Linux 3.3-rc6
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob53c8ce4046b207cf6dc65735a8a030932095734d
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
133 icsk->icsk_ack.last_seg_size = 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 static void tcp_incr_quickack(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 static void tcp_enter_quickack_mode(struct sock *sk)
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 if (tp->ecn_flags & TCP_ECN_OK)
205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 if (tcp_hdr(skb)->cwr)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 if (!(tp->ecn_flags & TCP_ECN_OK))
222 return;
224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 case INET_ECN_NOT_ECT:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
230 if (tp->ecn_flags & TCP_ECN_SEEN)
231 tcp_enter_quickack_mode((struct sock *)tp);
232 break;
233 case INET_ECN_CE:
234 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 /* fallinto */
236 default:
237 tp->ecn_flags |= TCP_ECN_SEEN;
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
243 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 tp->ecn_flags &= ~TCP_ECN_OK;
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
255 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 return 1;
257 return 0;
260 /* Buffer size and advertised window tuning.
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 static void tcp_fixup_sndbuf(struct sock *sk)
267 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
269 sndmem *= TCP_INIT_CWND;
270 if (sk->sk_sndbuf < sndmem)
271 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
302 struct tcp_sock *tp = tcp_sk(sk);
303 /* Optimize this! */
304 int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
307 while (tp->rcv_ssthresh <= window) {
308 if (truesize <= skb->len)
309 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
311 truesize >>= 1;
312 window >>= 1;
314 return 0;
317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
319 struct tcp_sock *tp = tcp_sk(sk);
321 /* Check #1 */
322 if (tp->rcv_ssthresh < tp->window_clamp &&
323 (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 !sk_under_memory_pressure(sk)) {
325 int incr;
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
330 if (tcp_win_from_space(skb->truesize) <= skb->len)
331 incr = 2 * tp->advmss;
332 else
333 incr = __tcp_grow_window(sk, skb);
335 if (incr) {
336 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337 tp->window_clamp);
338 inet_csk(sk)->icsk_ack.quick |= 1;
343 /* 3. Tuning rcvbuf, when connection enters established state. */
345 static void tcp_fixup_rcvbuf(struct sock *sk)
347 u32 mss = tcp_sk(sk)->advmss;
348 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349 int rcvmem;
351 /* Limit to 10 segments if mss <= 1460,
352 * or 14600/mss segments, with a minimum of two segments.
354 if (mss > 1460)
355 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
357 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358 while (tcp_win_from_space(rcvmem) < mss)
359 rcvmem += 128;
361 rcvmem *= icwnd;
363 if (sk->sk_rcvbuf < rcvmem)
364 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
367 /* 4. Try to fixup all. It is made immediately after connection enters
368 * established state.
370 static void tcp_init_buffer_space(struct sock *sk)
372 struct tcp_sock *tp = tcp_sk(sk);
373 int maxwin;
375 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376 tcp_fixup_rcvbuf(sk);
377 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378 tcp_fixup_sndbuf(sk);
380 tp->rcvq_space.space = tp->rcv_wnd;
382 maxwin = tcp_full_space(sk);
384 if (tp->window_clamp >= maxwin) {
385 tp->window_clamp = maxwin;
387 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388 tp->window_clamp = max(maxwin -
389 (maxwin >> sysctl_tcp_app_win),
390 4 * tp->advmss);
393 /* Force reservation of one segment. */
394 if (sysctl_tcp_app_win &&
395 tp->window_clamp > 2 * tp->advmss &&
396 tp->window_clamp + tp->advmss > maxwin)
397 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
399 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400 tp->snd_cwnd_stamp = tcp_time_stamp;
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock *sk)
406 struct tcp_sock *tp = tcp_sk(sk);
407 struct inet_connection_sock *icsk = inet_csk(sk);
409 icsk->icsk_ack.quick = 0;
411 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413 !sk_under_memory_pressure(sk) &&
414 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416 sysctl_tcp_rmem[2]);
418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
422 /* Initialize RCV_MSS value.
423 * RCV_MSS is an our guess about MSS used by the peer.
424 * We haven't any direct information about the MSS.
425 * It's better to underestimate the RCV_MSS rather than overestimate.
426 * Overestimations make us ACKing less frequently than needed.
427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
429 void tcp_initialize_rcv_mss(struct sock *sk)
431 const struct tcp_sock *tp = tcp_sk(sk);
432 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
434 hint = min(hint, tp->rcv_wnd / 2);
435 hint = min(hint, TCP_MSS_DEFAULT);
436 hint = max(hint, TCP_MIN_MSS);
438 inet_csk(sk)->icsk_ack.rcv_mss = hint;
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
442 /* Receiver "autotuning" code.
444 * The algorithm for RTT estimation w/o timestamps is based on
445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446 * <http://public.lanl.gov/radiant/pubs.html#DRS>
448 * More detail on this code can be found at
449 * <http://staff.psc.edu/jheffner/>,
450 * though this reference is out of date. A new paper
451 * is pending.
453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
455 u32 new_sample = tp->rcv_rtt_est.rtt;
456 long m = sample;
458 if (m == 0)
459 m = 1;
461 if (new_sample != 0) {
462 /* If we sample in larger samples in the non-timestamp
463 * case, we could grossly overestimate the RTT especially
464 * with chatty applications or bulk transfer apps which
465 * are stalled on filesystem I/O.
467 * Also, since we are only going for a minimum in the
468 * non-timestamp case, we do not smooth things out
469 * else with timestamps disabled convergence takes too
470 * long.
472 if (!win_dep) {
473 m -= (new_sample >> 3);
474 new_sample += m;
475 } else if (m < new_sample)
476 new_sample = m << 3;
477 } else {
478 /* No previous measure. */
479 new_sample = m << 3;
482 if (tp->rcv_rtt_est.rtt != new_sample)
483 tp->rcv_rtt_est.rtt = new_sample;
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
488 if (tp->rcv_rtt_est.time == 0)
489 goto new_measure;
490 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491 return;
492 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
494 new_measure:
495 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496 tp->rcv_rtt_est.time = tcp_time_stamp;
499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500 const struct sk_buff *skb)
502 struct tcp_sock *tp = tcp_sk(sk);
503 if (tp->rx_opt.rcv_tsecr &&
504 (TCP_SKB_CB(skb)->end_seq -
505 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
510 * This function should be called every time data is copied to user space.
511 * It calculates the appropriate TCP receive buffer space.
513 void tcp_rcv_space_adjust(struct sock *sk)
515 struct tcp_sock *tp = tcp_sk(sk);
516 int time;
517 int space;
519 if (tp->rcvq_space.time == 0)
520 goto new_measure;
522 time = tcp_time_stamp - tp->rcvq_space.time;
523 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524 return;
526 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
528 space = max(tp->rcvq_space.space, space);
530 if (tp->rcvq_space.space != space) {
531 int rcvmem;
533 tp->rcvq_space.space = space;
535 if (sysctl_tcp_moderate_rcvbuf &&
536 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537 int new_clamp = space;
539 /* Receive space grows, normalize in order to
540 * take into account packet headers and sk_buff
541 * structure overhead.
543 space /= tp->advmss;
544 if (!space)
545 space = 1;
546 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547 while (tcp_win_from_space(rcvmem) < tp->advmss)
548 rcvmem += 128;
549 space *= rcvmem;
550 space = min(space, sysctl_tcp_rmem[2]);
551 if (space > sk->sk_rcvbuf) {
552 sk->sk_rcvbuf = space;
554 /* Make the window clamp follow along. */
555 tp->window_clamp = new_clamp;
560 new_measure:
561 tp->rcvq_space.seq = tp->copied_seq;
562 tp->rcvq_space.time = tcp_time_stamp;
565 /* There is something which you must keep in mind when you analyze the
566 * behavior of the tp->ato delayed ack timeout interval. When a
567 * connection starts up, we want to ack as quickly as possible. The
568 * problem is that "good" TCP's do slow start at the beginning of data
569 * transmission. The means that until we send the first few ACK's the
570 * sender will sit on his end and only queue most of his data, because
571 * he can only send snd_cwnd unacked packets at any given time. For
572 * each ACK we send, he increments snd_cwnd and transmits more of his
573 * queue. -DaveM
575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
577 struct tcp_sock *tp = tcp_sk(sk);
578 struct inet_connection_sock *icsk = inet_csk(sk);
579 u32 now;
581 inet_csk_schedule_ack(sk);
583 tcp_measure_rcv_mss(sk, skb);
585 tcp_rcv_rtt_measure(tp);
587 now = tcp_time_stamp;
589 if (!icsk->icsk_ack.ato) {
590 /* The _first_ data packet received, initialize
591 * delayed ACK engine.
593 tcp_incr_quickack(sk);
594 icsk->icsk_ack.ato = TCP_ATO_MIN;
595 } else {
596 int m = now - icsk->icsk_ack.lrcvtime;
598 if (m <= TCP_ATO_MIN / 2) {
599 /* The fastest case is the first. */
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601 } else if (m < icsk->icsk_ack.ato) {
602 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603 if (icsk->icsk_ack.ato > icsk->icsk_rto)
604 icsk->icsk_ack.ato = icsk->icsk_rto;
605 } else if (m > icsk->icsk_rto) {
606 /* Too long gap. Apparently sender failed to
607 * restart window, so that we send ACKs quickly.
609 tcp_incr_quickack(sk);
610 sk_mem_reclaim(sk);
613 icsk->icsk_ack.lrcvtime = now;
615 TCP_ECN_check_ce(tp, skb);
617 if (skb->len >= 128)
618 tcp_grow_window(sk, skb);
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622 * routine either comes from timestamps, or from segments that were
623 * known _not_ to have been retransmitted [see Karn/Partridge
624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625 * piece by Van Jacobson.
626 * NOTE: the next three routines used to be one big routine.
627 * To save cycles in the RFC 1323 implementation it was better to break
628 * it up into three procedures. -- erics
630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
632 struct tcp_sock *tp = tcp_sk(sk);
633 long m = mrtt; /* RTT */
635 /* The following amusing code comes from Jacobson's
636 * article in SIGCOMM '88. Note that rtt and mdev
637 * are scaled versions of rtt and mean deviation.
638 * This is designed to be as fast as possible
639 * m stands for "measurement".
641 * On a 1990 paper the rto value is changed to:
642 * RTO = rtt + 4 * mdev
644 * Funny. This algorithm seems to be very broken.
645 * These formulae increase RTO, when it should be decreased, increase
646 * too slowly, when it should be increased quickly, decrease too quickly
647 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 * does not matter how to _calculate_ it. Seems, it was trap
649 * that VJ failed to avoid. 8)
651 if (m == 0)
652 m = 1;
653 if (tp->srtt != 0) {
654 m -= (tp->srtt >> 3); /* m is now error in rtt est */
655 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
656 if (m < 0) {
657 m = -m; /* m is now abs(error) */
658 m -= (tp->mdev >> 2); /* similar update on mdev */
659 /* This is similar to one of Eifel findings.
660 * Eifel blocks mdev updates when rtt decreases.
661 * This solution is a bit different: we use finer gain
662 * for mdev in this case (alpha*beta).
663 * Like Eifel it also prevents growth of rto,
664 * but also it limits too fast rto decreases,
665 * happening in pure Eifel.
667 if (m > 0)
668 m >>= 3;
669 } else {
670 m -= (tp->mdev >> 2); /* similar update on mdev */
672 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
673 if (tp->mdev > tp->mdev_max) {
674 tp->mdev_max = tp->mdev;
675 if (tp->mdev_max > tp->rttvar)
676 tp->rttvar = tp->mdev_max;
678 if (after(tp->snd_una, tp->rtt_seq)) {
679 if (tp->mdev_max < tp->rttvar)
680 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681 tp->rtt_seq = tp->snd_nxt;
682 tp->mdev_max = tcp_rto_min(sk);
684 } else {
685 /* no previous measure. */
686 tp->srtt = m << 3; /* take the measured time to be rtt */
687 tp->mdev = m << 1; /* make sure rto = 3*rtt */
688 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689 tp->rtt_seq = tp->snd_nxt;
693 /* Calculate rto without backoff. This is the second half of Van Jacobson's
694 * routine referred to above.
696 static inline void tcp_set_rto(struct sock *sk)
698 const struct tcp_sock *tp = tcp_sk(sk);
699 /* Old crap is replaced with new one. 8)
701 * More seriously:
702 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 * It cannot be less due to utterly erratic ACK generation made
704 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 * to do with delayed acks, because at cwnd>2 true delack timeout
706 * is invisible. Actually, Linux-2.4 also generates erratic
707 * ACKs in some circumstances.
709 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
711 /* 2. Fixups made earlier cannot be right.
712 * If we do not estimate RTO correctly without them,
713 * all the algo is pure shit and should be replaced
714 * with correct one. It is exactly, which we pretend to do.
717 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 * guarantees that rto is higher.
720 tcp_bound_rto(sk);
723 /* Save metrics learned by this TCP session.
724 This function is called only, when TCP finishes successfully
725 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
727 void tcp_update_metrics(struct sock *sk)
729 struct tcp_sock *tp = tcp_sk(sk);
730 struct dst_entry *dst = __sk_dst_get(sk);
732 if (sysctl_tcp_nometrics_save)
733 return;
735 dst_confirm(dst);
737 if (dst && (dst->flags & DST_HOST)) {
738 const struct inet_connection_sock *icsk = inet_csk(sk);
739 int m;
740 unsigned long rtt;
742 if (icsk->icsk_backoff || !tp->srtt) {
743 /* This session failed to estimate rtt. Why?
744 * Probably, no packets returned in time.
745 * Reset our results.
747 if (!(dst_metric_locked(dst, RTAX_RTT)))
748 dst_metric_set(dst, RTAX_RTT, 0);
749 return;
752 rtt = dst_metric_rtt(dst, RTAX_RTT);
753 m = rtt - tp->srtt;
755 /* If newly calculated rtt larger than stored one,
756 * store new one. Otherwise, use EWMA. Remember,
757 * rtt overestimation is always better than underestimation.
759 if (!(dst_metric_locked(dst, RTAX_RTT))) {
760 if (m <= 0)
761 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762 else
763 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
766 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767 unsigned long var;
768 if (m < 0)
769 m = -m;
771 /* Scale deviation to rttvar fixed point */
772 m >>= 1;
773 if (m < tp->mdev)
774 m = tp->mdev;
776 var = dst_metric_rtt(dst, RTAX_RTTVAR);
777 if (m >= var)
778 var = m;
779 else
780 var -= (var - m) >> 2;
782 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
785 if (tcp_in_initial_slowstart(tp)) {
786 /* Slow start still did not finish. */
787 if (dst_metric(dst, RTAX_SSTHRESH) &&
788 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791 if (!dst_metric_locked(dst, RTAX_CWND) &&
792 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
795 icsk->icsk_ca_state == TCP_CA_Open) {
796 /* Cong. avoidance phase, cwnd is reliable. */
797 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798 dst_metric_set(dst, RTAX_SSTHRESH,
799 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800 if (!dst_metric_locked(dst, RTAX_CWND))
801 dst_metric_set(dst, RTAX_CWND,
802 (dst_metric(dst, RTAX_CWND) +
803 tp->snd_cwnd) >> 1);
804 } else {
805 /* Else slow start did not finish, cwnd is non-sense,
806 ssthresh may be also invalid.
808 if (!dst_metric_locked(dst, RTAX_CWND))
809 dst_metric_set(dst, RTAX_CWND,
810 (dst_metric(dst, RTAX_CWND) +
811 tp->snd_ssthresh) >> 1);
812 if (dst_metric(dst, RTAX_SSTHRESH) &&
813 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
818 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820 tp->reordering != sysctl_tcp_reordering)
821 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
830 if (!cwnd)
831 cwnd = TCP_INIT_CWND;
832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 struct tcp_sock *tp = tcp_sk(sk);
839 const struct inet_connection_sock *icsk = inet_csk(sk);
841 tp->prior_ssthresh = 0;
842 tp->bytes_acked = 0;
843 if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 tp->undo_marker = 0;
845 if (set_ssthresh)
846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 tp->snd_cwnd = min(tp->snd_cwnd,
848 tcp_packets_in_flight(tp) + 1U);
849 tp->snd_cwnd_cnt = 0;
850 tp->high_seq = tp->snd_nxt;
851 tp->snd_cwnd_stamp = tcp_time_stamp;
852 TCP_ECN_queue_cwr(tp);
854 tcp_set_ca_state(sk, TCP_CA_CWR);
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
862 static void tcp_disable_fack(struct tcp_sock *tp)
864 /* RFC3517 uses different metric in lost marker => reset on change */
865 if (tcp_is_fack(tp))
866 tp->lost_skb_hint = NULL;
867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock *tp)
873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 /* Initialize metrics on socket. */
878 static void tcp_init_metrics(struct sock *sk)
880 struct tcp_sock *tp = tcp_sk(sk);
881 struct dst_entry *dst = __sk_dst_get(sk);
883 if (dst == NULL)
884 goto reset;
886 dst_confirm(dst);
888 if (dst_metric_locked(dst, RTAX_CWND))
889 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 if (dst_metric(dst, RTAX_SSTHRESH)) {
891 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 } else {
895 /* ssthresh may have been reduced unnecessarily during.
896 * 3WHS. Restore it back to its initial default.
898 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
900 if (dst_metric(dst, RTAX_REORDERING) &&
901 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902 tcp_disable_fack(tp);
903 tp->reordering = dst_metric(dst, RTAX_REORDERING);
906 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907 goto reset;
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
923 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925 tp->rtt_seq = tp->snd_nxt;
927 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
931 tcp_set_rto(sk);
932 reset:
933 if (tp->srtt == 0) {
934 /* RFC2988bis: We've failed to get a valid RTT sample from
935 * 3WHS. This is most likely due to retransmission,
936 * including spurious one. Reset the RTO back to 3secs
937 * from the more aggressive 1sec to avoid more spurious
938 * retransmission.
940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
943 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 * retransmission has occurred.
948 if (tp->total_retrans > 1)
949 tp->snd_cwnd = 1;
950 else
951 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952 tp->snd_cwnd_stamp = tcp_time_stamp;
955 static void tcp_update_reordering(struct sock *sk, const int metric,
956 const int ts)
958 struct tcp_sock *tp = tcp_sk(sk);
959 if (metric > tp->reordering) {
960 int mib_idx;
962 tp->reordering = min(TCP_MAX_REORDERING, metric);
964 /* This exciting event is worth to be remembered. 8) */
965 if (ts)
966 mib_idx = LINUX_MIB_TCPTSREORDER;
967 else if (tcp_is_reno(tp))
968 mib_idx = LINUX_MIB_TCPRENOREORDER;
969 else if (tcp_is_fack(tp))
970 mib_idx = LINUX_MIB_TCPFACKREORDER;
971 else
972 mib_idx = LINUX_MIB_TCPSACKREORDER;
974 NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978 tp->reordering,
979 tp->fackets_out,
980 tp->sacked_out,
981 tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983 tcp_disable_fack(tp);
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
990 if ((tp->retransmit_skb_hint == NULL) ||
991 before(TCP_SKB_CB(skb)->seq,
992 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993 tp->retransmit_skb_hint = skb;
995 if (!tp->lost_out ||
996 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1002 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 tcp_verify_retransmit_hint(tp, skb);
1005 tp->lost_out += tcp_skb_pcount(skb);
1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011 struct sk_buff *skb)
1013 tcp_verify_retransmit_hint(tp, skb);
1015 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 tp->lost_out += tcp_skb_pcount(skb);
1017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024 * Packets in queue with these bits set are counted in variables
1025 * sacked_out, retrans_out and lost_out, correspondingly.
1027 * Valid combinations are:
1028 * Tag InFlight Description
1029 * 0 1 - orig segment is in flight.
1030 * S 0 - nothing flies, orig reached receiver.
1031 * L 0 - nothing flies, orig lost by net.
1032 * R 2 - both orig and retransmit are in flight.
1033 * L|R 1 - orig is lost, retransmit is in flight.
1034 * S|R 1 - orig reached receiver, retrans is still in flight.
1035 * (L|S|R is logically valid, it could occur when L|R is sacked,
1036 * but it is equivalent to plain S and code short-curcuits it to S.
1037 * L|S is logically invalid, it would mean -1 packet in flight 8))
1039 * These 6 states form finite state machine, controlled by the following events:
1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042 * 3. Loss detection event of two flavors:
1043 * A. Scoreboard estimator decided the packet is lost.
1044 * A'. Reno "three dupacks" marks head of queue lost.
1045 * A''. Its FACK modification, head until snd.fack is lost.
1046 * B. SACK arrives sacking SND.NXT at the moment, when the
1047 * segment was retransmitted.
1048 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1050 * It is pleasant to note, that state diagram turns out to be commutative,
1051 * so that we are allowed not to be bothered by order of our actions,
1052 * when multiple events arrive simultaneously. (see the function below).
1054 * Reordering detection.
1055 * --------------------
1056 * Reordering metric is maximal distance, which a packet can be displaced
1057 * in packet stream. With SACKs we can estimate it:
1059 * 1. SACK fills old hole and the corresponding segment was not
1060 * ever retransmitted -> reordering. Alas, we cannot use it
1061 * when segment was retransmitted.
1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063 * for retransmitted and already SACKed segment -> reordering..
1064 * Both of these heuristics are not used in Loss state, when we cannot
1065 * account for retransmits accurately.
1067 * SACK block validation.
1068 * ----------------------
1070 * SACK block range validation checks that the received SACK block fits to
1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072 * Note that SND.UNA is not included to the range though being valid because
1073 * it means that the receiver is rather inconsistent with itself reporting
1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075 * perfectly valid, however, in light of RFC2018 which explicitly states
1076 * that "SACK block MUST reflect the newest segment. Even if the newest
1077 * segment is going to be discarded ...", not that it looks very clever
1078 * in case of head skb. Due to potentional receiver driven attacks, we
1079 * choose to avoid immediate execution of a walk in write queue due to
1080 * reneging and defer head skb's loss recovery to standard loss recovery
1081 * procedure that will eventually trigger (nothing forbids us doing this).
1083 * Implements also blockage to start_seq wrap-around. Problem lies in the
1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085 * there's no guarantee that it will be before snd_nxt (n). The problem
1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087 * wrap (s_w):
1089 * <- outs wnd -> <- wrapzone ->
1090 * u e n u_w e_w s n_w
1091 * | | | | | | |
1092 * |<------------+------+----- TCP seqno space --------------+---------->|
1093 * ...-- <2^31 ->| |<--------...
1094 * ...---- >2^31 ------>| |<--------...
1096 * Current code wouldn't be vulnerable but it's better still to discard such
1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100 * equal to the ideal case (infinite seqno space without wrap caused issues).
1102 * With D-SACK the lower bound is extended to cover sequence space below
1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104 * again, D-SACK block must not to go across snd_una (for the same reason as
1105 * for the normal SACK blocks, explained above). But there all simplicity
1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107 * fully below undo_marker they do not affect behavior in anyway and can
1108 * therefore be safely ignored. In rare cases (which are more or less
1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110 * fragmentation and packet reordering past skb's retransmission. To consider
1111 * them correctly, the acceptable range must be extended even more though
1112 * the exact amount is rather hard to quantify. However, tp->max_window can
1113 * be used as an exaggerated estimate.
1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116 u32 start_seq, u32 end_seq)
1118 /* Too far in future, or reversed (interpretation is ambiguous) */
1119 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120 return 0;
1122 /* Nasty start_seq wrap-around check (see comments above) */
1123 if (!before(start_seq, tp->snd_nxt))
1124 return 0;
1126 /* In outstanding window? ...This is valid exit for D-SACKs too.
1127 * start_seq == snd_una is non-sensical (see comments above)
1129 if (after(start_seq, tp->snd_una))
1130 return 1;
1132 if (!is_dsack || !tp->undo_marker)
1133 return 0;
1135 /* ...Then it's D-SACK, and must reside below snd_una completely */
1136 if (after(end_seq, tp->snd_una))
1137 return 0;
1139 if (!before(start_seq, tp->undo_marker))
1140 return 1;
1142 /* Too old */
1143 if (!after(end_seq, tp->undo_marker))
1144 return 0;
1146 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 * start_seq < undo_marker and end_seq >= undo_marker.
1149 return !before(start_seq, end_seq - tp->max_window);
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153 * Event "B". Later note: FACK people cheated me again 8), we have to account
1154 * for reordering! Ugly, but should help.
1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157 * less than what is now known to be received by the other end (derived from
1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159 * retransmitted skbs to avoid some costly processing per ACKs.
1161 static void tcp_mark_lost_retrans(struct sock *sk)
1163 const struct inet_connection_sock *icsk = inet_csk(sk);
1164 struct tcp_sock *tp = tcp_sk(sk);
1165 struct sk_buff *skb;
1166 int cnt = 0;
1167 u32 new_low_seq = tp->snd_nxt;
1168 u32 received_upto = tcp_highest_sack_seq(tp);
1170 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171 !after(received_upto, tp->lost_retrans_low) ||
1172 icsk->icsk_ca_state != TCP_CA_Recovery)
1173 return;
1175 tcp_for_write_queue(skb, sk) {
1176 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1178 if (skb == tcp_send_head(sk))
1179 break;
1180 if (cnt == tp->retrans_out)
1181 break;
1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 continue;
1185 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186 continue;
1188 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 * constraint here (see above) but figuring out that at
1190 * least tp->reordering SACK blocks reside between ack_seq
1191 * and received_upto is not easy task to do cheaply with
1192 * the available datastructures.
1194 * Whether FACK should check here for tp->reordering segs
1195 * in-between one could argue for either way (it would be
1196 * rather simple to implement as we could count fack_count
1197 * during the walk and do tp->fackets_out - fack_count).
1199 if (after(received_upto, ack_seq)) {
1200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 tp->retrans_out -= tcp_skb_pcount(skb);
1203 tcp_skb_mark_lost_uncond_verify(tp, skb);
1204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205 } else {
1206 if (before(ack_seq, new_low_seq))
1207 new_low_seq = ack_seq;
1208 cnt += tcp_skb_pcount(skb);
1212 if (tp->retrans_out)
1213 tp->lost_retrans_low = new_low_seq;
1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217 struct tcp_sack_block_wire *sp, int num_sacks,
1218 u32 prior_snd_una)
1220 struct tcp_sock *tp = tcp_sk(sk);
1221 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223 int dup_sack = 0;
1225 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226 dup_sack = 1;
1227 tcp_dsack_seen(tp);
1228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229 } else if (num_sacks > 1) {
1230 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1233 if (!after(end_seq_0, end_seq_1) &&
1234 !before(start_seq_0, start_seq_1)) {
1235 dup_sack = 1;
1236 tcp_dsack_seen(tp);
1237 NET_INC_STATS_BH(sock_net(sk),
1238 LINUX_MIB_TCPDSACKOFORECV);
1242 /* D-SACK for already forgotten data... Do dumb counting. */
1243 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244 !after(end_seq_0, prior_snd_una) &&
1245 after(end_seq_0, tp->undo_marker))
1246 tp->undo_retrans--;
1248 return dup_sack;
1251 struct tcp_sacktag_state {
1252 int reord;
1253 int fack_count;
1254 int flag;
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258 * the incoming SACK may not exactly match but we can find smaller MSS
1259 * aligned portion of it that matches. Therefore we might need to fragment
1260 * which may fail and creates some hassle (caller must handle error case
1261 * returns).
1263 * FIXME: this could be merged to shift decision code
1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266 u32 start_seq, u32 end_seq)
1268 int in_sack, err;
1269 unsigned int pkt_len;
1270 unsigned int mss;
1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1275 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277 mss = tcp_skb_mss(skb);
1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1280 if (!in_sack) {
1281 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282 if (pkt_len < mss)
1283 pkt_len = mss;
1284 } else {
1285 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286 if (pkt_len < mss)
1287 return -EINVAL;
1290 /* Round if necessary so that SACKs cover only full MSSes
1291 * and/or the remaining small portion (if present)
1293 if (pkt_len > mss) {
1294 unsigned int new_len = (pkt_len / mss) * mss;
1295 if (!in_sack && new_len < pkt_len) {
1296 new_len += mss;
1297 if (new_len > skb->len)
1298 return 0;
1300 pkt_len = new_len;
1302 err = tcp_fragment(sk, skb, pkt_len, mss);
1303 if (err < 0)
1304 return err;
1307 return in_sack;
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311 static u8 tcp_sacktag_one(struct sock *sk,
1312 struct tcp_sacktag_state *state, u8 sacked,
1313 u32 start_seq, u32 end_seq,
1314 int dup_sack, int pcount)
1316 struct tcp_sock *tp = tcp_sk(sk);
1317 int fack_count = state->fack_count;
1319 /* Account D-SACK for retransmitted packet. */
1320 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321 if (tp->undo_marker && tp->undo_retrans &&
1322 after(end_seq, tp->undo_marker))
1323 tp->undo_retrans--;
1324 if (sacked & TCPCB_SACKED_ACKED)
1325 state->reord = min(fack_count, state->reord);
1328 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329 if (!after(end_seq, tp->snd_una))
1330 return sacked;
1332 if (!(sacked & TCPCB_SACKED_ACKED)) {
1333 if (sacked & TCPCB_SACKED_RETRANS) {
1334 /* If the segment is not tagged as lost,
1335 * we do not clear RETRANS, believing
1336 * that retransmission is still in flight.
1338 if (sacked & TCPCB_LOST) {
1339 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340 tp->lost_out -= pcount;
1341 tp->retrans_out -= pcount;
1343 } else {
1344 if (!(sacked & TCPCB_RETRANS)) {
1345 /* New sack for not retransmitted frame,
1346 * which was in hole. It is reordering.
1348 if (before(start_seq,
1349 tcp_highest_sack_seq(tp)))
1350 state->reord = min(fack_count,
1351 state->reord);
1353 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354 if (!after(end_seq, tp->frto_highmark))
1355 state->flag |= FLAG_ONLY_ORIG_SACKED;
1358 if (sacked & TCPCB_LOST) {
1359 sacked &= ~TCPCB_LOST;
1360 tp->lost_out -= pcount;
1364 sacked |= TCPCB_SACKED_ACKED;
1365 state->flag |= FLAG_DATA_SACKED;
1366 tp->sacked_out += pcount;
1368 fack_count += pcount;
1370 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373 tp->lost_cnt_hint += pcount;
1375 if (fack_count > tp->fackets_out)
1376 tp->fackets_out = fack_count;
1379 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 * are accounted above as well.
1383 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384 sacked &= ~TCPCB_SACKED_RETRANS;
1385 tp->retrans_out -= pcount;
1388 return sacked;
1391 /* Shift newly-SACKed bytes from this skb to the immediately previous
1392 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395 struct tcp_sacktag_state *state,
1396 unsigned int pcount, int shifted, int mss,
1397 int dup_sack)
1399 struct tcp_sock *tp = tcp_sk(sk);
1400 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1402 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1404 BUG_ON(!pcount);
1406 /* Adjust hint for FACK. Non-FACK is handled in tcp_sacktag_one(). */
1407 if (tcp_is_fack(tp) && (skb == tp->lost_skb_hint))
1408 tp->lost_cnt_hint += pcount;
1410 TCP_SKB_CB(prev)->end_seq += shifted;
1411 TCP_SKB_CB(skb)->seq += shifted;
1413 skb_shinfo(prev)->gso_segs += pcount;
1414 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1415 skb_shinfo(skb)->gso_segs -= pcount;
1417 /* When we're adding to gso_segs == 1, gso_size will be zero,
1418 * in theory this shouldn't be necessary but as long as DSACK
1419 * code can come after this skb later on it's better to keep
1420 * setting gso_size to something.
1422 if (!skb_shinfo(prev)->gso_size) {
1423 skb_shinfo(prev)->gso_size = mss;
1424 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1427 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1428 if (skb_shinfo(skb)->gso_segs <= 1) {
1429 skb_shinfo(skb)->gso_size = 0;
1430 skb_shinfo(skb)->gso_type = 0;
1433 /* Adjust counters and hints for the newly sacked sequence range but
1434 * discard the return value since prev is already marked.
1436 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1437 start_seq, end_seq, dup_sack, pcount);
1439 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1440 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1442 if (skb->len > 0) {
1443 BUG_ON(!tcp_skb_pcount(skb));
1444 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1445 return 0;
1448 /* Whole SKB was eaten :-) */
1450 if (skb == tp->retransmit_skb_hint)
1451 tp->retransmit_skb_hint = prev;
1452 if (skb == tp->scoreboard_skb_hint)
1453 tp->scoreboard_skb_hint = prev;
1454 if (skb == tp->lost_skb_hint) {
1455 tp->lost_skb_hint = prev;
1456 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1459 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1460 if (skb == tcp_highest_sack(sk))
1461 tcp_advance_highest_sack(sk, skb);
1463 tcp_unlink_write_queue(skb, sk);
1464 sk_wmem_free_skb(sk, skb);
1466 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1468 return 1;
1471 /* I wish gso_size would have a bit more sane initialization than
1472 * something-or-zero which complicates things
1474 static int tcp_skb_seglen(const struct sk_buff *skb)
1476 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1479 /* Shifting pages past head area doesn't work */
1480 static int skb_can_shift(const struct sk_buff *skb)
1482 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1485 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1486 * skb.
1488 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1489 struct tcp_sacktag_state *state,
1490 u32 start_seq, u32 end_seq,
1491 int dup_sack)
1493 struct tcp_sock *tp = tcp_sk(sk);
1494 struct sk_buff *prev;
1495 int mss;
1496 int pcount = 0;
1497 int len;
1498 int in_sack;
1500 if (!sk_can_gso(sk))
1501 goto fallback;
1503 /* Normally R but no L won't result in plain S */
1504 if (!dup_sack &&
1505 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1506 goto fallback;
1507 if (!skb_can_shift(skb))
1508 goto fallback;
1509 /* This frame is about to be dropped (was ACKed). */
1510 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1511 goto fallback;
1513 /* Can only happen with delayed DSACK + discard craziness */
1514 if (unlikely(skb == tcp_write_queue_head(sk)))
1515 goto fallback;
1516 prev = tcp_write_queue_prev(sk, skb);
1518 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1519 goto fallback;
1521 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1522 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1524 if (in_sack) {
1525 len = skb->len;
1526 pcount = tcp_skb_pcount(skb);
1527 mss = tcp_skb_seglen(skb);
1529 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1530 * drop this restriction as unnecessary
1532 if (mss != tcp_skb_seglen(prev))
1533 goto fallback;
1534 } else {
1535 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1536 goto noop;
1537 /* CHECKME: This is non-MSS split case only?, this will
1538 * cause skipped skbs due to advancing loop btw, original
1539 * has that feature too
1541 if (tcp_skb_pcount(skb) <= 1)
1542 goto noop;
1544 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1545 if (!in_sack) {
1546 /* TODO: head merge to next could be attempted here
1547 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1548 * though it might not be worth of the additional hassle
1550 * ...we can probably just fallback to what was done
1551 * previously. We could try merging non-SACKed ones
1552 * as well but it probably isn't going to buy off
1553 * because later SACKs might again split them, and
1554 * it would make skb timestamp tracking considerably
1555 * harder problem.
1557 goto fallback;
1560 len = end_seq - TCP_SKB_CB(skb)->seq;
1561 BUG_ON(len < 0);
1562 BUG_ON(len > skb->len);
1564 /* MSS boundaries should be honoured or else pcount will
1565 * severely break even though it makes things bit trickier.
1566 * Optimize common case to avoid most of the divides
1568 mss = tcp_skb_mss(skb);
1570 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1571 * drop this restriction as unnecessary
1573 if (mss != tcp_skb_seglen(prev))
1574 goto fallback;
1576 if (len == mss) {
1577 pcount = 1;
1578 } else if (len < mss) {
1579 goto noop;
1580 } else {
1581 pcount = len / mss;
1582 len = pcount * mss;
1586 if (!skb_shift(prev, skb, len))
1587 goto fallback;
1588 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1589 goto out;
1591 /* Hole filled allows collapsing with the next as well, this is very
1592 * useful when hole on every nth skb pattern happens
1594 if (prev == tcp_write_queue_tail(sk))
1595 goto out;
1596 skb = tcp_write_queue_next(sk, prev);
1598 if (!skb_can_shift(skb) ||
1599 (skb == tcp_send_head(sk)) ||
1600 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1601 (mss != tcp_skb_seglen(skb)))
1602 goto out;
1604 len = skb->len;
1605 if (skb_shift(prev, skb, len)) {
1606 pcount += tcp_skb_pcount(skb);
1607 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1610 out:
1611 state->fack_count += pcount;
1612 return prev;
1614 noop:
1615 return skb;
1617 fallback:
1618 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1619 return NULL;
1622 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1623 struct tcp_sack_block *next_dup,
1624 struct tcp_sacktag_state *state,
1625 u32 start_seq, u32 end_seq,
1626 int dup_sack_in)
1628 struct tcp_sock *tp = tcp_sk(sk);
1629 struct sk_buff *tmp;
1631 tcp_for_write_queue_from(skb, sk) {
1632 int in_sack = 0;
1633 int dup_sack = dup_sack_in;
1635 if (skb == tcp_send_head(sk))
1636 break;
1638 /* queue is in-order => we can short-circuit the walk early */
1639 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1640 break;
1642 if ((next_dup != NULL) &&
1643 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1644 in_sack = tcp_match_skb_to_sack(sk, skb,
1645 next_dup->start_seq,
1646 next_dup->end_seq);
1647 if (in_sack > 0)
1648 dup_sack = 1;
1651 /* skb reference here is a bit tricky to get right, since
1652 * shifting can eat and free both this skb and the next,
1653 * so not even _safe variant of the loop is enough.
1655 if (in_sack <= 0) {
1656 tmp = tcp_shift_skb_data(sk, skb, state,
1657 start_seq, end_seq, dup_sack);
1658 if (tmp != NULL) {
1659 if (tmp != skb) {
1660 skb = tmp;
1661 continue;
1664 in_sack = 0;
1665 } else {
1666 in_sack = tcp_match_skb_to_sack(sk, skb,
1667 start_seq,
1668 end_seq);
1672 if (unlikely(in_sack < 0))
1673 break;
1675 if (in_sack) {
1676 TCP_SKB_CB(skb)->sacked =
1677 tcp_sacktag_one(sk,
1678 state,
1679 TCP_SKB_CB(skb)->sacked,
1680 TCP_SKB_CB(skb)->seq,
1681 TCP_SKB_CB(skb)->end_seq,
1682 dup_sack,
1683 tcp_skb_pcount(skb));
1685 if (!before(TCP_SKB_CB(skb)->seq,
1686 tcp_highest_sack_seq(tp)))
1687 tcp_advance_highest_sack(sk, skb);
1690 state->fack_count += tcp_skb_pcount(skb);
1692 return skb;
1695 /* Avoid all extra work that is being done by sacktag while walking in
1696 * a normal way
1698 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1699 struct tcp_sacktag_state *state,
1700 u32 skip_to_seq)
1702 tcp_for_write_queue_from(skb, sk) {
1703 if (skb == tcp_send_head(sk))
1704 break;
1706 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1707 break;
1709 state->fack_count += tcp_skb_pcount(skb);
1711 return skb;
1714 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1715 struct sock *sk,
1716 struct tcp_sack_block *next_dup,
1717 struct tcp_sacktag_state *state,
1718 u32 skip_to_seq)
1720 if (next_dup == NULL)
1721 return skb;
1723 if (before(next_dup->start_seq, skip_to_seq)) {
1724 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1725 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1726 next_dup->start_seq, next_dup->end_seq,
1730 return skb;
1733 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1735 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1738 static int
1739 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1740 u32 prior_snd_una)
1742 const struct inet_connection_sock *icsk = inet_csk(sk);
1743 struct tcp_sock *tp = tcp_sk(sk);
1744 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1745 TCP_SKB_CB(ack_skb)->sacked);
1746 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1747 struct tcp_sack_block sp[TCP_NUM_SACKS];
1748 struct tcp_sack_block *cache;
1749 struct tcp_sacktag_state state;
1750 struct sk_buff *skb;
1751 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1752 int used_sacks;
1753 int found_dup_sack = 0;
1754 int i, j;
1755 int first_sack_index;
1757 state.flag = 0;
1758 state.reord = tp->packets_out;
1760 if (!tp->sacked_out) {
1761 if (WARN_ON(tp->fackets_out))
1762 tp->fackets_out = 0;
1763 tcp_highest_sack_reset(sk);
1766 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1767 num_sacks, prior_snd_una);
1768 if (found_dup_sack)
1769 state.flag |= FLAG_DSACKING_ACK;
1771 /* Eliminate too old ACKs, but take into
1772 * account more or less fresh ones, they can
1773 * contain valid SACK info.
1775 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1776 return 0;
1778 if (!tp->packets_out)
1779 goto out;
1781 used_sacks = 0;
1782 first_sack_index = 0;
1783 for (i = 0; i < num_sacks; i++) {
1784 int dup_sack = !i && found_dup_sack;
1786 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1787 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1789 if (!tcp_is_sackblock_valid(tp, dup_sack,
1790 sp[used_sacks].start_seq,
1791 sp[used_sacks].end_seq)) {
1792 int mib_idx;
1794 if (dup_sack) {
1795 if (!tp->undo_marker)
1796 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1797 else
1798 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1799 } else {
1800 /* Don't count olds caused by ACK reordering */
1801 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1802 !after(sp[used_sacks].end_seq, tp->snd_una))
1803 continue;
1804 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1807 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1808 if (i == 0)
1809 first_sack_index = -1;
1810 continue;
1813 /* Ignore very old stuff early */
1814 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1815 continue;
1817 used_sacks++;
1820 /* order SACK blocks to allow in order walk of the retrans queue */
1821 for (i = used_sacks - 1; i > 0; i--) {
1822 for (j = 0; j < i; j++) {
1823 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1824 swap(sp[j], sp[j + 1]);
1826 /* Track where the first SACK block goes to */
1827 if (j == first_sack_index)
1828 first_sack_index = j + 1;
1833 skb = tcp_write_queue_head(sk);
1834 state.fack_count = 0;
1835 i = 0;
1837 if (!tp->sacked_out) {
1838 /* It's already past, so skip checking against it */
1839 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1840 } else {
1841 cache = tp->recv_sack_cache;
1842 /* Skip empty blocks in at head of the cache */
1843 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1844 !cache->end_seq)
1845 cache++;
1848 while (i < used_sacks) {
1849 u32 start_seq = sp[i].start_seq;
1850 u32 end_seq = sp[i].end_seq;
1851 int dup_sack = (found_dup_sack && (i == first_sack_index));
1852 struct tcp_sack_block *next_dup = NULL;
1854 if (found_dup_sack && ((i + 1) == first_sack_index))
1855 next_dup = &sp[i + 1];
1857 /* Skip too early cached blocks */
1858 while (tcp_sack_cache_ok(tp, cache) &&
1859 !before(start_seq, cache->end_seq))
1860 cache++;
1862 /* Can skip some work by looking recv_sack_cache? */
1863 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1864 after(end_seq, cache->start_seq)) {
1866 /* Head todo? */
1867 if (before(start_seq, cache->start_seq)) {
1868 skb = tcp_sacktag_skip(skb, sk, &state,
1869 start_seq);
1870 skb = tcp_sacktag_walk(skb, sk, next_dup,
1871 &state,
1872 start_seq,
1873 cache->start_seq,
1874 dup_sack);
1877 /* Rest of the block already fully processed? */
1878 if (!after(end_seq, cache->end_seq))
1879 goto advance_sp;
1881 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1882 &state,
1883 cache->end_seq);
1885 /* ...tail remains todo... */
1886 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1887 /* ...but better entrypoint exists! */
1888 skb = tcp_highest_sack(sk);
1889 if (skb == NULL)
1890 break;
1891 state.fack_count = tp->fackets_out;
1892 cache++;
1893 goto walk;
1896 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1897 /* Check overlap against next cached too (past this one already) */
1898 cache++;
1899 continue;
1902 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1903 skb = tcp_highest_sack(sk);
1904 if (skb == NULL)
1905 break;
1906 state.fack_count = tp->fackets_out;
1908 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1910 walk:
1911 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1912 start_seq, end_seq, dup_sack);
1914 advance_sp:
1915 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1916 * due to in-order walk
1918 if (after(end_seq, tp->frto_highmark))
1919 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1921 i++;
1924 /* Clear the head of the cache sack blocks so we can skip it next time */
1925 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1926 tp->recv_sack_cache[i].start_seq = 0;
1927 tp->recv_sack_cache[i].end_seq = 0;
1929 for (j = 0; j < used_sacks; j++)
1930 tp->recv_sack_cache[i++] = sp[j];
1932 tcp_mark_lost_retrans(sk);
1934 tcp_verify_left_out(tp);
1936 if ((state.reord < tp->fackets_out) &&
1937 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1938 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1939 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1941 out:
1943 #if FASTRETRANS_DEBUG > 0
1944 WARN_ON((int)tp->sacked_out < 0);
1945 WARN_ON((int)tp->lost_out < 0);
1946 WARN_ON((int)tp->retrans_out < 0);
1947 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1948 #endif
1949 return state.flag;
1952 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1953 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1955 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1957 u32 holes;
1959 holes = max(tp->lost_out, 1U);
1960 holes = min(holes, tp->packets_out);
1962 if ((tp->sacked_out + holes) > tp->packets_out) {
1963 tp->sacked_out = tp->packets_out - holes;
1964 return 1;
1966 return 0;
1969 /* If we receive more dupacks than we expected counting segments
1970 * in assumption of absent reordering, interpret this as reordering.
1971 * The only another reason could be bug in receiver TCP.
1973 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1975 struct tcp_sock *tp = tcp_sk(sk);
1976 if (tcp_limit_reno_sacked(tp))
1977 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1980 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1982 static void tcp_add_reno_sack(struct sock *sk)
1984 struct tcp_sock *tp = tcp_sk(sk);
1985 tp->sacked_out++;
1986 tcp_check_reno_reordering(sk, 0);
1987 tcp_verify_left_out(tp);
1990 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1992 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1994 struct tcp_sock *tp = tcp_sk(sk);
1996 if (acked > 0) {
1997 /* One ACK acked hole. The rest eat duplicate ACKs. */
1998 if (acked - 1 >= tp->sacked_out)
1999 tp->sacked_out = 0;
2000 else
2001 tp->sacked_out -= acked - 1;
2003 tcp_check_reno_reordering(sk, acked);
2004 tcp_verify_left_out(tp);
2007 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2009 tp->sacked_out = 0;
2012 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2014 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2017 /* F-RTO can only be used if TCP has never retransmitted anything other than
2018 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2020 int tcp_use_frto(struct sock *sk)
2022 const struct tcp_sock *tp = tcp_sk(sk);
2023 const struct inet_connection_sock *icsk = inet_csk(sk);
2024 struct sk_buff *skb;
2026 if (!sysctl_tcp_frto)
2027 return 0;
2029 /* MTU probe and F-RTO won't really play nicely along currently */
2030 if (icsk->icsk_mtup.probe_size)
2031 return 0;
2033 if (tcp_is_sackfrto(tp))
2034 return 1;
2036 /* Avoid expensive walking of rexmit queue if possible */
2037 if (tp->retrans_out > 1)
2038 return 0;
2040 skb = tcp_write_queue_head(sk);
2041 if (tcp_skb_is_last(sk, skb))
2042 return 1;
2043 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2044 tcp_for_write_queue_from(skb, sk) {
2045 if (skb == tcp_send_head(sk))
2046 break;
2047 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2048 return 0;
2049 /* Short-circuit when first non-SACKed skb has been checked */
2050 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2051 break;
2053 return 1;
2056 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2057 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2058 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2059 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2060 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2061 * bits are handled if the Loss state is really to be entered (in
2062 * tcp_enter_frto_loss).
2064 * Do like tcp_enter_loss() would; when RTO expires the second time it
2065 * does:
2066 * "Reduce ssthresh if it has not yet been made inside this window."
2068 void tcp_enter_frto(struct sock *sk)
2070 const struct inet_connection_sock *icsk = inet_csk(sk);
2071 struct tcp_sock *tp = tcp_sk(sk);
2072 struct sk_buff *skb;
2074 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2075 tp->snd_una == tp->high_seq ||
2076 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2077 !icsk->icsk_retransmits)) {
2078 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2079 /* Our state is too optimistic in ssthresh() call because cwnd
2080 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2081 * recovery has not yet completed. Pattern would be this: RTO,
2082 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2083 * up here twice).
2084 * RFC4138 should be more specific on what to do, even though
2085 * RTO is quite unlikely to occur after the first Cumulative ACK
2086 * due to back-off and complexity of triggering events ...
2088 if (tp->frto_counter) {
2089 u32 stored_cwnd;
2090 stored_cwnd = tp->snd_cwnd;
2091 tp->snd_cwnd = 2;
2092 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2093 tp->snd_cwnd = stored_cwnd;
2094 } else {
2095 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2097 /* ... in theory, cong.control module could do "any tricks" in
2098 * ssthresh(), which means that ca_state, lost bits and lost_out
2099 * counter would have to be faked before the call occurs. We
2100 * consider that too expensive, unlikely and hacky, so modules
2101 * using these in ssthresh() must deal these incompatibility
2102 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2104 tcp_ca_event(sk, CA_EVENT_FRTO);
2107 tp->undo_marker = tp->snd_una;
2108 tp->undo_retrans = 0;
2110 skb = tcp_write_queue_head(sk);
2111 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2112 tp->undo_marker = 0;
2113 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2114 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2115 tp->retrans_out -= tcp_skb_pcount(skb);
2117 tcp_verify_left_out(tp);
2119 /* Too bad if TCP was application limited */
2120 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2122 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2123 * The last condition is necessary at least in tp->frto_counter case.
2125 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2126 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2127 after(tp->high_seq, tp->snd_una)) {
2128 tp->frto_highmark = tp->high_seq;
2129 } else {
2130 tp->frto_highmark = tp->snd_nxt;
2132 tcp_set_ca_state(sk, TCP_CA_Disorder);
2133 tp->high_seq = tp->snd_nxt;
2134 tp->frto_counter = 1;
2137 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2138 * which indicates that we should follow the traditional RTO recovery,
2139 * i.e. mark everything lost and do go-back-N retransmission.
2141 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2143 struct tcp_sock *tp = tcp_sk(sk);
2144 struct sk_buff *skb;
2146 tp->lost_out = 0;
2147 tp->retrans_out = 0;
2148 if (tcp_is_reno(tp))
2149 tcp_reset_reno_sack(tp);
2151 tcp_for_write_queue(skb, sk) {
2152 if (skb == tcp_send_head(sk))
2153 break;
2155 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2157 * Count the retransmission made on RTO correctly (only when
2158 * waiting for the first ACK and did not get it)...
2160 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2161 /* For some reason this R-bit might get cleared? */
2162 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2163 tp->retrans_out += tcp_skb_pcount(skb);
2164 /* ...enter this if branch just for the first segment */
2165 flag |= FLAG_DATA_ACKED;
2166 } else {
2167 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2168 tp->undo_marker = 0;
2169 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2172 /* Marking forward transmissions that were made after RTO lost
2173 * can cause unnecessary retransmissions in some scenarios,
2174 * SACK blocks will mitigate that in some but not in all cases.
2175 * We used to not mark them but it was causing break-ups with
2176 * receivers that do only in-order receival.
2178 * TODO: we could detect presence of such receiver and select
2179 * different behavior per flow.
2181 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2182 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2183 tp->lost_out += tcp_skb_pcount(skb);
2184 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2187 tcp_verify_left_out(tp);
2189 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2190 tp->snd_cwnd_cnt = 0;
2191 tp->snd_cwnd_stamp = tcp_time_stamp;
2192 tp->frto_counter = 0;
2193 tp->bytes_acked = 0;
2195 tp->reordering = min_t(unsigned int, tp->reordering,
2196 sysctl_tcp_reordering);
2197 tcp_set_ca_state(sk, TCP_CA_Loss);
2198 tp->high_seq = tp->snd_nxt;
2199 TCP_ECN_queue_cwr(tp);
2201 tcp_clear_all_retrans_hints(tp);
2204 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2206 tp->retrans_out = 0;
2207 tp->lost_out = 0;
2209 tp->undo_marker = 0;
2210 tp->undo_retrans = 0;
2213 void tcp_clear_retrans(struct tcp_sock *tp)
2215 tcp_clear_retrans_partial(tp);
2217 tp->fackets_out = 0;
2218 tp->sacked_out = 0;
2221 /* Enter Loss state. If "how" is not zero, forget all SACK information
2222 * and reset tags completely, otherwise preserve SACKs. If receiver
2223 * dropped its ofo queue, we will know this due to reneging detection.
2225 void tcp_enter_loss(struct sock *sk, int how)
2227 const struct inet_connection_sock *icsk = inet_csk(sk);
2228 struct tcp_sock *tp = tcp_sk(sk);
2229 struct sk_buff *skb;
2231 /* Reduce ssthresh if it has not yet been made inside this window. */
2232 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2233 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2234 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2235 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2236 tcp_ca_event(sk, CA_EVENT_LOSS);
2238 tp->snd_cwnd = 1;
2239 tp->snd_cwnd_cnt = 0;
2240 tp->snd_cwnd_stamp = tcp_time_stamp;
2242 tp->bytes_acked = 0;
2243 tcp_clear_retrans_partial(tp);
2245 if (tcp_is_reno(tp))
2246 tcp_reset_reno_sack(tp);
2248 if (!how) {
2249 /* Push undo marker, if it was plain RTO and nothing
2250 * was retransmitted. */
2251 tp->undo_marker = tp->snd_una;
2252 } else {
2253 tp->sacked_out = 0;
2254 tp->fackets_out = 0;
2256 tcp_clear_all_retrans_hints(tp);
2258 tcp_for_write_queue(skb, sk) {
2259 if (skb == tcp_send_head(sk))
2260 break;
2262 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2263 tp->undo_marker = 0;
2264 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2265 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2266 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2267 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2268 tp->lost_out += tcp_skb_pcount(skb);
2269 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2272 tcp_verify_left_out(tp);
2274 tp->reordering = min_t(unsigned int, tp->reordering,
2275 sysctl_tcp_reordering);
2276 tcp_set_ca_state(sk, TCP_CA_Loss);
2277 tp->high_seq = tp->snd_nxt;
2278 TCP_ECN_queue_cwr(tp);
2279 /* Abort F-RTO algorithm if one is in progress */
2280 tp->frto_counter = 0;
2283 /* If ACK arrived pointing to a remembered SACK, it means that our
2284 * remembered SACKs do not reflect real state of receiver i.e.
2285 * receiver _host_ is heavily congested (or buggy).
2287 * Do processing similar to RTO timeout.
2289 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2291 if (flag & FLAG_SACK_RENEGING) {
2292 struct inet_connection_sock *icsk = inet_csk(sk);
2293 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2295 tcp_enter_loss(sk, 1);
2296 icsk->icsk_retransmits++;
2297 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2298 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2299 icsk->icsk_rto, TCP_RTO_MAX);
2300 return 1;
2302 return 0;
2305 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2307 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2310 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2311 * counter when SACK is enabled (without SACK, sacked_out is used for
2312 * that purpose).
2314 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2315 * segments up to the highest received SACK block so far and holes in
2316 * between them.
2318 * With reordering, holes may still be in flight, so RFC3517 recovery
2319 * uses pure sacked_out (total number of SACKed segments) even though
2320 * it violates the RFC that uses duplicate ACKs, often these are equal
2321 * but when e.g. out-of-window ACKs or packet duplication occurs,
2322 * they differ. Since neither occurs due to loss, TCP should really
2323 * ignore them.
2325 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2327 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2330 static inline int tcp_skb_timedout(const struct sock *sk,
2331 const struct sk_buff *skb)
2333 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2336 static inline int tcp_head_timedout(const struct sock *sk)
2338 const struct tcp_sock *tp = tcp_sk(sk);
2340 return tp->packets_out &&
2341 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2344 /* Linux NewReno/SACK/FACK/ECN state machine.
2345 * --------------------------------------
2347 * "Open" Normal state, no dubious events, fast path.
2348 * "Disorder" In all the respects it is "Open",
2349 * but requires a bit more attention. It is entered when
2350 * we see some SACKs or dupacks. It is split of "Open"
2351 * mainly to move some processing from fast path to slow one.
2352 * "CWR" CWND was reduced due to some Congestion Notification event.
2353 * It can be ECN, ICMP source quench, local device congestion.
2354 * "Recovery" CWND was reduced, we are fast-retransmitting.
2355 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2357 * tcp_fastretrans_alert() is entered:
2358 * - each incoming ACK, if state is not "Open"
2359 * - when arrived ACK is unusual, namely:
2360 * * SACK
2361 * * Duplicate ACK.
2362 * * ECN ECE.
2364 * Counting packets in flight is pretty simple.
2366 * in_flight = packets_out - left_out + retrans_out
2368 * packets_out is SND.NXT-SND.UNA counted in packets.
2370 * retrans_out is number of retransmitted segments.
2372 * left_out is number of segments left network, but not ACKed yet.
2374 * left_out = sacked_out + lost_out
2376 * sacked_out: Packets, which arrived to receiver out of order
2377 * and hence not ACKed. With SACKs this number is simply
2378 * amount of SACKed data. Even without SACKs
2379 * it is easy to give pretty reliable estimate of this number,
2380 * counting duplicate ACKs.
2382 * lost_out: Packets lost by network. TCP has no explicit
2383 * "loss notification" feedback from network (for now).
2384 * It means that this number can be only _guessed_.
2385 * Actually, it is the heuristics to predict lossage that
2386 * distinguishes different algorithms.
2388 * F.e. after RTO, when all the queue is considered as lost,
2389 * lost_out = packets_out and in_flight = retrans_out.
2391 * Essentially, we have now two algorithms counting
2392 * lost packets.
2394 * FACK: It is the simplest heuristics. As soon as we decided
2395 * that something is lost, we decide that _all_ not SACKed
2396 * packets until the most forward SACK are lost. I.e.
2397 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2398 * It is absolutely correct estimate, if network does not reorder
2399 * packets. And it loses any connection to reality when reordering
2400 * takes place. We use FACK by default until reordering
2401 * is suspected on the path to this destination.
2403 * NewReno: when Recovery is entered, we assume that one segment
2404 * is lost (classic Reno). While we are in Recovery and
2405 * a partial ACK arrives, we assume that one more packet
2406 * is lost (NewReno). This heuristics are the same in NewReno
2407 * and SACK.
2409 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2410 * deflation etc. CWND is real congestion window, never inflated, changes
2411 * only according to classic VJ rules.
2413 * Really tricky (and requiring careful tuning) part of algorithm
2414 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2415 * The first determines the moment _when_ we should reduce CWND and,
2416 * hence, slow down forward transmission. In fact, it determines the moment
2417 * when we decide that hole is caused by loss, rather than by a reorder.
2419 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2420 * holes, caused by lost packets.
2422 * And the most logically complicated part of algorithm is undo
2423 * heuristics. We detect false retransmits due to both too early
2424 * fast retransmit (reordering) and underestimated RTO, analyzing
2425 * timestamps and D-SACKs. When we detect that some segments were
2426 * retransmitted by mistake and CWND reduction was wrong, we undo
2427 * window reduction and abort recovery phase. This logic is hidden
2428 * inside several functions named tcp_try_undo_<something>.
2431 /* This function decides, when we should leave Disordered state
2432 * and enter Recovery phase, reducing congestion window.
2434 * Main question: may we further continue forward transmission
2435 * with the same cwnd?
2437 static int tcp_time_to_recover(struct sock *sk)
2439 struct tcp_sock *tp = tcp_sk(sk);
2440 __u32 packets_out;
2442 /* Do not perform any recovery during F-RTO algorithm */
2443 if (tp->frto_counter)
2444 return 0;
2446 /* Trick#1: The loss is proven. */
2447 if (tp->lost_out)
2448 return 1;
2450 /* Not-A-Trick#2 : Classic rule... */
2451 if (tcp_dupack_heuristics(tp) > tp->reordering)
2452 return 1;
2454 /* Trick#3 : when we use RFC2988 timer restart, fast
2455 * retransmit can be triggered by timeout of queue head.
2457 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2458 return 1;
2460 /* Trick#4: It is still not OK... But will it be useful to delay
2461 * recovery more?
2463 packets_out = tp->packets_out;
2464 if (packets_out <= tp->reordering &&
2465 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2466 !tcp_may_send_now(sk)) {
2467 /* We have nothing to send. This connection is limited
2468 * either by receiver window or by application.
2470 return 1;
2473 /* If a thin stream is detected, retransmit after first
2474 * received dupack. Employ only if SACK is supported in order
2475 * to avoid possible corner-case series of spurious retransmissions
2476 * Use only if there are no unsent data.
2478 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2479 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2480 tcp_is_sack(tp) && !tcp_send_head(sk))
2481 return 1;
2483 return 0;
2486 /* New heuristics: it is possible only after we switched to restart timer
2487 * each time when something is ACKed. Hence, we can detect timed out packets
2488 * during fast retransmit without falling to slow start.
2490 * Usefulness of this as is very questionable, since we should know which of
2491 * the segments is the next to timeout which is relatively expensive to find
2492 * in general case unless we add some data structure just for that. The
2493 * current approach certainly won't find the right one too often and when it
2494 * finally does find _something_ it usually marks large part of the window
2495 * right away (because a retransmission with a larger timestamp blocks the
2496 * loop from advancing). -ij
2498 static void tcp_timeout_skbs(struct sock *sk)
2500 struct tcp_sock *tp = tcp_sk(sk);
2501 struct sk_buff *skb;
2503 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2504 return;
2506 skb = tp->scoreboard_skb_hint;
2507 if (tp->scoreboard_skb_hint == NULL)
2508 skb = tcp_write_queue_head(sk);
2510 tcp_for_write_queue_from(skb, sk) {
2511 if (skb == tcp_send_head(sk))
2512 break;
2513 if (!tcp_skb_timedout(sk, skb))
2514 break;
2516 tcp_skb_mark_lost(tp, skb);
2519 tp->scoreboard_skb_hint = skb;
2521 tcp_verify_left_out(tp);
2524 /* Detect loss in event "A" above by marking head of queue up as lost.
2525 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2526 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2527 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2528 * the maximum SACKed segments to pass before reaching this limit.
2530 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2532 struct tcp_sock *tp = tcp_sk(sk);
2533 struct sk_buff *skb;
2534 int cnt, oldcnt;
2535 int err;
2536 unsigned int mss;
2537 /* Use SACK to deduce losses of new sequences sent during recovery */
2538 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2540 WARN_ON(packets > tp->packets_out);
2541 if (tp->lost_skb_hint) {
2542 skb = tp->lost_skb_hint;
2543 cnt = tp->lost_cnt_hint;
2544 /* Head already handled? */
2545 if (mark_head && skb != tcp_write_queue_head(sk))
2546 return;
2547 } else {
2548 skb = tcp_write_queue_head(sk);
2549 cnt = 0;
2552 tcp_for_write_queue_from(skb, sk) {
2553 if (skb == tcp_send_head(sk))
2554 break;
2555 /* TODO: do this better */
2556 /* this is not the most efficient way to do this... */
2557 tp->lost_skb_hint = skb;
2558 tp->lost_cnt_hint = cnt;
2560 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2561 break;
2563 oldcnt = cnt;
2564 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2565 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2566 cnt += tcp_skb_pcount(skb);
2568 if (cnt > packets) {
2569 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2570 (oldcnt >= packets))
2571 break;
2573 mss = skb_shinfo(skb)->gso_size;
2574 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2575 if (err < 0)
2576 break;
2577 cnt = packets;
2580 tcp_skb_mark_lost(tp, skb);
2582 if (mark_head)
2583 break;
2585 tcp_verify_left_out(tp);
2588 /* Account newly detected lost packet(s) */
2590 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2592 struct tcp_sock *tp = tcp_sk(sk);
2594 if (tcp_is_reno(tp)) {
2595 tcp_mark_head_lost(sk, 1, 1);
2596 } else if (tcp_is_fack(tp)) {
2597 int lost = tp->fackets_out - tp->reordering;
2598 if (lost <= 0)
2599 lost = 1;
2600 tcp_mark_head_lost(sk, lost, 0);
2601 } else {
2602 int sacked_upto = tp->sacked_out - tp->reordering;
2603 if (sacked_upto >= 0)
2604 tcp_mark_head_lost(sk, sacked_upto, 0);
2605 else if (fast_rexmit)
2606 tcp_mark_head_lost(sk, 1, 1);
2609 tcp_timeout_skbs(sk);
2612 /* CWND moderation, preventing bursts due to too big ACKs
2613 * in dubious situations.
2615 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2617 tp->snd_cwnd = min(tp->snd_cwnd,
2618 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2619 tp->snd_cwnd_stamp = tcp_time_stamp;
2622 /* Lower bound on congestion window is slow start threshold
2623 * unless congestion avoidance choice decides to overide it.
2625 static inline u32 tcp_cwnd_min(const struct sock *sk)
2627 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2629 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2632 /* Decrease cwnd each second ack. */
2633 static void tcp_cwnd_down(struct sock *sk, int flag)
2635 struct tcp_sock *tp = tcp_sk(sk);
2636 int decr = tp->snd_cwnd_cnt + 1;
2638 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2639 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2640 tp->snd_cwnd_cnt = decr & 1;
2641 decr >>= 1;
2643 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2644 tp->snd_cwnd -= decr;
2646 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2647 tp->snd_cwnd_stamp = tcp_time_stamp;
2651 /* Nothing was retransmitted or returned timestamp is less
2652 * than timestamp of the first retransmission.
2654 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2656 return !tp->retrans_stamp ||
2657 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2658 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2661 /* Undo procedures. */
2663 #if FASTRETRANS_DEBUG > 1
2664 static void DBGUNDO(struct sock *sk, const char *msg)
2666 struct tcp_sock *tp = tcp_sk(sk);
2667 struct inet_sock *inet = inet_sk(sk);
2669 if (sk->sk_family == AF_INET) {
2670 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2671 msg,
2672 &inet->inet_daddr, ntohs(inet->inet_dport),
2673 tp->snd_cwnd, tcp_left_out(tp),
2674 tp->snd_ssthresh, tp->prior_ssthresh,
2675 tp->packets_out);
2677 #if IS_ENABLED(CONFIG_IPV6)
2678 else if (sk->sk_family == AF_INET6) {
2679 struct ipv6_pinfo *np = inet6_sk(sk);
2680 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2681 msg,
2682 &np->daddr, ntohs(inet->inet_dport),
2683 tp->snd_cwnd, tcp_left_out(tp),
2684 tp->snd_ssthresh, tp->prior_ssthresh,
2685 tp->packets_out);
2687 #endif
2689 #else
2690 #define DBGUNDO(x...) do { } while (0)
2691 #endif
2693 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2695 struct tcp_sock *tp = tcp_sk(sk);
2697 if (tp->prior_ssthresh) {
2698 const struct inet_connection_sock *icsk = inet_csk(sk);
2700 if (icsk->icsk_ca_ops->undo_cwnd)
2701 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2702 else
2703 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2705 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2706 tp->snd_ssthresh = tp->prior_ssthresh;
2707 TCP_ECN_withdraw_cwr(tp);
2709 } else {
2710 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2712 tp->snd_cwnd_stamp = tcp_time_stamp;
2715 static inline int tcp_may_undo(const struct tcp_sock *tp)
2717 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2720 /* People celebrate: "We love our President!" */
2721 static int tcp_try_undo_recovery(struct sock *sk)
2723 struct tcp_sock *tp = tcp_sk(sk);
2725 if (tcp_may_undo(tp)) {
2726 int mib_idx;
2728 /* Happy end! We did not retransmit anything
2729 * or our original transmission succeeded.
2731 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2732 tcp_undo_cwr(sk, true);
2733 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2734 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2735 else
2736 mib_idx = LINUX_MIB_TCPFULLUNDO;
2738 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2739 tp->undo_marker = 0;
2741 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2742 /* Hold old state until something *above* high_seq
2743 * is ACKed. For Reno it is MUST to prevent false
2744 * fast retransmits (RFC2582). SACK TCP is safe. */
2745 tcp_moderate_cwnd(tp);
2746 return 1;
2748 tcp_set_ca_state(sk, TCP_CA_Open);
2749 return 0;
2752 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2753 static void tcp_try_undo_dsack(struct sock *sk)
2755 struct tcp_sock *tp = tcp_sk(sk);
2757 if (tp->undo_marker && !tp->undo_retrans) {
2758 DBGUNDO(sk, "D-SACK");
2759 tcp_undo_cwr(sk, true);
2760 tp->undo_marker = 0;
2761 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2765 /* We can clear retrans_stamp when there are no retransmissions in the
2766 * window. It would seem that it is trivially available for us in
2767 * tp->retrans_out, however, that kind of assumptions doesn't consider
2768 * what will happen if errors occur when sending retransmission for the
2769 * second time. ...It could the that such segment has only
2770 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2771 * the head skb is enough except for some reneging corner cases that
2772 * are not worth the effort.
2774 * Main reason for all this complexity is the fact that connection dying
2775 * time now depends on the validity of the retrans_stamp, in particular,
2776 * that successive retransmissions of a segment must not advance
2777 * retrans_stamp under any conditions.
2779 static int tcp_any_retrans_done(const struct sock *sk)
2781 const struct tcp_sock *tp = tcp_sk(sk);
2782 struct sk_buff *skb;
2784 if (tp->retrans_out)
2785 return 1;
2787 skb = tcp_write_queue_head(sk);
2788 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2789 return 1;
2791 return 0;
2794 /* Undo during fast recovery after partial ACK. */
2796 static int tcp_try_undo_partial(struct sock *sk, int acked)
2798 struct tcp_sock *tp = tcp_sk(sk);
2799 /* Partial ACK arrived. Force Hoe's retransmit. */
2800 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2802 if (tcp_may_undo(tp)) {
2803 /* Plain luck! Hole if filled with delayed
2804 * packet, rather than with a retransmit.
2806 if (!tcp_any_retrans_done(sk))
2807 tp->retrans_stamp = 0;
2809 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2811 DBGUNDO(sk, "Hoe");
2812 tcp_undo_cwr(sk, false);
2813 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2815 /* So... Do not make Hoe's retransmit yet.
2816 * If the first packet was delayed, the rest
2817 * ones are most probably delayed as well.
2819 failed = 0;
2821 return failed;
2824 /* Undo during loss recovery after partial ACK. */
2825 static int tcp_try_undo_loss(struct sock *sk)
2827 struct tcp_sock *tp = tcp_sk(sk);
2829 if (tcp_may_undo(tp)) {
2830 struct sk_buff *skb;
2831 tcp_for_write_queue(skb, sk) {
2832 if (skb == tcp_send_head(sk))
2833 break;
2834 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2837 tcp_clear_all_retrans_hints(tp);
2839 DBGUNDO(sk, "partial loss");
2840 tp->lost_out = 0;
2841 tcp_undo_cwr(sk, true);
2842 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2843 inet_csk(sk)->icsk_retransmits = 0;
2844 tp->undo_marker = 0;
2845 if (tcp_is_sack(tp))
2846 tcp_set_ca_state(sk, TCP_CA_Open);
2847 return 1;
2849 return 0;
2852 static inline void tcp_complete_cwr(struct sock *sk)
2854 struct tcp_sock *tp = tcp_sk(sk);
2856 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2857 if (tp->undo_marker) {
2858 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2859 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2860 else /* PRR */
2861 tp->snd_cwnd = tp->snd_ssthresh;
2862 tp->snd_cwnd_stamp = tcp_time_stamp;
2864 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2867 static void tcp_try_keep_open(struct sock *sk)
2869 struct tcp_sock *tp = tcp_sk(sk);
2870 int state = TCP_CA_Open;
2872 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2873 state = TCP_CA_Disorder;
2875 if (inet_csk(sk)->icsk_ca_state != state) {
2876 tcp_set_ca_state(sk, state);
2877 tp->high_seq = tp->snd_nxt;
2881 static void tcp_try_to_open(struct sock *sk, int flag)
2883 struct tcp_sock *tp = tcp_sk(sk);
2885 tcp_verify_left_out(tp);
2887 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2888 tp->retrans_stamp = 0;
2890 if (flag & FLAG_ECE)
2891 tcp_enter_cwr(sk, 1);
2893 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2894 tcp_try_keep_open(sk);
2895 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2896 tcp_moderate_cwnd(tp);
2897 } else {
2898 tcp_cwnd_down(sk, flag);
2902 static void tcp_mtup_probe_failed(struct sock *sk)
2904 struct inet_connection_sock *icsk = inet_csk(sk);
2906 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2907 icsk->icsk_mtup.probe_size = 0;
2910 static void tcp_mtup_probe_success(struct sock *sk)
2912 struct tcp_sock *tp = tcp_sk(sk);
2913 struct inet_connection_sock *icsk = inet_csk(sk);
2915 /* FIXME: breaks with very large cwnd */
2916 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2917 tp->snd_cwnd = tp->snd_cwnd *
2918 tcp_mss_to_mtu(sk, tp->mss_cache) /
2919 icsk->icsk_mtup.probe_size;
2920 tp->snd_cwnd_cnt = 0;
2921 tp->snd_cwnd_stamp = tcp_time_stamp;
2922 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2924 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2925 icsk->icsk_mtup.probe_size = 0;
2926 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2929 /* Do a simple retransmit without using the backoff mechanisms in
2930 * tcp_timer. This is used for path mtu discovery.
2931 * The socket is already locked here.
2933 void tcp_simple_retransmit(struct sock *sk)
2935 const struct inet_connection_sock *icsk = inet_csk(sk);
2936 struct tcp_sock *tp = tcp_sk(sk);
2937 struct sk_buff *skb;
2938 unsigned int mss = tcp_current_mss(sk);
2939 u32 prior_lost = tp->lost_out;
2941 tcp_for_write_queue(skb, sk) {
2942 if (skb == tcp_send_head(sk))
2943 break;
2944 if (tcp_skb_seglen(skb) > mss &&
2945 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2946 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2947 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2948 tp->retrans_out -= tcp_skb_pcount(skb);
2950 tcp_skb_mark_lost_uncond_verify(tp, skb);
2954 tcp_clear_retrans_hints_partial(tp);
2956 if (prior_lost == tp->lost_out)
2957 return;
2959 if (tcp_is_reno(tp))
2960 tcp_limit_reno_sacked(tp);
2962 tcp_verify_left_out(tp);
2964 /* Don't muck with the congestion window here.
2965 * Reason is that we do not increase amount of _data_
2966 * in network, but units changed and effective
2967 * cwnd/ssthresh really reduced now.
2969 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2970 tp->high_seq = tp->snd_nxt;
2971 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2972 tp->prior_ssthresh = 0;
2973 tp->undo_marker = 0;
2974 tcp_set_ca_state(sk, TCP_CA_Loss);
2976 tcp_xmit_retransmit_queue(sk);
2978 EXPORT_SYMBOL(tcp_simple_retransmit);
2980 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2981 * (proportional rate reduction with slow start reduction bound) as described in
2982 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2983 * It computes the number of packets to send (sndcnt) based on packets newly
2984 * delivered:
2985 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2986 * cwnd reductions across a full RTT.
2987 * 2) If packets in flight is lower than ssthresh (such as due to excess
2988 * losses and/or application stalls), do not perform any further cwnd
2989 * reductions, but instead slow start up to ssthresh.
2991 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2992 int fast_rexmit, int flag)
2994 struct tcp_sock *tp = tcp_sk(sk);
2995 int sndcnt = 0;
2996 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2998 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2999 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3000 tp->prior_cwnd - 1;
3001 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3002 } else {
3003 sndcnt = min_t(int, delta,
3004 max_t(int, tp->prr_delivered - tp->prr_out,
3005 newly_acked_sacked) + 1);
3008 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3009 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3012 /* Process an event, which can update packets-in-flight not trivially.
3013 * Main goal of this function is to calculate new estimate for left_out,
3014 * taking into account both packets sitting in receiver's buffer and
3015 * packets lost by network.
3017 * Besides that it does CWND reduction, when packet loss is detected
3018 * and changes state of machine.
3020 * It does _not_ decide what to send, it is made in function
3021 * tcp_xmit_retransmit_queue().
3023 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3024 int newly_acked_sacked, bool is_dupack,
3025 int flag)
3027 struct inet_connection_sock *icsk = inet_csk(sk);
3028 struct tcp_sock *tp = tcp_sk(sk);
3029 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3030 (tcp_fackets_out(tp) > tp->reordering));
3031 int fast_rexmit = 0, mib_idx;
3033 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3034 tp->sacked_out = 0;
3035 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3036 tp->fackets_out = 0;
3038 /* Now state machine starts.
3039 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3040 if (flag & FLAG_ECE)
3041 tp->prior_ssthresh = 0;
3043 /* B. In all the states check for reneging SACKs. */
3044 if (tcp_check_sack_reneging(sk, flag))
3045 return;
3047 /* C. Check consistency of the current state. */
3048 tcp_verify_left_out(tp);
3050 /* D. Check state exit conditions. State can be terminated
3051 * when high_seq is ACKed. */
3052 if (icsk->icsk_ca_state == TCP_CA_Open) {
3053 WARN_ON(tp->retrans_out != 0);
3054 tp->retrans_stamp = 0;
3055 } else if (!before(tp->snd_una, tp->high_seq)) {
3056 switch (icsk->icsk_ca_state) {
3057 case TCP_CA_Loss:
3058 icsk->icsk_retransmits = 0;
3059 if (tcp_try_undo_recovery(sk))
3060 return;
3061 break;
3063 case TCP_CA_CWR:
3064 /* CWR is to be held something *above* high_seq
3065 * is ACKed for CWR bit to reach receiver. */
3066 if (tp->snd_una != tp->high_seq) {
3067 tcp_complete_cwr(sk);
3068 tcp_set_ca_state(sk, TCP_CA_Open);
3070 break;
3072 case TCP_CA_Recovery:
3073 if (tcp_is_reno(tp))
3074 tcp_reset_reno_sack(tp);
3075 if (tcp_try_undo_recovery(sk))
3076 return;
3077 tcp_complete_cwr(sk);
3078 break;
3082 /* E. Process state. */
3083 switch (icsk->icsk_ca_state) {
3084 case TCP_CA_Recovery:
3085 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3086 if (tcp_is_reno(tp) && is_dupack)
3087 tcp_add_reno_sack(sk);
3088 } else
3089 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3090 break;
3091 case TCP_CA_Loss:
3092 if (flag & FLAG_DATA_ACKED)
3093 icsk->icsk_retransmits = 0;
3094 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3095 tcp_reset_reno_sack(tp);
3096 if (!tcp_try_undo_loss(sk)) {
3097 tcp_moderate_cwnd(tp);
3098 tcp_xmit_retransmit_queue(sk);
3099 return;
3101 if (icsk->icsk_ca_state != TCP_CA_Open)
3102 return;
3103 /* Loss is undone; fall through to processing in Open state. */
3104 default:
3105 if (tcp_is_reno(tp)) {
3106 if (flag & FLAG_SND_UNA_ADVANCED)
3107 tcp_reset_reno_sack(tp);
3108 if (is_dupack)
3109 tcp_add_reno_sack(sk);
3112 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3113 tcp_try_undo_dsack(sk);
3115 if (!tcp_time_to_recover(sk)) {
3116 tcp_try_to_open(sk, flag);
3117 return;
3120 /* MTU probe failure: don't reduce cwnd */
3121 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3122 icsk->icsk_mtup.probe_size &&
3123 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3124 tcp_mtup_probe_failed(sk);
3125 /* Restores the reduction we did in tcp_mtup_probe() */
3126 tp->snd_cwnd++;
3127 tcp_simple_retransmit(sk);
3128 return;
3131 /* Otherwise enter Recovery state */
3133 if (tcp_is_reno(tp))
3134 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3135 else
3136 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3138 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3140 tp->high_seq = tp->snd_nxt;
3141 tp->prior_ssthresh = 0;
3142 tp->undo_marker = tp->snd_una;
3143 tp->undo_retrans = tp->retrans_out;
3145 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3146 if (!(flag & FLAG_ECE))
3147 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3148 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3149 TCP_ECN_queue_cwr(tp);
3152 tp->bytes_acked = 0;
3153 tp->snd_cwnd_cnt = 0;
3154 tp->prior_cwnd = tp->snd_cwnd;
3155 tp->prr_delivered = 0;
3156 tp->prr_out = 0;
3157 tcp_set_ca_state(sk, TCP_CA_Recovery);
3158 fast_rexmit = 1;
3161 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3162 tcp_update_scoreboard(sk, fast_rexmit);
3163 tp->prr_delivered += newly_acked_sacked;
3164 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3165 tcp_xmit_retransmit_queue(sk);
3168 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3170 tcp_rtt_estimator(sk, seq_rtt);
3171 tcp_set_rto(sk);
3172 inet_csk(sk)->icsk_backoff = 0;
3174 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3176 /* Read draft-ietf-tcplw-high-performance before mucking
3177 * with this code. (Supersedes RFC1323)
3179 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3181 /* RTTM Rule: A TSecr value received in a segment is used to
3182 * update the averaged RTT measurement only if the segment
3183 * acknowledges some new data, i.e., only if it advances the
3184 * left edge of the send window.
3186 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3187 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3189 * Changed: reset backoff as soon as we see the first valid sample.
3190 * If we do not, we get strongly overestimated rto. With timestamps
3191 * samples are accepted even from very old segments: f.e., when rtt=1
3192 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3193 * answer arrives rto becomes 120 seconds! If at least one of segments
3194 * in window is lost... Voila. --ANK (010210)
3196 struct tcp_sock *tp = tcp_sk(sk);
3198 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3201 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3203 /* We don't have a timestamp. Can only use
3204 * packets that are not retransmitted to determine
3205 * rtt estimates. Also, we must not reset the
3206 * backoff for rto until we get a non-retransmitted
3207 * packet. This allows us to deal with a situation
3208 * where the network delay has increased suddenly.
3209 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3212 if (flag & FLAG_RETRANS_DATA_ACKED)
3213 return;
3215 tcp_valid_rtt_meas(sk, seq_rtt);
3218 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3219 const s32 seq_rtt)
3221 const struct tcp_sock *tp = tcp_sk(sk);
3222 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3223 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3224 tcp_ack_saw_tstamp(sk, flag);
3225 else if (seq_rtt >= 0)
3226 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3229 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3231 const struct inet_connection_sock *icsk = inet_csk(sk);
3232 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3233 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3236 /* Restart timer after forward progress on connection.
3237 * RFC2988 recommends to restart timer to now+rto.
3239 static void tcp_rearm_rto(struct sock *sk)
3241 const struct tcp_sock *tp = tcp_sk(sk);
3243 if (!tp->packets_out) {
3244 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3245 } else {
3246 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3247 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3251 /* If we get here, the whole TSO packet has not been acked. */
3252 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3254 struct tcp_sock *tp = tcp_sk(sk);
3255 u32 packets_acked;
3257 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3259 packets_acked = tcp_skb_pcount(skb);
3260 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3261 return 0;
3262 packets_acked -= tcp_skb_pcount(skb);
3264 if (packets_acked) {
3265 BUG_ON(tcp_skb_pcount(skb) == 0);
3266 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3269 return packets_acked;
3272 /* Remove acknowledged frames from the retransmission queue. If our packet
3273 * is before the ack sequence we can discard it as it's confirmed to have
3274 * arrived at the other end.
3276 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3277 u32 prior_snd_una)
3279 struct tcp_sock *tp = tcp_sk(sk);
3280 const struct inet_connection_sock *icsk = inet_csk(sk);
3281 struct sk_buff *skb;
3282 u32 now = tcp_time_stamp;
3283 int fully_acked = 1;
3284 int flag = 0;
3285 u32 pkts_acked = 0;
3286 u32 reord = tp->packets_out;
3287 u32 prior_sacked = tp->sacked_out;
3288 s32 seq_rtt = -1;
3289 s32 ca_seq_rtt = -1;
3290 ktime_t last_ackt = net_invalid_timestamp();
3292 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3293 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3294 u32 acked_pcount;
3295 u8 sacked = scb->sacked;
3297 /* Determine how many packets and what bytes were acked, tso and else */
3298 if (after(scb->end_seq, tp->snd_una)) {
3299 if (tcp_skb_pcount(skb) == 1 ||
3300 !after(tp->snd_una, scb->seq))
3301 break;
3303 acked_pcount = tcp_tso_acked(sk, skb);
3304 if (!acked_pcount)
3305 break;
3307 fully_acked = 0;
3308 } else {
3309 acked_pcount = tcp_skb_pcount(skb);
3312 if (sacked & TCPCB_RETRANS) {
3313 if (sacked & TCPCB_SACKED_RETRANS)
3314 tp->retrans_out -= acked_pcount;
3315 flag |= FLAG_RETRANS_DATA_ACKED;
3316 ca_seq_rtt = -1;
3317 seq_rtt = -1;
3318 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3319 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3320 } else {
3321 ca_seq_rtt = now - scb->when;
3322 last_ackt = skb->tstamp;
3323 if (seq_rtt < 0) {
3324 seq_rtt = ca_seq_rtt;
3326 if (!(sacked & TCPCB_SACKED_ACKED))
3327 reord = min(pkts_acked, reord);
3330 if (sacked & TCPCB_SACKED_ACKED)
3331 tp->sacked_out -= acked_pcount;
3332 if (sacked & TCPCB_LOST)
3333 tp->lost_out -= acked_pcount;
3335 tp->packets_out -= acked_pcount;
3336 pkts_acked += acked_pcount;
3338 /* Initial outgoing SYN's get put onto the write_queue
3339 * just like anything else we transmit. It is not
3340 * true data, and if we misinform our callers that
3341 * this ACK acks real data, we will erroneously exit
3342 * connection startup slow start one packet too
3343 * quickly. This is severely frowned upon behavior.
3345 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3346 flag |= FLAG_DATA_ACKED;
3347 } else {
3348 flag |= FLAG_SYN_ACKED;
3349 tp->retrans_stamp = 0;
3352 if (!fully_acked)
3353 break;
3355 tcp_unlink_write_queue(skb, sk);
3356 sk_wmem_free_skb(sk, skb);
3357 tp->scoreboard_skb_hint = NULL;
3358 if (skb == tp->retransmit_skb_hint)
3359 tp->retransmit_skb_hint = NULL;
3360 if (skb == tp->lost_skb_hint)
3361 tp->lost_skb_hint = NULL;
3364 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3365 tp->snd_up = tp->snd_una;
3367 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3368 flag |= FLAG_SACK_RENEGING;
3370 if (flag & FLAG_ACKED) {
3371 const struct tcp_congestion_ops *ca_ops
3372 = inet_csk(sk)->icsk_ca_ops;
3374 if (unlikely(icsk->icsk_mtup.probe_size &&
3375 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3376 tcp_mtup_probe_success(sk);
3379 tcp_ack_update_rtt(sk, flag, seq_rtt);
3380 tcp_rearm_rto(sk);
3382 if (tcp_is_reno(tp)) {
3383 tcp_remove_reno_sacks(sk, pkts_acked);
3384 } else {
3385 int delta;
3387 /* Non-retransmitted hole got filled? That's reordering */
3388 if (reord < prior_fackets)
3389 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3391 delta = tcp_is_fack(tp) ? pkts_acked :
3392 prior_sacked - tp->sacked_out;
3393 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3396 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3398 if (ca_ops->pkts_acked) {
3399 s32 rtt_us = -1;
3401 /* Is the ACK triggering packet unambiguous? */
3402 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3403 /* High resolution needed and available? */
3404 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3405 !ktime_equal(last_ackt,
3406 net_invalid_timestamp()))
3407 rtt_us = ktime_us_delta(ktime_get_real(),
3408 last_ackt);
3409 else if (ca_seq_rtt >= 0)
3410 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3413 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3417 #if FASTRETRANS_DEBUG > 0
3418 WARN_ON((int)tp->sacked_out < 0);
3419 WARN_ON((int)tp->lost_out < 0);
3420 WARN_ON((int)tp->retrans_out < 0);
3421 if (!tp->packets_out && tcp_is_sack(tp)) {
3422 icsk = inet_csk(sk);
3423 if (tp->lost_out) {
3424 printk(KERN_DEBUG "Leak l=%u %d\n",
3425 tp->lost_out, icsk->icsk_ca_state);
3426 tp->lost_out = 0;
3428 if (tp->sacked_out) {
3429 printk(KERN_DEBUG "Leak s=%u %d\n",
3430 tp->sacked_out, icsk->icsk_ca_state);
3431 tp->sacked_out = 0;
3433 if (tp->retrans_out) {
3434 printk(KERN_DEBUG "Leak r=%u %d\n",
3435 tp->retrans_out, icsk->icsk_ca_state);
3436 tp->retrans_out = 0;
3439 #endif
3440 return flag;
3443 static void tcp_ack_probe(struct sock *sk)
3445 const struct tcp_sock *tp = tcp_sk(sk);
3446 struct inet_connection_sock *icsk = inet_csk(sk);
3448 /* Was it a usable window open? */
3450 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3451 icsk->icsk_backoff = 0;
3452 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3453 /* Socket must be waked up by subsequent tcp_data_snd_check().
3454 * This function is not for random using!
3456 } else {
3457 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3458 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3459 TCP_RTO_MAX);
3463 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3465 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3466 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3469 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3471 const struct tcp_sock *tp = tcp_sk(sk);
3472 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3473 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3476 /* Check that window update is acceptable.
3477 * The function assumes that snd_una<=ack<=snd_next.
3479 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3480 const u32 ack, const u32 ack_seq,
3481 const u32 nwin)
3483 return after(ack, tp->snd_una) ||
3484 after(ack_seq, tp->snd_wl1) ||
3485 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3488 /* Update our send window.
3490 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3491 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3493 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3494 u32 ack_seq)
3496 struct tcp_sock *tp = tcp_sk(sk);
3497 int flag = 0;
3498 u32 nwin = ntohs(tcp_hdr(skb)->window);
3500 if (likely(!tcp_hdr(skb)->syn))
3501 nwin <<= tp->rx_opt.snd_wscale;
3503 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3504 flag |= FLAG_WIN_UPDATE;
3505 tcp_update_wl(tp, ack_seq);
3507 if (tp->snd_wnd != nwin) {
3508 tp->snd_wnd = nwin;
3510 /* Note, it is the only place, where
3511 * fast path is recovered for sending TCP.
3513 tp->pred_flags = 0;
3514 tcp_fast_path_check(sk);
3516 if (nwin > tp->max_window) {
3517 tp->max_window = nwin;
3518 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3523 tp->snd_una = ack;
3525 return flag;
3528 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3529 * continue in congestion avoidance.
3531 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3533 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3534 tp->snd_cwnd_cnt = 0;
3535 tp->bytes_acked = 0;
3536 TCP_ECN_queue_cwr(tp);
3537 tcp_moderate_cwnd(tp);
3540 /* A conservative spurious RTO response algorithm: reduce cwnd using
3541 * rate halving and continue in congestion avoidance.
3543 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3545 tcp_enter_cwr(sk, 0);
3548 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3550 if (flag & FLAG_ECE)
3551 tcp_ratehalving_spur_to_response(sk);
3552 else
3553 tcp_undo_cwr(sk, true);
3556 /* F-RTO spurious RTO detection algorithm (RFC4138)
3558 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3559 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3560 * window (but not to or beyond highest sequence sent before RTO):
3561 * On First ACK, send two new segments out.
3562 * On Second ACK, RTO was likely spurious. Do spurious response (response
3563 * algorithm is not part of the F-RTO detection algorithm
3564 * given in RFC4138 but can be selected separately).
3565 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3566 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3567 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3568 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3570 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3571 * original window even after we transmit two new data segments.
3573 * SACK version:
3574 * on first step, wait until first cumulative ACK arrives, then move to
3575 * the second step. In second step, the next ACK decides.
3577 * F-RTO is implemented (mainly) in four functions:
3578 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3579 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3580 * called when tcp_use_frto() showed green light
3581 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3582 * - tcp_enter_frto_loss() is called if there is not enough evidence
3583 * to prove that the RTO is indeed spurious. It transfers the control
3584 * from F-RTO to the conventional RTO recovery
3586 static int tcp_process_frto(struct sock *sk, int flag)
3588 struct tcp_sock *tp = tcp_sk(sk);
3590 tcp_verify_left_out(tp);
3592 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3593 if (flag & FLAG_DATA_ACKED)
3594 inet_csk(sk)->icsk_retransmits = 0;
3596 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3597 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3598 tp->undo_marker = 0;
3600 if (!before(tp->snd_una, tp->frto_highmark)) {
3601 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3602 return 1;
3605 if (!tcp_is_sackfrto(tp)) {
3606 /* RFC4138 shortcoming in step 2; should also have case c):
3607 * ACK isn't duplicate nor advances window, e.g., opposite dir
3608 * data, winupdate
3610 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3611 return 1;
3613 if (!(flag & FLAG_DATA_ACKED)) {
3614 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3615 flag);
3616 return 1;
3618 } else {
3619 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3620 /* Prevent sending of new data. */
3621 tp->snd_cwnd = min(tp->snd_cwnd,
3622 tcp_packets_in_flight(tp));
3623 return 1;
3626 if ((tp->frto_counter >= 2) &&
3627 (!(flag & FLAG_FORWARD_PROGRESS) ||
3628 ((flag & FLAG_DATA_SACKED) &&
3629 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3630 /* RFC4138 shortcoming (see comment above) */
3631 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3632 (flag & FLAG_NOT_DUP))
3633 return 1;
3635 tcp_enter_frto_loss(sk, 3, flag);
3636 return 1;
3640 if (tp->frto_counter == 1) {
3641 /* tcp_may_send_now needs to see updated state */
3642 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3643 tp->frto_counter = 2;
3645 if (!tcp_may_send_now(sk))
3646 tcp_enter_frto_loss(sk, 2, flag);
3648 return 1;
3649 } else {
3650 switch (sysctl_tcp_frto_response) {
3651 case 2:
3652 tcp_undo_spur_to_response(sk, flag);
3653 break;
3654 case 1:
3655 tcp_conservative_spur_to_response(tp);
3656 break;
3657 default:
3658 tcp_ratehalving_spur_to_response(sk);
3659 break;
3661 tp->frto_counter = 0;
3662 tp->undo_marker = 0;
3663 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3665 return 0;
3668 /* This routine deals with incoming acks, but not outgoing ones. */
3669 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3671 struct inet_connection_sock *icsk = inet_csk(sk);
3672 struct tcp_sock *tp = tcp_sk(sk);
3673 u32 prior_snd_una = tp->snd_una;
3674 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3675 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3676 bool is_dupack = false;
3677 u32 prior_in_flight;
3678 u32 prior_fackets;
3679 int prior_packets;
3680 int prior_sacked = tp->sacked_out;
3681 int pkts_acked = 0;
3682 int newly_acked_sacked = 0;
3683 int frto_cwnd = 0;
3685 /* If the ack is older than previous acks
3686 * then we can probably ignore it.
3688 if (before(ack, prior_snd_una))
3689 goto old_ack;
3691 /* If the ack includes data we haven't sent yet, discard
3692 * this segment (RFC793 Section 3.9).
3694 if (after(ack, tp->snd_nxt))
3695 goto invalid_ack;
3697 if (after(ack, prior_snd_una))
3698 flag |= FLAG_SND_UNA_ADVANCED;
3700 if (sysctl_tcp_abc) {
3701 if (icsk->icsk_ca_state < TCP_CA_CWR)
3702 tp->bytes_acked += ack - prior_snd_una;
3703 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3704 /* we assume just one segment left network */
3705 tp->bytes_acked += min(ack - prior_snd_una,
3706 tp->mss_cache);
3709 prior_fackets = tp->fackets_out;
3710 prior_in_flight = tcp_packets_in_flight(tp);
3712 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3713 /* Window is constant, pure forward advance.
3714 * No more checks are required.
3715 * Note, we use the fact that SND.UNA>=SND.WL2.
3717 tcp_update_wl(tp, ack_seq);
3718 tp->snd_una = ack;
3719 flag |= FLAG_WIN_UPDATE;
3721 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3723 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3724 } else {
3725 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3726 flag |= FLAG_DATA;
3727 else
3728 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3730 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3732 if (TCP_SKB_CB(skb)->sacked)
3733 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3735 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3736 flag |= FLAG_ECE;
3738 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3741 /* We passed data and got it acked, remove any soft error
3742 * log. Something worked...
3744 sk->sk_err_soft = 0;
3745 icsk->icsk_probes_out = 0;
3746 tp->rcv_tstamp = tcp_time_stamp;
3747 prior_packets = tp->packets_out;
3748 if (!prior_packets)
3749 goto no_queue;
3751 /* See if we can take anything off of the retransmit queue. */
3752 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3754 pkts_acked = prior_packets - tp->packets_out;
3755 newly_acked_sacked = (prior_packets - prior_sacked) -
3756 (tp->packets_out - tp->sacked_out);
3758 if (tp->frto_counter)
3759 frto_cwnd = tcp_process_frto(sk, flag);
3760 /* Guarantee sacktag reordering detection against wrap-arounds */
3761 if (before(tp->frto_highmark, tp->snd_una))
3762 tp->frto_highmark = 0;
3764 if (tcp_ack_is_dubious(sk, flag)) {
3765 /* Advance CWND, if state allows this. */
3766 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3767 tcp_may_raise_cwnd(sk, flag))
3768 tcp_cong_avoid(sk, ack, prior_in_flight);
3769 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3770 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3771 is_dupack, flag);
3772 } else {
3773 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3774 tcp_cong_avoid(sk, ack, prior_in_flight);
3777 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3778 dst_confirm(__sk_dst_get(sk));
3780 return 1;
3782 no_queue:
3783 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3784 if (flag & FLAG_DSACKING_ACK)
3785 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3786 is_dupack, flag);
3787 /* If this ack opens up a zero window, clear backoff. It was
3788 * being used to time the probes, and is probably far higher than
3789 * it needs to be for normal retransmission.
3791 if (tcp_send_head(sk))
3792 tcp_ack_probe(sk);
3793 return 1;
3795 invalid_ack:
3796 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3797 return -1;
3799 old_ack:
3800 /* If data was SACKed, tag it and see if we should send more data.
3801 * If data was DSACKed, see if we can undo a cwnd reduction.
3803 if (TCP_SKB_CB(skb)->sacked) {
3804 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3805 newly_acked_sacked = tp->sacked_out - prior_sacked;
3806 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3807 is_dupack, flag);
3810 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3811 return 0;
3814 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3815 * But, this can also be called on packets in the established flow when
3816 * the fast version below fails.
3818 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3819 const u8 **hvpp, int estab)
3821 const unsigned char *ptr;
3822 const struct tcphdr *th = tcp_hdr(skb);
3823 int length = (th->doff * 4) - sizeof(struct tcphdr);
3825 ptr = (const unsigned char *)(th + 1);
3826 opt_rx->saw_tstamp = 0;
3828 while (length > 0) {
3829 int opcode = *ptr++;
3830 int opsize;
3832 switch (opcode) {
3833 case TCPOPT_EOL:
3834 return;
3835 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3836 length--;
3837 continue;
3838 default:
3839 opsize = *ptr++;
3840 if (opsize < 2) /* "silly options" */
3841 return;
3842 if (opsize > length)
3843 return; /* don't parse partial options */
3844 switch (opcode) {
3845 case TCPOPT_MSS:
3846 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3847 u16 in_mss = get_unaligned_be16(ptr);
3848 if (in_mss) {
3849 if (opt_rx->user_mss &&
3850 opt_rx->user_mss < in_mss)
3851 in_mss = opt_rx->user_mss;
3852 opt_rx->mss_clamp = in_mss;
3855 break;
3856 case TCPOPT_WINDOW:
3857 if (opsize == TCPOLEN_WINDOW && th->syn &&
3858 !estab && sysctl_tcp_window_scaling) {
3859 __u8 snd_wscale = *(__u8 *)ptr;
3860 opt_rx->wscale_ok = 1;
3861 if (snd_wscale > 14) {
3862 if (net_ratelimit())
3863 printk(KERN_INFO "tcp_parse_options: Illegal window "
3864 "scaling value %d >14 received.\n",
3865 snd_wscale);
3866 snd_wscale = 14;
3868 opt_rx->snd_wscale = snd_wscale;
3870 break;
3871 case TCPOPT_TIMESTAMP:
3872 if ((opsize == TCPOLEN_TIMESTAMP) &&
3873 ((estab && opt_rx->tstamp_ok) ||
3874 (!estab && sysctl_tcp_timestamps))) {
3875 opt_rx->saw_tstamp = 1;
3876 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3877 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3879 break;
3880 case TCPOPT_SACK_PERM:
3881 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3882 !estab && sysctl_tcp_sack) {
3883 opt_rx->sack_ok = TCP_SACK_SEEN;
3884 tcp_sack_reset(opt_rx);
3886 break;
3888 case TCPOPT_SACK:
3889 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3890 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3891 opt_rx->sack_ok) {
3892 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3894 break;
3895 #ifdef CONFIG_TCP_MD5SIG
3896 case TCPOPT_MD5SIG:
3898 * The MD5 Hash has already been
3899 * checked (see tcp_v{4,6}_do_rcv()).
3901 break;
3902 #endif
3903 case TCPOPT_COOKIE:
3904 /* This option is variable length.
3906 switch (opsize) {
3907 case TCPOLEN_COOKIE_BASE:
3908 /* not yet implemented */
3909 break;
3910 case TCPOLEN_COOKIE_PAIR:
3911 /* not yet implemented */
3912 break;
3913 case TCPOLEN_COOKIE_MIN+0:
3914 case TCPOLEN_COOKIE_MIN+2:
3915 case TCPOLEN_COOKIE_MIN+4:
3916 case TCPOLEN_COOKIE_MIN+6:
3917 case TCPOLEN_COOKIE_MAX:
3918 /* 16-bit multiple */
3919 opt_rx->cookie_plus = opsize;
3920 *hvpp = ptr;
3921 break;
3922 default:
3923 /* ignore option */
3924 break;
3926 break;
3929 ptr += opsize-2;
3930 length -= opsize;
3934 EXPORT_SYMBOL(tcp_parse_options);
3936 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3938 const __be32 *ptr = (const __be32 *)(th + 1);
3940 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3941 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3942 tp->rx_opt.saw_tstamp = 1;
3943 ++ptr;
3944 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3945 ++ptr;
3946 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3947 return 1;
3949 return 0;
3952 /* Fast parse options. This hopes to only see timestamps.
3953 * If it is wrong it falls back on tcp_parse_options().
3955 static int tcp_fast_parse_options(const struct sk_buff *skb,
3956 const struct tcphdr *th,
3957 struct tcp_sock *tp, const u8 **hvpp)
3959 /* In the spirit of fast parsing, compare doff directly to constant
3960 * values. Because equality is used, short doff can be ignored here.
3962 if (th->doff == (sizeof(*th) / 4)) {
3963 tp->rx_opt.saw_tstamp = 0;
3964 return 0;
3965 } else if (tp->rx_opt.tstamp_ok &&
3966 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3967 if (tcp_parse_aligned_timestamp(tp, th))
3968 return 1;
3970 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3971 return 1;
3974 #ifdef CONFIG_TCP_MD5SIG
3976 * Parse MD5 Signature option
3978 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3980 int length = (th->doff << 2) - sizeof(*th);
3981 const u8 *ptr = (const u8 *)(th + 1);
3983 /* If the TCP option is too short, we can short cut */
3984 if (length < TCPOLEN_MD5SIG)
3985 return NULL;
3987 while (length > 0) {
3988 int opcode = *ptr++;
3989 int opsize;
3991 switch(opcode) {
3992 case TCPOPT_EOL:
3993 return NULL;
3994 case TCPOPT_NOP:
3995 length--;
3996 continue;
3997 default:
3998 opsize = *ptr++;
3999 if (opsize < 2 || opsize > length)
4000 return NULL;
4001 if (opcode == TCPOPT_MD5SIG)
4002 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4004 ptr += opsize - 2;
4005 length -= opsize;
4007 return NULL;
4009 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4010 #endif
4012 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4014 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4015 tp->rx_opt.ts_recent_stamp = get_seconds();
4018 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4020 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4021 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4022 * extra check below makes sure this can only happen
4023 * for pure ACK frames. -DaveM
4025 * Not only, also it occurs for expired timestamps.
4028 if (tcp_paws_check(&tp->rx_opt, 0))
4029 tcp_store_ts_recent(tp);
4033 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4035 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4036 * it can pass through stack. So, the following predicate verifies that
4037 * this segment is not used for anything but congestion avoidance or
4038 * fast retransmit. Moreover, we even are able to eliminate most of such
4039 * second order effects, if we apply some small "replay" window (~RTO)
4040 * to timestamp space.
4042 * All these measures still do not guarantee that we reject wrapped ACKs
4043 * on networks with high bandwidth, when sequence space is recycled fastly,
4044 * but it guarantees that such events will be very rare and do not affect
4045 * connection seriously. This doesn't look nice, but alas, PAWS is really
4046 * buggy extension.
4048 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4049 * states that events when retransmit arrives after original data are rare.
4050 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4051 * the biggest problem on large power networks even with minor reordering.
4052 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4053 * up to bandwidth of 18Gigabit/sec. 8) ]
4056 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4058 const struct tcp_sock *tp = tcp_sk(sk);
4059 const struct tcphdr *th = tcp_hdr(skb);
4060 u32 seq = TCP_SKB_CB(skb)->seq;
4061 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4063 return (/* 1. Pure ACK with correct sequence number. */
4064 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4066 /* 2. ... and duplicate ACK. */
4067 ack == tp->snd_una &&
4069 /* 3. ... and does not update window. */
4070 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4072 /* 4. ... and sits in replay window. */
4073 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4076 static inline int tcp_paws_discard(const struct sock *sk,
4077 const struct sk_buff *skb)
4079 const struct tcp_sock *tp = tcp_sk(sk);
4081 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4082 !tcp_disordered_ack(sk, skb);
4085 /* Check segment sequence number for validity.
4087 * Segment controls are considered valid, if the segment
4088 * fits to the window after truncation to the window. Acceptability
4089 * of data (and SYN, FIN, of course) is checked separately.
4090 * See tcp_data_queue(), for example.
4092 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4093 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4094 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4095 * (borrowed from freebsd)
4098 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4100 return !before(end_seq, tp->rcv_wup) &&
4101 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4104 /* When we get a reset we do this. */
4105 static void tcp_reset(struct sock *sk)
4107 /* We want the right error as BSD sees it (and indeed as we do). */
4108 switch (sk->sk_state) {
4109 case TCP_SYN_SENT:
4110 sk->sk_err = ECONNREFUSED;
4111 break;
4112 case TCP_CLOSE_WAIT:
4113 sk->sk_err = EPIPE;
4114 break;
4115 case TCP_CLOSE:
4116 return;
4117 default:
4118 sk->sk_err = ECONNRESET;
4120 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4121 smp_wmb();
4123 if (!sock_flag(sk, SOCK_DEAD))
4124 sk->sk_error_report(sk);
4126 tcp_done(sk);
4130 * Process the FIN bit. This now behaves as it is supposed to work
4131 * and the FIN takes effect when it is validly part of sequence
4132 * space. Not before when we get holes.
4134 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4135 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4136 * TIME-WAIT)
4138 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4139 * close and we go into CLOSING (and later onto TIME-WAIT)
4141 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4143 static void tcp_fin(struct sock *sk)
4145 struct tcp_sock *tp = tcp_sk(sk);
4147 inet_csk_schedule_ack(sk);
4149 sk->sk_shutdown |= RCV_SHUTDOWN;
4150 sock_set_flag(sk, SOCK_DONE);
4152 switch (sk->sk_state) {
4153 case TCP_SYN_RECV:
4154 case TCP_ESTABLISHED:
4155 /* Move to CLOSE_WAIT */
4156 tcp_set_state(sk, TCP_CLOSE_WAIT);
4157 inet_csk(sk)->icsk_ack.pingpong = 1;
4158 break;
4160 case TCP_CLOSE_WAIT:
4161 case TCP_CLOSING:
4162 /* Received a retransmission of the FIN, do
4163 * nothing.
4165 break;
4166 case TCP_LAST_ACK:
4167 /* RFC793: Remain in the LAST-ACK state. */
4168 break;
4170 case TCP_FIN_WAIT1:
4171 /* This case occurs when a simultaneous close
4172 * happens, we must ack the received FIN and
4173 * enter the CLOSING state.
4175 tcp_send_ack(sk);
4176 tcp_set_state(sk, TCP_CLOSING);
4177 break;
4178 case TCP_FIN_WAIT2:
4179 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4180 tcp_send_ack(sk);
4181 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4182 break;
4183 default:
4184 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4185 * cases we should never reach this piece of code.
4187 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4188 __func__, sk->sk_state);
4189 break;
4192 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4193 * Probably, we should reset in this case. For now drop them.
4195 __skb_queue_purge(&tp->out_of_order_queue);
4196 if (tcp_is_sack(tp))
4197 tcp_sack_reset(&tp->rx_opt);
4198 sk_mem_reclaim(sk);
4200 if (!sock_flag(sk, SOCK_DEAD)) {
4201 sk->sk_state_change(sk);
4203 /* Do not send POLL_HUP for half duplex close. */
4204 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4205 sk->sk_state == TCP_CLOSE)
4206 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4207 else
4208 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4212 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4213 u32 end_seq)
4215 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4216 if (before(seq, sp->start_seq))
4217 sp->start_seq = seq;
4218 if (after(end_seq, sp->end_seq))
4219 sp->end_seq = end_seq;
4220 return 1;
4222 return 0;
4225 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4227 struct tcp_sock *tp = tcp_sk(sk);
4229 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4230 int mib_idx;
4232 if (before(seq, tp->rcv_nxt))
4233 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4234 else
4235 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4237 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4239 tp->rx_opt.dsack = 1;
4240 tp->duplicate_sack[0].start_seq = seq;
4241 tp->duplicate_sack[0].end_seq = end_seq;
4245 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4247 struct tcp_sock *tp = tcp_sk(sk);
4249 if (!tp->rx_opt.dsack)
4250 tcp_dsack_set(sk, seq, end_seq);
4251 else
4252 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4255 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4257 struct tcp_sock *tp = tcp_sk(sk);
4259 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4260 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4261 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4262 tcp_enter_quickack_mode(sk);
4264 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4265 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4267 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4268 end_seq = tp->rcv_nxt;
4269 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4273 tcp_send_ack(sk);
4276 /* These routines update the SACK block as out-of-order packets arrive or
4277 * in-order packets close up the sequence space.
4279 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4281 int this_sack;
4282 struct tcp_sack_block *sp = &tp->selective_acks[0];
4283 struct tcp_sack_block *swalk = sp + 1;
4285 /* See if the recent change to the first SACK eats into
4286 * or hits the sequence space of other SACK blocks, if so coalesce.
4288 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4289 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4290 int i;
4292 /* Zap SWALK, by moving every further SACK up by one slot.
4293 * Decrease num_sacks.
4295 tp->rx_opt.num_sacks--;
4296 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4297 sp[i] = sp[i + 1];
4298 continue;
4300 this_sack++, swalk++;
4304 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4306 struct tcp_sock *tp = tcp_sk(sk);
4307 struct tcp_sack_block *sp = &tp->selective_acks[0];
4308 int cur_sacks = tp->rx_opt.num_sacks;
4309 int this_sack;
4311 if (!cur_sacks)
4312 goto new_sack;
4314 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4315 if (tcp_sack_extend(sp, seq, end_seq)) {
4316 /* Rotate this_sack to the first one. */
4317 for (; this_sack > 0; this_sack--, sp--)
4318 swap(*sp, *(sp - 1));
4319 if (cur_sacks > 1)
4320 tcp_sack_maybe_coalesce(tp);
4321 return;
4325 /* Could not find an adjacent existing SACK, build a new one,
4326 * put it at the front, and shift everyone else down. We
4327 * always know there is at least one SACK present already here.
4329 * If the sack array is full, forget about the last one.
4331 if (this_sack >= TCP_NUM_SACKS) {
4332 this_sack--;
4333 tp->rx_opt.num_sacks--;
4334 sp--;
4336 for (; this_sack > 0; this_sack--, sp--)
4337 *sp = *(sp - 1);
4339 new_sack:
4340 /* Build the new head SACK, and we're done. */
4341 sp->start_seq = seq;
4342 sp->end_seq = end_seq;
4343 tp->rx_opt.num_sacks++;
4346 /* RCV.NXT advances, some SACKs should be eaten. */
4348 static void tcp_sack_remove(struct tcp_sock *tp)
4350 struct tcp_sack_block *sp = &tp->selective_acks[0];
4351 int num_sacks = tp->rx_opt.num_sacks;
4352 int this_sack;
4354 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4355 if (skb_queue_empty(&tp->out_of_order_queue)) {
4356 tp->rx_opt.num_sacks = 0;
4357 return;
4360 for (this_sack = 0; this_sack < num_sacks;) {
4361 /* Check if the start of the sack is covered by RCV.NXT. */
4362 if (!before(tp->rcv_nxt, sp->start_seq)) {
4363 int i;
4365 /* RCV.NXT must cover all the block! */
4366 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4368 /* Zap this SACK, by moving forward any other SACKS. */
4369 for (i=this_sack+1; i < num_sacks; i++)
4370 tp->selective_acks[i-1] = tp->selective_acks[i];
4371 num_sacks--;
4372 continue;
4374 this_sack++;
4375 sp++;
4377 tp->rx_opt.num_sacks = num_sacks;
4380 /* This one checks to see if we can put data from the
4381 * out_of_order queue into the receive_queue.
4383 static void tcp_ofo_queue(struct sock *sk)
4385 struct tcp_sock *tp = tcp_sk(sk);
4386 __u32 dsack_high = tp->rcv_nxt;
4387 struct sk_buff *skb;
4389 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4390 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4391 break;
4393 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4394 __u32 dsack = dsack_high;
4395 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4396 dsack_high = TCP_SKB_CB(skb)->end_seq;
4397 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4401 SOCK_DEBUG(sk, "ofo packet was already received\n");
4402 __skb_unlink(skb, &tp->out_of_order_queue);
4403 __kfree_skb(skb);
4404 continue;
4406 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4407 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4408 TCP_SKB_CB(skb)->end_seq);
4410 __skb_unlink(skb, &tp->out_of_order_queue);
4411 __skb_queue_tail(&sk->sk_receive_queue, skb);
4412 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4413 if (tcp_hdr(skb)->fin)
4414 tcp_fin(sk);
4418 static int tcp_prune_ofo_queue(struct sock *sk);
4419 static int tcp_prune_queue(struct sock *sk);
4421 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4423 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4424 !sk_rmem_schedule(sk, size)) {
4426 if (tcp_prune_queue(sk) < 0)
4427 return -1;
4429 if (!sk_rmem_schedule(sk, size)) {
4430 if (!tcp_prune_ofo_queue(sk))
4431 return -1;
4433 if (!sk_rmem_schedule(sk, size))
4434 return -1;
4437 return 0;
4440 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4442 const struct tcphdr *th = tcp_hdr(skb);
4443 struct tcp_sock *tp = tcp_sk(sk);
4444 int eaten = -1;
4446 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4447 goto drop;
4449 skb_dst_drop(skb);
4450 __skb_pull(skb, th->doff * 4);
4452 TCP_ECN_accept_cwr(tp, skb);
4454 tp->rx_opt.dsack = 0;
4456 /* Queue data for delivery to the user.
4457 * Packets in sequence go to the receive queue.
4458 * Out of sequence packets to the out_of_order_queue.
4460 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4461 if (tcp_receive_window(tp) == 0)
4462 goto out_of_window;
4464 /* Ok. In sequence. In window. */
4465 if (tp->ucopy.task == current &&
4466 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4467 sock_owned_by_user(sk) && !tp->urg_data) {
4468 int chunk = min_t(unsigned int, skb->len,
4469 tp->ucopy.len);
4471 __set_current_state(TASK_RUNNING);
4473 local_bh_enable();
4474 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4475 tp->ucopy.len -= chunk;
4476 tp->copied_seq += chunk;
4477 eaten = (chunk == skb->len);
4478 tcp_rcv_space_adjust(sk);
4480 local_bh_disable();
4483 if (eaten <= 0) {
4484 queue_and_out:
4485 if (eaten < 0 &&
4486 tcp_try_rmem_schedule(sk, skb->truesize))
4487 goto drop;
4489 skb_set_owner_r(skb, sk);
4490 __skb_queue_tail(&sk->sk_receive_queue, skb);
4492 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4493 if (skb->len)
4494 tcp_event_data_recv(sk, skb);
4495 if (th->fin)
4496 tcp_fin(sk);
4498 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4499 tcp_ofo_queue(sk);
4501 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4502 * gap in queue is filled.
4504 if (skb_queue_empty(&tp->out_of_order_queue))
4505 inet_csk(sk)->icsk_ack.pingpong = 0;
4508 if (tp->rx_opt.num_sacks)
4509 tcp_sack_remove(tp);
4511 tcp_fast_path_check(sk);
4513 if (eaten > 0)
4514 __kfree_skb(skb);
4515 else if (!sock_flag(sk, SOCK_DEAD))
4516 sk->sk_data_ready(sk, 0);
4517 return;
4520 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4521 /* A retransmit, 2nd most common case. Force an immediate ack. */
4522 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4523 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4525 out_of_window:
4526 tcp_enter_quickack_mode(sk);
4527 inet_csk_schedule_ack(sk);
4528 drop:
4529 __kfree_skb(skb);
4530 return;
4533 /* Out of window. F.e. zero window probe. */
4534 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4535 goto out_of_window;
4537 tcp_enter_quickack_mode(sk);
4539 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4540 /* Partial packet, seq < rcv_next < end_seq */
4541 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4542 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4543 TCP_SKB_CB(skb)->end_seq);
4545 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4547 /* If window is closed, drop tail of packet. But after
4548 * remembering D-SACK for its head made in previous line.
4550 if (!tcp_receive_window(tp))
4551 goto out_of_window;
4552 goto queue_and_out;
4555 TCP_ECN_check_ce(tp, skb);
4557 if (tcp_try_rmem_schedule(sk, skb->truesize))
4558 goto drop;
4560 /* Disable header prediction. */
4561 tp->pred_flags = 0;
4562 inet_csk_schedule_ack(sk);
4564 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4565 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4567 skb_set_owner_r(skb, sk);
4569 if (!skb_peek(&tp->out_of_order_queue)) {
4570 /* Initial out of order segment, build 1 SACK. */
4571 if (tcp_is_sack(tp)) {
4572 tp->rx_opt.num_sacks = 1;
4573 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4574 tp->selective_acks[0].end_seq =
4575 TCP_SKB_CB(skb)->end_seq;
4577 __skb_queue_head(&tp->out_of_order_queue, skb);
4578 } else {
4579 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4580 u32 seq = TCP_SKB_CB(skb)->seq;
4581 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4583 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4584 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4586 if (!tp->rx_opt.num_sacks ||
4587 tp->selective_acks[0].end_seq != seq)
4588 goto add_sack;
4590 /* Common case: data arrive in order after hole. */
4591 tp->selective_acks[0].end_seq = end_seq;
4592 return;
4595 /* Find place to insert this segment. */
4596 while (1) {
4597 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4598 break;
4599 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4600 skb1 = NULL;
4601 break;
4603 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4606 /* Do skb overlap to previous one? */
4607 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4608 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4609 /* All the bits are present. Drop. */
4610 __kfree_skb(skb);
4611 tcp_dsack_set(sk, seq, end_seq);
4612 goto add_sack;
4614 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4615 /* Partial overlap. */
4616 tcp_dsack_set(sk, seq,
4617 TCP_SKB_CB(skb1)->end_seq);
4618 } else {
4619 if (skb_queue_is_first(&tp->out_of_order_queue,
4620 skb1))
4621 skb1 = NULL;
4622 else
4623 skb1 = skb_queue_prev(
4624 &tp->out_of_order_queue,
4625 skb1);
4628 if (!skb1)
4629 __skb_queue_head(&tp->out_of_order_queue, skb);
4630 else
4631 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4633 /* And clean segments covered by new one as whole. */
4634 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4635 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4637 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4638 break;
4639 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4640 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4641 end_seq);
4642 break;
4644 __skb_unlink(skb1, &tp->out_of_order_queue);
4645 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4646 TCP_SKB_CB(skb1)->end_seq);
4647 __kfree_skb(skb1);
4650 add_sack:
4651 if (tcp_is_sack(tp))
4652 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4656 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4657 struct sk_buff_head *list)
4659 struct sk_buff *next = NULL;
4661 if (!skb_queue_is_last(list, skb))
4662 next = skb_queue_next(list, skb);
4664 __skb_unlink(skb, list);
4665 __kfree_skb(skb);
4666 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4668 return next;
4671 /* Collapse contiguous sequence of skbs head..tail with
4672 * sequence numbers start..end.
4674 * If tail is NULL, this means until the end of the list.
4676 * Segments with FIN/SYN are not collapsed (only because this
4677 * simplifies code)
4679 static void
4680 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4681 struct sk_buff *head, struct sk_buff *tail,
4682 u32 start, u32 end)
4684 struct sk_buff *skb, *n;
4685 bool end_of_skbs;
4687 /* First, check that queue is collapsible and find
4688 * the point where collapsing can be useful. */
4689 skb = head;
4690 restart:
4691 end_of_skbs = true;
4692 skb_queue_walk_from_safe(list, skb, n) {
4693 if (skb == tail)
4694 break;
4695 /* No new bits? It is possible on ofo queue. */
4696 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4697 skb = tcp_collapse_one(sk, skb, list);
4698 if (!skb)
4699 break;
4700 goto restart;
4703 /* The first skb to collapse is:
4704 * - not SYN/FIN and
4705 * - bloated or contains data before "start" or
4706 * overlaps to the next one.
4708 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4709 (tcp_win_from_space(skb->truesize) > skb->len ||
4710 before(TCP_SKB_CB(skb)->seq, start))) {
4711 end_of_skbs = false;
4712 break;
4715 if (!skb_queue_is_last(list, skb)) {
4716 struct sk_buff *next = skb_queue_next(list, skb);
4717 if (next != tail &&
4718 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4719 end_of_skbs = false;
4720 break;
4724 /* Decided to skip this, advance start seq. */
4725 start = TCP_SKB_CB(skb)->end_seq;
4727 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4728 return;
4730 while (before(start, end)) {
4731 struct sk_buff *nskb;
4732 unsigned int header = skb_headroom(skb);
4733 int copy = SKB_MAX_ORDER(header, 0);
4735 /* Too big header? This can happen with IPv6. */
4736 if (copy < 0)
4737 return;
4738 if (end - start < copy)
4739 copy = end - start;
4740 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4741 if (!nskb)
4742 return;
4744 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4745 skb_set_network_header(nskb, (skb_network_header(skb) -
4746 skb->head));
4747 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4748 skb->head));
4749 skb_reserve(nskb, header);
4750 memcpy(nskb->head, skb->head, header);
4751 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4752 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4753 __skb_queue_before(list, skb, nskb);
4754 skb_set_owner_r(nskb, sk);
4756 /* Copy data, releasing collapsed skbs. */
4757 while (copy > 0) {
4758 int offset = start - TCP_SKB_CB(skb)->seq;
4759 int size = TCP_SKB_CB(skb)->end_seq - start;
4761 BUG_ON(offset < 0);
4762 if (size > 0) {
4763 size = min(copy, size);
4764 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4765 BUG();
4766 TCP_SKB_CB(nskb)->end_seq += size;
4767 copy -= size;
4768 start += size;
4770 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4771 skb = tcp_collapse_one(sk, skb, list);
4772 if (!skb ||
4773 skb == tail ||
4774 tcp_hdr(skb)->syn ||
4775 tcp_hdr(skb)->fin)
4776 return;
4782 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4783 * and tcp_collapse() them until all the queue is collapsed.
4785 static void tcp_collapse_ofo_queue(struct sock *sk)
4787 struct tcp_sock *tp = tcp_sk(sk);
4788 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4789 struct sk_buff *head;
4790 u32 start, end;
4792 if (skb == NULL)
4793 return;
4795 start = TCP_SKB_CB(skb)->seq;
4796 end = TCP_SKB_CB(skb)->end_seq;
4797 head = skb;
4799 for (;;) {
4800 struct sk_buff *next = NULL;
4802 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4803 next = skb_queue_next(&tp->out_of_order_queue, skb);
4804 skb = next;
4806 /* Segment is terminated when we see gap or when
4807 * we are at the end of all the queue. */
4808 if (!skb ||
4809 after(TCP_SKB_CB(skb)->seq, end) ||
4810 before(TCP_SKB_CB(skb)->end_seq, start)) {
4811 tcp_collapse(sk, &tp->out_of_order_queue,
4812 head, skb, start, end);
4813 head = skb;
4814 if (!skb)
4815 break;
4816 /* Start new segment */
4817 start = TCP_SKB_CB(skb)->seq;
4818 end = TCP_SKB_CB(skb)->end_seq;
4819 } else {
4820 if (before(TCP_SKB_CB(skb)->seq, start))
4821 start = TCP_SKB_CB(skb)->seq;
4822 if (after(TCP_SKB_CB(skb)->end_seq, end))
4823 end = TCP_SKB_CB(skb)->end_seq;
4829 * Purge the out-of-order queue.
4830 * Return true if queue was pruned.
4832 static int tcp_prune_ofo_queue(struct sock *sk)
4834 struct tcp_sock *tp = tcp_sk(sk);
4835 int res = 0;
4837 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4838 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4839 __skb_queue_purge(&tp->out_of_order_queue);
4841 /* Reset SACK state. A conforming SACK implementation will
4842 * do the same at a timeout based retransmit. When a connection
4843 * is in a sad state like this, we care only about integrity
4844 * of the connection not performance.
4846 if (tp->rx_opt.sack_ok)
4847 tcp_sack_reset(&tp->rx_opt);
4848 sk_mem_reclaim(sk);
4849 res = 1;
4851 return res;
4854 /* Reduce allocated memory if we can, trying to get
4855 * the socket within its memory limits again.
4857 * Return less than zero if we should start dropping frames
4858 * until the socket owning process reads some of the data
4859 * to stabilize the situation.
4861 static int tcp_prune_queue(struct sock *sk)
4863 struct tcp_sock *tp = tcp_sk(sk);
4865 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4867 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4869 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4870 tcp_clamp_window(sk);
4871 else if (sk_under_memory_pressure(sk))
4872 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4874 tcp_collapse_ofo_queue(sk);
4875 if (!skb_queue_empty(&sk->sk_receive_queue))
4876 tcp_collapse(sk, &sk->sk_receive_queue,
4877 skb_peek(&sk->sk_receive_queue),
4878 NULL,
4879 tp->copied_seq, tp->rcv_nxt);
4880 sk_mem_reclaim(sk);
4882 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4883 return 0;
4885 /* Collapsing did not help, destructive actions follow.
4886 * This must not ever occur. */
4888 tcp_prune_ofo_queue(sk);
4890 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4891 return 0;
4893 /* If we are really being abused, tell the caller to silently
4894 * drop receive data on the floor. It will get retransmitted
4895 * and hopefully then we'll have sufficient space.
4897 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4899 /* Massive buffer overcommit. */
4900 tp->pred_flags = 0;
4901 return -1;
4904 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4905 * As additional protections, we do not touch cwnd in retransmission phases,
4906 * and if application hit its sndbuf limit recently.
4908 void tcp_cwnd_application_limited(struct sock *sk)
4910 struct tcp_sock *tp = tcp_sk(sk);
4912 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4913 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4914 /* Limited by application or receiver window. */
4915 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4916 u32 win_used = max(tp->snd_cwnd_used, init_win);
4917 if (win_used < tp->snd_cwnd) {
4918 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4919 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4921 tp->snd_cwnd_used = 0;
4923 tp->snd_cwnd_stamp = tcp_time_stamp;
4926 static int tcp_should_expand_sndbuf(const struct sock *sk)
4928 const struct tcp_sock *tp = tcp_sk(sk);
4930 /* If the user specified a specific send buffer setting, do
4931 * not modify it.
4933 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4934 return 0;
4936 /* If we are under global TCP memory pressure, do not expand. */
4937 if (sk_under_memory_pressure(sk))
4938 return 0;
4940 /* If we are under soft global TCP memory pressure, do not expand. */
4941 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4942 return 0;
4944 /* If we filled the congestion window, do not expand. */
4945 if (tp->packets_out >= tp->snd_cwnd)
4946 return 0;
4948 return 1;
4951 /* When incoming ACK allowed to free some skb from write_queue,
4952 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4953 * on the exit from tcp input handler.
4955 * PROBLEM: sndbuf expansion does not work well with largesend.
4957 static void tcp_new_space(struct sock *sk)
4959 struct tcp_sock *tp = tcp_sk(sk);
4961 if (tcp_should_expand_sndbuf(sk)) {
4962 int sndmem = SKB_TRUESIZE(max_t(u32,
4963 tp->rx_opt.mss_clamp,
4964 tp->mss_cache) +
4965 MAX_TCP_HEADER);
4966 int demanded = max_t(unsigned int, tp->snd_cwnd,
4967 tp->reordering + 1);
4968 sndmem *= 2 * demanded;
4969 if (sndmem > sk->sk_sndbuf)
4970 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4971 tp->snd_cwnd_stamp = tcp_time_stamp;
4974 sk->sk_write_space(sk);
4977 static void tcp_check_space(struct sock *sk)
4979 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4980 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4981 if (sk->sk_socket &&
4982 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4983 tcp_new_space(sk);
4987 static inline void tcp_data_snd_check(struct sock *sk)
4989 tcp_push_pending_frames(sk);
4990 tcp_check_space(sk);
4994 * Check if sending an ack is needed.
4996 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4998 struct tcp_sock *tp = tcp_sk(sk);
5000 /* More than one full frame received... */
5001 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5002 /* ... and right edge of window advances far enough.
5003 * (tcp_recvmsg() will send ACK otherwise). Or...
5005 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5006 /* We ACK each frame or... */
5007 tcp_in_quickack_mode(sk) ||
5008 /* We have out of order data. */
5009 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5010 /* Then ack it now */
5011 tcp_send_ack(sk);
5012 } else {
5013 /* Else, send delayed ack. */
5014 tcp_send_delayed_ack(sk);
5018 static inline void tcp_ack_snd_check(struct sock *sk)
5020 if (!inet_csk_ack_scheduled(sk)) {
5021 /* We sent a data segment already. */
5022 return;
5024 __tcp_ack_snd_check(sk, 1);
5028 * This routine is only called when we have urgent data
5029 * signaled. Its the 'slow' part of tcp_urg. It could be
5030 * moved inline now as tcp_urg is only called from one
5031 * place. We handle URGent data wrong. We have to - as
5032 * BSD still doesn't use the correction from RFC961.
5033 * For 1003.1g we should support a new option TCP_STDURG to permit
5034 * either form (or just set the sysctl tcp_stdurg).
5037 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5039 struct tcp_sock *tp = tcp_sk(sk);
5040 u32 ptr = ntohs(th->urg_ptr);
5042 if (ptr && !sysctl_tcp_stdurg)
5043 ptr--;
5044 ptr += ntohl(th->seq);
5046 /* Ignore urgent data that we've already seen and read. */
5047 if (after(tp->copied_seq, ptr))
5048 return;
5050 /* Do not replay urg ptr.
5052 * NOTE: interesting situation not covered by specs.
5053 * Misbehaving sender may send urg ptr, pointing to segment,
5054 * which we already have in ofo queue. We are not able to fetch
5055 * such data and will stay in TCP_URG_NOTYET until will be eaten
5056 * by recvmsg(). Seems, we are not obliged to handle such wicked
5057 * situations. But it is worth to think about possibility of some
5058 * DoSes using some hypothetical application level deadlock.
5060 if (before(ptr, tp->rcv_nxt))
5061 return;
5063 /* Do we already have a newer (or duplicate) urgent pointer? */
5064 if (tp->urg_data && !after(ptr, tp->urg_seq))
5065 return;
5067 /* Tell the world about our new urgent pointer. */
5068 sk_send_sigurg(sk);
5070 /* We may be adding urgent data when the last byte read was
5071 * urgent. To do this requires some care. We cannot just ignore
5072 * tp->copied_seq since we would read the last urgent byte again
5073 * as data, nor can we alter copied_seq until this data arrives
5074 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5076 * NOTE. Double Dutch. Rendering to plain English: author of comment
5077 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5078 * and expect that both A and B disappear from stream. This is _wrong_.
5079 * Though this happens in BSD with high probability, this is occasional.
5080 * Any application relying on this is buggy. Note also, that fix "works"
5081 * only in this artificial test. Insert some normal data between A and B and we will
5082 * decline of BSD again. Verdict: it is better to remove to trap
5083 * buggy users.
5085 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5086 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5087 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5088 tp->copied_seq++;
5089 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5090 __skb_unlink(skb, &sk->sk_receive_queue);
5091 __kfree_skb(skb);
5095 tp->urg_data = TCP_URG_NOTYET;
5096 tp->urg_seq = ptr;
5098 /* Disable header prediction. */
5099 tp->pred_flags = 0;
5102 /* This is the 'fast' part of urgent handling. */
5103 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5105 struct tcp_sock *tp = tcp_sk(sk);
5107 /* Check if we get a new urgent pointer - normally not. */
5108 if (th->urg)
5109 tcp_check_urg(sk, th);
5111 /* Do we wait for any urgent data? - normally not... */
5112 if (tp->urg_data == TCP_URG_NOTYET) {
5113 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5114 th->syn;
5116 /* Is the urgent pointer pointing into this packet? */
5117 if (ptr < skb->len) {
5118 u8 tmp;
5119 if (skb_copy_bits(skb, ptr, &tmp, 1))
5120 BUG();
5121 tp->urg_data = TCP_URG_VALID | tmp;
5122 if (!sock_flag(sk, SOCK_DEAD))
5123 sk->sk_data_ready(sk, 0);
5128 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5130 struct tcp_sock *tp = tcp_sk(sk);
5131 int chunk = skb->len - hlen;
5132 int err;
5134 local_bh_enable();
5135 if (skb_csum_unnecessary(skb))
5136 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5137 else
5138 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5139 tp->ucopy.iov);
5141 if (!err) {
5142 tp->ucopy.len -= chunk;
5143 tp->copied_seq += chunk;
5144 tcp_rcv_space_adjust(sk);
5147 local_bh_disable();
5148 return err;
5151 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5152 struct sk_buff *skb)
5154 __sum16 result;
5156 if (sock_owned_by_user(sk)) {
5157 local_bh_enable();
5158 result = __tcp_checksum_complete(skb);
5159 local_bh_disable();
5160 } else {
5161 result = __tcp_checksum_complete(skb);
5163 return result;
5166 static inline int tcp_checksum_complete_user(struct sock *sk,
5167 struct sk_buff *skb)
5169 return !skb_csum_unnecessary(skb) &&
5170 __tcp_checksum_complete_user(sk, skb);
5173 #ifdef CONFIG_NET_DMA
5174 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5175 int hlen)
5177 struct tcp_sock *tp = tcp_sk(sk);
5178 int chunk = skb->len - hlen;
5179 int dma_cookie;
5180 int copied_early = 0;
5182 if (tp->ucopy.wakeup)
5183 return 0;
5185 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5186 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5188 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5190 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5191 skb, hlen,
5192 tp->ucopy.iov, chunk,
5193 tp->ucopy.pinned_list);
5195 if (dma_cookie < 0)
5196 goto out;
5198 tp->ucopy.dma_cookie = dma_cookie;
5199 copied_early = 1;
5201 tp->ucopy.len -= chunk;
5202 tp->copied_seq += chunk;
5203 tcp_rcv_space_adjust(sk);
5205 if ((tp->ucopy.len == 0) ||
5206 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5207 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5208 tp->ucopy.wakeup = 1;
5209 sk->sk_data_ready(sk, 0);
5211 } else if (chunk > 0) {
5212 tp->ucopy.wakeup = 1;
5213 sk->sk_data_ready(sk, 0);
5215 out:
5216 return copied_early;
5218 #endif /* CONFIG_NET_DMA */
5220 /* Does PAWS and seqno based validation of an incoming segment, flags will
5221 * play significant role here.
5223 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5224 const struct tcphdr *th, int syn_inerr)
5226 const u8 *hash_location;
5227 struct tcp_sock *tp = tcp_sk(sk);
5229 /* RFC1323: H1. Apply PAWS check first. */
5230 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5231 tp->rx_opt.saw_tstamp &&
5232 tcp_paws_discard(sk, skb)) {
5233 if (!th->rst) {
5234 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5235 tcp_send_dupack(sk, skb);
5236 goto discard;
5238 /* Reset is accepted even if it did not pass PAWS. */
5241 /* Step 1: check sequence number */
5242 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5243 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5244 * (RST) segments are validated by checking their SEQ-fields."
5245 * And page 69: "If an incoming segment is not acceptable,
5246 * an acknowledgment should be sent in reply (unless the RST
5247 * bit is set, if so drop the segment and return)".
5249 if (!th->rst)
5250 tcp_send_dupack(sk, skb);
5251 goto discard;
5254 /* Step 2: check RST bit */
5255 if (th->rst) {
5256 tcp_reset(sk);
5257 goto discard;
5260 /* ts_recent update must be made after we are sure that the packet
5261 * is in window.
5263 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5265 /* step 3: check security and precedence [ignored] */
5267 /* step 4: Check for a SYN in window. */
5268 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5269 if (syn_inerr)
5270 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5272 tcp_reset(sk);
5273 return -1;
5276 return 1;
5278 discard:
5279 __kfree_skb(skb);
5280 return 0;
5284 * TCP receive function for the ESTABLISHED state.
5286 * It is split into a fast path and a slow path. The fast path is
5287 * disabled when:
5288 * - A zero window was announced from us - zero window probing
5289 * is only handled properly in the slow path.
5290 * - Out of order segments arrived.
5291 * - Urgent data is expected.
5292 * - There is no buffer space left
5293 * - Unexpected TCP flags/window values/header lengths are received
5294 * (detected by checking the TCP header against pred_flags)
5295 * - Data is sent in both directions. Fast path only supports pure senders
5296 * or pure receivers (this means either the sequence number or the ack
5297 * value must stay constant)
5298 * - Unexpected TCP option.
5300 * When these conditions are not satisfied it drops into a standard
5301 * receive procedure patterned after RFC793 to handle all cases.
5302 * The first three cases are guaranteed by proper pred_flags setting,
5303 * the rest is checked inline. Fast processing is turned on in
5304 * tcp_data_queue when everything is OK.
5306 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5307 const struct tcphdr *th, unsigned int len)
5309 struct tcp_sock *tp = tcp_sk(sk);
5310 int res;
5313 * Header prediction.
5314 * The code loosely follows the one in the famous
5315 * "30 instruction TCP receive" Van Jacobson mail.
5317 * Van's trick is to deposit buffers into socket queue
5318 * on a device interrupt, to call tcp_recv function
5319 * on the receive process context and checksum and copy
5320 * the buffer to user space. smart...
5322 * Our current scheme is not silly either but we take the
5323 * extra cost of the net_bh soft interrupt processing...
5324 * We do checksum and copy also but from device to kernel.
5327 tp->rx_opt.saw_tstamp = 0;
5329 /* pred_flags is 0xS?10 << 16 + snd_wnd
5330 * if header_prediction is to be made
5331 * 'S' will always be tp->tcp_header_len >> 2
5332 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5333 * turn it off (when there are holes in the receive
5334 * space for instance)
5335 * PSH flag is ignored.
5338 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5339 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5340 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5341 int tcp_header_len = tp->tcp_header_len;
5343 /* Timestamp header prediction: tcp_header_len
5344 * is automatically equal to th->doff*4 due to pred_flags
5345 * match.
5348 /* Check timestamp */
5349 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5350 /* No? Slow path! */
5351 if (!tcp_parse_aligned_timestamp(tp, th))
5352 goto slow_path;
5354 /* If PAWS failed, check it more carefully in slow path */
5355 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5356 goto slow_path;
5358 /* DO NOT update ts_recent here, if checksum fails
5359 * and timestamp was corrupted part, it will result
5360 * in a hung connection since we will drop all
5361 * future packets due to the PAWS test.
5365 if (len <= tcp_header_len) {
5366 /* Bulk data transfer: sender */
5367 if (len == tcp_header_len) {
5368 /* Predicted packet is in window by definition.
5369 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5370 * Hence, check seq<=rcv_wup reduces to:
5372 if (tcp_header_len ==
5373 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5374 tp->rcv_nxt == tp->rcv_wup)
5375 tcp_store_ts_recent(tp);
5377 /* We know that such packets are checksummed
5378 * on entry.
5380 tcp_ack(sk, skb, 0);
5381 __kfree_skb(skb);
5382 tcp_data_snd_check(sk);
5383 return 0;
5384 } else { /* Header too small */
5385 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5386 goto discard;
5388 } else {
5389 int eaten = 0;
5390 int copied_early = 0;
5392 if (tp->copied_seq == tp->rcv_nxt &&
5393 len - tcp_header_len <= tp->ucopy.len) {
5394 #ifdef CONFIG_NET_DMA
5395 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5396 copied_early = 1;
5397 eaten = 1;
5399 #endif
5400 if (tp->ucopy.task == current &&
5401 sock_owned_by_user(sk) && !copied_early) {
5402 __set_current_state(TASK_RUNNING);
5404 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5405 eaten = 1;
5407 if (eaten) {
5408 /* Predicted packet is in window by definition.
5409 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5410 * Hence, check seq<=rcv_wup reduces to:
5412 if (tcp_header_len ==
5413 (sizeof(struct tcphdr) +
5414 TCPOLEN_TSTAMP_ALIGNED) &&
5415 tp->rcv_nxt == tp->rcv_wup)
5416 tcp_store_ts_recent(tp);
5418 tcp_rcv_rtt_measure_ts(sk, skb);
5420 __skb_pull(skb, tcp_header_len);
5421 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5424 if (copied_early)
5425 tcp_cleanup_rbuf(sk, skb->len);
5427 if (!eaten) {
5428 if (tcp_checksum_complete_user(sk, skb))
5429 goto csum_error;
5431 /* Predicted packet is in window by definition.
5432 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5433 * Hence, check seq<=rcv_wup reduces to:
5435 if (tcp_header_len ==
5436 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5437 tp->rcv_nxt == tp->rcv_wup)
5438 tcp_store_ts_recent(tp);
5440 tcp_rcv_rtt_measure_ts(sk, skb);
5442 if ((int)skb->truesize > sk->sk_forward_alloc)
5443 goto step5;
5445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5447 /* Bulk data transfer: receiver */
5448 __skb_pull(skb, tcp_header_len);
5449 __skb_queue_tail(&sk->sk_receive_queue, skb);
5450 skb_set_owner_r(skb, sk);
5451 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5454 tcp_event_data_recv(sk, skb);
5456 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5457 /* Well, only one small jumplet in fast path... */
5458 tcp_ack(sk, skb, FLAG_DATA);
5459 tcp_data_snd_check(sk);
5460 if (!inet_csk_ack_scheduled(sk))
5461 goto no_ack;
5464 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5465 __tcp_ack_snd_check(sk, 0);
5466 no_ack:
5467 #ifdef CONFIG_NET_DMA
5468 if (copied_early)
5469 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5470 else
5471 #endif
5472 if (eaten)
5473 __kfree_skb(skb);
5474 else
5475 sk->sk_data_ready(sk, 0);
5476 return 0;
5480 slow_path:
5481 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5482 goto csum_error;
5485 * Standard slow path.
5488 res = tcp_validate_incoming(sk, skb, th, 1);
5489 if (res <= 0)
5490 return -res;
5492 step5:
5493 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5494 goto discard;
5496 tcp_rcv_rtt_measure_ts(sk, skb);
5498 /* Process urgent data. */
5499 tcp_urg(sk, skb, th);
5501 /* step 7: process the segment text */
5502 tcp_data_queue(sk, skb);
5504 tcp_data_snd_check(sk);
5505 tcp_ack_snd_check(sk);
5506 return 0;
5508 csum_error:
5509 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5511 discard:
5512 __kfree_skb(skb);
5513 return 0;
5515 EXPORT_SYMBOL(tcp_rcv_established);
5517 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5518 const struct tcphdr *th, unsigned int len)
5520 const u8 *hash_location;
5521 struct inet_connection_sock *icsk = inet_csk(sk);
5522 struct tcp_sock *tp = tcp_sk(sk);
5523 struct tcp_cookie_values *cvp = tp->cookie_values;
5524 int saved_clamp = tp->rx_opt.mss_clamp;
5526 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5528 if (th->ack) {
5529 /* rfc793:
5530 * "If the state is SYN-SENT then
5531 * first check the ACK bit
5532 * If the ACK bit is set
5533 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5534 * a reset (unless the RST bit is set, if so drop
5535 * the segment and return)"
5537 * We do not send data with SYN, so that RFC-correct
5538 * test reduces to:
5540 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5541 goto reset_and_undo;
5543 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5544 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5545 tcp_time_stamp)) {
5546 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5547 goto reset_and_undo;
5550 /* Now ACK is acceptable.
5552 * "If the RST bit is set
5553 * If the ACK was acceptable then signal the user "error:
5554 * connection reset", drop the segment, enter CLOSED state,
5555 * delete TCB, and return."
5558 if (th->rst) {
5559 tcp_reset(sk);
5560 goto discard;
5563 /* rfc793:
5564 * "fifth, if neither of the SYN or RST bits is set then
5565 * drop the segment and return."
5567 * See note below!
5568 * --ANK(990513)
5570 if (!th->syn)
5571 goto discard_and_undo;
5573 /* rfc793:
5574 * "If the SYN bit is on ...
5575 * are acceptable then ...
5576 * (our SYN has been ACKed), change the connection
5577 * state to ESTABLISHED..."
5580 TCP_ECN_rcv_synack(tp, th);
5582 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5583 tcp_ack(sk, skb, FLAG_SLOWPATH);
5585 /* Ok.. it's good. Set up sequence numbers and
5586 * move to established.
5588 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5589 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5591 /* RFC1323: The window in SYN & SYN/ACK segments is
5592 * never scaled.
5594 tp->snd_wnd = ntohs(th->window);
5595 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5597 if (!tp->rx_opt.wscale_ok) {
5598 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5599 tp->window_clamp = min(tp->window_clamp, 65535U);
5602 if (tp->rx_opt.saw_tstamp) {
5603 tp->rx_opt.tstamp_ok = 1;
5604 tp->tcp_header_len =
5605 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5606 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5607 tcp_store_ts_recent(tp);
5608 } else {
5609 tp->tcp_header_len = sizeof(struct tcphdr);
5612 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5613 tcp_enable_fack(tp);
5615 tcp_mtup_init(sk);
5616 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5617 tcp_initialize_rcv_mss(sk);
5619 /* Remember, tcp_poll() does not lock socket!
5620 * Change state from SYN-SENT only after copied_seq
5621 * is initialized. */
5622 tp->copied_seq = tp->rcv_nxt;
5624 if (cvp != NULL &&
5625 cvp->cookie_pair_size > 0 &&
5626 tp->rx_opt.cookie_plus > 0) {
5627 int cookie_size = tp->rx_opt.cookie_plus
5628 - TCPOLEN_COOKIE_BASE;
5629 int cookie_pair_size = cookie_size
5630 + cvp->cookie_desired;
5632 /* A cookie extension option was sent and returned.
5633 * Note that each incoming SYNACK replaces the
5634 * Responder cookie. The initial exchange is most
5635 * fragile, as protection against spoofing relies
5636 * entirely upon the sequence and timestamp (above).
5637 * This replacement strategy allows the correct pair to
5638 * pass through, while any others will be filtered via
5639 * Responder verification later.
5641 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5642 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5643 hash_location, cookie_size);
5644 cvp->cookie_pair_size = cookie_pair_size;
5648 smp_mb();
5649 tcp_set_state(sk, TCP_ESTABLISHED);
5651 security_inet_conn_established(sk, skb);
5653 /* Make sure socket is routed, for correct metrics. */
5654 icsk->icsk_af_ops->rebuild_header(sk);
5656 tcp_init_metrics(sk);
5658 tcp_init_congestion_control(sk);
5660 /* Prevent spurious tcp_cwnd_restart() on first data
5661 * packet.
5663 tp->lsndtime = tcp_time_stamp;
5665 tcp_init_buffer_space(sk);
5667 if (sock_flag(sk, SOCK_KEEPOPEN))
5668 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5670 if (!tp->rx_opt.snd_wscale)
5671 __tcp_fast_path_on(tp, tp->snd_wnd);
5672 else
5673 tp->pred_flags = 0;
5675 if (!sock_flag(sk, SOCK_DEAD)) {
5676 sk->sk_state_change(sk);
5677 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5680 if (sk->sk_write_pending ||
5681 icsk->icsk_accept_queue.rskq_defer_accept ||
5682 icsk->icsk_ack.pingpong) {
5683 /* Save one ACK. Data will be ready after
5684 * several ticks, if write_pending is set.
5686 * It may be deleted, but with this feature tcpdumps
5687 * look so _wonderfully_ clever, that I was not able
5688 * to stand against the temptation 8) --ANK
5690 inet_csk_schedule_ack(sk);
5691 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5692 icsk->icsk_ack.ato = TCP_ATO_MIN;
5693 tcp_incr_quickack(sk);
5694 tcp_enter_quickack_mode(sk);
5695 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5696 TCP_DELACK_MAX, TCP_RTO_MAX);
5698 discard:
5699 __kfree_skb(skb);
5700 return 0;
5701 } else {
5702 tcp_send_ack(sk);
5704 return -1;
5707 /* No ACK in the segment */
5709 if (th->rst) {
5710 /* rfc793:
5711 * "If the RST bit is set
5713 * Otherwise (no ACK) drop the segment and return."
5716 goto discard_and_undo;
5719 /* PAWS check. */
5720 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5721 tcp_paws_reject(&tp->rx_opt, 0))
5722 goto discard_and_undo;
5724 if (th->syn) {
5725 /* We see SYN without ACK. It is attempt of
5726 * simultaneous connect with crossed SYNs.
5727 * Particularly, it can be connect to self.
5729 tcp_set_state(sk, TCP_SYN_RECV);
5731 if (tp->rx_opt.saw_tstamp) {
5732 tp->rx_opt.tstamp_ok = 1;
5733 tcp_store_ts_recent(tp);
5734 tp->tcp_header_len =
5735 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5736 } else {
5737 tp->tcp_header_len = sizeof(struct tcphdr);
5740 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5741 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5743 /* RFC1323: The window in SYN & SYN/ACK segments is
5744 * never scaled.
5746 tp->snd_wnd = ntohs(th->window);
5747 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5748 tp->max_window = tp->snd_wnd;
5750 TCP_ECN_rcv_syn(tp, th);
5752 tcp_mtup_init(sk);
5753 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754 tcp_initialize_rcv_mss(sk);
5756 tcp_send_synack(sk);
5757 #if 0
5758 /* Note, we could accept data and URG from this segment.
5759 * There are no obstacles to make this.
5761 * However, if we ignore data in ACKless segments sometimes,
5762 * we have no reasons to accept it sometimes.
5763 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5764 * is not flawless. So, discard packet for sanity.
5765 * Uncomment this return to process the data.
5767 return -1;
5768 #else
5769 goto discard;
5770 #endif
5772 /* "fifth, if neither of the SYN or RST bits is set then
5773 * drop the segment and return."
5776 discard_and_undo:
5777 tcp_clear_options(&tp->rx_opt);
5778 tp->rx_opt.mss_clamp = saved_clamp;
5779 goto discard;
5781 reset_and_undo:
5782 tcp_clear_options(&tp->rx_opt);
5783 tp->rx_opt.mss_clamp = saved_clamp;
5784 return 1;
5788 * This function implements the receiving procedure of RFC 793 for
5789 * all states except ESTABLISHED and TIME_WAIT.
5790 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5791 * address independent.
5794 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5795 const struct tcphdr *th, unsigned int len)
5797 struct tcp_sock *tp = tcp_sk(sk);
5798 struct inet_connection_sock *icsk = inet_csk(sk);
5799 int queued = 0;
5800 int res;
5802 tp->rx_opt.saw_tstamp = 0;
5804 switch (sk->sk_state) {
5805 case TCP_CLOSE:
5806 goto discard;
5808 case TCP_LISTEN:
5809 if (th->ack)
5810 return 1;
5812 if (th->rst)
5813 goto discard;
5815 if (th->syn) {
5816 if (th->fin)
5817 goto discard;
5818 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5819 return 1;
5821 /* Now we have several options: In theory there is
5822 * nothing else in the frame. KA9Q has an option to
5823 * send data with the syn, BSD accepts data with the
5824 * syn up to the [to be] advertised window and
5825 * Solaris 2.1 gives you a protocol error. For now
5826 * we just ignore it, that fits the spec precisely
5827 * and avoids incompatibilities. It would be nice in
5828 * future to drop through and process the data.
5830 * Now that TTCP is starting to be used we ought to
5831 * queue this data.
5832 * But, this leaves one open to an easy denial of
5833 * service attack, and SYN cookies can't defend
5834 * against this problem. So, we drop the data
5835 * in the interest of security over speed unless
5836 * it's still in use.
5838 kfree_skb(skb);
5839 return 0;
5841 goto discard;
5843 case TCP_SYN_SENT:
5844 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5845 if (queued >= 0)
5846 return queued;
5848 /* Do step6 onward by hand. */
5849 tcp_urg(sk, skb, th);
5850 __kfree_skb(skb);
5851 tcp_data_snd_check(sk);
5852 return 0;
5855 res = tcp_validate_incoming(sk, skb, th, 0);
5856 if (res <= 0)
5857 return -res;
5859 /* step 5: check the ACK field */
5860 if (th->ack) {
5861 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5863 switch (sk->sk_state) {
5864 case TCP_SYN_RECV:
5865 if (acceptable) {
5866 tp->copied_seq = tp->rcv_nxt;
5867 smp_mb();
5868 tcp_set_state(sk, TCP_ESTABLISHED);
5869 sk->sk_state_change(sk);
5871 /* Note, that this wakeup is only for marginal
5872 * crossed SYN case. Passively open sockets
5873 * are not waked up, because sk->sk_sleep ==
5874 * NULL and sk->sk_socket == NULL.
5876 if (sk->sk_socket)
5877 sk_wake_async(sk,
5878 SOCK_WAKE_IO, POLL_OUT);
5880 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5881 tp->snd_wnd = ntohs(th->window) <<
5882 tp->rx_opt.snd_wscale;
5883 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5885 if (tp->rx_opt.tstamp_ok)
5886 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5888 /* Make sure socket is routed, for
5889 * correct metrics.
5891 icsk->icsk_af_ops->rebuild_header(sk);
5893 tcp_init_metrics(sk);
5895 tcp_init_congestion_control(sk);
5897 /* Prevent spurious tcp_cwnd_restart() on
5898 * first data packet.
5900 tp->lsndtime = tcp_time_stamp;
5902 tcp_mtup_init(sk);
5903 tcp_initialize_rcv_mss(sk);
5904 tcp_init_buffer_space(sk);
5905 tcp_fast_path_on(tp);
5906 } else {
5907 return 1;
5909 break;
5911 case TCP_FIN_WAIT1:
5912 if (tp->snd_una == tp->write_seq) {
5913 tcp_set_state(sk, TCP_FIN_WAIT2);
5914 sk->sk_shutdown |= SEND_SHUTDOWN;
5915 dst_confirm(__sk_dst_get(sk));
5917 if (!sock_flag(sk, SOCK_DEAD))
5918 /* Wake up lingering close() */
5919 sk->sk_state_change(sk);
5920 else {
5921 int tmo;
5923 if (tp->linger2 < 0 ||
5924 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5925 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5926 tcp_done(sk);
5927 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5928 return 1;
5931 tmo = tcp_fin_time(sk);
5932 if (tmo > TCP_TIMEWAIT_LEN) {
5933 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5934 } else if (th->fin || sock_owned_by_user(sk)) {
5935 /* Bad case. We could lose such FIN otherwise.
5936 * It is not a big problem, but it looks confusing
5937 * and not so rare event. We still can lose it now,
5938 * if it spins in bh_lock_sock(), but it is really
5939 * marginal case.
5941 inet_csk_reset_keepalive_timer(sk, tmo);
5942 } else {
5943 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5944 goto discard;
5948 break;
5950 case TCP_CLOSING:
5951 if (tp->snd_una == tp->write_seq) {
5952 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5953 goto discard;
5955 break;
5957 case TCP_LAST_ACK:
5958 if (tp->snd_una == tp->write_seq) {
5959 tcp_update_metrics(sk);
5960 tcp_done(sk);
5961 goto discard;
5963 break;
5965 } else
5966 goto discard;
5968 /* step 6: check the URG bit */
5969 tcp_urg(sk, skb, th);
5971 /* step 7: process the segment text */
5972 switch (sk->sk_state) {
5973 case TCP_CLOSE_WAIT:
5974 case TCP_CLOSING:
5975 case TCP_LAST_ACK:
5976 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5977 break;
5978 case TCP_FIN_WAIT1:
5979 case TCP_FIN_WAIT2:
5980 /* RFC 793 says to queue data in these states,
5981 * RFC 1122 says we MUST send a reset.
5982 * BSD 4.4 also does reset.
5984 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5985 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5986 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5987 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5988 tcp_reset(sk);
5989 return 1;
5992 /* Fall through */
5993 case TCP_ESTABLISHED:
5994 tcp_data_queue(sk, skb);
5995 queued = 1;
5996 break;
5999 /* tcp_data could move socket to TIME-WAIT */
6000 if (sk->sk_state != TCP_CLOSE) {
6001 tcp_data_snd_check(sk);
6002 tcp_ack_snd_check(sk);
6005 if (!queued) {
6006 discard:
6007 __kfree_skb(skb);
6009 return 0;
6011 EXPORT_SYMBOL(tcp_rcv_state_process);