Linux 3.3-rc6
[linux/fpc-iii.git] / drivers / hwmon / adm1031.c
blob97e2cfb0bc9365827bac1d40667954d18e4d0fc1
1 /*
2 adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Based on lm75.c and lm85.c
5 Supports adm1030 / adm1031
6 Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 Reworked by Jean Delvare <khali@linux-fr.org>
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/hwmon-sysfs.h>
31 #include <linux/err.h>
32 #include <linux/mutex.h>
34 /* Following macros takes channel parameter starting from 0 to 2 */
35 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
36 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
37 #define ADM1031_REG_PWM (0x22)
38 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
39 #define ADM1031_REG_FAN_FILTER (0x23)
41 #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr))
42 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
43 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
44 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
46 #define ADM1031_REG_TEMP(nr) (0x0a + (nr))
47 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
49 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
51 #define ADM1031_REG_CONF1 0x00
52 #define ADM1031_REG_CONF2 0x01
53 #define ADM1031_REG_EXT_TEMP 0x06
55 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
56 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
57 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
59 #define ADM1031_CONF2_PWM1_ENABLE 0x01
60 #define ADM1031_CONF2_PWM2_ENABLE 0x02
61 #define ADM1031_CONF2_TACH1_ENABLE 0x04
62 #define ADM1031_CONF2_TACH2_ENABLE 0x08
63 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
65 #define ADM1031_UPDATE_RATE_MASK 0x1c
66 #define ADM1031_UPDATE_RATE_SHIFT 2
68 /* Addresses to scan */
69 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
71 enum chips { adm1030, adm1031 };
73 typedef u8 auto_chan_table_t[8][2];
75 /* Each client has this additional data */
76 struct adm1031_data {
77 struct device *hwmon_dev;
78 struct mutex update_lock;
79 int chip_type;
80 char valid; /* !=0 if following fields are valid */
81 unsigned long last_updated; /* In jiffies */
82 unsigned int update_interval; /* In milliseconds */
83 /* The chan_select_table contains the possible configurations for
84 * auto fan control.
86 const auto_chan_table_t *chan_select_table;
87 u16 alarm;
88 u8 conf1;
89 u8 conf2;
90 u8 fan[2];
91 u8 fan_div[2];
92 u8 fan_min[2];
93 u8 pwm[2];
94 u8 old_pwm[2];
95 s8 temp[3];
96 u8 ext_temp[3];
97 u8 auto_temp[3];
98 u8 auto_temp_min[3];
99 u8 auto_temp_off[3];
100 u8 auto_temp_max[3];
101 s8 temp_offset[3];
102 s8 temp_min[3];
103 s8 temp_max[3];
104 s8 temp_crit[3];
107 static int adm1031_probe(struct i2c_client *client,
108 const struct i2c_device_id *id);
109 static int adm1031_detect(struct i2c_client *client,
110 struct i2c_board_info *info);
111 static void adm1031_init_client(struct i2c_client *client);
112 static int adm1031_remove(struct i2c_client *client);
113 static struct adm1031_data *adm1031_update_device(struct device *dev);
115 static const struct i2c_device_id adm1031_id[] = {
116 { "adm1030", adm1030 },
117 { "adm1031", adm1031 },
120 MODULE_DEVICE_TABLE(i2c, adm1031_id);
122 /* This is the driver that will be inserted */
123 static struct i2c_driver adm1031_driver = {
124 .class = I2C_CLASS_HWMON,
125 .driver = {
126 .name = "adm1031",
128 .probe = adm1031_probe,
129 .remove = adm1031_remove,
130 .id_table = adm1031_id,
131 .detect = adm1031_detect,
132 .address_list = normal_i2c,
135 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
137 return i2c_smbus_read_byte_data(client, reg);
140 static inline int
141 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
143 return i2c_smbus_write_byte_data(client, reg, value);
147 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
148 ((val + 500) / 1000)))
150 #define TEMP_FROM_REG(val) ((val) * 1000)
152 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
154 #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f)
155 #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \
156 (val) | 0x70 : (val))
158 #define FAN_FROM_REG(reg, div) ((reg) ? \
159 (11250 * 60) / ((reg) * (div)) : 0)
161 static int FAN_TO_REG(int reg, int div)
163 int tmp;
164 tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
165 return tmp > 255 ? 255 : tmp;
168 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
170 #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
171 #define PWM_FROM_REG(val) ((val) << 4)
173 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
174 #define FAN_CHAN_TO_REG(val, reg) \
175 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
177 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
178 ((((val) / 500) & 0xf8) | ((reg) & 0x7))
179 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7)))
180 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
182 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
184 #define AUTO_TEMP_OFF_FROM_REG(reg) \
185 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
187 #define AUTO_TEMP_MAX_FROM_REG(reg) \
188 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
189 AUTO_TEMP_MIN_FROM_REG(reg))
191 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
193 int ret;
194 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
196 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
197 ret = ((reg & 0xf8) |
198 (range < 10000 ? 0 :
199 range < 20000 ? 1 :
200 range < 40000 ? 2 : range < 80000 ? 3 : 4));
201 return ret;
204 /* FAN auto control */
205 #define GET_FAN_AUTO_BITFIELD(data, idx) \
206 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
208 /* The tables below contains the possible values for the auto fan
209 * control bitfields. the index in the table is the register value.
210 * MSb is the auto fan control enable bit, so the four first entries
211 * in the table disables auto fan control when both bitfields are zero.
213 static const auto_chan_table_t auto_channel_select_table_adm1031 = {
214 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
215 { 2 /* 0b010 */ , 4 /* 0b100 */ },
216 { 2 /* 0b010 */ , 2 /* 0b010 */ },
217 { 4 /* 0b100 */ , 4 /* 0b100 */ },
218 { 7 /* 0b111 */ , 7 /* 0b111 */ },
221 static const auto_chan_table_t auto_channel_select_table_adm1030 = {
222 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
223 { 2 /* 0b10 */ , 0 },
224 { 0xff /* invalid */ , 0 },
225 { 0xff /* invalid */ , 0 },
226 { 3 /* 0b11 */ , 0 },
229 /* That function checks if a bitfield is valid and returns the other bitfield
230 * nearest match if no exact match where found.
232 static int
233 get_fan_auto_nearest(struct adm1031_data *data,
234 int chan, u8 val, u8 reg, u8 *new_reg)
236 int i;
237 int first_match = -1, exact_match = -1;
238 u8 other_reg_val =
239 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
241 if (val == 0) {
242 *new_reg = 0;
243 return 0;
246 for (i = 0; i < 8; i++) {
247 if ((val == (*data->chan_select_table)[i][chan]) &&
248 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
249 other_reg_val)) {
250 /* We found an exact match */
251 exact_match = i;
252 break;
253 } else if (val == (*data->chan_select_table)[i][chan] &&
254 first_match == -1) {
255 /* Save the first match in case of an exact match has
256 * not been found
258 first_match = i;
262 if (exact_match >= 0)
263 *new_reg = exact_match;
264 else if (first_match >= 0)
265 *new_reg = first_match;
266 else
267 return -EINVAL;
269 return 0;
272 static ssize_t show_fan_auto_channel(struct device *dev,
273 struct device_attribute *attr, char *buf)
275 int nr = to_sensor_dev_attr(attr)->index;
276 struct adm1031_data *data = adm1031_update_device(dev);
277 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
280 static ssize_t
281 set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
282 const char *buf, size_t count)
284 struct i2c_client *client = to_i2c_client(dev);
285 struct adm1031_data *data = i2c_get_clientdata(client);
286 int nr = to_sensor_dev_attr(attr)->index;
287 long val;
288 u8 reg;
289 int ret;
290 u8 old_fan_mode;
292 ret = kstrtol(buf, 10, &val);
293 if (ret)
294 return ret;
296 old_fan_mode = data->conf1;
298 mutex_lock(&data->update_lock);
300 ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg);
301 if (ret) {
302 mutex_unlock(&data->update_lock);
303 return ret;
305 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
306 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
307 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
308 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
309 /* Switch to Auto Fan Mode
310 * Save PWM registers
311 * Set PWM registers to 33% Both */
312 data->old_pwm[0] = data->pwm[0];
313 data->old_pwm[1] = data->pwm[1];
314 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
315 } else {
316 /* Switch to Manual Mode */
317 data->pwm[0] = data->old_pwm[0];
318 data->pwm[1] = data->old_pwm[1];
319 /* Restore PWM registers */
320 adm1031_write_value(client, ADM1031_REG_PWM,
321 data->pwm[0] | (data->pwm[1] << 4));
324 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
325 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
326 mutex_unlock(&data->update_lock);
327 return count;
330 static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
331 show_fan_auto_channel, set_fan_auto_channel, 0);
332 static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
333 show_fan_auto_channel, set_fan_auto_channel, 1);
335 /* Auto Temps */
336 static ssize_t show_auto_temp_off(struct device *dev,
337 struct device_attribute *attr, char *buf)
339 int nr = to_sensor_dev_attr(attr)->index;
340 struct adm1031_data *data = adm1031_update_device(dev);
341 return sprintf(buf, "%d\n",
342 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
344 static ssize_t show_auto_temp_min(struct device *dev,
345 struct device_attribute *attr, char *buf)
347 int nr = to_sensor_dev_attr(attr)->index;
348 struct adm1031_data *data = adm1031_update_device(dev);
349 return sprintf(buf, "%d\n",
350 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
352 static ssize_t
353 set_auto_temp_min(struct device *dev, struct device_attribute *attr,
354 const char *buf, size_t count)
356 struct i2c_client *client = to_i2c_client(dev);
357 struct adm1031_data *data = i2c_get_clientdata(client);
358 int nr = to_sensor_dev_attr(attr)->index;
359 long val;
360 int ret;
362 ret = kstrtol(buf, 10, &val);
363 if (ret)
364 return ret;
366 mutex_lock(&data->update_lock);
367 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
368 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
369 data->auto_temp[nr]);
370 mutex_unlock(&data->update_lock);
371 return count;
373 static ssize_t show_auto_temp_max(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 int nr = to_sensor_dev_attr(attr)->index;
377 struct adm1031_data *data = adm1031_update_device(dev);
378 return sprintf(buf, "%d\n",
379 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
381 static ssize_t
382 set_auto_temp_max(struct device *dev, struct device_attribute *attr,
383 const char *buf, size_t count)
385 struct i2c_client *client = to_i2c_client(dev);
386 struct adm1031_data *data = i2c_get_clientdata(client);
387 int nr = to_sensor_dev_attr(attr)->index;
388 long val;
389 int ret;
391 ret = kstrtol(buf, 10, &val);
392 if (ret)
393 return ret;
395 mutex_lock(&data->update_lock);
396 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
397 data->pwm[nr]);
398 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
399 data->temp_max[nr]);
400 mutex_unlock(&data->update_lock);
401 return count;
404 #define auto_temp_reg(offset) \
405 static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
406 show_auto_temp_off, NULL, offset - 1); \
407 static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
408 show_auto_temp_min, set_auto_temp_min, offset - 1); \
409 static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
410 show_auto_temp_max, set_auto_temp_max, offset - 1)
412 auto_temp_reg(1);
413 auto_temp_reg(2);
414 auto_temp_reg(3);
416 /* pwm */
417 static ssize_t show_pwm(struct device *dev,
418 struct device_attribute *attr, char *buf)
420 int nr = to_sensor_dev_attr(attr)->index;
421 struct adm1031_data *data = adm1031_update_device(dev);
422 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
424 static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
425 const char *buf, size_t count)
427 struct i2c_client *client = to_i2c_client(dev);
428 struct adm1031_data *data = i2c_get_clientdata(client);
429 int nr = to_sensor_dev_attr(attr)->index;
430 long val;
431 int ret, reg;
433 ret = kstrtol(buf, 10, &val);
434 if (ret)
435 return ret;
437 mutex_lock(&data->update_lock);
438 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
439 (((val>>4) & 0xf) != 5)) {
440 /* In automatic mode, the only PWM accepted is 33% */
441 mutex_unlock(&data->update_lock);
442 return -EINVAL;
444 data->pwm[nr] = PWM_TO_REG(val);
445 reg = adm1031_read_value(client, ADM1031_REG_PWM);
446 adm1031_write_value(client, ADM1031_REG_PWM,
447 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
448 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
449 mutex_unlock(&data->update_lock);
450 return count;
453 static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
454 static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
455 static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
456 show_pwm, set_pwm, 0);
457 static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
458 show_pwm, set_pwm, 1);
460 /* Fans */
463 * That function checks the cases where the fan reading is not
464 * relevant. It is used to provide 0 as fan reading when the fan is
465 * not supposed to run
467 static int trust_fan_readings(struct adm1031_data *data, int chan)
469 int res = 0;
471 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
472 switch (data->conf1 & 0x60) {
473 case 0x00:
475 * remote temp1 controls fan1,
476 * remote temp2 controls fan2
478 res = data->temp[chan+1] >=
479 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
480 break;
481 case 0x20: /* remote temp1 controls both fans */
482 res =
483 data->temp[1] >=
484 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
485 break;
486 case 0x40: /* remote temp2 controls both fans */
487 res =
488 data->temp[2] >=
489 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
490 break;
491 case 0x60: /* max controls both fans */
492 res =
493 data->temp[0] >=
494 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
495 || data->temp[1] >=
496 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
497 || (data->chip_type == adm1031
498 && data->temp[2] >=
499 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
500 break;
502 } else {
503 res = data->pwm[chan] > 0;
505 return res;
509 static ssize_t show_fan(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 int nr = to_sensor_dev_attr(attr)->index;
513 struct adm1031_data *data = adm1031_update_device(dev);
514 int value;
516 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
517 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
518 return sprintf(buf, "%d\n", value);
521 static ssize_t show_fan_div(struct device *dev,
522 struct device_attribute *attr, char *buf)
524 int nr = to_sensor_dev_attr(attr)->index;
525 struct adm1031_data *data = adm1031_update_device(dev);
526 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
528 static ssize_t show_fan_min(struct device *dev,
529 struct device_attribute *attr, char *buf)
531 int nr = to_sensor_dev_attr(attr)->index;
532 struct adm1031_data *data = adm1031_update_device(dev);
533 return sprintf(buf, "%d\n",
534 FAN_FROM_REG(data->fan_min[nr],
535 FAN_DIV_FROM_REG(data->fan_div[nr])));
537 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
538 const char *buf, size_t count)
540 struct i2c_client *client = to_i2c_client(dev);
541 struct adm1031_data *data = i2c_get_clientdata(client);
542 int nr = to_sensor_dev_attr(attr)->index;
543 long val;
544 int ret;
546 ret = kstrtol(buf, 10, &val);
547 if (ret)
548 return ret;
550 mutex_lock(&data->update_lock);
551 if (val) {
552 data->fan_min[nr] =
553 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
554 } else {
555 data->fan_min[nr] = 0xff;
557 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
558 mutex_unlock(&data->update_lock);
559 return count;
561 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
562 const char *buf, size_t count)
564 struct i2c_client *client = to_i2c_client(dev);
565 struct adm1031_data *data = i2c_get_clientdata(client);
566 int nr = to_sensor_dev_attr(attr)->index;
567 long val;
568 u8 tmp;
569 int old_div;
570 int new_min;
571 int ret;
573 ret = kstrtol(buf, 10, &val);
574 if (ret)
575 return ret;
577 tmp = val == 8 ? 0xc0 :
578 val == 4 ? 0x80 :
579 val == 2 ? 0x40 :
580 val == 1 ? 0x00 :
581 0xff;
582 if (tmp == 0xff)
583 return -EINVAL;
585 mutex_lock(&data->update_lock);
586 /* Get fresh readings */
587 data->fan_div[nr] = adm1031_read_value(client,
588 ADM1031_REG_FAN_DIV(nr));
589 data->fan_min[nr] = adm1031_read_value(client,
590 ADM1031_REG_FAN_MIN(nr));
592 /* Write the new clock divider and fan min */
593 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
594 data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
595 new_min = data->fan_min[nr] * old_div / val;
596 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
598 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
599 data->fan_div[nr]);
600 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
601 data->fan_min[nr]);
603 /* Invalidate the cache: fan speed is no longer valid */
604 data->valid = 0;
605 mutex_unlock(&data->update_lock);
606 return count;
609 #define fan_offset(offset) \
610 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
611 show_fan, NULL, offset - 1); \
612 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
613 show_fan_min, set_fan_min, offset - 1); \
614 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
615 show_fan_div, set_fan_div, offset - 1)
617 fan_offset(1);
618 fan_offset(2);
621 /* Temps */
622 static ssize_t show_temp(struct device *dev,
623 struct device_attribute *attr, char *buf)
625 int nr = to_sensor_dev_attr(attr)->index;
626 struct adm1031_data *data = adm1031_update_device(dev);
627 int ext;
628 ext = nr == 0 ?
629 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
630 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
631 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
633 static ssize_t show_temp_offset(struct device *dev,
634 struct device_attribute *attr, char *buf)
636 int nr = to_sensor_dev_attr(attr)->index;
637 struct adm1031_data *data = adm1031_update_device(dev);
638 return sprintf(buf, "%d\n",
639 TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
641 static ssize_t show_temp_min(struct device *dev,
642 struct device_attribute *attr, char *buf)
644 int nr = to_sensor_dev_attr(attr)->index;
645 struct adm1031_data *data = adm1031_update_device(dev);
646 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
648 static ssize_t show_temp_max(struct device *dev,
649 struct device_attribute *attr, char *buf)
651 int nr = to_sensor_dev_attr(attr)->index;
652 struct adm1031_data *data = adm1031_update_device(dev);
653 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
655 static ssize_t show_temp_crit(struct device *dev,
656 struct device_attribute *attr, char *buf)
658 int nr = to_sensor_dev_attr(attr)->index;
659 struct adm1031_data *data = adm1031_update_device(dev);
660 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
662 static ssize_t set_temp_offset(struct device *dev,
663 struct device_attribute *attr, const char *buf,
664 size_t count)
666 struct i2c_client *client = to_i2c_client(dev);
667 struct adm1031_data *data = i2c_get_clientdata(client);
668 int nr = to_sensor_dev_attr(attr)->index;
669 long val;
670 int ret;
672 ret = kstrtol(buf, 10, &val);
673 if (ret)
674 return ret;
676 val = SENSORS_LIMIT(val, -15000, 15000);
677 mutex_lock(&data->update_lock);
678 data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
679 adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
680 data->temp_offset[nr]);
681 mutex_unlock(&data->update_lock);
682 return count;
684 static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
685 const char *buf, size_t count)
687 struct i2c_client *client = to_i2c_client(dev);
688 struct adm1031_data *data = i2c_get_clientdata(client);
689 int nr = to_sensor_dev_attr(attr)->index;
690 long val;
691 int ret;
693 ret = kstrtol(buf, 10, &val);
694 if (ret)
695 return ret;
697 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
698 mutex_lock(&data->update_lock);
699 data->temp_min[nr] = TEMP_TO_REG(val);
700 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
701 data->temp_min[nr]);
702 mutex_unlock(&data->update_lock);
703 return count;
705 static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
706 const char *buf, size_t count)
708 struct i2c_client *client = to_i2c_client(dev);
709 struct adm1031_data *data = i2c_get_clientdata(client);
710 int nr = to_sensor_dev_attr(attr)->index;
711 long val;
712 int ret;
714 ret = kstrtol(buf, 10, &val);
715 if (ret)
716 return ret;
718 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
719 mutex_lock(&data->update_lock);
720 data->temp_max[nr] = TEMP_TO_REG(val);
721 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
722 data->temp_max[nr]);
723 mutex_unlock(&data->update_lock);
724 return count;
726 static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
727 const char *buf, size_t count)
729 struct i2c_client *client = to_i2c_client(dev);
730 struct adm1031_data *data = i2c_get_clientdata(client);
731 int nr = to_sensor_dev_attr(attr)->index;
732 long val;
733 int ret;
735 ret = kstrtol(buf, 10, &val);
736 if (ret)
737 return ret;
739 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
740 mutex_lock(&data->update_lock);
741 data->temp_crit[nr] = TEMP_TO_REG(val);
742 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
743 data->temp_crit[nr]);
744 mutex_unlock(&data->update_lock);
745 return count;
748 #define temp_reg(offset) \
749 static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
750 show_temp, NULL, offset - 1); \
751 static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR, \
752 show_temp_offset, set_temp_offset, offset - 1); \
753 static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
754 show_temp_min, set_temp_min, offset - 1); \
755 static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
756 show_temp_max, set_temp_max, offset - 1); \
757 static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
758 show_temp_crit, set_temp_crit, offset - 1)
760 temp_reg(1);
761 temp_reg(2);
762 temp_reg(3);
764 /* Alarms */
765 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
766 char *buf)
768 struct adm1031_data *data = adm1031_update_device(dev);
769 return sprintf(buf, "%d\n", data->alarm);
772 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
774 static ssize_t show_alarm(struct device *dev,
775 struct device_attribute *attr, char *buf)
777 int bitnr = to_sensor_dev_attr(attr)->index;
778 struct adm1031_data *data = adm1031_update_device(dev);
779 return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
782 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
783 static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
784 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
785 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
786 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
787 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
788 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
789 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
790 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
791 static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
792 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
793 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
794 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
795 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
796 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
798 /* Update Interval */
799 static const unsigned int update_intervals[] = {
800 16000, 8000, 4000, 2000, 1000, 500, 250, 125,
803 static ssize_t show_update_interval(struct device *dev,
804 struct device_attribute *attr, char *buf)
806 struct i2c_client *client = to_i2c_client(dev);
807 struct adm1031_data *data = i2c_get_clientdata(client);
809 return sprintf(buf, "%u\n", data->update_interval);
812 static ssize_t set_update_interval(struct device *dev,
813 struct device_attribute *attr,
814 const char *buf, size_t count)
816 struct i2c_client *client = to_i2c_client(dev);
817 struct adm1031_data *data = i2c_get_clientdata(client);
818 unsigned long val;
819 int i, err;
820 u8 reg;
822 err = kstrtoul(buf, 10, &val);
823 if (err)
824 return err;
827 * Find the nearest update interval from the table.
828 * Use it to determine the matching update rate.
830 for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
831 if (val >= update_intervals[i])
832 break;
834 /* if not found, we point to the last entry (lowest update interval) */
836 /* set the new update rate while preserving other settings */
837 reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
838 reg &= ~ADM1031_UPDATE_RATE_MASK;
839 reg |= i << ADM1031_UPDATE_RATE_SHIFT;
840 adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
842 mutex_lock(&data->update_lock);
843 data->update_interval = update_intervals[i];
844 mutex_unlock(&data->update_lock);
846 return count;
849 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
850 set_update_interval);
852 static struct attribute *adm1031_attributes[] = {
853 &sensor_dev_attr_fan1_input.dev_attr.attr,
854 &sensor_dev_attr_fan1_div.dev_attr.attr,
855 &sensor_dev_attr_fan1_min.dev_attr.attr,
856 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
857 &sensor_dev_attr_fan1_fault.dev_attr.attr,
858 &sensor_dev_attr_pwm1.dev_attr.attr,
859 &sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
860 &sensor_dev_attr_temp1_input.dev_attr.attr,
861 &sensor_dev_attr_temp1_offset.dev_attr.attr,
862 &sensor_dev_attr_temp1_min.dev_attr.attr,
863 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
864 &sensor_dev_attr_temp1_max.dev_attr.attr,
865 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
866 &sensor_dev_attr_temp1_crit.dev_attr.attr,
867 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
868 &sensor_dev_attr_temp2_input.dev_attr.attr,
869 &sensor_dev_attr_temp2_offset.dev_attr.attr,
870 &sensor_dev_attr_temp2_min.dev_attr.attr,
871 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
872 &sensor_dev_attr_temp2_max.dev_attr.attr,
873 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
874 &sensor_dev_attr_temp2_crit.dev_attr.attr,
875 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
876 &sensor_dev_attr_temp2_fault.dev_attr.attr,
878 &sensor_dev_attr_auto_temp1_off.dev_attr.attr,
879 &sensor_dev_attr_auto_temp1_min.dev_attr.attr,
880 &sensor_dev_attr_auto_temp1_max.dev_attr.attr,
882 &sensor_dev_attr_auto_temp2_off.dev_attr.attr,
883 &sensor_dev_attr_auto_temp2_min.dev_attr.attr,
884 &sensor_dev_attr_auto_temp2_max.dev_attr.attr,
886 &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
888 &dev_attr_update_interval.attr,
889 &dev_attr_alarms.attr,
891 NULL
894 static const struct attribute_group adm1031_group = {
895 .attrs = adm1031_attributes,
898 static struct attribute *adm1031_attributes_opt[] = {
899 &sensor_dev_attr_fan2_input.dev_attr.attr,
900 &sensor_dev_attr_fan2_div.dev_attr.attr,
901 &sensor_dev_attr_fan2_min.dev_attr.attr,
902 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
903 &sensor_dev_attr_fan2_fault.dev_attr.attr,
904 &sensor_dev_attr_pwm2.dev_attr.attr,
905 &sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
906 &sensor_dev_attr_temp3_input.dev_attr.attr,
907 &sensor_dev_attr_temp3_offset.dev_attr.attr,
908 &sensor_dev_attr_temp3_min.dev_attr.attr,
909 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
910 &sensor_dev_attr_temp3_max.dev_attr.attr,
911 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
912 &sensor_dev_attr_temp3_crit.dev_attr.attr,
913 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
914 &sensor_dev_attr_temp3_fault.dev_attr.attr,
915 &sensor_dev_attr_auto_temp3_off.dev_attr.attr,
916 &sensor_dev_attr_auto_temp3_min.dev_attr.attr,
917 &sensor_dev_attr_auto_temp3_max.dev_attr.attr,
918 &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
919 NULL
922 static const struct attribute_group adm1031_group_opt = {
923 .attrs = adm1031_attributes_opt,
926 /* Return 0 if detection is successful, -ENODEV otherwise */
927 static int adm1031_detect(struct i2c_client *client,
928 struct i2c_board_info *info)
930 struct i2c_adapter *adapter = client->adapter;
931 const char *name;
932 int id, co;
934 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
935 return -ENODEV;
937 id = i2c_smbus_read_byte_data(client, 0x3d);
938 co = i2c_smbus_read_byte_data(client, 0x3e);
940 if (!((id == 0x31 || id == 0x30) && co == 0x41))
941 return -ENODEV;
942 name = (id == 0x30) ? "adm1030" : "adm1031";
944 strlcpy(info->type, name, I2C_NAME_SIZE);
946 return 0;
949 static int adm1031_probe(struct i2c_client *client,
950 const struct i2c_device_id *id)
952 struct adm1031_data *data;
953 int err;
955 data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
956 if (!data) {
957 err = -ENOMEM;
958 goto exit;
961 i2c_set_clientdata(client, data);
962 data->chip_type = id->driver_data;
963 mutex_init(&data->update_lock);
965 if (data->chip_type == adm1030)
966 data->chan_select_table = &auto_channel_select_table_adm1030;
967 else
968 data->chan_select_table = &auto_channel_select_table_adm1031;
970 /* Initialize the ADM1031 chip */
971 adm1031_init_client(client);
973 /* Register sysfs hooks */
974 err = sysfs_create_group(&client->dev.kobj, &adm1031_group);
975 if (err)
976 goto exit_free;
978 if (data->chip_type == adm1031) {
979 err = sysfs_create_group(&client->dev.kobj, &adm1031_group_opt);
980 if (err)
981 goto exit_remove;
984 data->hwmon_dev = hwmon_device_register(&client->dev);
985 if (IS_ERR(data->hwmon_dev)) {
986 err = PTR_ERR(data->hwmon_dev);
987 goto exit_remove;
990 return 0;
992 exit_remove:
993 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
994 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
995 exit_free:
996 kfree(data);
997 exit:
998 return err;
1001 static int adm1031_remove(struct i2c_client *client)
1003 struct adm1031_data *data = i2c_get_clientdata(client);
1005 hwmon_device_unregister(data->hwmon_dev);
1006 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
1007 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
1008 kfree(data);
1009 return 0;
1012 static void adm1031_init_client(struct i2c_client *client)
1014 unsigned int read_val;
1015 unsigned int mask;
1016 int i;
1017 struct adm1031_data *data = i2c_get_clientdata(client);
1019 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
1020 if (data->chip_type == adm1031) {
1021 mask |= (ADM1031_CONF2_PWM2_ENABLE |
1022 ADM1031_CONF2_TACH2_ENABLE);
1024 /* Initialize the ADM1031 chip (enables fan speed reading ) */
1025 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
1026 if ((read_val | mask) != read_val)
1027 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
1029 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
1030 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
1031 adm1031_write_value(client, ADM1031_REG_CONF1,
1032 read_val | ADM1031_CONF1_MONITOR_ENABLE);
1035 /* Read the chip's update rate */
1036 mask = ADM1031_UPDATE_RATE_MASK;
1037 read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
1038 i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
1039 /* Save it as update interval */
1040 data->update_interval = update_intervals[i];
1043 static struct adm1031_data *adm1031_update_device(struct device *dev)
1045 struct i2c_client *client = to_i2c_client(dev);
1046 struct adm1031_data *data = i2c_get_clientdata(client);
1047 unsigned long next_update;
1048 int chan;
1050 mutex_lock(&data->update_lock);
1052 next_update = data->last_updated
1053 + msecs_to_jiffies(data->update_interval);
1054 if (time_after(jiffies, next_update) || !data->valid) {
1056 dev_dbg(&client->dev, "Starting adm1031 update\n");
1057 for (chan = 0;
1058 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
1059 u8 oldh, newh;
1061 oldh =
1062 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1063 data->ext_temp[chan] =
1064 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
1065 newh =
1066 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
1067 if (newh != oldh) {
1068 data->ext_temp[chan] =
1069 adm1031_read_value(client,
1070 ADM1031_REG_EXT_TEMP);
1071 #ifdef DEBUG
1072 oldh =
1073 adm1031_read_value(client,
1074 ADM1031_REG_TEMP(chan));
1076 /* oldh is actually newer */
1077 if (newh != oldh)
1078 dev_warn(&client->dev,
1079 "Remote temperature may be wrong.\n");
1080 #endif
1082 data->temp[chan] = newh;
1084 data->temp_offset[chan] =
1085 adm1031_read_value(client,
1086 ADM1031_REG_TEMP_OFFSET(chan));
1087 data->temp_min[chan] =
1088 adm1031_read_value(client,
1089 ADM1031_REG_TEMP_MIN(chan));
1090 data->temp_max[chan] =
1091 adm1031_read_value(client,
1092 ADM1031_REG_TEMP_MAX(chan));
1093 data->temp_crit[chan] =
1094 adm1031_read_value(client,
1095 ADM1031_REG_TEMP_CRIT(chan));
1096 data->auto_temp[chan] =
1097 adm1031_read_value(client,
1098 ADM1031_REG_AUTO_TEMP(chan));
1102 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
1103 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
1105 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
1106 | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
1107 if (data->chip_type == adm1030)
1108 data->alarm &= 0xc0ff;
1110 for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
1111 chan++) {
1112 data->fan_div[chan] =
1113 adm1031_read_value(client,
1114 ADM1031_REG_FAN_DIV(chan));
1115 data->fan_min[chan] =
1116 adm1031_read_value(client,
1117 ADM1031_REG_FAN_MIN(chan));
1118 data->fan[chan] =
1119 adm1031_read_value(client,
1120 ADM1031_REG_FAN_SPEED(chan));
1121 data->pwm[chan] =
1122 (adm1031_read_value(client,
1123 ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
1125 data->last_updated = jiffies;
1126 data->valid = 1;
1129 mutex_unlock(&data->update_lock);
1131 return data;
1134 static int __init sensors_adm1031_init(void)
1136 return i2c_add_driver(&adm1031_driver);
1139 static void __exit sensors_adm1031_exit(void)
1141 i2c_del_driver(&adm1031_driver);
1144 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1145 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1146 MODULE_LICENSE("GPL");
1148 module_init(sensors_adm1031_init);
1149 module_exit(sensors_adm1031_exit);