Linux 3.3-rc6
[linux/fpc-iii.git] / drivers / spi / spi-topcliff-pch.c
blob10182eb500681719fc0f4db5e017c76d56f60370
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
34 /* Register offsets */
35 #define PCH_SPCR 0x00 /* SPI control register */
36 #define PCH_SPBRR 0x04 /* SPI baud rate register */
37 #define PCH_SPSR 0x08 /* SPI status register */
38 #define PCH_SPDWR 0x0C /* SPI write data register */
39 #define PCH_SPDRR 0x10 /* SPI read data register */
40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41 #define PCH_SRST 0x1C /* SPI reset register */
42 #define PCH_ADDRESS_SIZE 0x20
44 #define PCH_SPSR_TFD 0x000007C0
45 #define PCH_SPSR_RFD 0x0000F800
47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
50 #define PCH_RX_THOLD 7
51 #define PCH_RX_THOLD_MAX 15
53 #define PCH_TX_THOLD 2
55 #define PCH_MAX_BAUDRATE 5000000
56 #define PCH_MAX_FIFO_DEPTH 16
58 #define STATUS_RUNNING 1
59 #define STATUS_EXITING 2
60 #define PCH_SLEEP_TIME 10
62 #define SSN_LOW 0x02U
63 #define SSN_HIGH 0x03U
64 #define SSN_NO_CONTROL 0x00U
65 #define PCH_MAX_CS 0xFF
66 #define PCI_DEVICE_ID_GE_SPI 0x8816
68 #define SPCR_SPE_BIT (1 << 0)
69 #define SPCR_MSTR_BIT (1 << 1)
70 #define SPCR_LSBF_BIT (1 << 4)
71 #define SPCR_CPHA_BIT (1 << 5)
72 #define SPCR_CPOL_BIT (1 << 6)
73 #define SPCR_TFIE_BIT (1 << 8)
74 #define SPCR_RFIE_BIT (1 << 9)
75 #define SPCR_FIE_BIT (1 << 10)
76 #define SPCR_ORIE_BIT (1 << 11)
77 #define SPCR_MDFIE_BIT (1 << 12)
78 #define SPCR_FICLR_BIT (1 << 24)
79 #define SPSR_TFI_BIT (1 << 0)
80 #define SPSR_RFI_BIT (1 << 1)
81 #define SPSR_FI_BIT (1 << 2)
82 #define SPSR_ORF_BIT (1 << 3)
83 #define SPBRR_SIZE_BIT (1 << 10)
85 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
88 #define SPCR_RFIC_FIELD 20
89 #define SPCR_TFIC_FIELD 16
91 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
95 #define PCH_CLOCK_HZ 50000000
96 #define PCH_MAX_SPBR 1023
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM 0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
105 * Set the number of SPI instance max
106 * Intel EG20T PCH : 1ch
107 * LAPIS Semiconductor ML7213 IOH : 2ch
108 * LAPIS Semiconductor ML7223 IOH : 1ch
109 * LAPIS Semiconductor ML7831 IOH : 1ch
111 #define PCH_SPI_MAX_DEV 2
113 #define PCH_BUF_SIZE 4096
114 #define PCH_DMA_TRANS_SIZE 12
116 static int use_dma = 1;
118 struct pch_spi_dma_ctrl {
119 struct dma_async_tx_descriptor *desc_tx;
120 struct dma_async_tx_descriptor *desc_rx;
121 struct pch_dma_slave param_tx;
122 struct pch_dma_slave param_rx;
123 struct dma_chan *chan_tx;
124 struct dma_chan *chan_rx;
125 struct scatterlist *sg_tx_p;
126 struct scatterlist *sg_rx_p;
127 struct scatterlist sg_tx;
128 struct scatterlist sg_rx;
129 int nent;
130 void *tx_buf_virt;
131 void *rx_buf_virt;
132 dma_addr_t tx_buf_dma;
133 dma_addr_t rx_buf_dma;
136 * struct pch_spi_data - Holds the SPI channel specific details
137 * @io_remap_addr: The remapped PCI base address
138 * @master: Pointer to the SPI master structure
139 * @work: Reference to work queue handler
140 * @wk: Workqueue for carrying out execution of the
141 * requests
142 * @wait: Wait queue for waking up upon receiving an
143 * interrupt.
144 * @transfer_complete: Status of SPI Transfer
145 * @bcurrent_msg_processing: Status flag for message processing
146 * @lock: Lock for protecting this structure
147 * @queue: SPI Message queue
148 * @status: Status of the SPI driver
149 * @bpw_len: Length of data to be transferred in bits per
150 * word
151 * @transfer_active: Flag showing active transfer
152 * @tx_index: Transmit data count; for bookkeeping during
153 * transfer
154 * @rx_index: Receive data count; for bookkeeping during
155 * transfer
156 * @tx_buff: Buffer for data to be transmitted
157 * @rx_index: Buffer for Received data
158 * @n_curnt_chip: The chip number that this SPI driver currently
159 * operates on
160 * @current_chip: Reference to the current chip that this SPI
161 * driver currently operates on
162 * @current_msg: The current message that this SPI driver is
163 * handling
164 * @cur_trans: The current transfer that this SPI driver is
165 * handling
166 * @board_dat: Reference to the SPI device data structure
167 * @plat_dev: platform_device structure
168 * @ch: SPI channel number
169 * @irq_reg_sts: Status of IRQ registration
171 struct pch_spi_data {
172 void __iomem *io_remap_addr;
173 unsigned long io_base_addr;
174 struct spi_master *master;
175 struct work_struct work;
176 struct workqueue_struct *wk;
177 wait_queue_head_t wait;
178 u8 transfer_complete;
179 u8 bcurrent_msg_processing;
180 spinlock_t lock;
181 struct list_head queue;
182 u8 status;
183 u32 bpw_len;
184 u8 transfer_active;
185 u32 tx_index;
186 u32 rx_index;
187 u16 *pkt_tx_buff;
188 u16 *pkt_rx_buff;
189 u8 n_curnt_chip;
190 struct spi_device *current_chip;
191 struct spi_message *current_msg;
192 struct spi_transfer *cur_trans;
193 struct pch_spi_board_data *board_dat;
194 struct platform_device *plat_dev;
195 int ch;
196 struct pch_spi_dma_ctrl dma;
197 int use_dma;
198 u8 irq_reg_sts;
202 * struct pch_spi_board_data - Holds the SPI device specific details
203 * @pdev: Pointer to the PCI device
204 * @suspend_sts: Status of suspend
205 * @num: The number of SPI device instance
207 struct pch_spi_board_data {
208 struct pci_dev *pdev;
209 u8 suspend_sts;
210 int num;
213 struct pch_pd_dev_save {
214 int num;
215 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
216 struct pch_spi_board_data *board_dat;
219 static struct pci_device_id pch_spi_pcidev_id[] = {
220 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
221 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
222 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
223 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
228 * pch_spi_writereg() - Performs register writes
229 * @master: Pointer to struct spi_master.
230 * @idx: Register offset.
231 * @val: Value to be written to register.
233 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 struct pch_spi_data *data = spi_master_get_devdata(master);
236 iowrite32(val, (data->io_remap_addr + idx));
240 * pch_spi_readreg() - Performs register reads
241 * @master: Pointer to struct spi_master.
242 * @idx: Register offset.
244 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 struct pch_spi_data *data = spi_master_get_devdata(master);
247 return ioread32(data->io_remap_addr + idx);
250 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
251 u32 set, u32 clr)
253 u32 tmp = pch_spi_readreg(master, idx);
254 tmp = (tmp & ~clr) | set;
255 pch_spi_writereg(master, idx, tmp);
258 static void pch_spi_set_master_mode(struct spi_master *master)
260 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
264 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
265 * @master: Pointer to struct spi_master.
267 static void pch_spi_clear_fifo(struct spi_master *master)
269 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
270 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
273 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
274 void __iomem *io_remap_addr)
276 u32 n_read, tx_index, rx_index, bpw_len;
277 u16 *pkt_rx_buffer, *pkt_tx_buff;
278 int read_cnt;
279 u32 reg_spcr_val;
280 void __iomem *spsr;
281 void __iomem *spdrr;
282 void __iomem *spdwr;
284 spsr = io_remap_addr + PCH_SPSR;
285 iowrite32(reg_spsr_val, spsr);
287 if (data->transfer_active) {
288 rx_index = data->rx_index;
289 tx_index = data->tx_index;
290 bpw_len = data->bpw_len;
291 pkt_rx_buffer = data->pkt_rx_buff;
292 pkt_tx_buff = data->pkt_tx_buff;
294 spdrr = io_remap_addr + PCH_SPDRR;
295 spdwr = io_remap_addr + PCH_SPDWR;
297 n_read = PCH_READABLE(reg_spsr_val);
299 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
300 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
301 if (tx_index < bpw_len)
302 iowrite32(pkt_tx_buff[tx_index++], spdwr);
305 /* disable RFI if not needed */
306 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
307 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
308 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310 /* reset rx threshold */
311 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
312 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
317 /* update counts */
318 data->tx_index = tx_index;
319 data->rx_index = rx_index;
323 /* if transfer complete interrupt */
324 if (reg_spsr_val & SPSR_FI_BIT) {
325 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
326 /* disable interrupts */
327 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
329 /* transfer is completed;
330 inform pch_spi_process_messages */
331 data->transfer_complete = true;
332 data->transfer_active = false;
333 wake_up(&data->wait);
334 } else {
335 dev_err(&data->master->dev,
336 "%s : Transfer is not completed", __func__);
342 * pch_spi_handler() - Interrupt handler
343 * @irq: The interrupt number.
344 * @dev_id: Pointer to struct pch_spi_board_data.
346 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
348 u32 reg_spsr_val;
349 void __iomem *spsr;
350 void __iomem *io_remap_addr;
351 irqreturn_t ret = IRQ_NONE;
352 struct pch_spi_data *data = dev_id;
353 struct pch_spi_board_data *board_dat = data->board_dat;
355 if (board_dat->suspend_sts) {
356 dev_dbg(&board_dat->pdev->dev,
357 "%s returning due to suspend\n", __func__);
358 return IRQ_NONE;
361 io_remap_addr = data->io_remap_addr;
362 spsr = io_remap_addr + PCH_SPSR;
364 reg_spsr_val = ioread32(spsr);
366 if (reg_spsr_val & SPSR_ORF_BIT) {
367 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
368 if (data->current_msg->complete != 0) {
369 data->transfer_complete = true;
370 data->current_msg->status = -EIO;
371 data->current_msg->complete(data->current_msg->context);
372 data->bcurrent_msg_processing = false;
373 data->current_msg = NULL;
374 data->cur_trans = NULL;
378 if (data->use_dma)
379 return IRQ_NONE;
381 /* Check if the interrupt is for SPI device */
382 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
383 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
384 ret = IRQ_HANDLED;
387 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
388 __func__, ret);
390 return ret;
394 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
395 * @master: Pointer to struct spi_master.
396 * @speed_hz: Baud rate.
398 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
400 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
402 /* if baud rate is less than we can support limit it */
403 if (n_spbr > PCH_MAX_SPBR)
404 n_spbr = PCH_MAX_SPBR;
406 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
410 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
411 * @master: Pointer to struct spi_master.
412 * @bits_per_word: Bits per word for SPI transfer.
414 static void pch_spi_set_bits_per_word(struct spi_master *master,
415 u8 bits_per_word)
417 if (bits_per_word == 8)
418 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
419 else
420 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
424 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
425 * @spi: Pointer to struct spi_device.
427 static void pch_spi_setup_transfer(struct spi_device *spi)
429 u32 flags = 0;
431 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
432 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
433 spi->max_speed_hz);
434 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
436 /* set bits per word */
437 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
439 if (!(spi->mode & SPI_LSB_FIRST))
440 flags |= SPCR_LSBF_BIT;
441 if (spi->mode & SPI_CPOL)
442 flags |= SPCR_CPOL_BIT;
443 if (spi->mode & SPI_CPHA)
444 flags |= SPCR_CPHA_BIT;
445 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
446 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
448 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
449 pch_spi_clear_fifo(spi->master);
453 * pch_spi_reset() - Clears SPI registers
454 * @master: Pointer to struct spi_master.
456 static void pch_spi_reset(struct spi_master *master)
458 /* write 1 to reset SPI */
459 pch_spi_writereg(master, PCH_SRST, 0x1);
461 /* clear reset */
462 pch_spi_writereg(master, PCH_SRST, 0x0);
465 static int pch_spi_setup(struct spi_device *pspi)
467 /* check bits per word */
468 if (pspi->bits_per_word == 0) {
469 pspi->bits_per_word = 8;
470 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473 if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
474 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
475 return -EINVAL;
478 /* Check baud rate setting */
479 /* if baud rate of chip is greater than
480 max we can support,return error */
481 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
482 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
484 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
485 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
487 return 0;
490 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
493 struct spi_transfer *transfer;
494 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
495 int retval;
496 unsigned long flags;
498 /* validate spi message and baud rate */
499 if (unlikely(list_empty(&pmsg->transfers) == 1)) {
500 dev_err(&pspi->dev, "%s list empty\n", __func__);
501 retval = -EINVAL;
502 goto err_out;
505 if (unlikely(pspi->max_speed_hz == 0)) {
506 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
507 __func__, pspi->max_speed_hz);
508 retval = -EINVAL;
509 goto err_out;
512 dev_dbg(&pspi->dev, "%s Transfer List not empty. "
513 "Transfer Speed is set.\n", __func__);
515 spin_lock_irqsave(&data->lock, flags);
516 /* validate Tx/Rx buffers and Transfer length */
517 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
518 if (!transfer->tx_buf && !transfer->rx_buf) {
519 dev_err(&pspi->dev,
520 "%s Tx and Rx buffer NULL\n", __func__);
521 retval = -EINVAL;
522 goto err_return_spinlock;
525 if (!transfer->len) {
526 dev_err(&pspi->dev, "%s Transfer length invalid\n",
527 __func__);
528 retval = -EINVAL;
529 goto err_return_spinlock;
532 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
533 " valid\n", __func__);
535 /* if baud rate has been specified validate the same */
536 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
537 transfer->speed_hz = PCH_MAX_BAUDRATE;
539 /* if bits per word has been specified validate the same */
540 if (transfer->bits_per_word) {
541 if ((transfer->bits_per_word != 8)
542 && (transfer->bits_per_word != 16)) {
543 retval = -EINVAL;
544 dev_err(&pspi->dev,
545 "%s Invalid bits per word\n", __func__);
546 goto err_return_spinlock;
550 spin_unlock_irqrestore(&data->lock, flags);
552 /* We won't process any messages if we have been asked to terminate */
553 if (data->status == STATUS_EXITING) {
554 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
555 retval = -ESHUTDOWN;
556 goto err_out;
559 /* If suspended ,return -EINVAL */
560 if (data->board_dat->suspend_sts) {
561 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
562 retval = -EINVAL;
563 goto err_out;
566 /* set status of message */
567 pmsg->actual_length = 0;
568 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
570 pmsg->status = -EINPROGRESS;
571 spin_lock_irqsave(&data->lock, flags);
572 /* add message to queue */
573 list_add_tail(&pmsg->queue, &data->queue);
574 spin_unlock_irqrestore(&data->lock, flags);
576 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
578 /* schedule work queue to run */
579 queue_work(data->wk, &data->work);
580 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
582 retval = 0;
584 err_out:
585 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
586 return retval;
587 err_return_spinlock:
588 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
589 spin_unlock_irqrestore(&data->lock, flags);
590 return retval;
593 static inline void pch_spi_select_chip(struct pch_spi_data *data,
594 struct spi_device *pspi)
596 if (data->current_chip != NULL) {
597 if (pspi->chip_select != data->n_curnt_chip) {
598 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
599 data->current_chip = NULL;
603 data->current_chip = pspi;
605 data->n_curnt_chip = data->current_chip->chip_select;
607 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
608 pch_spi_setup_transfer(pspi);
611 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
613 int size;
614 u32 n_writes;
615 int j;
616 struct spi_message *pmsg;
617 const u8 *tx_buf;
618 const u16 *tx_sbuf;
620 /* set baud rate if needed */
621 if (data->cur_trans->speed_hz) {
622 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
623 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
626 /* set bits per word if needed */
627 if (data->cur_trans->bits_per_word &&
628 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
629 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
630 pch_spi_set_bits_per_word(data->master,
631 data->cur_trans->bits_per_word);
632 *bpw = data->cur_trans->bits_per_word;
633 } else {
634 *bpw = data->current_msg->spi->bits_per_word;
637 /* reset Tx/Rx index */
638 data->tx_index = 0;
639 data->rx_index = 0;
641 data->bpw_len = data->cur_trans->len / (*bpw / 8);
643 /* find alloc size */
644 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
646 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
647 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
648 if (data->pkt_tx_buff != NULL) {
649 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
650 if (!data->pkt_rx_buff)
651 kfree(data->pkt_tx_buff);
654 if (!data->pkt_rx_buff) {
655 /* flush queue and set status of all transfers to -ENOMEM */
656 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
657 list_for_each_entry(pmsg, data->queue.next, queue) {
658 pmsg->status = -ENOMEM;
660 if (pmsg->complete != 0)
661 pmsg->complete(pmsg->context);
663 /* delete from queue */
664 list_del_init(&pmsg->queue);
666 return;
669 /* copy Tx Data */
670 if (data->cur_trans->tx_buf != NULL) {
671 if (*bpw == 8) {
672 tx_buf = data->cur_trans->tx_buf;
673 for (j = 0; j < data->bpw_len; j++)
674 data->pkt_tx_buff[j] = *tx_buf++;
675 } else {
676 tx_sbuf = data->cur_trans->tx_buf;
677 for (j = 0; j < data->bpw_len; j++)
678 data->pkt_tx_buff[j] = *tx_sbuf++;
682 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
683 n_writes = data->bpw_len;
684 if (n_writes > PCH_MAX_FIFO_DEPTH)
685 n_writes = PCH_MAX_FIFO_DEPTH;
687 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
688 "0x2 to SSNXCR\n", __func__);
689 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
691 for (j = 0; j < n_writes; j++)
692 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
694 /* update tx_index */
695 data->tx_index = j;
697 /* reset transfer complete flag */
698 data->transfer_complete = false;
699 data->transfer_active = true;
702 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
704 struct spi_message *pmsg;
705 dev_dbg(&data->master->dev, "%s called\n", __func__);
706 /* Invoke complete callback
707 * [To the spi core..indicating end of transfer] */
708 data->current_msg->status = 0;
710 if (data->current_msg->complete != 0) {
711 dev_dbg(&data->master->dev,
712 "%s:Invoking callback of SPI core\n", __func__);
713 data->current_msg->complete(data->current_msg->context);
716 /* update status in global variable */
717 data->bcurrent_msg_processing = false;
719 dev_dbg(&data->master->dev,
720 "%s:data->bcurrent_msg_processing = false\n", __func__);
722 data->current_msg = NULL;
723 data->cur_trans = NULL;
725 /* check if we have items in list and not suspending
726 * return 1 if list empty */
727 if ((list_empty(&data->queue) == 0) &&
728 (!data->board_dat->suspend_sts) &&
729 (data->status != STATUS_EXITING)) {
730 /* We have some more work to do (either there is more tranint
731 * bpw;sfer requests in the current message or there are
732 *more messages)
734 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
735 queue_work(data->wk, &data->work);
736 } else if (data->board_dat->suspend_sts ||
737 data->status == STATUS_EXITING) {
738 dev_dbg(&data->master->dev,
739 "%s suspend/remove initiated, flushing queue\n",
740 __func__);
741 list_for_each_entry(pmsg, data->queue.next, queue) {
742 pmsg->status = -EIO;
744 if (pmsg->complete)
745 pmsg->complete(pmsg->context);
747 /* delete from queue */
748 list_del_init(&pmsg->queue);
753 static void pch_spi_set_ir(struct pch_spi_data *data)
755 /* enable interrupts, set threshold, enable SPI */
756 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
757 /* set receive threshold to PCH_RX_THOLD */
758 pch_spi_setclr_reg(data->master, PCH_SPCR,
759 PCH_RX_THOLD << SPCR_RFIC_FIELD |
760 SPCR_FIE_BIT | SPCR_RFIE_BIT |
761 SPCR_ORIE_BIT | SPCR_SPE_BIT,
762 MASK_RFIC_SPCR_BITS | PCH_ALL);
763 else
764 /* set receive threshold to maximum */
765 pch_spi_setclr_reg(data->master, PCH_SPCR,
766 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
767 SPCR_FIE_BIT | SPCR_ORIE_BIT |
768 SPCR_SPE_BIT,
769 MASK_RFIC_SPCR_BITS | PCH_ALL);
771 /* Wait until the transfer completes; go to sleep after
772 initiating the transfer. */
773 dev_dbg(&data->master->dev,
774 "%s:waiting for transfer to get over\n", __func__);
776 wait_event_interruptible(data->wait, data->transfer_complete);
778 /* clear all interrupts */
779 pch_spi_writereg(data->master, PCH_SPSR,
780 pch_spi_readreg(data->master, PCH_SPSR));
781 /* Disable interrupts and SPI transfer */
782 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
783 /* clear FIFO */
784 pch_spi_clear_fifo(data->master);
787 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
789 int j;
790 u8 *rx_buf;
791 u16 *rx_sbuf;
793 /* copy Rx Data */
794 if (!data->cur_trans->rx_buf)
795 return;
797 if (bpw == 8) {
798 rx_buf = data->cur_trans->rx_buf;
799 for (j = 0; j < data->bpw_len; j++)
800 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
801 } else {
802 rx_sbuf = data->cur_trans->rx_buf;
803 for (j = 0; j < data->bpw_len; j++)
804 *rx_sbuf++ = data->pkt_rx_buff[j];
808 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
810 int j;
811 u8 *rx_buf;
812 u16 *rx_sbuf;
813 const u8 *rx_dma_buf;
814 const u16 *rx_dma_sbuf;
816 /* copy Rx Data */
817 if (!data->cur_trans->rx_buf)
818 return;
820 if (bpw == 8) {
821 rx_buf = data->cur_trans->rx_buf;
822 rx_dma_buf = data->dma.rx_buf_virt;
823 for (j = 0; j < data->bpw_len; j++)
824 *rx_buf++ = *rx_dma_buf++ & 0xFF;
825 } else {
826 rx_sbuf = data->cur_trans->rx_buf;
827 rx_dma_sbuf = data->dma.rx_buf_virt;
828 for (j = 0; j < data->bpw_len; j++)
829 *rx_sbuf++ = *rx_dma_sbuf++;
833 static int pch_spi_start_transfer(struct pch_spi_data *data)
835 struct pch_spi_dma_ctrl *dma;
836 unsigned long flags;
837 int rtn;
839 dma = &data->dma;
841 spin_lock_irqsave(&data->lock, flags);
843 /* disable interrupts, SPI set enable */
844 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
846 spin_unlock_irqrestore(&data->lock, flags);
848 /* Wait until the transfer completes; go to sleep after
849 initiating the transfer. */
850 dev_dbg(&data->master->dev,
851 "%s:waiting for transfer to get over\n", __func__);
852 rtn = wait_event_interruptible_timeout(data->wait,
853 data->transfer_complete,
854 msecs_to_jiffies(2 * HZ));
856 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
857 DMA_FROM_DEVICE);
859 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
860 DMA_FROM_DEVICE);
861 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
863 async_tx_ack(dma->desc_rx);
864 async_tx_ack(dma->desc_tx);
865 kfree(dma->sg_tx_p);
866 kfree(dma->sg_rx_p);
868 spin_lock_irqsave(&data->lock, flags);
870 /* clear fifo threshold, disable interrupts, disable SPI transfer */
871 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
872 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
873 SPCR_SPE_BIT);
874 /* clear all interrupts */
875 pch_spi_writereg(data->master, PCH_SPSR,
876 pch_spi_readreg(data->master, PCH_SPSR));
877 /* clear FIFO */
878 pch_spi_clear_fifo(data->master);
880 spin_unlock_irqrestore(&data->lock, flags);
882 return rtn;
885 static void pch_dma_rx_complete(void *arg)
887 struct pch_spi_data *data = arg;
889 /* transfer is completed;inform pch_spi_process_messages_dma */
890 data->transfer_complete = true;
891 wake_up_interruptible(&data->wait);
894 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
896 struct pch_dma_slave *param = slave;
898 if ((chan->chan_id == param->chan_id) &&
899 (param->dma_dev == chan->device->dev)) {
900 chan->private = param;
901 return true;
902 } else {
903 return false;
907 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
909 dma_cap_mask_t mask;
910 struct dma_chan *chan;
911 struct pci_dev *dma_dev;
912 struct pch_dma_slave *param;
913 struct pch_spi_dma_ctrl *dma;
914 unsigned int width;
916 if (bpw == 8)
917 width = PCH_DMA_WIDTH_1_BYTE;
918 else
919 width = PCH_DMA_WIDTH_2_BYTES;
921 dma = &data->dma;
922 dma_cap_zero(mask);
923 dma_cap_set(DMA_SLAVE, mask);
925 /* Get DMA's dev information */
926 dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
928 /* Set Tx DMA */
929 param = &dma->param_tx;
930 param->dma_dev = &dma_dev->dev;
931 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
932 param->tx_reg = data->io_base_addr + PCH_SPDWR;
933 param->width = width;
934 chan = dma_request_channel(mask, pch_spi_filter, param);
935 if (!chan) {
936 dev_err(&data->master->dev,
937 "ERROR: dma_request_channel FAILS(Tx)\n");
938 data->use_dma = 0;
939 return;
941 dma->chan_tx = chan;
943 /* Set Rx DMA */
944 param = &dma->param_rx;
945 param->dma_dev = &dma_dev->dev;
946 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
947 param->rx_reg = data->io_base_addr + PCH_SPDRR;
948 param->width = width;
949 chan = dma_request_channel(mask, pch_spi_filter, param);
950 if (!chan) {
951 dev_err(&data->master->dev,
952 "ERROR: dma_request_channel FAILS(Rx)\n");
953 dma_release_channel(dma->chan_tx);
954 dma->chan_tx = NULL;
955 data->use_dma = 0;
956 return;
958 dma->chan_rx = chan;
961 static void pch_spi_release_dma(struct pch_spi_data *data)
963 struct pch_spi_dma_ctrl *dma;
965 dma = &data->dma;
966 if (dma->chan_tx) {
967 dma_release_channel(dma->chan_tx);
968 dma->chan_tx = NULL;
970 if (dma->chan_rx) {
971 dma_release_channel(dma->chan_rx);
972 dma->chan_rx = NULL;
974 return;
977 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
979 const u8 *tx_buf;
980 const u16 *tx_sbuf;
981 u8 *tx_dma_buf;
982 u16 *tx_dma_sbuf;
983 struct scatterlist *sg;
984 struct dma_async_tx_descriptor *desc_tx;
985 struct dma_async_tx_descriptor *desc_rx;
986 int num;
987 int i;
988 int size;
989 int rem;
990 unsigned long flags;
991 struct pch_spi_dma_ctrl *dma;
993 dma = &data->dma;
995 /* set baud rate if needed */
996 if (data->cur_trans->speed_hz) {
997 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
998 spin_lock_irqsave(&data->lock, flags);
999 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
1000 spin_unlock_irqrestore(&data->lock, flags);
1003 /* set bits per word if needed */
1004 if (data->cur_trans->bits_per_word &&
1005 (data->current_msg->spi->bits_per_word !=
1006 data->cur_trans->bits_per_word)) {
1007 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1008 spin_lock_irqsave(&data->lock, flags);
1009 pch_spi_set_bits_per_word(data->master,
1010 data->cur_trans->bits_per_word);
1011 spin_unlock_irqrestore(&data->lock, flags);
1012 *bpw = data->cur_trans->bits_per_word;
1013 } else {
1014 *bpw = data->current_msg->spi->bits_per_word;
1016 data->bpw_len = data->cur_trans->len / (*bpw / 8);
1018 /* copy Tx Data */
1019 if (data->cur_trans->tx_buf != NULL) {
1020 if (*bpw == 8) {
1021 tx_buf = data->cur_trans->tx_buf;
1022 tx_dma_buf = dma->tx_buf_virt;
1023 for (i = 0; i < data->bpw_len; i++)
1024 *tx_dma_buf++ = *tx_buf++;
1025 } else {
1026 tx_sbuf = data->cur_trans->tx_buf;
1027 tx_dma_sbuf = dma->tx_buf_virt;
1028 for (i = 0; i < data->bpw_len; i++)
1029 *tx_dma_sbuf++ = *tx_sbuf++;
1032 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1033 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034 size = PCH_DMA_TRANS_SIZE;
1035 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1036 } else {
1037 num = 1;
1038 size = data->bpw_len;
1039 rem = data->bpw_len;
1041 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1042 __func__, num, size, rem);
1043 spin_lock_irqsave(&data->lock, flags);
1045 /* set receive fifo threshold and transmit fifo threshold */
1046 pch_spi_setclr_reg(data->master, PCH_SPCR,
1047 ((size - 1) << SPCR_RFIC_FIELD) |
1048 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1049 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1051 spin_unlock_irqrestore(&data->lock, flags);
1053 /* RX */
1054 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1055 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1056 /* offset, length setting */
1057 sg = dma->sg_rx_p;
1058 for (i = 0; i < num; i++, sg++) {
1059 if (i == (num - 2)) {
1060 sg->offset = size * i;
1061 sg->offset = sg->offset * (*bpw / 8);
1062 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1063 sg->offset);
1064 sg_dma_len(sg) = rem;
1065 } else if (i == (num - 1)) {
1066 sg->offset = size * (i - 1) + rem;
1067 sg->offset = sg->offset * (*bpw / 8);
1068 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1069 sg->offset);
1070 sg_dma_len(sg) = size;
1071 } else {
1072 sg->offset = size * i;
1073 sg->offset = sg->offset * (*bpw / 8);
1074 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1075 sg->offset);
1076 sg_dma_len(sg) = size;
1078 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1080 sg = dma->sg_rx_p;
1081 desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1082 num, DMA_DEV_TO_MEM,
1083 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1084 if (!desc_rx) {
1085 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1086 __func__);
1087 return;
1089 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1090 desc_rx->callback = pch_dma_rx_complete;
1091 desc_rx->callback_param = data;
1092 dma->nent = num;
1093 dma->desc_rx = desc_rx;
1095 /* TX */
1096 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1097 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1098 size = PCH_DMA_TRANS_SIZE;
1099 rem = 16;
1100 } else {
1101 num = 1;
1102 size = data->bpw_len;
1103 rem = data->bpw_len;
1106 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1107 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1108 /* offset, length setting */
1109 sg = dma->sg_tx_p;
1110 for (i = 0; i < num; i++, sg++) {
1111 if (i == 0) {
1112 sg->offset = 0;
1113 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1114 sg->offset);
1115 sg_dma_len(sg) = rem;
1116 } else {
1117 sg->offset = rem + size * (i - 1);
1118 sg->offset = sg->offset * (*bpw / 8);
1119 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1120 sg->offset);
1121 sg_dma_len(sg) = size;
1123 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1125 sg = dma->sg_tx_p;
1126 desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1127 sg, num, DMA_MEM_TO_DEV,
1128 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1129 if (!desc_tx) {
1130 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1131 __func__);
1132 return;
1134 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1135 desc_tx->callback = NULL;
1136 desc_tx->callback_param = data;
1137 dma->nent = num;
1138 dma->desc_tx = desc_tx;
1140 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1141 "0x2 to SSNXCR\n", __func__);
1143 spin_lock_irqsave(&data->lock, flags);
1144 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1145 desc_rx->tx_submit(desc_rx);
1146 desc_tx->tx_submit(desc_tx);
1147 spin_unlock_irqrestore(&data->lock, flags);
1149 /* reset transfer complete flag */
1150 data->transfer_complete = false;
1153 static void pch_spi_process_messages(struct work_struct *pwork)
1155 struct spi_message *pmsg;
1156 struct pch_spi_data *data;
1157 int bpw;
1159 data = container_of(pwork, struct pch_spi_data, work);
1160 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1162 spin_lock(&data->lock);
1163 /* check if suspend has been initiated;if yes flush queue */
1164 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1165 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1166 "flushing queue\n", __func__);
1167 list_for_each_entry(pmsg, data->queue.next, queue) {
1168 pmsg->status = -EIO;
1170 if (pmsg->complete != 0) {
1171 spin_unlock(&data->lock);
1172 pmsg->complete(pmsg->context);
1173 spin_lock(&data->lock);
1176 /* delete from queue */
1177 list_del_init(&pmsg->queue);
1180 spin_unlock(&data->lock);
1181 return;
1184 data->bcurrent_msg_processing = true;
1185 dev_dbg(&data->master->dev,
1186 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1188 /* Get the message from the queue and delete it from there. */
1189 data->current_msg = list_entry(data->queue.next, struct spi_message,
1190 queue);
1192 list_del_init(&data->current_msg->queue);
1194 data->current_msg->status = 0;
1196 pch_spi_select_chip(data, data->current_msg->spi);
1198 spin_unlock(&data->lock);
1200 if (data->use_dma)
1201 pch_spi_request_dma(data,
1202 data->current_msg->spi->bits_per_word);
1203 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1204 do {
1205 /* If we are already processing a message get the next
1206 transfer structure from the message otherwise retrieve
1207 the 1st transfer request from the message. */
1208 spin_lock(&data->lock);
1209 if (data->cur_trans == NULL) {
1210 data->cur_trans =
1211 list_entry(data->current_msg->transfers.next,
1212 struct spi_transfer, transfer_list);
1213 dev_dbg(&data->master->dev, "%s "
1214 ":Getting 1st transfer message\n", __func__);
1215 } else {
1216 data->cur_trans =
1217 list_entry(data->cur_trans->transfer_list.next,
1218 struct spi_transfer, transfer_list);
1219 dev_dbg(&data->master->dev, "%s "
1220 ":Getting next transfer message\n", __func__);
1222 spin_unlock(&data->lock);
1224 if (data->use_dma) {
1225 pch_spi_handle_dma(data, &bpw);
1226 if (!pch_spi_start_transfer(data))
1227 goto out;
1228 pch_spi_copy_rx_data_for_dma(data, bpw);
1229 } else {
1230 pch_spi_set_tx(data, &bpw);
1231 pch_spi_set_ir(data);
1232 pch_spi_copy_rx_data(data, bpw);
1233 kfree(data->pkt_rx_buff);
1234 data->pkt_rx_buff = NULL;
1235 kfree(data->pkt_tx_buff);
1236 data->pkt_tx_buff = NULL;
1238 /* increment message count */
1239 data->current_msg->actual_length += data->cur_trans->len;
1241 dev_dbg(&data->master->dev,
1242 "%s:data->current_msg->actual_length=%d\n",
1243 __func__, data->current_msg->actual_length);
1245 /* check for delay */
1246 if (data->cur_trans->delay_usecs) {
1247 dev_dbg(&data->master->dev, "%s:"
1248 "delay in usec=%d\n", __func__,
1249 data->cur_trans->delay_usecs);
1250 udelay(data->cur_trans->delay_usecs);
1253 spin_lock(&data->lock);
1255 /* No more transfer in this message. */
1256 if ((data->cur_trans->transfer_list.next) ==
1257 &(data->current_msg->transfers)) {
1258 pch_spi_nomore_transfer(data);
1261 spin_unlock(&data->lock);
1263 } while (data->cur_trans != NULL);
1265 out:
1266 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1267 if (data->use_dma)
1268 pch_spi_release_dma(data);
1271 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1272 struct pch_spi_data *data)
1274 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1276 /* free workqueue */
1277 if (data->wk != NULL) {
1278 destroy_workqueue(data->wk);
1279 data->wk = NULL;
1280 dev_dbg(&board_dat->pdev->dev,
1281 "%s destroy_workqueue invoked successfully\n",
1282 __func__);
1286 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1287 struct pch_spi_data *data)
1289 int retval = 0;
1291 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1293 /* create workqueue */
1294 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1295 if (!data->wk) {
1296 dev_err(&board_dat->pdev->dev,
1297 "%s create_singlet hread_workqueue failed\n", __func__);
1298 retval = -EBUSY;
1299 goto err_return;
1302 /* reset PCH SPI h/w */
1303 pch_spi_reset(data->master);
1304 dev_dbg(&board_dat->pdev->dev,
1305 "%s pch_spi_reset invoked successfully\n", __func__);
1307 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1309 err_return:
1310 if (retval != 0) {
1311 dev_err(&board_dat->pdev->dev,
1312 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1313 pch_spi_free_resources(board_dat, data);
1316 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1318 return retval;
1321 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1322 struct pch_spi_data *data)
1324 struct pch_spi_dma_ctrl *dma;
1326 dma = &data->dma;
1327 if (dma->tx_buf_dma)
1328 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329 dma->tx_buf_virt, dma->tx_buf_dma);
1330 if (dma->rx_buf_dma)
1331 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1332 dma->rx_buf_virt, dma->rx_buf_dma);
1333 return;
1336 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1337 struct pch_spi_data *data)
1339 struct pch_spi_dma_ctrl *dma;
1341 dma = &data->dma;
1342 /* Get Consistent memory for Tx DMA */
1343 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1345 /* Get Consistent memory for Rx DMA */
1346 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1347 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1350 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1352 int ret;
1353 struct spi_master *master;
1354 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1355 struct pch_spi_data *data;
1357 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1359 master = spi_alloc_master(&board_dat->pdev->dev,
1360 sizeof(struct pch_spi_data));
1361 if (!master) {
1362 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1363 plat_dev->id);
1364 return -ENOMEM;
1367 data = spi_master_get_devdata(master);
1368 data->master = master;
1370 platform_set_drvdata(plat_dev, data);
1372 /* baseaddress + address offset) */
1373 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1374 PCH_ADDRESS_SIZE * plat_dev->id;
1375 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1376 PCH_ADDRESS_SIZE * plat_dev->id;
1377 if (!data->io_remap_addr) {
1378 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1379 ret = -ENOMEM;
1380 goto err_pci_iomap;
1383 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1384 plat_dev->id, data->io_remap_addr);
1386 /* initialize members of SPI master */
1387 master->bus_num = -1;
1388 master->num_chipselect = PCH_MAX_CS;
1389 master->setup = pch_spi_setup;
1390 master->transfer = pch_spi_transfer;
1392 data->board_dat = board_dat;
1393 data->plat_dev = plat_dev;
1394 data->n_curnt_chip = 255;
1395 data->status = STATUS_RUNNING;
1396 data->ch = plat_dev->id;
1397 data->use_dma = use_dma;
1399 INIT_LIST_HEAD(&data->queue);
1400 spin_lock_init(&data->lock);
1401 INIT_WORK(&data->work, pch_spi_process_messages);
1402 init_waitqueue_head(&data->wait);
1404 ret = pch_spi_get_resources(board_dat, data);
1405 if (ret) {
1406 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1407 goto err_spi_get_resources;
1410 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1411 IRQF_SHARED, KBUILD_MODNAME, data);
1412 if (ret) {
1413 dev_err(&plat_dev->dev,
1414 "%s request_irq failed\n", __func__);
1415 goto err_request_irq;
1417 data->irq_reg_sts = true;
1419 pch_spi_set_master_mode(master);
1421 ret = spi_register_master(master);
1422 if (ret != 0) {
1423 dev_err(&plat_dev->dev,
1424 "%s spi_register_master FAILED\n", __func__);
1425 goto err_spi_register_master;
1428 if (use_dma) {
1429 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1430 pch_alloc_dma_buf(board_dat, data);
1433 return 0;
1435 err_spi_register_master:
1436 free_irq(board_dat->pdev->irq, board_dat);
1437 err_request_irq:
1438 pch_spi_free_resources(board_dat, data);
1439 err_spi_get_resources:
1440 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1441 err_pci_iomap:
1442 spi_master_put(master);
1444 return ret;
1447 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1449 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1450 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1451 int count;
1452 unsigned long flags;
1454 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1455 __func__, plat_dev->id, board_dat->pdev->irq);
1457 if (use_dma)
1458 pch_free_dma_buf(board_dat, data);
1460 /* check for any pending messages; no action is taken if the queue
1461 * is still full; but at least we tried. Unload anyway */
1462 count = 500;
1463 spin_lock_irqsave(&data->lock, flags);
1464 data->status = STATUS_EXITING;
1465 while ((list_empty(&data->queue) == 0) && --count) {
1466 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1467 __func__);
1468 spin_unlock_irqrestore(&data->lock, flags);
1469 msleep(PCH_SLEEP_TIME);
1470 spin_lock_irqsave(&data->lock, flags);
1472 spin_unlock_irqrestore(&data->lock, flags);
1474 pch_spi_free_resources(board_dat, data);
1475 /* disable interrupts & free IRQ */
1476 if (data->irq_reg_sts) {
1477 /* disable interrupts */
1478 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1479 data->irq_reg_sts = false;
1480 free_irq(board_dat->pdev->irq, data);
1483 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1484 spi_unregister_master(data->master);
1485 spi_master_put(data->master);
1486 platform_set_drvdata(plat_dev, NULL);
1488 return 0;
1490 #ifdef CONFIG_PM
1491 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1492 pm_message_t state)
1494 u8 count;
1495 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1496 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1498 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1500 if (!board_dat) {
1501 dev_err(&pd_dev->dev,
1502 "%s pci_get_drvdata returned NULL\n", __func__);
1503 return -EFAULT;
1506 /* check if the current message is processed:
1507 Only after thats done the transfer will be suspended */
1508 count = 255;
1509 while ((--count) > 0) {
1510 if (!(data->bcurrent_msg_processing))
1511 break;
1512 msleep(PCH_SLEEP_TIME);
1515 /* Free IRQ */
1516 if (data->irq_reg_sts) {
1517 /* disable all interrupts */
1518 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1519 pch_spi_reset(data->master);
1520 free_irq(board_dat->pdev->irq, data);
1522 data->irq_reg_sts = false;
1523 dev_dbg(&pd_dev->dev,
1524 "%s free_irq invoked successfully.\n", __func__);
1527 return 0;
1530 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1532 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1533 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1534 int retval;
1536 if (!board_dat) {
1537 dev_err(&pd_dev->dev,
1538 "%s pci_get_drvdata returned NULL\n", __func__);
1539 return -EFAULT;
1542 if (!data->irq_reg_sts) {
1543 /* register IRQ */
1544 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1545 IRQF_SHARED, KBUILD_MODNAME, data);
1546 if (retval < 0) {
1547 dev_err(&pd_dev->dev,
1548 "%s request_irq failed\n", __func__);
1549 return retval;
1552 /* reset PCH SPI h/w */
1553 pch_spi_reset(data->master);
1554 pch_spi_set_master_mode(data->master);
1555 data->irq_reg_sts = true;
1557 return 0;
1559 #else
1560 #define pch_spi_pd_suspend NULL
1561 #define pch_spi_pd_resume NULL
1562 #endif
1564 static struct platform_driver pch_spi_pd_driver = {
1565 .driver = {
1566 .name = "pch-spi",
1567 .owner = THIS_MODULE,
1569 .probe = pch_spi_pd_probe,
1570 .remove = __devexit_p(pch_spi_pd_remove),
1571 .suspend = pch_spi_pd_suspend,
1572 .resume = pch_spi_pd_resume
1575 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1576 const struct pci_device_id *id)
1578 struct pch_spi_board_data *board_dat;
1579 struct platform_device *pd_dev = NULL;
1580 int retval;
1581 int i;
1582 struct pch_pd_dev_save *pd_dev_save;
1584 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1585 if (!pd_dev_save) {
1586 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1587 return -ENOMEM;
1590 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1591 if (!board_dat) {
1592 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1593 retval = -ENOMEM;
1594 goto err_no_mem;
1597 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1598 if (retval) {
1599 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1600 goto pci_request_regions;
1603 board_dat->pdev = pdev;
1604 board_dat->num = id->driver_data;
1605 pd_dev_save->num = id->driver_data;
1606 pd_dev_save->board_dat = board_dat;
1608 retval = pci_enable_device(pdev);
1609 if (retval) {
1610 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1611 goto pci_enable_device;
1614 for (i = 0; i < board_dat->num; i++) {
1615 pd_dev = platform_device_alloc("pch-spi", i);
1616 if (!pd_dev) {
1617 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1618 goto err_platform_device;
1620 pd_dev_save->pd_save[i] = pd_dev;
1621 pd_dev->dev.parent = &pdev->dev;
1623 retval = platform_device_add_data(pd_dev, board_dat,
1624 sizeof(*board_dat));
1625 if (retval) {
1626 dev_err(&pdev->dev,
1627 "platform_device_add_data failed\n");
1628 platform_device_put(pd_dev);
1629 goto err_platform_device;
1632 retval = platform_device_add(pd_dev);
1633 if (retval) {
1634 dev_err(&pdev->dev, "platform_device_add failed\n");
1635 platform_device_put(pd_dev);
1636 goto err_platform_device;
1640 pci_set_drvdata(pdev, pd_dev_save);
1642 return 0;
1644 err_platform_device:
1645 pci_disable_device(pdev);
1646 pci_enable_device:
1647 pci_release_regions(pdev);
1648 pci_request_regions:
1649 kfree(board_dat);
1650 err_no_mem:
1651 kfree(pd_dev_save);
1653 return retval;
1656 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1658 int i;
1659 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1661 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1663 for (i = 0; i < pd_dev_save->num; i++)
1664 platform_device_unregister(pd_dev_save->pd_save[i]);
1666 pci_disable_device(pdev);
1667 pci_release_regions(pdev);
1668 kfree(pd_dev_save->board_dat);
1669 kfree(pd_dev_save);
1672 #ifdef CONFIG_PM
1673 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1675 int retval;
1676 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1678 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1680 pd_dev_save->board_dat->suspend_sts = true;
1682 /* save config space */
1683 retval = pci_save_state(pdev);
1684 if (retval == 0) {
1685 pci_enable_wake(pdev, PCI_D3hot, 0);
1686 pci_disable_device(pdev);
1687 pci_set_power_state(pdev, PCI_D3hot);
1688 } else {
1689 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1692 return retval;
1695 static int pch_spi_resume(struct pci_dev *pdev)
1697 int retval;
1698 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1699 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1701 pci_set_power_state(pdev, PCI_D0);
1702 pci_restore_state(pdev);
1704 retval = pci_enable_device(pdev);
1705 if (retval < 0) {
1706 dev_err(&pdev->dev,
1707 "%s pci_enable_device failed\n", __func__);
1708 } else {
1709 pci_enable_wake(pdev, PCI_D3hot, 0);
1711 /* set suspend status to false */
1712 pd_dev_save->board_dat->suspend_sts = false;
1715 return retval;
1717 #else
1718 #define pch_spi_suspend NULL
1719 #define pch_spi_resume NULL
1721 #endif
1723 static struct pci_driver pch_spi_pcidev_driver = {
1724 .name = "pch_spi",
1725 .id_table = pch_spi_pcidev_id,
1726 .probe = pch_spi_probe,
1727 .remove = pch_spi_remove,
1728 .suspend = pch_spi_suspend,
1729 .resume = pch_spi_resume,
1732 static int __init pch_spi_init(void)
1734 int ret;
1735 ret = platform_driver_register(&pch_spi_pd_driver);
1736 if (ret)
1737 return ret;
1739 ret = pci_register_driver(&pch_spi_pcidev_driver);
1740 if (ret)
1741 return ret;
1743 return 0;
1745 module_init(pch_spi_init);
1747 static void __exit pch_spi_exit(void)
1749 pci_unregister_driver(&pch_spi_pcidev_driver);
1750 platform_driver_unregister(&pch_spi_pd_driver);
1752 module_exit(pch_spi_exit);
1754 module_param(use_dma, int, 0644);
1755 MODULE_PARM_DESC(use_dma,
1756 "to use DMA for data transfers pass 1 else 0; default 1");
1758 MODULE_LICENSE("GPL");
1759 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");