Linux 3.3-rc6
[linux/fpc-iii.git] / drivers / xen / swiotlb-xen.c
blob19e6a2041371c0fe9a908c71ac5c83cdbad3c015
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
44 * Used to do a quick range check in swiotlb_tbl_unmap_single and
45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46 * API.
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
52 * Quick lookup value of the bus address of the IOTLB.
55 u64 start_dma_addr;
57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
59 return phys_to_machine(XPADDR(paddr)).maddr;
62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
64 return machine_to_phys(XMADDR(baddr)).paddr;
67 static dma_addr_t xen_virt_to_bus(void *address)
69 return xen_phys_to_bus(virt_to_phys(address));
72 static int check_pages_physically_contiguous(unsigned long pfn,
73 unsigned int offset,
74 size_t length)
76 unsigned long next_mfn;
77 int i;
78 int nr_pages;
80 next_mfn = pfn_to_mfn(pfn);
81 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
83 for (i = 1; i < nr_pages; i++) {
84 if (pfn_to_mfn(++pfn) != ++next_mfn)
85 return 0;
87 return 1;
90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
92 unsigned long pfn = PFN_DOWN(p);
93 unsigned int offset = p & ~PAGE_MASK;
95 if (offset + size <= PAGE_SIZE)
96 return 0;
97 if (check_pages_physically_contiguous(pfn, offset, size))
98 return 0;
99 return 1;
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
104 unsigned long mfn = PFN_DOWN(dma_addr);
105 unsigned long pfn = mfn_to_local_pfn(mfn);
106 phys_addr_t paddr;
108 /* If the address is outside our domain, it CAN
109 * have the same virtual address as another address
110 * in our domain. Therefore _only_ check address within our domain.
112 if (pfn_valid(pfn)) {
113 paddr = PFN_PHYS(pfn);
114 return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 paddr < virt_to_phys(xen_io_tlb_end);
117 return 0;
120 static int max_dma_bits = 32;
122 static int
123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
125 int i, rc;
126 int dma_bits;
128 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
130 i = 0;
131 do {
132 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
134 do {
135 rc = xen_create_contiguous_region(
136 (unsigned long)buf + (i << IO_TLB_SHIFT),
137 get_order(slabs << IO_TLB_SHIFT),
138 dma_bits);
139 } while (rc && dma_bits++ < max_dma_bits);
140 if (rc)
141 return rc;
143 i += slabs;
144 } while (i < nslabs);
145 return 0;
148 void __init xen_swiotlb_init(int verbose)
150 unsigned long bytes;
151 int rc = -ENOMEM;
152 unsigned long nr_tbl;
153 char *m = NULL;
154 unsigned int repeat = 3;
156 nr_tbl = swiotlb_nr_tbl();
157 if (nr_tbl)
158 xen_io_tlb_nslabs = nr_tbl;
159 else {
160 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
161 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
163 retry:
164 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
167 * Get IO TLB memory from any location.
169 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
170 if (!xen_io_tlb_start) {
171 m = "Cannot allocate Xen-SWIOTLB buffer!\n";
172 goto error;
174 xen_io_tlb_end = xen_io_tlb_start + bytes;
176 * And replace that memory with pages under 4GB.
178 rc = xen_swiotlb_fixup(xen_io_tlb_start,
179 bytes,
180 xen_io_tlb_nslabs);
181 if (rc) {
182 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
183 m = "Failed to get contiguous memory for DMA from Xen!\n"\
184 "You either: don't have the permissions, do not have"\
185 " enough free memory under 4GB, or the hypervisor memory"\
186 "is too fragmented!";
187 goto error;
189 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
190 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
192 return;
193 error:
194 if (repeat--) {
195 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
196 (xen_io_tlb_nslabs >> 1));
197 printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
198 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
199 goto retry;
201 xen_raw_printk("%s (rc:%d)", m, rc);
202 panic("%s (rc:%d)", m, rc);
205 void *
206 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
207 dma_addr_t *dma_handle, gfp_t flags)
209 void *ret;
210 int order = get_order(size);
211 u64 dma_mask = DMA_BIT_MASK(32);
212 unsigned long vstart;
213 phys_addr_t phys;
214 dma_addr_t dev_addr;
217 * Ignore region specifiers - the kernel's ideas of
218 * pseudo-phys memory layout has nothing to do with the
219 * machine physical layout. We can't allocate highmem
220 * because we can't return a pointer to it.
222 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
224 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
225 return ret;
227 vstart = __get_free_pages(flags, order);
228 ret = (void *)vstart;
230 if (!ret)
231 return ret;
233 if (hwdev && hwdev->coherent_dma_mask)
234 dma_mask = hwdev->coherent_dma_mask;
236 phys = virt_to_phys(ret);
237 dev_addr = xen_phys_to_bus(phys);
238 if (((dev_addr + size - 1 <= dma_mask)) &&
239 !range_straddles_page_boundary(phys, size))
240 *dma_handle = dev_addr;
241 else {
242 if (xen_create_contiguous_region(vstart, order,
243 fls64(dma_mask)) != 0) {
244 free_pages(vstart, order);
245 return NULL;
247 *dma_handle = virt_to_machine(ret).maddr;
249 memset(ret, 0, size);
250 return ret;
252 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
254 void
255 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
256 dma_addr_t dev_addr)
258 int order = get_order(size);
259 phys_addr_t phys;
260 u64 dma_mask = DMA_BIT_MASK(32);
262 if (dma_release_from_coherent(hwdev, order, vaddr))
263 return;
265 if (hwdev && hwdev->coherent_dma_mask)
266 dma_mask = hwdev->coherent_dma_mask;
268 phys = virt_to_phys(vaddr);
270 if (((dev_addr + size - 1 > dma_mask)) ||
271 range_straddles_page_boundary(phys, size))
272 xen_destroy_contiguous_region((unsigned long)vaddr, order);
274 free_pages((unsigned long)vaddr, order);
276 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
280 * Map a single buffer of the indicated size for DMA in streaming mode. The
281 * physical address to use is returned.
283 * Once the device is given the dma address, the device owns this memory until
284 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
286 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
287 unsigned long offset, size_t size,
288 enum dma_data_direction dir,
289 struct dma_attrs *attrs)
291 phys_addr_t phys = page_to_phys(page) + offset;
292 dma_addr_t dev_addr = xen_phys_to_bus(phys);
293 void *map;
295 BUG_ON(dir == DMA_NONE);
297 * If the address happens to be in the device's DMA window,
298 * we can safely return the device addr and not worry about bounce
299 * buffering it.
301 if (dma_capable(dev, dev_addr, size) &&
302 !range_straddles_page_boundary(phys, size) && !swiotlb_force)
303 return dev_addr;
306 * Oh well, have to allocate and map a bounce buffer.
308 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
309 if (!map)
310 return DMA_ERROR_CODE;
312 dev_addr = xen_virt_to_bus(map);
315 * Ensure that the address returned is DMA'ble
317 if (!dma_capable(dev, dev_addr, size)) {
318 swiotlb_tbl_unmap_single(dev, map, size, dir);
319 dev_addr = 0;
321 return dev_addr;
323 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
326 * Unmap a single streaming mode DMA translation. The dma_addr and size must
327 * match what was provided for in a previous xen_swiotlb_map_page call. All
328 * other usages are undefined.
330 * After this call, reads by the cpu to the buffer are guaranteed to see
331 * whatever the device wrote there.
333 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
334 size_t size, enum dma_data_direction dir)
336 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
338 BUG_ON(dir == DMA_NONE);
340 /* NOTE: We use dev_addr here, not paddr! */
341 if (is_xen_swiotlb_buffer(dev_addr)) {
342 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
343 return;
346 if (dir != DMA_FROM_DEVICE)
347 return;
350 * phys_to_virt doesn't work with hihgmem page but we could
351 * call dma_mark_clean() with hihgmem page here. However, we
352 * are fine since dma_mark_clean() is null on POWERPC. We can
353 * make dma_mark_clean() take a physical address if necessary.
355 dma_mark_clean(phys_to_virt(paddr), size);
358 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
359 size_t size, enum dma_data_direction dir,
360 struct dma_attrs *attrs)
362 xen_unmap_single(hwdev, dev_addr, size, dir);
364 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
367 * Make physical memory consistent for a single streaming mode DMA translation
368 * after a transfer.
370 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
371 * using the cpu, yet do not wish to teardown the dma mapping, you must
372 * call this function before doing so. At the next point you give the dma
373 * address back to the card, you must first perform a
374 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
376 static void
377 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
378 size_t size, enum dma_data_direction dir,
379 enum dma_sync_target target)
381 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
383 BUG_ON(dir == DMA_NONE);
385 /* NOTE: We use dev_addr here, not paddr! */
386 if (is_xen_swiotlb_buffer(dev_addr)) {
387 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
388 target);
389 return;
392 if (dir != DMA_FROM_DEVICE)
393 return;
395 dma_mark_clean(phys_to_virt(paddr), size);
398 void
399 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
400 size_t size, enum dma_data_direction dir)
402 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
404 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
406 void
407 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
408 size_t size, enum dma_data_direction dir)
410 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
412 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
415 * Map a set of buffers described by scatterlist in streaming mode for DMA.
416 * This is the scatter-gather version of the above xen_swiotlb_map_page
417 * interface. Here the scatter gather list elements are each tagged with the
418 * appropriate dma address and length. They are obtained via
419 * sg_dma_{address,length}(SG).
421 * NOTE: An implementation may be able to use a smaller number of
422 * DMA address/length pairs than there are SG table elements.
423 * (for example via virtual mapping capabilities)
424 * The routine returns the number of addr/length pairs actually
425 * used, at most nents.
427 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
428 * same here.
431 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
432 int nelems, enum dma_data_direction dir,
433 struct dma_attrs *attrs)
435 struct scatterlist *sg;
436 int i;
438 BUG_ON(dir == DMA_NONE);
440 for_each_sg(sgl, sg, nelems, i) {
441 phys_addr_t paddr = sg_phys(sg);
442 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
444 if (swiotlb_force ||
445 !dma_capable(hwdev, dev_addr, sg->length) ||
446 range_straddles_page_boundary(paddr, sg->length)) {
447 void *map = swiotlb_tbl_map_single(hwdev,
448 start_dma_addr,
449 sg_phys(sg),
450 sg->length, dir);
451 if (!map) {
452 /* Don't panic here, we expect map_sg users
453 to do proper error handling. */
454 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
455 attrs);
456 sgl[0].dma_length = 0;
457 return DMA_ERROR_CODE;
459 sg->dma_address = xen_virt_to_bus(map);
460 } else
461 sg->dma_address = dev_addr;
462 sg->dma_length = sg->length;
464 return nelems;
466 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
469 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
470 enum dma_data_direction dir)
472 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
474 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
477 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
478 * concerning calls here are the same as for swiotlb_unmap_page() above.
480 void
481 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
482 int nelems, enum dma_data_direction dir,
483 struct dma_attrs *attrs)
485 struct scatterlist *sg;
486 int i;
488 BUG_ON(dir == DMA_NONE);
490 for_each_sg(sgl, sg, nelems, i)
491 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
494 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
496 void
497 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
498 enum dma_data_direction dir)
500 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
502 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
505 * Make physical memory consistent for a set of streaming mode DMA translations
506 * after a transfer.
508 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
509 * and usage.
511 static void
512 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
513 int nelems, enum dma_data_direction dir,
514 enum dma_sync_target target)
516 struct scatterlist *sg;
517 int i;
519 for_each_sg(sgl, sg, nelems, i)
520 xen_swiotlb_sync_single(hwdev, sg->dma_address,
521 sg->dma_length, dir, target);
524 void
525 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
526 int nelems, enum dma_data_direction dir)
528 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
530 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
532 void
533 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
534 int nelems, enum dma_data_direction dir)
536 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
538 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
541 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
543 return !dma_addr;
545 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
548 * Return whether the given device DMA address mask can be supported
549 * properly. For example, if your device can only drive the low 24-bits
550 * during bus mastering, then you would pass 0x00ffffff as the mask to
551 * this function.
554 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
556 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
558 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);