit_bytes
+= sizeof(xfs_trans_header_t
);
3623 unit_bytes
+= sizeof(xlog_op_header_t
);
3626 * for LR headers - the space for data in an iclog is the size minus
3627 * the space used for the headers. If we use the iclog size, then we
3628 * undercalculate the number of headers required.
3630 * Furthermore - the addition of op headers for split-recs might
3631 * increase the space required enough to require more log and op
3632 * headers, so take that into account too.
3634 * IMPORTANT: This reservation makes the assumption that if this
3635 * transaction is the first in an iclog and hence has the LR headers
3636 * accounted to it, then the remaining space in the iclog is
3637 * exclusively for this transaction. i.e. if the transaction is larger
3638 * than the iclog, it will be the only thing in that iclog.
3639 * Fundamentally, this means we must pass the entire log vector to
3640 * xlog_write to guarantee this.
3642 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3643 num_headers
= howmany(unit_bytes
, iclog_space
);
3645 /* for split-recs - ophdrs added when data split over LRs */
3646 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3648 /* add extra header reservations if we overrun */
3649 while (!num_headers
||
3650 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3651 unit_bytes
+= sizeof(xlog_op_header_t
);
3654 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3656 /* for commit-rec LR header - note: padding will subsume the ophdr */
3657 unit_bytes
+= log
->l_iclog_hsize
;
3659 /* for roundoff padding for transaction data and one for commit record */
3660 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3661 /* log su roundoff */
3662 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3665 unit_bytes
+= 2 * BBSIZE
;
3672 * Allocate and initialise a new log ticket.
3674 struct xlog_ticket
*
3681 xfs_km_flags_t alloc_flags
)
3683 struct xlog_ticket
*tic
;
3686 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3690 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3692 atomic_set(&tic
->t_ref
, 1);
3693 tic
->t_task
= current
;
3694 INIT_LIST_HEAD(&tic
->t_queue
);
3695 tic
->t_unit_res
= unit_res
;
3696 tic
->t_curr_res
= unit_res
;
3699 tic
->t_tid
= prandom_u32();
3700 tic
->t_clientid
= client
;
3701 tic
->t_flags
= XLOG_TIC_INITED
;
3703 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3705 xlog_tic_reset_res(tic
);
3711 /******************************************************************************
3713 * Log debug routines
3715 ******************************************************************************
3719 * Make sure that the destination ptr is within the valid data region of
3720 * one of the iclogs. This uses backup pointers stored in a different
3721 * part of the log in case we trash the log structure.
3724 xlog_verify_dest_ptr(
3731 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3732 if (ptr
>= log
->l_iclog_bak
[i
] &&
3733 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3738 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3742 * Check to make sure the grant write head didn't just over lap the tail. If
3743 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3744 * the cycles differ by exactly one and check the byte count.
3746 * This check is run unlocked, so can give false positives. Rather than assert
3747 * on failures, use a warn-once flag and a panic tag to allow the admin to
3748 * determine if they want to panic the machine when such an error occurs. For
3749 * debug kernels this will have the same effect as using an assert but, unlinke
3750 * an assert, it can be turned off at runtime.
3753 xlog_verify_grant_tail(
3756 int tail_cycle
, tail_blocks
;
3759 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3760 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3761 if (tail_cycle
!= cycle
) {
3762 if (cycle
- 1 != tail_cycle
&&
3763 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3764 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3765 "%s: cycle - 1 != tail_cycle", __func__
);
3766 log
->l_flags
|= XLOG_TAIL_WARN
;
3769 if (space
> BBTOB(tail_blocks
) &&
3770 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3771 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3772 "%s: space > BBTOB(tail_blocks)", __func__
);
3773 log
->l_flags
|= XLOG_TAIL_WARN
;
3778 /* check if it will fit */
3780 xlog_verify_tail_lsn(
3782 struct xlog_in_core
*iclog
,
3787 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3789 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3790 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3791 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3793 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3795 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3796 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3798 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3799 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3800 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3802 } /* xlog_verify_tail_lsn */
3805 * Perform a number of checks on the iclog before writing to disk.
3807 * 1. Make sure the iclogs are still circular
3808 * 2. Make sure we have a good magic number
3809 * 3. Make sure we don't have magic numbers in the data
3810 * 4. Check fields of each log operation header for:
3811 * A. Valid client identifier
3812 * B. tid ptr value falls in valid ptr space (user space code)
3813 * C. Length in log record header is correct according to the
3814 * individual operation headers within record.
3815 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3816 * log, check the preceding blocks of the physical log to make sure all
3817 * the cycle numbers agree with the current cycle number.
3822 struct xlog_in_core
*iclog
,
3826 xlog_op_header_t
*ophead
;
3827 xlog_in_core_t
*icptr
;
3828 xlog_in_core_2_t
*xhdr
;
3829 void *base_ptr
, *ptr
, *p
;
3830 ptrdiff_t field_offset
;
3832 int len
, i
, j
, k
, op_len
;
3835 /* check validity of iclog pointers */
3836 spin_lock(&log
->l_icloglock
);
3837 icptr
= log
->l_iclog
;
3838 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3841 if (icptr
!= log
->l_iclog
)
3842 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3843 spin_unlock(&log
->l_icloglock
);
3845 /* check log magic numbers */
3846 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3847 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3849 base_ptr
= ptr
= &iclog
->ic_header
;
3850 p
= &iclog
->ic_header
;
3851 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3852 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3853 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3858 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3859 base_ptr
= ptr
= iclog
->ic_datap
;
3861 xhdr
= iclog
->ic_data
;
3862 for (i
= 0; i
< len
; i
++) {
3865 /* clientid is only 1 byte */
3866 p
= &ophead
->oh_clientid
;
3867 field_offset
= p
- base_ptr
;
3868 if (!syncing
|| (field_offset
& 0x1ff)) {
3869 clientid
= ophead
->oh_clientid
;
3871 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3872 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3873 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3874 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3875 clientid
= xlog_get_client_id(
3876 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3878 clientid
= xlog_get_client_id(
3879 iclog
->ic_header
.h_cycle_data
[idx
]);
3882 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3884 "%s: invalid clientid %d op "PTR_FMT
" offset 0x%lx",
3885 __func__
, clientid
, ophead
,
3886 (unsigned long)field_offset
);
3889 p
= &ophead
->oh_len
;
3890 field_offset
= p
- base_ptr
;
3891 if (!syncing
|| (field_offset
& 0x1ff)) {
3892 op_len
= be32_to_cpu(ophead
->oh_len
);
3894 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3895 (uintptr_t)iclog
->ic_datap
);
3896 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3897 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3898 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3899 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3901 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3904 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3906 } /* xlog_verify_iclog */
3910 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3916 xlog_in_core_t
*iclog
, *ic
;
3918 iclog
= log
->l_iclog
;
3919 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3921 * Mark all the incore logs IOERROR.
3922 * From now on, no log flushes will result.
3926 ic
->ic_state
= XLOG_STATE_IOERROR
;
3928 } while (ic
!= iclog
);
3932 * Return non-zero, if state transition has already happened.
3938 * This is called from xfs_force_shutdown, when we're forcibly
3939 * shutting down the filesystem, typically because of an IO error.
3940 * Our main objectives here are to make sure that:
3941 * a. if !logerror, flush the logs to disk. Anything modified
3942 * after this is ignored.
3943 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3944 * parties to find out, 'atomically'.
3945 * c. those who're sleeping on log reservations, pinned objects and
3946 * other resources get woken up, and be told the bad news.
3947 * d. nothing new gets queued up after (b) and (c) are done.
3949 * Note: for the !logerror case we need to flush the regions held in memory out
3950 * to disk first. This needs to be done before the log is marked as shutdown,
3951 * otherwise the iclog writes will fail.
3954 xfs_log_force_umount(
3955 struct xfs_mount
*mp
,
3964 * If this happens during log recovery, don't worry about
3965 * locking; the log isn't open for business yet.
3968 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3969 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3971 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3976 * Somebody could've already done the hard work for us.
3977 * No need to get locks for this.
3979 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3980 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3985 * Flush all the completed transactions to disk before marking the log
3986 * being shut down. We need to do it in this order to ensure that
3987 * completed operations are safely on disk before we shut down, and that
3988 * we don't have to issue any buffer IO after the shutdown flags are set
3989 * to guarantee this.
3992 xfs_log_force(mp
, XFS_LOG_SYNC
);
3995 * mark the filesystem and the as in a shutdown state and wake
3996 * everybody up to tell them the bad news.
3998 spin_lock(&log
->l_icloglock
);
3999 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
4001 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4004 * Mark the log and the iclogs with IO error flags to prevent any
4005 * further log IO from being issued or completed.
4007 log
->l_flags
|= XLOG_IO_ERROR
;
4008 retval
= xlog_state_ioerror(log
);
4009 spin_unlock(&log
->l_icloglock
);
4012 * We don't want anybody waiting for log reservations after this. That
4013 * means we have to wake up everybody queued up on reserveq as well as
4014 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4015 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4016 * action is protected by the grant locks.
4018 xlog_grant_head_wake_all(&log
->l_reserve_head
);
4019 xlog_grant_head_wake_all(&log
->l_write_head
);
4022 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4023 * as if the log writes were completed. The abort handling in the log
4024 * item committed callback functions will do this again under lock to
4027 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4028 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4030 #ifdef XFSERRORDEBUG
4032 xlog_in_core_t
*iclog
;
4034 spin_lock(&log
->l_icloglock
);
4035 iclog
= log
->l_iclog
;
4037 ASSERT(iclog
->ic_callback
== 0);
4038 iclog
= iclog
->ic_next
;
4039 } while (iclog
!= log
->l_iclog
);
4040 spin_unlock(&log
->l_icloglock
);
4043 /* return non-zero if log IOERROR transition had already happened */
4051 xlog_in_core_t
*iclog
;
4053 iclog
= log
->l_iclog
;
4055 /* endianness does not matter here, zero is zero in
4058 if (iclog
->ic_header
.h_num_logops
)
4060 iclog
= iclog
->ic_next
;
4061 } while (iclog
!= log
->l_iclog
);
4066 * Verify that an LSN stamped into a piece of metadata is valid. This is
4067 * intended for use in read verifiers on v5 superblocks.
4071 struct xfs_mount
*mp
,
4074 struct xlog
*log
= mp
->m_log
;
4078 * norecovery mode skips mount-time log processing and unconditionally
4079 * resets the in-core LSN. We can't validate in this mode, but
4080 * modifications are not allowed anyways so just return true.
4082 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4086 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4087 * handled by recovery and thus safe to ignore here.
4089 if (lsn
== NULLCOMMITLSN
)
4092 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4094 /* warn the user about what's gone wrong before verifier failure */
4096 spin_lock(&log
->l_icloglock
);
4098 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4099 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4100 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4101 log
->l_curr_cycle
, log
->l_curr_block
);
4102 spin_unlock(&log
->l_icloglock
);
4109 xfs_log_in_recovery(
4110 struct xfs_mount
*mp
)
4112 struct xlog
*log
= mp
->m_log
;
4114 return log
->l_flags
& XLOG_ACTIVE_RECOVERY
;