Linux 3.3-rc6
[linux/fpc-iii.git] / drivers / staging / panel / panel.c
blob4683d5f355c01f0d3860bd0a83a1a4d6e64ac29b
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
37 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/errno.h>
41 #include <linux/signal.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/miscdevice.h>
46 #include <linux/slab.h>
47 #include <linux/ioport.h>
48 #include <linux/fcntl.h>
49 #include <linux/init.h>
50 #include <linux/delay.h>
51 #include <linux/kernel.h>
52 #include <linux/ctype.h>
53 #include <linux/parport.h>
54 #include <linux/list.h>
55 #include <linux/notifier.h>
56 #include <linux/reboot.h>
57 #include <generated/utsrelease.h>
59 #include <linux/io.h>
60 #include <linux/uaccess.h>
61 #include <asm/system.h>
63 #define LCD_MINOR 156
64 #define KEYPAD_MINOR 185
66 #define PANEL_VERSION "0.9.5"
68 #define LCD_MAXBYTES 256 /* max burst write */
70 #define KEYPAD_BUFFER 64
72 /* poll the keyboard this every second */
73 #define INPUT_POLL_TIME (HZ/50)
74 /* a key starts to repeat after this times INPUT_POLL_TIME */
75 #define KEYPAD_REP_START (10)
76 /* a key repeats this times INPUT_POLL_TIME */
77 #define KEYPAD_REP_DELAY (2)
79 /* keep the light on this times INPUT_POLL_TIME for each flash */
80 #define FLASH_LIGHT_TEMPO (200)
82 /* converts an r_str() input to an active high, bits string : 000BAOSE */
83 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85 #define PNL_PBUSY 0x80 /* inverted input, active low */
86 #define PNL_PACK 0x40 /* direct input, active low */
87 #define PNL_POUTPA 0x20 /* direct input, active high */
88 #define PNL_PSELECD 0x10 /* direct input, active high */
89 #define PNL_PERRORP 0x08 /* direct input, active low */
91 #define PNL_PBIDIR 0x20 /* bi-directional ports */
92 /* high to read data in or-ed with data out */
93 #define PNL_PINTEN 0x10
94 #define PNL_PSELECP 0x08 /* inverted output, active low */
95 #define PNL_PINITP 0x04 /* direct output, active low */
96 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
97 #define PNL_PSTROBE 0x01 /* inverted output */
99 #define PNL_PD0 0x01
100 #define PNL_PD1 0x02
101 #define PNL_PD2 0x04
102 #define PNL_PD3 0x08
103 #define PNL_PD4 0x10
104 #define PNL_PD5 0x20
105 #define PNL_PD6 0x40
106 #define PNL_PD7 0x80
108 #define PIN_NONE 0
109 #define PIN_STROBE 1
110 #define PIN_D0 2
111 #define PIN_D1 3
112 #define PIN_D2 4
113 #define PIN_D3 5
114 #define PIN_D4 6
115 #define PIN_D5 7
116 #define PIN_D6 8
117 #define PIN_D7 9
118 #define PIN_AUTOLF 14
119 #define PIN_INITP 16
120 #define PIN_SELECP 17
121 #define PIN_NOT_SET 127
123 #define LCD_FLAG_S 0x0001
124 #define LCD_FLAG_ID 0x0002
125 #define LCD_FLAG_B 0x0004 /* blink on */
126 #define LCD_FLAG_C 0x0008 /* cursor on */
127 #define LCD_FLAG_D 0x0010 /* display on */
128 #define LCD_FLAG_F 0x0020 /* large font mode */
129 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
130 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
133 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
135 /* macros to simplify use of the parallel port */
136 #define r_ctr(x) (parport_read_control((x)->port))
137 #define r_dtr(x) (parport_read_data((x)->port))
138 #define r_str(x) (parport_read_status((x)->port))
139 #define w_ctr(x, y) do { parport_write_control((x)->port, (y)); } while (0)
140 #define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
142 /* this defines which bits are to be used and which ones to be ignored */
143 /* logical or of the output bits involved in the scan matrix */
144 static __u8 scan_mask_o;
145 /* logical or of the input bits involved in the scan matrix */
146 static __u8 scan_mask_i;
148 typedef __u64 pmask_t;
150 enum input_type {
151 INPUT_TYPE_STD,
152 INPUT_TYPE_KBD,
155 enum input_state {
156 INPUT_ST_LOW,
157 INPUT_ST_RISING,
158 INPUT_ST_HIGH,
159 INPUT_ST_FALLING,
162 struct logical_input {
163 struct list_head list;
164 pmask_t mask;
165 pmask_t value;
166 enum input_type type;
167 enum input_state state;
168 __u8 rise_time, fall_time;
169 __u8 rise_timer, fall_timer, high_timer;
171 union {
172 struct { /* valid when type == INPUT_TYPE_STD */
173 void (*press_fct) (int);
174 void (*release_fct) (int);
175 int press_data;
176 int release_data;
177 } std;
178 struct { /* valid when type == INPUT_TYPE_KBD */
179 /* strings can be non null-terminated */
180 char press_str[sizeof(void *) + sizeof(int)];
181 char repeat_str[sizeof(void *) + sizeof(int)];
182 char release_str[sizeof(void *) + sizeof(int)];
183 } kbd;
184 } u;
187 LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
189 /* physical contacts history
190 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
191 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
192 * corresponds to the ground.
193 * Within each group, bits are stored in the same order as read on the port :
194 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
195 * So, each __u64 (or pmask_t) is represented like this :
196 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
197 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
200 /* what has just been read from the I/O ports */
201 static pmask_t phys_read;
202 /* previous phys_read */
203 static pmask_t phys_read_prev;
204 /* stabilized phys_read (phys_read|phys_read_prev) */
205 static pmask_t phys_curr;
206 /* previous phys_curr */
207 static pmask_t phys_prev;
208 /* 0 means that at least one logical signal needs be computed */
209 static char inputs_stable;
211 /* these variables are specific to the keypad */
212 static char keypad_buffer[KEYPAD_BUFFER];
213 static int keypad_buflen;
214 static int keypad_start;
215 static char keypressed;
216 static wait_queue_head_t keypad_read_wait;
218 /* lcd-specific variables */
220 /* contains the LCD config state */
221 static unsigned long int lcd_flags;
222 /* contains the LCD X offset */
223 static unsigned long int lcd_addr_x;
224 /* contains the LCD Y offset */
225 static unsigned long int lcd_addr_y;
226 /* current escape sequence, 0 terminated */
227 static char lcd_escape[LCD_ESCAPE_LEN + 1];
228 /* not in escape state. >=0 = escape cmd len */
229 static int lcd_escape_len = -1;
232 * Bit masks to convert LCD signals to parallel port outputs.
233 * _d_ are values for data port, _c_ are for control port.
234 * [0] = signal OFF, [1] = signal ON, [2] = mask
236 #define BIT_CLR 0
237 #define BIT_SET 1
238 #define BIT_MSK 2
239 #define BIT_STATES 3
241 * one entry for each bit on the LCD
243 #define LCD_BIT_E 0
244 #define LCD_BIT_RS 1
245 #define LCD_BIT_RW 2
246 #define LCD_BIT_BL 3
247 #define LCD_BIT_CL 4
248 #define LCD_BIT_DA 5
249 #define LCD_BITS 6
252 * each bit can be either connected to a DATA or CTRL port
254 #define LCD_PORT_C 0
255 #define LCD_PORT_D 1
256 #define LCD_PORTS 2
258 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
261 * LCD protocols
263 #define LCD_PROTO_PARALLEL 0
264 #define LCD_PROTO_SERIAL 1
265 #define LCD_PROTO_TI_DA8XX_LCD 2
268 * LCD character sets
270 #define LCD_CHARSET_NORMAL 0
271 #define LCD_CHARSET_KS0074 1
274 * LCD types
276 #define LCD_TYPE_NONE 0
277 #define LCD_TYPE_OLD 1
278 #define LCD_TYPE_KS0074 2
279 #define LCD_TYPE_HANTRONIX 3
280 #define LCD_TYPE_NEXCOM 4
281 #define LCD_TYPE_CUSTOM 5
284 * keypad types
286 #define KEYPAD_TYPE_NONE 0
287 #define KEYPAD_TYPE_OLD 1
288 #define KEYPAD_TYPE_NEW 2
289 #define KEYPAD_TYPE_NEXCOM 3
292 * panel profiles
294 #define PANEL_PROFILE_CUSTOM 0
295 #define PANEL_PROFILE_OLD 1
296 #define PANEL_PROFILE_NEW 2
297 #define PANEL_PROFILE_HANTRONIX 3
298 #define PANEL_PROFILE_NEXCOM 4
299 #define PANEL_PROFILE_LARGE 5
302 * Construct custom config from the kernel's configuration
304 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
305 #define DEFAULT_PARPORT 0
306 #define DEFAULT_LCD LCD_TYPE_OLD
307 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
308 #define DEFAULT_LCD_WIDTH 40
309 #define DEFAULT_LCD_BWIDTH 40
310 #define DEFAULT_LCD_HWIDTH 64
311 #define DEFAULT_LCD_HEIGHT 2
312 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
314 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
315 #define DEFAULT_LCD_PIN_RS PIN_SELECP
316 #define DEFAULT_LCD_PIN_RW PIN_INITP
317 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
318 #define DEFAULT_LCD_PIN_SDA PIN_D0
319 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
320 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
322 #ifdef CONFIG_PANEL_PROFILE
323 #undef DEFAULT_PROFILE
324 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
325 #endif
327 #ifdef CONFIG_PANEL_PARPORT
328 #undef DEFAULT_PARPORT
329 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
330 #endif
332 #if DEFAULT_PROFILE == 0 /* custom */
333 #ifdef CONFIG_PANEL_KEYPAD
334 #undef DEFAULT_KEYPAD
335 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
336 #endif
338 #ifdef CONFIG_PANEL_LCD
339 #undef DEFAULT_LCD
340 #define DEFAULT_LCD CONFIG_PANEL_LCD
341 #endif
343 #ifdef CONFIG_PANEL_LCD_WIDTH
344 #undef DEFAULT_LCD_WIDTH
345 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
346 #endif
348 #ifdef CONFIG_PANEL_LCD_BWIDTH
349 #undef DEFAULT_LCD_BWIDTH
350 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
351 #endif
353 #ifdef CONFIG_PANEL_LCD_HWIDTH
354 #undef DEFAULT_LCD_HWIDTH
355 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
356 #endif
358 #ifdef CONFIG_PANEL_LCD_HEIGHT
359 #undef DEFAULT_LCD_HEIGHT
360 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
361 #endif
363 #ifdef CONFIG_PANEL_LCD_PROTO
364 #undef DEFAULT_LCD_PROTO
365 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
366 #endif
368 #ifdef CONFIG_PANEL_LCD_PIN_E
369 #undef DEFAULT_LCD_PIN_E
370 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
371 #endif
373 #ifdef CONFIG_PANEL_LCD_PIN_RS
374 #undef DEFAULT_LCD_PIN_RS
375 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
376 #endif
378 #ifdef CONFIG_PANEL_LCD_PIN_RW
379 #undef DEFAULT_LCD_PIN_RW
380 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
381 #endif
383 #ifdef CONFIG_PANEL_LCD_PIN_SCL
384 #undef DEFAULT_LCD_PIN_SCL
385 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
386 #endif
388 #ifdef CONFIG_PANEL_LCD_PIN_SDA
389 #undef DEFAULT_LCD_PIN_SDA
390 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
391 #endif
393 #ifdef CONFIG_PANEL_LCD_PIN_BL
394 #undef DEFAULT_LCD_PIN_BL
395 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
396 #endif
398 #ifdef CONFIG_PANEL_LCD_CHARSET
399 #undef DEFAULT_LCD_CHARSET
400 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
401 #endif
403 #endif /* DEFAULT_PROFILE == 0 */
405 /* global variables */
406 static int keypad_open_cnt; /* #times opened */
407 static int lcd_open_cnt; /* #times opened */
408 static struct pardevice *pprt;
410 static int lcd_initialized;
411 static int keypad_initialized;
413 static int light_tempo;
415 static char lcd_must_clear;
416 static char lcd_left_shift;
417 static char init_in_progress;
419 static void (*lcd_write_cmd) (int);
420 static void (*lcd_write_data) (int);
421 static void (*lcd_clear_fast) (void);
423 static DEFINE_SPINLOCK(pprt_lock);
424 static struct timer_list scan_timer;
426 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
428 static int parport = -1;
429 module_param(parport, int, 0000);
430 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
432 static int lcd_height = -1;
433 module_param(lcd_height, int, 0000);
434 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436 static int lcd_width = -1;
437 module_param(lcd_width, int, 0000);
438 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440 static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
441 module_param(lcd_bwidth, int, 0000);
442 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444 static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
445 module_param(lcd_hwidth, int, 0000);
446 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448 static int lcd_enabled = -1;
449 module_param(lcd_enabled, int, 0000);
450 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
452 static int keypad_enabled = -1;
453 module_param(keypad_enabled, int, 0000);
454 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
456 static int lcd_type = -1;
457 module_param(lcd_type, int, 0000);
458 MODULE_PARM_DESC(lcd_type,
459 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
460 "3=hantronix //, 4=nexcom //, 5=compiled-in");
462 static int lcd_proto = -1;
463 module_param(lcd_proto, int, 0000);
464 MODULE_PARM_DESC(lcd_proto,
465 "LCD communication: 0=parallel (//), 1=serial,"
466 "2=TI LCD Interface");
468 static int lcd_charset = -1;
469 module_param(lcd_charset, int, 0000);
470 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
472 static int keypad_type = -1;
473 module_param(keypad_type, int, 0000);
474 MODULE_PARM_DESC(keypad_type,
475 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
476 "3=nexcom 4 keys");
478 static int profile = DEFAULT_PROFILE;
479 module_param(profile, int, 0000);
480 MODULE_PARM_DESC(profile,
481 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
482 "4=16x2 nexcom; default=40x2, old kp");
485 * These are the parallel port pins the LCD control signals are connected to.
486 * Set this to 0 if the signal is not used. Set it to its opposite value
487 * (negative) if the signal is negated. -MAXINT is used to indicate that the
488 * pin has not been explicitly specified.
490 * WARNING! no check will be performed about collisions with keypad !
493 static int lcd_e_pin = PIN_NOT_SET;
494 module_param(lcd_e_pin, int, 0000);
495 MODULE_PARM_DESC(lcd_e_pin,
496 "# of the // port pin connected to LCD 'E' signal, "
497 "with polarity (-17..17)");
499 static int lcd_rs_pin = PIN_NOT_SET;
500 module_param(lcd_rs_pin, int, 0000);
501 MODULE_PARM_DESC(lcd_rs_pin,
502 "# of the // port pin connected to LCD 'RS' signal, "
503 "with polarity (-17..17)");
505 static int lcd_rw_pin = PIN_NOT_SET;
506 module_param(lcd_rw_pin, int, 0000);
507 MODULE_PARM_DESC(lcd_rw_pin,
508 "# of the // port pin connected to LCD 'RW' signal, "
509 "with polarity (-17..17)");
511 static int lcd_bl_pin = PIN_NOT_SET;
512 module_param(lcd_bl_pin, int, 0000);
513 MODULE_PARM_DESC(lcd_bl_pin,
514 "# of the // port pin connected to LCD backlight, "
515 "with polarity (-17..17)");
517 static int lcd_da_pin = PIN_NOT_SET;
518 module_param(lcd_da_pin, int, 0000);
519 MODULE_PARM_DESC(lcd_da_pin,
520 "# of the // port pin connected to serial LCD 'SDA' "
521 "signal, with polarity (-17..17)");
523 static int lcd_cl_pin = PIN_NOT_SET;
524 module_param(lcd_cl_pin, int, 0000);
525 MODULE_PARM_DESC(lcd_cl_pin,
526 "# of the // port pin connected to serial LCD 'SCL' "
527 "signal, with polarity (-17..17)");
529 static unsigned char *lcd_char_conv;
531 /* for some LCD drivers (ks0074) we need a charset conversion table. */
532 static unsigned char lcd_char_conv_ks0074[256] = {
533 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
534 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
535 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
536 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
537 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
538 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
539 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
540 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
541 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
542 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
543 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
544 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
545 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
546 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
547 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
548 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
549 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
550 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
551 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
552 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
553 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
554 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
555 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
556 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
557 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
558 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
559 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
560 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
561 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
562 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
563 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
564 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
565 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
568 char old_keypad_profile[][4][9] = {
569 {"S0", "Left\n", "Left\n", ""},
570 {"S1", "Down\n", "Down\n", ""},
571 {"S2", "Up\n", "Up\n", ""},
572 {"S3", "Right\n", "Right\n", ""},
573 {"S4", "Esc\n", "Esc\n", ""},
574 {"S5", "Ret\n", "Ret\n", ""},
575 {"", "", "", ""}
578 /* signals, press, repeat, release */
579 char new_keypad_profile[][4][9] = {
580 {"S0", "Left\n", "Left\n", ""},
581 {"S1", "Down\n", "Down\n", ""},
582 {"S2", "Up\n", "Up\n", ""},
583 {"S3", "Right\n", "Right\n", ""},
584 {"S4s5", "", "Esc\n", "Esc\n"},
585 {"s4S5", "", "Ret\n", "Ret\n"},
586 {"S4S5", "Help\n", "", ""},
587 /* add new signals above this line */
588 {"", "", "", ""}
591 /* signals, press, repeat, release */
592 char nexcom_keypad_profile[][4][9] = {
593 {"a-p-e-", "Down\n", "Down\n", ""},
594 {"a-p-E-", "Ret\n", "Ret\n", ""},
595 {"a-P-E-", "Esc\n", "Esc\n", ""},
596 {"a-P-e-", "Up\n", "Up\n", ""},
597 /* add new signals above this line */
598 {"", "", "", ""}
601 static char (*keypad_profile)[4][9] = old_keypad_profile;
603 /* FIXME: this should be converted to a bit array containing signals states */
604 static struct {
605 unsigned char e; /* parallel LCD E (data latch on falling edge) */
606 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
607 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
608 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
609 unsigned char cl; /* serial LCD clock (latch on rising edge) */
610 unsigned char da; /* serial LCD data */
611 } bits;
613 static void init_scan_timer(void);
615 /* sets data port bits according to current signals values */
616 static int set_data_bits(void)
618 int val, bit;
620 val = r_dtr(pprt);
621 for (bit = 0; bit < LCD_BITS; bit++)
622 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
624 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
625 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
626 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
627 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
628 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
629 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
631 w_dtr(pprt, val);
632 return val;
635 /* sets ctrl port bits according to current signals values */
636 static int set_ctrl_bits(void)
638 int val, bit;
640 val = r_ctr(pprt);
641 for (bit = 0; bit < LCD_BITS; bit++)
642 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
644 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
645 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
646 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
647 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
648 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
649 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
651 w_ctr(pprt, val);
652 return val;
655 /* sets ctrl & data port bits according to current signals values */
656 static void panel_set_bits(void)
658 set_data_bits();
659 set_ctrl_bits();
663 * Converts a parallel port pin (from -25 to 25) to data and control ports
664 * masks, and data and control port bits. The signal will be considered
665 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
667 * Result will be used this way :
668 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
669 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
671 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
673 int d_bit, c_bit, inv;
675 d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
676 d_val[2] = c_val[2] = 0xFF;
678 if (pin == 0)
679 return;
681 inv = (pin < 0);
682 if (inv)
683 pin = -pin;
685 d_bit = c_bit = 0;
687 switch (pin) {
688 case PIN_STROBE: /* strobe, inverted */
689 c_bit = PNL_PSTROBE;
690 inv = !inv;
691 break;
692 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
693 d_bit = 1 << (pin - 2);
694 break;
695 case PIN_AUTOLF: /* autofeed, inverted */
696 c_bit = PNL_PAUTOLF;
697 inv = !inv;
698 break;
699 case PIN_INITP: /* init, direct */
700 c_bit = PNL_PINITP;
701 break;
702 case PIN_SELECP: /* select_in, inverted */
703 c_bit = PNL_PSELECP;
704 inv = !inv;
705 break;
706 default: /* unknown pin, ignore */
707 break;
710 if (c_bit) {
711 c_val[2] &= ~c_bit;
712 c_val[!inv] = c_bit;
713 } else if (d_bit) {
714 d_val[2] &= ~d_bit;
715 d_val[!inv] = d_bit;
719 /* sleeps that many milliseconds with a reschedule */
720 static void long_sleep(int ms)
723 if (in_interrupt())
724 mdelay(ms);
725 else {
726 current->state = TASK_INTERRUPTIBLE;
727 schedule_timeout((ms * HZ + 999) / 1000);
731 /* send a serial byte to the LCD panel. The caller is responsible for locking
732 if needed. */
733 static void lcd_send_serial(int byte)
735 int bit;
737 /* the data bit is set on D0, and the clock on STROBE.
738 * LCD reads D0 on STROBE's rising edge. */
739 for (bit = 0; bit < 8; bit++) {
740 bits.cl = BIT_CLR; /* CLK low */
741 panel_set_bits();
742 bits.da = byte & 1;
743 panel_set_bits();
744 udelay(2); /* maintain the data during 2 us before CLK up */
745 bits.cl = BIT_SET; /* CLK high */
746 panel_set_bits();
747 udelay(1); /* maintain the strobe during 1 us */
748 byte >>= 1;
752 /* turn the backlight on or off */
753 static void lcd_backlight(int on)
755 if (lcd_bl_pin == PIN_NONE)
756 return;
758 /* The backlight is activated by seting the AUTOFEED line to +5V */
759 spin_lock(&pprt_lock);
760 bits.bl = on;
761 panel_set_bits();
762 spin_unlock(&pprt_lock);
765 /* send a command to the LCD panel in serial mode */
766 static void lcd_write_cmd_s(int cmd)
768 spin_lock(&pprt_lock);
769 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
770 lcd_send_serial(cmd & 0x0F);
771 lcd_send_serial((cmd >> 4) & 0x0F);
772 udelay(40); /* the shortest command takes at least 40 us */
773 spin_unlock(&pprt_lock);
776 /* send data to the LCD panel in serial mode */
777 static void lcd_write_data_s(int data)
779 spin_lock(&pprt_lock);
780 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
781 lcd_send_serial(data & 0x0F);
782 lcd_send_serial((data >> 4) & 0x0F);
783 udelay(40); /* the shortest data takes at least 40 us */
784 spin_unlock(&pprt_lock);
787 /* send a command to the LCD panel in 8 bits parallel mode */
788 static void lcd_write_cmd_p8(int cmd)
790 spin_lock(&pprt_lock);
791 /* present the data to the data port */
792 w_dtr(pprt, cmd);
793 udelay(20); /* maintain the data during 20 us before the strobe */
795 bits.e = BIT_SET;
796 bits.rs = BIT_CLR;
797 bits.rw = BIT_CLR;
798 set_ctrl_bits();
800 udelay(40); /* maintain the strobe during 40 us */
802 bits.e = BIT_CLR;
803 set_ctrl_bits();
805 udelay(120); /* the shortest command takes at least 120 us */
806 spin_unlock(&pprt_lock);
809 /* send data to the LCD panel in 8 bits parallel mode */
810 static void lcd_write_data_p8(int data)
812 spin_lock(&pprt_lock);
813 /* present the data to the data port */
814 w_dtr(pprt, data);
815 udelay(20); /* maintain the data during 20 us before the strobe */
817 bits.e = BIT_SET;
818 bits.rs = BIT_SET;
819 bits.rw = BIT_CLR;
820 set_ctrl_bits();
822 udelay(40); /* maintain the strobe during 40 us */
824 bits.e = BIT_CLR;
825 set_ctrl_bits();
827 udelay(45); /* the shortest data takes at least 45 us */
828 spin_unlock(&pprt_lock);
831 /* send a command to the TI LCD panel */
832 static void lcd_write_cmd_tilcd(int cmd)
834 spin_lock(&pprt_lock);
835 /* present the data to the control port */
836 w_ctr(pprt, cmd);
837 udelay(60);
838 spin_unlock(&pprt_lock);
841 /* send data to the TI LCD panel */
842 static void lcd_write_data_tilcd(int data)
844 spin_lock(&pprt_lock);
845 /* present the data to the data port */
846 w_dtr(pprt, data);
847 udelay(60);
848 spin_unlock(&pprt_lock);
851 static void lcd_gotoxy(void)
853 lcd_write_cmd(0x80 /* set DDRAM address */
854 | (lcd_addr_y ? lcd_hwidth : 0)
855 /* we force the cursor to stay at the end of the
856 line if it wants to go farther */
857 | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
858 (lcd_hwidth - 1) : lcd_bwidth - 1));
861 static void lcd_print(char c)
863 if (lcd_addr_x < lcd_bwidth) {
864 if (lcd_char_conv != NULL)
865 c = lcd_char_conv[(unsigned char)c];
866 lcd_write_data(c);
867 lcd_addr_x++;
869 /* prevents the cursor from wrapping onto the next line */
870 if (lcd_addr_x == lcd_bwidth)
871 lcd_gotoxy();
874 /* fills the display with spaces and resets X/Y */
875 static void lcd_clear_fast_s(void)
877 int pos;
878 lcd_addr_x = lcd_addr_y = 0;
879 lcd_gotoxy();
881 spin_lock(&pprt_lock);
882 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
883 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
884 lcd_send_serial(' ' & 0x0F);
885 lcd_send_serial((' ' >> 4) & 0x0F);
886 udelay(40); /* the shortest data takes at least 40 us */
888 spin_unlock(&pprt_lock);
890 lcd_addr_x = lcd_addr_y = 0;
891 lcd_gotoxy();
894 /* fills the display with spaces and resets X/Y */
895 static void lcd_clear_fast_p8(void)
897 int pos;
898 lcd_addr_x = lcd_addr_y = 0;
899 lcd_gotoxy();
901 spin_lock(&pprt_lock);
902 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
903 /* present the data to the data port */
904 w_dtr(pprt, ' ');
906 /* maintain the data during 20 us before the strobe */
907 udelay(20);
909 bits.e = BIT_SET;
910 bits.rs = BIT_SET;
911 bits.rw = BIT_CLR;
912 set_ctrl_bits();
914 /* maintain the strobe during 40 us */
915 udelay(40);
917 bits.e = BIT_CLR;
918 set_ctrl_bits();
920 /* the shortest data takes at least 45 us */
921 udelay(45);
923 spin_unlock(&pprt_lock);
925 lcd_addr_x = lcd_addr_y = 0;
926 lcd_gotoxy();
929 /* fills the display with spaces and resets X/Y */
930 static void lcd_clear_fast_tilcd(void)
932 int pos;
933 lcd_addr_x = lcd_addr_y = 0;
934 lcd_gotoxy();
936 spin_lock(&pprt_lock);
937 for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
938 /* present the data to the data port */
939 w_dtr(pprt, ' ');
940 udelay(60);
943 spin_unlock(&pprt_lock);
945 lcd_addr_x = lcd_addr_y = 0;
946 lcd_gotoxy();
949 /* clears the display and resets X/Y */
950 static void lcd_clear_display(void)
952 lcd_write_cmd(0x01); /* clear display */
953 lcd_addr_x = lcd_addr_y = 0;
954 /* we must wait a few milliseconds (15) */
955 long_sleep(15);
958 static void lcd_init_display(void)
961 lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
962 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
964 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
966 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
967 long_sleep(10);
968 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
969 long_sleep(10);
970 lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
971 long_sleep(10);
973 lcd_write_cmd(0x30 /* set font height and lines number */
974 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
975 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
977 long_sleep(10);
979 lcd_write_cmd(0x08); /* display off, cursor off, blink off */
980 long_sleep(10);
982 lcd_write_cmd(0x08 /* set display mode */
983 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
984 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
985 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
988 lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
990 long_sleep(10);
992 /* entry mode set : increment, cursor shifting */
993 lcd_write_cmd(0x06);
995 lcd_clear_display();
999 * These are the file operation function for user access to /dev/lcd
1000 * This function can also be called from inside the kernel, by
1001 * setting file and ppos to NULL.
1005 static inline int handle_lcd_special_code(void)
1007 /* LCD special codes */
1009 int processed = 0;
1011 char *esc = lcd_escape + 2;
1012 int oldflags = lcd_flags;
1014 /* check for display mode flags */
1015 switch (*esc) {
1016 case 'D': /* Display ON */
1017 lcd_flags |= LCD_FLAG_D;
1018 processed = 1;
1019 break;
1020 case 'd': /* Display OFF */
1021 lcd_flags &= ~LCD_FLAG_D;
1022 processed = 1;
1023 break;
1024 case 'C': /* Cursor ON */
1025 lcd_flags |= LCD_FLAG_C;
1026 processed = 1;
1027 break;
1028 case 'c': /* Cursor OFF */
1029 lcd_flags &= ~LCD_FLAG_C;
1030 processed = 1;
1031 break;
1032 case 'B': /* Blink ON */
1033 lcd_flags |= LCD_FLAG_B;
1034 processed = 1;
1035 break;
1036 case 'b': /* Blink OFF */
1037 lcd_flags &= ~LCD_FLAG_B;
1038 processed = 1;
1039 break;
1040 case '+': /* Back light ON */
1041 lcd_flags |= LCD_FLAG_L;
1042 processed = 1;
1043 break;
1044 case '-': /* Back light OFF */
1045 lcd_flags &= ~LCD_FLAG_L;
1046 processed = 1;
1047 break;
1048 case '*':
1049 /* flash back light using the keypad timer */
1050 if (scan_timer.function != NULL) {
1051 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1052 lcd_backlight(1);
1053 light_tempo = FLASH_LIGHT_TEMPO;
1055 processed = 1;
1056 break;
1057 case 'f': /* Small Font */
1058 lcd_flags &= ~LCD_FLAG_F;
1059 processed = 1;
1060 break;
1061 case 'F': /* Large Font */
1062 lcd_flags |= LCD_FLAG_F;
1063 processed = 1;
1064 break;
1065 case 'n': /* One Line */
1066 lcd_flags &= ~LCD_FLAG_N;
1067 processed = 1;
1068 break;
1069 case 'N': /* Two Lines */
1070 lcd_flags |= LCD_FLAG_N;
1071 break;
1072 case 'l': /* Shift Cursor Left */
1073 if (lcd_addr_x > 0) {
1074 /* back one char if not at end of line */
1075 if (lcd_addr_x < lcd_bwidth)
1076 lcd_write_cmd(0x10);
1077 lcd_addr_x--;
1079 processed = 1;
1080 break;
1081 case 'r': /* shift cursor right */
1082 if (lcd_addr_x < lcd_width) {
1083 /* allow the cursor to pass the end of the line */
1084 if (lcd_addr_x <
1085 (lcd_bwidth - 1))
1086 lcd_write_cmd(0x14);
1087 lcd_addr_x++;
1089 processed = 1;
1090 break;
1091 case 'L': /* shift display left */
1092 lcd_left_shift++;
1093 lcd_write_cmd(0x18);
1094 processed = 1;
1095 break;
1096 case 'R': /* shift display right */
1097 lcd_left_shift--;
1098 lcd_write_cmd(0x1C);
1099 processed = 1;
1100 break;
1101 case 'k': { /* kill end of line */
1102 int x;
1103 for (x = lcd_addr_x; x < lcd_bwidth; x++)
1104 lcd_write_data(' ');
1106 /* restore cursor position */
1107 lcd_gotoxy();
1108 processed = 1;
1109 break;
1111 case 'I': /* reinitialize display */
1112 lcd_init_display();
1113 lcd_left_shift = 0;
1114 processed = 1;
1115 break;
1116 case 'G': {
1117 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1118 * and '7', representing the numerical ASCII code of the
1119 * redefined character, and <xx...xx> a sequence of 16
1120 * hex digits representing 8 bytes for each character.
1121 * Most LCDs will only use 5 lower bits of the 7 first
1122 * bytes.
1125 unsigned char cgbytes[8];
1126 unsigned char cgaddr;
1127 int cgoffset;
1128 int shift;
1129 char value;
1130 int addr;
1132 if (strchr(esc, ';') == NULL)
1133 break;
1135 esc++;
1137 cgaddr = *(esc++) - '0';
1138 if (cgaddr > 7) {
1139 processed = 1;
1140 break;
1143 cgoffset = 0;
1144 shift = 0;
1145 value = 0;
1146 while (*esc && cgoffset < 8) {
1147 shift ^= 4;
1148 if (*esc >= '0' && *esc <= '9')
1149 value |= (*esc - '0') << shift;
1150 else if (*esc >= 'A' && *esc <= 'Z')
1151 value |= (*esc - 'A' + 10) << shift;
1152 else if (*esc >= 'a' && *esc <= 'z')
1153 value |= (*esc - 'a' + 10) << shift;
1154 else {
1155 esc++;
1156 continue;
1159 if (shift == 0) {
1160 cgbytes[cgoffset++] = value;
1161 value = 0;
1164 esc++;
1167 lcd_write_cmd(0x40 | (cgaddr * 8));
1168 for (addr = 0; addr < cgoffset; addr++)
1169 lcd_write_data(cgbytes[addr]);
1171 /* ensures that we stop writing to CGRAM */
1172 lcd_gotoxy();
1173 processed = 1;
1174 break;
1176 case 'x': /* gotoxy : LxXXX[yYYY]; */
1177 case 'y': /* gotoxy : LyYYY[xXXX]; */
1178 if (strchr(esc, ';') == NULL)
1179 break;
1181 while (*esc) {
1182 if (*esc == 'x') {
1183 esc++;
1184 if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1185 break;
1186 } else if (*esc == 'y') {
1187 esc++;
1188 if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1189 break;
1190 } else
1191 break;
1194 lcd_gotoxy();
1195 processed = 1;
1196 break;
1199 /* Check wether one flag was changed */
1200 if (oldflags != lcd_flags) {
1201 /* check whether one of B,C,D flags were changed */
1202 if ((oldflags ^ lcd_flags) &
1203 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1204 /* set display mode */
1205 lcd_write_cmd(0x08
1206 | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1207 | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1208 | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1209 /* check whether one of F,N flags was changed */
1210 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1211 lcd_write_cmd(0x30
1212 | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1213 | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1214 /* check wether L flag was changed */
1215 else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1216 if (lcd_flags & (LCD_FLAG_L))
1217 lcd_backlight(1);
1218 else if (light_tempo == 0)
1219 /* switch off the light only when the tempo
1220 lighting is gone */
1221 lcd_backlight(0);
1225 return processed;
1228 static ssize_t lcd_write(struct file *file,
1229 const char *buf, size_t count, loff_t *ppos)
1231 const char *tmp = buf;
1232 char c;
1234 for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1235 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1236 /* let's be a little nice with other processes
1237 that need some CPU */
1238 schedule();
1240 if (ppos == NULL && file == NULL)
1241 /* let's not use get_user() from the kernel ! */
1242 c = *tmp;
1243 else if (get_user(c, tmp))
1244 return -EFAULT;
1246 /* first, we'll test if we're in escape mode */
1247 if ((c != '\n') && lcd_escape_len >= 0) {
1248 /* yes, let's add this char to the buffer */
1249 lcd_escape[lcd_escape_len++] = c;
1250 lcd_escape[lcd_escape_len] = 0;
1251 } else {
1252 /* aborts any previous escape sequence */
1253 lcd_escape_len = -1;
1255 switch (c) {
1256 case LCD_ESCAPE_CHAR:
1257 /* start of an escape sequence */
1258 lcd_escape_len = 0;
1259 lcd_escape[lcd_escape_len] = 0;
1260 break;
1261 case '\b':
1262 /* go back one char and clear it */
1263 if (lcd_addr_x > 0) {
1264 /* check if we're not at the
1265 end of the line */
1266 if (lcd_addr_x < lcd_bwidth)
1267 /* back one char */
1268 lcd_write_cmd(0x10);
1269 lcd_addr_x--;
1271 /* replace with a space */
1272 lcd_write_data(' ');
1273 /* back one char again */
1274 lcd_write_cmd(0x10);
1275 break;
1276 case '\014':
1277 /* quickly clear the display */
1278 lcd_clear_fast();
1279 break;
1280 case '\n':
1281 /* flush the remainder of the current line and
1282 go to the beginning of the next line */
1283 for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1284 lcd_write_data(' ');
1285 lcd_addr_x = 0;
1286 lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1287 lcd_gotoxy();
1288 break;
1289 case '\r':
1290 /* go to the beginning of the same line */
1291 lcd_addr_x = 0;
1292 lcd_gotoxy();
1293 break;
1294 case '\t':
1295 /* print a space instead of the tab */
1296 lcd_print(' ');
1297 break;
1298 default:
1299 /* simply print this char */
1300 lcd_print(c);
1301 break;
1305 /* now we'll see if we're in an escape mode and if the current
1306 escape sequence can be understood. */
1307 if (lcd_escape_len >= 2) {
1308 int processed = 0;
1310 if (!strcmp(lcd_escape, "[2J")) {
1311 /* clear the display */
1312 lcd_clear_fast();
1313 processed = 1;
1314 } else if (!strcmp(lcd_escape, "[H")) {
1315 /* cursor to home */
1316 lcd_addr_x = lcd_addr_y = 0;
1317 lcd_gotoxy();
1318 processed = 1;
1320 /* codes starting with ^[[L */
1321 else if ((lcd_escape_len >= 3) &&
1322 (lcd_escape[0] == '[') &&
1323 (lcd_escape[1] == 'L')) {
1324 processed = handle_lcd_special_code();
1327 /* LCD special escape codes */
1328 /* flush the escape sequence if it's been processed
1329 or if it is getting too long. */
1330 if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1331 lcd_escape_len = -1;
1332 } /* escape codes */
1335 return tmp - buf;
1338 static int lcd_open(struct inode *inode, struct file *file)
1340 if (lcd_open_cnt)
1341 return -EBUSY; /* open only once at a time */
1343 if (file->f_mode & FMODE_READ) /* device is write-only */
1344 return -EPERM;
1346 if (lcd_must_clear) {
1347 lcd_clear_display();
1348 lcd_must_clear = 0;
1350 lcd_open_cnt++;
1351 return nonseekable_open(inode, file);
1354 static int lcd_release(struct inode *inode, struct file *file)
1356 lcd_open_cnt--;
1357 return 0;
1360 static const struct file_operations lcd_fops = {
1361 .write = lcd_write,
1362 .open = lcd_open,
1363 .release = lcd_release,
1364 .llseek = no_llseek,
1367 static struct miscdevice lcd_dev = {
1368 LCD_MINOR,
1369 "lcd",
1370 &lcd_fops
1373 /* public function usable from the kernel for any purpose */
1374 void panel_lcd_print(char *s)
1376 if (lcd_enabled && lcd_initialized)
1377 lcd_write(NULL, s, strlen(s), NULL);
1380 /* initialize the LCD driver */
1381 void lcd_init(void)
1383 switch (lcd_type) {
1384 case LCD_TYPE_OLD:
1385 /* parallel mode, 8 bits */
1386 if (lcd_proto < 0)
1387 lcd_proto = LCD_PROTO_PARALLEL;
1388 if (lcd_charset < 0)
1389 lcd_charset = LCD_CHARSET_NORMAL;
1390 if (lcd_e_pin == PIN_NOT_SET)
1391 lcd_e_pin = PIN_STROBE;
1392 if (lcd_rs_pin == PIN_NOT_SET)
1393 lcd_rs_pin = PIN_AUTOLF;
1395 if (lcd_width < 0)
1396 lcd_width = 40;
1397 if (lcd_bwidth < 0)
1398 lcd_bwidth = 40;
1399 if (lcd_hwidth < 0)
1400 lcd_hwidth = 64;
1401 if (lcd_height < 0)
1402 lcd_height = 2;
1403 break;
1404 case LCD_TYPE_KS0074:
1405 /* serial mode, ks0074 */
1406 if (lcd_proto < 0)
1407 lcd_proto = LCD_PROTO_SERIAL;
1408 if (lcd_charset < 0)
1409 lcd_charset = LCD_CHARSET_KS0074;
1410 if (lcd_bl_pin == PIN_NOT_SET)
1411 lcd_bl_pin = PIN_AUTOLF;
1412 if (lcd_cl_pin == PIN_NOT_SET)
1413 lcd_cl_pin = PIN_STROBE;
1414 if (lcd_da_pin == PIN_NOT_SET)
1415 lcd_da_pin = PIN_D0;
1417 if (lcd_width < 0)
1418 lcd_width = 16;
1419 if (lcd_bwidth < 0)
1420 lcd_bwidth = 40;
1421 if (lcd_hwidth < 0)
1422 lcd_hwidth = 16;
1423 if (lcd_height < 0)
1424 lcd_height = 2;
1425 break;
1426 case LCD_TYPE_NEXCOM:
1427 /* parallel mode, 8 bits, generic */
1428 if (lcd_proto < 0)
1429 lcd_proto = LCD_PROTO_PARALLEL;
1430 if (lcd_charset < 0)
1431 lcd_charset = LCD_CHARSET_NORMAL;
1432 if (lcd_e_pin == PIN_NOT_SET)
1433 lcd_e_pin = PIN_AUTOLF;
1434 if (lcd_rs_pin == PIN_NOT_SET)
1435 lcd_rs_pin = PIN_SELECP;
1436 if (lcd_rw_pin == PIN_NOT_SET)
1437 lcd_rw_pin = PIN_INITP;
1439 if (lcd_width < 0)
1440 lcd_width = 16;
1441 if (lcd_bwidth < 0)
1442 lcd_bwidth = 40;
1443 if (lcd_hwidth < 0)
1444 lcd_hwidth = 64;
1445 if (lcd_height < 0)
1446 lcd_height = 2;
1447 break;
1448 case LCD_TYPE_CUSTOM:
1449 /* customer-defined */
1450 if (lcd_proto < 0)
1451 lcd_proto = DEFAULT_LCD_PROTO;
1452 if (lcd_charset < 0)
1453 lcd_charset = DEFAULT_LCD_CHARSET;
1454 /* default geometry will be set later */
1455 break;
1456 case LCD_TYPE_HANTRONIX:
1457 /* parallel mode, 8 bits, hantronix-like */
1458 default:
1459 if (lcd_proto < 0)
1460 lcd_proto = LCD_PROTO_PARALLEL;
1461 if (lcd_charset < 0)
1462 lcd_charset = LCD_CHARSET_NORMAL;
1463 if (lcd_e_pin == PIN_NOT_SET)
1464 lcd_e_pin = PIN_STROBE;
1465 if (lcd_rs_pin == PIN_NOT_SET)
1466 lcd_rs_pin = PIN_SELECP;
1468 if (lcd_width < 0)
1469 lcd_width = 16;
1470 if (lcd_bwidth < 0)
1471 lcd_bwidth = 40;
1472 if (lcd_hwidth < 0)
1473 lcd_hwidth = 64;
1474 if (lcd_height < 0)
1475 lcd_height = 2;
1476 break;
1479 /* this is used to catch wrong and default values */
1480 if (lcd_width <= 0)
1481 lcd_width = DEFAULT_LCD_WIDTH;
1482 if (lcd_bwidth <= 0)
1483 lcd_bwidth = DEFAULT_LCD_BWIDTH;
1484 if (lcd_hwidth <= 0)
1485 lcd_hwidth = DEFAULT_LCD_HWIDTH;
1486 if (lcd_height <= 0)
1487 lcd_height = DEFAULT_LCD_HEIGHT;
1489 if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
1490 lcd_write_cmd = lcd_write_cmd_s;
1491 lcd_write_data = lcd_write_data_s;
1492 lcd_clear_fast = lcd_clear_fast_s;
1494 if (lcd_cl_pin == PIN_NOT_SET)
1495 lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1496 if (lcd_da_pin == PIN_NOT_SET)
1497 lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1499 } else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1500 lcd_write_cmd = lcd_write_cmd_p8;
1501 lcd_write_data = lcd_write_data_p8;
1502 lcd_clear_fast = lcd_clear_fast_p8;
1504 if (lcd_e_pin == PIN_NOT_SET)
1505 lcd_e_pin = DEFAULT_LCD_PIN_E;
1506 if (lcd_rs_pin == PIN_NOT_SET)
1507 lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1508 if (lcd_rw_pin == PIN_NOT_SET)
1509 lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1510 } else {
1511 lcd_write_cmd = lcd_write_cmd_tilcd;
1512 lcd_write_data = lcd_write_data_tilcd;
1513 lcd_clear_fast = lcd_clear_fast_tilcd;
1516 if (lcd_bl_pin == PIN_NOT_SET)
1517 lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1519 if (lcd_e_pin == PIN_NOT_SET)
1520 lcd_e_pin = PIN_NONE;
1521 if (lcd_rs_pin == PIN_NOT_SET)
1522 lcd_rs_pin = PIN_NONE;
1523 if (lcd_rw_pin == PIN_NOT_SET)
1524 lcd_rw_pin = PIN_NONE;
1525 if (lcd_bl_pin == PIN_NOT_SET)
1526 lcd_bl_pin = PIN_NONE;
1527 if (lcd_cl_pin == PIN_NOT_SET)
1528 lcd_cl_pin = PIN_NONE;
1529 if (lcd_da_pin == PIN_NOT_SET)
1530 lcd_da_pin = PIN_NONE;
1532 if (lcd_charset < 0)
1533 lcd_charset = DEFAULT_LCD_CHARSET;
1535 if (lcd_charset == LCD_CHARSET_KS0074)
1536 lcd_char_conv = lcd_char_conv_ks0074;
1537 else
1538 lcd_char_conv = NULL;
1540 if (lcd_bl_pin != PIN_NONE)
1541 init_scan_timer();
1543 pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1544 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1545 pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1546 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1547 pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1548 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1549 pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1550 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1551 pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1552 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1553 pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1554 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1556 /* before this line, we must NOT send anything to the display.
1557 * Since lcd_init_display() needs to write data, we have to
1558 * enable mark the LCD initialized just before. */
1559 lcd_initialized = 1;
1560 lcd_init_display();
1562 /* display a short message */
1563 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1564 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1565 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1566 #endif
1567 #else
1568 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1569 PANEL_VERSION);
1570 #endif
1571 lcd_addr_x = lcd_addr_y = 0;
1572 /* clear the display on the next device opening */
1573 lcd_must_clear = 1;
1574 lcd_gotoxy();
1578 * These are the file operation function for user access to /dev/keypad
1581 static ssize_t keypad_read(struct file *file,
1582 char *buf, size_t count, loff_t *ppos)
1585 unsigned i = *ppos;
1586 char *tmp = buf;
1588 if (keypad_buflen == 0) {
1589 if (file->f_flags & O_NONBLOCK)
1590 return -EAGAIN;
1592 interruptible_sleep_on(&keypad_read_wait);
1593 if (signal_pending(current))
1594 return -EINTR;
1597 for (; count-- > 0 && (keypad_buflen > 0);
1598 ++i, ++tmp, --keypad_buflen) {
1599 put_user(keypad_buffer[keypad_start], tmp);
1600 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1602 *ppos = i;
1604 return tmp - buf;
1607 static int keypad_open(struct inode *inode, struct file *file)
1610 if (keypad_open_cnt)
1611 return -EBUSY; /* open only once at a time */
1613 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1614 return -EPERM;
1616 keypad_buflen = 0; /* flush the buffer on opening */
1617 keypad_open_cnt++;
1618 return 0;
1621 static int keypad_release(struct inode *inode, struct file *file)
1623 keypad_open_cnt--;
1624 return 0;
1627 static const struct file_operations keypad_fops = {
1628 .read = keypad_read, /* read */
1629 .open = keypad_open, /* open */
1630 .release = keypad_release, /* close */
1631 .llseek = default_llseek,
1634 static struct miscdevice keypad_dev = {
1635 KEYPAD_MINOR,
1636 "keypad",
1637 &keypad_fops
1640 static void keypad_send_key(char *string, int max_len)
1642 if (init_in_progress)
1643 return;
1645 /* send the key to the device only if a process is attached to it. */
1646 if (keypad_open_cnt > 0) {
1647 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1648 keypad_buffer[(keypad_start + keypad_buflen++) %
1649 KEYPAD_BUFFER] = *string++;
1651 wake_up_interruptible(&keypad_read_wait);
1655 /* this function scans all the bits involving at least one logical signal,
1656 * and puts the results in the bitfield "phys_read" (one bit per established
1657 * contact), and sets "phys_read_prev" to "phys_read".
1659 * Note: to debounce input signals, we will only consider as switched a signal
1660 * which is stable across 2 measures. Signals which are different between two
1661 * reads will be kept as they previously were in their logical form (phys_prev).
1662 * A signal which has just switched will have a 1 in
1663 * (phys_read ^ phys_read_prev).
1665 static void phys_scan_contacts(void)
1667 int bit, bitval;
1668 char oldval;
1669 char bitmask;
1670 char gndmask;
1672 phys_prev = phys_curr;
1673 phys_read_prev = phys_read;
1674 phys_read = 0; /* flush all signals */
1676 /* keep track of old value, with all outputs disabled */
1677 oldval = r_dtr(pprt) | scan_mask_o;
1678 /* activate all keyboard outputs (active low) */
1679 w_dtr(pprt, oldval & ~scan_mask_o);
1681 /* will have a 1 for each bit set to gnd */
1682 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1683 /* disable all matrix signals */
1684 w_dtr(pprt, oldval);
1686 /* now that all outputs are cleared, the only active input bits are
1687 * directly connected to the ground
1690 /* 1 for each grounded input */
1691 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1693 /* grounded inputs are signals 40-44 */
1694 phys_read |= (pmask_t) gndmask << 40;
1696 if (bitmask != gndmask) {
1697 /* since clearing the outputs changed some inputs, we know
1698 * that some input signals are currently tied to some outputs.
1699 * So we'll scan them.
1701 for (bit = 0; bit < 8; bit++) {
1702 bitval = 1 << bit;
1704 if (!(scan_mask_o & bitval)) /* skip unused bits */
1705 continue;
1707 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1708 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1709 phys_read |= (pmask_t) bitmask << (5 * bit);
1711 w_dtr(pprt, oldval); /* disable all outputs */
1713 /* this is easy: use old bits when they are flapping,
1714 * use new ones when stable */
1715 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1716 (phys_read & ~(phys_read ^ phys_read_prev));
1719 static inline int input_state_high(struct logical_input *input)
1721 #if 0
1722 /* FIXME:
1723 * this is an invalid test. It tries to catch
1724 * transitions from single-key to multiple-key, but
1725 * doesn't take into account the contacts polarity.
1726 * The only solution to the problem is to parse keys
1727 * from the most complex to the simplest combinations,
1728 * and mark them as 'caught' once a combination
1729 * matches, then unmatch it for all other ones.
1732 /* try to catch dangerous transitions cases :
1733 * someone adds a bit, so this signal was a false
1734 * positive resulting from a transition. We should
1735 * invalidate the signal immediately and not call the
1736 * release function.
1737 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1739 if (((phys_prev & input->mask) == input->value)
1740 && ((phys_curr & input->mask) > input->value)) {
1741 input->state = INPUT_ST_LOW; /* invalidate */
1742 return 1;
1744 #endif
1746 if ((phys_curr & input->mask) == input->value) {
1747 if ((input->type == INPUT_TYPE_STD) &&
1748 (input->high_timer == 0)) {
1749 input->high_timer++;
1750 if (input->u.std.press_fct != NULL)
1751 input->u.std.press_fct(input->u.std.press_data);
1752 } else if (input->type == INPUT_TYPE_KBD) {
1753 /* will turn on the light */
1754 keypressed = 1;
1756 if (input->high_timer == 0) {
1757 char *press_str = input->u.kbd.press_str;
1758 if (press_str[0])
1759 keypad_send_key(press_str,
1760 sizeof(press_str));
1763 if (input->u.kbd.repeat_str[0]) {
1764 char *repeat_str = input->u.kbd.repeat_str;
1765 if (input->high_timer >= KEYPAD_REP_START) {
1766 input->high_timer -= KEYPAD_REP_DELAY;
1767 keypad_send_key(repeat_str,
1768 sizeof(repeat_str));
1770 /* we will need to come back here soon */
1771 inputs_stable = 0;
1774 if (input->high_timer < 255)
1775 input->high_timer++;
1777 return 1;
1778 } else {
1779 /* else signal falling down. Let's fall through. */
1780 input->state = INPUT_ST_FALLING;
1781 input->fall_timer = 0;
1783 return 0;
1786 static inline void input_state_falling(struct logical_input *input)
1788 #if 0
1789 /* FIXME !!! same comment as in input_state_high */
1790 if (((phys_prev & input->mask) == input->value)
1791 && ((phys_curr & input->mask) > input->value)) {
1792 input->state = INPUT_ST_LOW; /* invalidate */
1793 return;
1795 #endif
1797 if ((phys_curr & input->mask) == input->value) {
1798 if (input->type == INPUT_TYPE_KBD) {
1799 /* will turn on the light */
1800 keypressed = 1;
1802 if (input->u.kbd.repeat_str[0]) {
1803 char *repeat_str = input->u.kbd.repeat_str;
1804 if (input->high_timer >= KEYPAD_REP_START)
1805 input->high_timer -= KEYPAD_REP_DELAY;
1806 keypad_send_key(repeat_str,
1807 sizeof(repeat_str));
1808 /* we will need to come back here soon */
1809 inputs_stable = 0;
1812 if (input->high_timer < 255)
1813 input->high_timer++;
1815 input->state = INPUT_ST_HIGH;
1816 } else if (input->fall_timer >= input->fall_time) {
1817 /* call release event */
1818 if (input->type == INPUT_TYPE_STD) {
1819 void (*release_fct)(int) = input->u.std.release_fct;
1820 if (release_fct != NULL)
1821 release_fct(input->u.std.release_data);
1822 } else if (input->type == INPUT_TYPE_KBD) {
1823 char *release_str = input->u.kbd.release_str;
1824 if (release_str[0])
1825 keypad_send_key(release_str,
1826 sizeof(release_str));
1829 input->state = INPUT_ST_LOW;
1830 } else {
1831 input->fall_timer++;
1832 inputs_stable = 0;
1836 static void panel_process_inputs(void)
1838 struct list_head *item;
1839 struct logical_input *input;
1841 #if 0
1842 printk(KERN_DEBUG
1843 "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1844 phys_prev, phys_curr);
1845 #endif
1847 keypressed = 0;
1848 inputs_stable = 1;
1849 list_for_each(item, &logical_inputs) {
1850 input = list_entry(item, struct logical_input, list);
1852 switch (input->state) {
1853 case INPUT_ST_LOW:
1854 if ((phys_curr & input->mask) != input->value)
1855 break;
1856 /* if all needed ones were already set previously,
1857 * this means that this logical signal has been
1858 * activated by the releasing of another combined
1859 * signal, so we don't want to match.
1860 * eg: AB -(release B)-> A -(release A)-> 0 :
1861 * don't match A.
1863 if ((phys_prev & input->mask) == input->value)
1864 break;
1865 input->rise_timer = 0;
1866 input->state = INPUT_ST_RISING;
1867 /* no break here, fall through */
1868 case INPUT_ST_RISING:
1869 if ((phys_curr & input->mask) != input->value) {
1870 input->state = INPUT_ST_LOW;
1871 break;
1873 if (input->rise_timer < input->rise_time) {
1874 inputs_stable = 0;
1875 input->rise_timer++;
1876 break;
1878 input->high_timer = 0;
1879 input->state = INPUT_ST_HIGH;
1880 /* no break here, fall through */
1881 case INPUT_ST_HIGH:
1882 if (input_state_high(input))
1883 break;
1884 /* no break here, fall through */
1885 case INPUT_ST_FALLING:
1886 input_state_falling(input);
1891 static void panel_scan_timer(void)
1893 if (keypad_enabled && keypad_initialized) {
1894 if (spin_trylock(&pprt_lock)) {
1895 phys_scan_contacts();
1897 /* no need for the parport anymore */
1898 spin_unlock(&pprt_lock);
1901 if (!inputs_stable || phys_curr != phys_prev)
1902 panel_process_inputs();
1905 if (lcd_enabled && lcd_initialized) {
1906 if (keypressed) {
1907 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1908 lcd_backlight(1);
1909 light_tempo = FLASH_LIGHT_TEMPO;
1910 } else if (light_tempo > 0) {
1911 light_tempo--;
1912 if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1913 lcd_backlight(0);
1917 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1920 static void init_scan_timer(void)
1922 if (scan_timer.function != NULL)
1923 return; /* already started */
1925 init_timer(&scan_timer);
1926 scan_timer.expires = jiffies + INPUT_POLL_TIME;
1927 scan_timer.data = 0;
1928 scan_timer.function = (void *)&panel_scan_timer;
1929 add_timer(&scan_timer);
1932 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1933 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1934 * corresponding to out and in bits respectively.
1935 * returns 1 if ok, 0 if error (in which case, nothing is written).
1937 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1938 char *imask, char *omask)
1940 static char sigtab[10] = "EeSsPpAaBb";
1941 char im, om;
1942 pmask_t m, v;
1944 om = im = m = v = 0ULL;
1945 while (*name) {
1946 int in, out, bit, neg;
1947 for (in = 0; (in < sizeof(sigtab)) &&
1948 (sigtab[in] != *name); in++)
1950 if (in >= sizeof(sigtab))
1951 return 0; /* input name not found */
1952 neg = (in & 1); /* odd (lower) names are negated */
1953 in >>= 1;
1954 im |= (1 << in);
1956 name++;
1957 if (isdigit(*name)) {
1958 out = *name - '0';
1959 om |= (1 << out);
1960 } else if (*name == '-')
1961 out = 8;
1962 else
1963 return 0; /* unknown bit name */
1965 bit = (out * 5) + in;
1967 m |= 1ULL << bit;
1968 if (!neg)
1969 v |= 1ULL << bit;
1970 name++;
1972 *mask = m;
1973 *value = v;
1974 if (imask)
1975 *imask |= im;
1976 if (omask)
1977 *omask |= om;
1978 return 1;
1981 /* tries to bind a key to the signal name <name>. The key will send the
1982 * strings <press>, <repeat>, <release> for these respective events.
1983 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1985 static struct logical_input *panel_bind_key(char *name, char *press,
1986 char *repeat, char *release)
1988 struct logical_input *key;
1990 key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1991 if (!key) {
1992 printk(KERN_ERR "panel: not enough memory\n");
1993 return NULL;
1995 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1996 &scan_mask_o)) {
1997 kfree(key);
1998 return NULL;
2001 key->type = INPUT_TYPE_KBD;
2002 key->state = INPUT_ST_LOW;
2003 key->rise_time = 1;
2004 key->fall_time = 1;
2006 #if 0
2007 printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
2008 key->value);
2009 #endif
2010 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2011 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2012 strncpy(key->u.kbd.release_str, release,
2013 sizeof(key->u.kbd.release_str));
2014 list_add(&key->list, &logical_inputs);
2015 return key;
2018 #if 0
2019 /* tries to bind a callback function to the signal name <name>. The function
2020 * <press_fct> will be called with the <press_data> arg when the signal is
2021 * activated, and so on for <release_fct>/<release_data>
2022 * Returns the pointer to the new signal if ok, NULL if the signal could not
2023 * be bound.
2025 static struct logical_input *panel_bind_callback(char *name,
2026 void (*press_fct) (int),
2027 int press_data,
2028 void (*release_fct) (int),
2029 int release_data)
2031 struct logical_input *callback;
2033 callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2034 if (!callback) {
2035 printk(KERN_ERR "panel: not enough memory\n");
2036 return NULL;
2038 memset(callback, 0, sizeof(struct logical_input));
2039 if (!input_name2mask(name, &callback->mask, &callback->value,
2040 &scan_mask_i, &scan_mask_o))
2041 return NULL;
2043 callback->type = INPUT_TYPE_STD;
2044 callback->state = INPUT_ST_LOW;
2045 callback->rise_time = 1;
2046 callback->fall_time = 1;
2047 callback->u.std.press_fct = press_fct;
2048 callback->u.std.press_data = press_data;
2049 callback->u.std.release_fct = release_fct;
2050 callback->u.std.release_data = release_data;
2051 list_add(&callback->list, &logical_inputs);
2052 return callback;
2054 #endif
2056 static void keypad_init(void)
2058 int keynum;
2059 init_waitqueue_head(&keypad_read_wait);
2060 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2062 /* Let's create all known keys */
2064 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2065 panel_bind_key(keypad_profile[keynum][0],
2066 keypad_profile[keynum][1],
2067 keypad_profile[keynum][2],
2068 keypad_profile[keynum][3]);
2071 init_scan_timer();
2072 keypad_initialized = 1;
2075 /**************************************************/
2076 /* device initialization */
2077 /**************************************************/
2079 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2080 void *unused)
2082 if (lcd_enabled && lcd_initialized) {
2083 switch (code) {
2084 case SYS_DOWN:
2085 panel_lcd_print
2086 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2087 break;
2088 case SYS_HALT:
2089 panel_lcd_print
2090 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2091 break;
2092 case SYS_POWER_OFF:
2093 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2094 break;
2095 default:
2096 break;
2099 return NOTIFY_DONE;
2102 static struct notifier_block panel_notifier = {
2103 panel_notify_sys,
2104 NULL,
2108 static void panel_attach(struct parport *port)
2110 if (port->number != parport)
2111 return;
2113 if (pprt) {
2114 printk(KERN_ERR
2115 "panel_attach(): port->number=%d parport=%d, "
2116 "already registered !\n",
2117 port->number, parport);
2118 return;
2121 pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2122 NULL,
2123 /*PARPORT_DEV_EXCL */
2124 0, (void *)&pprt);
2125 if (pprt == NULL) {
2126 pr_err("panel_attach(): port->number=%d parport=%d, "
2127 "parport_register_device() failed\n",
2128 port->number, parport);
2129 return;
2132 if (parport_claim(pprt)) {
2133 printk(KERN_ERR
2134 "Panel: could not claim access to parport%d. "
2135 "Aborting.\n", parport);
2136 goto err_unreg_device;
2139 /* must init LCD first, just in case an IRQ from the keypad is
2140 * generated at keypad init
2142 if (lcd_enabled) {
2143 lcd_init();
2144 if (misc_register(&lcd_dev))
2145 goto err_unreg_device;
2148 if (keypad_enabled) {
2149 keypad_init();
2150 if (misc_register(&keypad_dev))
2151 goto err_lcd_unreg;
2153 return;
2155 err_lcd_unreg:
2156 if (lcd_enabled)
2157 misc_deregister(&lcd_dev);
2158 err_unreg_device:
2159 parport_unregister_device(pprt);
2160 pprt = NULL;
2163 static void panel_detach(struct parport *port)
2165 if (port->number != parport)
2166 return;
2168 if (!pprt) {
2169 printk(KERN_ERR
2170 "panel_detach(): port->number=%d parport=%d, "
2171 "nothing to unregister.\n",
2172 port->number, parport);
2173 return;
2176 if (keypad_enabled && keypad_initialized) {
2177 misc_deregister(&keypad_dev);
2178 keypad_initialized = 0;
2181 if (lcd_enabled && lcd_initialized) {
2182 misc_deregister(&lcd_dev);
2183 lcd_initialized = 0;
2186 parport_release(pprt);
2187 parport_unregister_device(pprt);
2188 pprt = NULL;
2191 static struct parport_driver panel_driver = {
2192 .name = "panel",
2193 .attach = panel_attach,
2194 .detach = panel_detach,
2197 /* init function */
2198 int panel_init(void)
2200 /* for backwards compatibility */
2201 if (keypad_type < 0)
2202 keypad_type = keypad_enabled;
2204 if (lcd_type < 0)
2205 lcd_type = lcd_enabled;
2207 if (parport < 0)
2208 parport = DEFAULT_PARPORT;
2210 /* take care of an eventual profile */
2211 switch (profile) {
2212 case PANEL_PROFILE_CUSTOM:
2213 /* custom profile */
2214 if (keypad_type < 0)
2215 keypad_type = DEFAULT_KEYPAD;
2216 if (lcd_type < 0)
2217 lcd_type = DEFAULT_LCD;
2218 break;
2219 case PANEL_PROFILE_OLD:
2220 /* 8 bits, 2*16, old keypad */
2221 if (keypad_type < 0)
2222 keypad_type = KEYPAD_TYPE_OLD;
2223 if (lcd_type < 0)
2224 lcd_type = LCD_TYPE_OLD;
2225 if (lcd_width < 0)
2226 lcd_width = 16;
2227 if (lcd_hwidth < 0)
2228 lcd_hwidth = 16;
2229 break;
2230 case PANEL_PROFILE_NEW:
2231 /* serial, 2*16, new keypad */
2232 if (keypad_type < 0)
2233 keypad_type = KEYPAD_TYPE_NEW;
2234 if (lcd_type < 0)
2235 lcd_type = LCD_TYPE_KS0074;
2236 break;
2237 case PANEL_PROFILE_HANTRONIX:
2238 /* 8 bits, 2*16 hantronix-like, no keypad */
2239 if (keypad_type < 0)
2240 keypad_type = KEYPAD_TYPE_NONE;
2241 if (lcd_type < 0)
2242 lcd_type = LCD_TYPE_HANTRONIX;
2243 break;
2244 case PANEL_PROFILE_NEXCOM:
2245 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2246 if (keypad_type < 0)
2247 keypad_type = KEYPAD_TYPE_NEXCOM;
2248 if (lcd_type < 0)
2249 lcd_type = LCD_TYPE_NEXCOM;
2250 break;
2251 case PANEL_PROFILE_LARGE:
2252 /* 8 bits, 2*40, old keypad */
2253 if (keypad_type < 0)
2254 keypad_type = KEYPAD_TYPE_OLD;
2255 if (lcd_type < 0)
2256 lcd_type = LCD_TYPE_OLD;
2257 break;
2260 lcd_enabled = (lcd_type > 0);
2261 keypad_enabled = (keypad_type > 0);
2263 switch (keypad_type) {
2264 case KEYPAD_TYPE_OLD:
2265 keypad_profile = old_keypad_profile;
2266 break;
2267 case KEYPAD_TYPE_NEW:
2268 keypad_profile = new_keypad_profile;
2269 break;
2270 case KEYPAD_TYPE_NEXCOM:
2271 keypad_profile = nexcom_keypad_profile;
2272 break;
2273 default:
2274 keypad_profile = NULL;
2275 break;
2278 /* tells various subsystems about the fact that we are initializing */
2279 init_in_progress = 1;
2281 if (parport_register_driver(&panel_driver)) {
2282 printk(KERN_ERR
2283 "Panel: could not register with parport. Aborting.\n");
2284 return -EIO;
2287 if (!lcd_enabled && !keypad_enabled) {
2288 /* no device enabled, let's release the parport */
2289 if (pprt) {
2290 parport_release(pprt);
2291 parport_unregister_device(pprt);
2292 pprt = NULL;
2294 parport_unregister_driver(&panel_driver);
2295 printk(KERN_ERR "Panel driver version " PANEL_VERSION
2296 " disabled.\n");
2297 return -ENODEV;
2300 register_reboot_notifier(&panel_notifier);
2302 if (pprt)
2303 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2304 " registered on parport%d (io=0x%lx).\n", parport,
2305 pprt->port->base);
2306 else
2307 printk(KERN_INFO "Panel driver version " PANEL_VERSION
2308 " not yet registered\n");
2309 /* tells various subsystems about the fact that initialization
2310 is finished */
2311 init_in_progress = 0;
2312 return 0;
2315 static int __init panel_init_module(void)
2317 return panel_init();
2320 static void __exit panel_cleanup_module(void)
2322 unregister_reboot_notifier(&panel_notifier);
2324 if (scan_timer.function != NULL)
2325 del_timer(&scan_timer);
2327 if (pprt != NULL) {
2328 if (keypad_enabled) {
2329 misc_deregister(&keypad_dev);
2330 keypad_initialized = 0;
2333 if (lcd_enabled) {
2334 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2335 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2336 misc_deregister(&lcd_dev);
2337 lcd_initialized = 0;
2340 /* TODO: free all input signals */
2341 parport_release(pprt);
2342 parport_unregister_device(pprt);
2343 pprt = NULL;
2345 parport_unregister_driver(&panel_driver);
2348 module_init(panel_init_module);
2349 module_exit(panel_cleanup_module);
2350 MODULE_AUTHOR("Willy Tarreau");
2351 MODULE_LICENSE("GPL");
2354 * Local variables:
2355 * c-indent-level: 4
2356 * tab-width: 8
2357 * End: