2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly
= 1;
77 int sysctl_tcp_window_scaling __read_mostly
= 1;
78 int sysctl_tcp_sack __read_mostly
= 1;
79 int sysctl_tcp_fack __read_mostly
= 1;
80 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
81 EXPORT_SYMBOL(sysctl_tcp_reordering
);
82 int sysctl_tcp_ecn __read_mostly
= 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 int sysctl_tcp_stdurg __read_mostly
;
90 int sysctl_tcp_rfc1337 __read_mostly
;
91 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
92 int sysctl_tcp_frto __read_mostly
= 2;
93 int sysctl_tcp_frto_response __read_mostly
;
94 int sysctl_tcp_nometrics_save __read_mostly
;
96 int sysctl_tcp_thin_dupack __read_mostly
;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
99 int sysctl_tcp_abc __read_mostly
;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 /* Adapt the MSS value used to make delayed ack decision to the
127 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
129 struct inet_connection_sock
*icsk
= inet_csk(sk
);
130 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
133 icsk
->icsk_ack
.last_seg_size
= 0;
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
138 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
139 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
140 icsk
->icsk_ack
.rcv_mss
= len
;
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
145 * "len" is invariant segment length, including TCP header.
147 len
+= skb
->data
- skb_transport_header(skb
);
148 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
154 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
155 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
160 len
-= tcp_sk(sk
)->tcp_header_len
;
161 icsk
->icsk_ack
.last_seg_size
= len
;
163 icsk
->icsk_ack
.rcv_mss
= len
;
167 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
168 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
169 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
173 static void tcp_incr_quickack(struct sock
*sk
)
175 struct inet_connection_sock
*icsk
= inet_csk(sk
);
176 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
180 if (quickacks
> icsk
->icsk_ack
.quick
)
181 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
184 static void tcp_enter_quickack_mode(struct sock
*sk
)
186 struct inet_connection_sock
*icsk
= inet_csk(sk
);
187 tcp_incr_quickack(sk
);
188 icsk
->icsk_ack
.pingpong
= 0;
189 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
196 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
198 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
199 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
202 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
204 if (tp
->ecn_flags
& TCP_ECN_OK
)
205 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
208 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
210 if (tcp_hdr(skb
)->cwr
)
211 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
216 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
219 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
221 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
224 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
225 case INET_ECN_NOT_ECT
:
226 /* Funny extension: if ECT is not set on a segment,
227 * and we already seen ECT on a previous segment,
228 * it is probably a retransmit.
230 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
231 tcp_enter_quickack_mode((struct sock
*)tp
);
234 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
237 tp
->ecn_flags
|= TCP_ECN_SEEN
;
241 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
243 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
244 tp
->ecn_flags
&= ~TCP_ECN_OK
;
247 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
249 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
250 tp
->ecn_flags
&= ~TCP_ECN_OK
;
253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
255 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
260 /* Buffer size and advertised window tuning.
262 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265 static void tcp_fixup_sndbuf(struct sock
*sk
)
267 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
269 sndmem
*= TCP_INIT_CWND
;
270 if (sk
->sk_sndbuf
< sndmem
)
271 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
276 * All tcp_full_space() is split to two parts: "network" buffer, allocated
277 * forward and advertised in receiver window (tp->rcv_wnd) and
278 * "application buffer", required to isolate scheduling/application
279 * latencies from network.
280 * window_clamp is maximal advertised window. It can be less than
281 * tcp_full_space(), in this case tcp_full_space() - window_clamp
282 * is reserved for "application" buffer. The less window_clamp is
283 * the smoother our behaviour from viewpoint of network, but the lower
284 * throughput and the higher sensitivity of the connection to losses. 8)
286 * rcv_ssthresh is more strict window_clamp used at "slow start"
287 * phase to predict further behaviour of this connection.
288 * It is used for two goals:
289 * - to enforce header prediction at sender, even when application
290 * requires some significant "application buffer". It is check #1.
291 * - to prevent pruning of receive queue because of misprediction
292 * of receiver window. Check #2.
294 * The scheme does not work when sender sends good segments opening
295 * window and then starts to feed us spaghetti. But it should work
296 * in common situations. Otherwise, we have to rely on queue collapsing.
299 /* Slow part of check#2. */
300 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
302 struct tcp_sock
*tp
= tcp_sk(sk
);
304 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
305 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
307 while (tp
->rcv_ssthresh
<= window
) {
308 if (truesize
<= skb
->len
)
309 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
317 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
319 struct tcp_sock
*tp
= tcp_sk(sk
);
322 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
323 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
324 !sk_under_memory_pressure(sk
)) {
327 /* Check #2. Increase window, if skb with such overhead
328 * will fit to rcvbuf in future.
330 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
331 incr
= 2 * tp
->advmss
;
333 incr
= __tcp_grow_window(sk
, skb
);
336 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
338 inet_csk(sk
)->icsk_ack
.quick
|= 1;
343 /* 3. Tuning rcvbuf, when connection enters established state. */
345 static void tcp_fixup_rcvbuf(struct sock
*sk
)
347 u32 mss
= tcp_sk(sk
)->advmss
;
348 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
351 /* Limit to 10 segments if mss <= 1460,
352 * or 14600/mss segments, with a minimum of two segments.
355 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
357 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
358 while (tcp_win_from_space(rcvmem
) < mss
)
363 if (sk
->sk_rcvbuf
< rcvmem
)
364 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
367 /* 4. Try to fixup all. It is made immediately after connection enters
370 static void tcp_init_buffer_space(struct sock
*sk
)
372 struct tcp_sock
*tp
= tcp_sk(sk
);
375 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
376 tcp_fixup_rcvbuf(sk
);
377 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
378 tcp_fixup_sndbuf(sk
);
380 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
382 maxwin
= tcp_full_space(sk
);
384 if (tp
->window_clamp
>= maxwin
) {
385 tp
->window_clamp
= maxwin
;
387 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
388 tp
->window_clamp
= max(maxwin
-
389 (maxwin
>> sysctl_tcp_app_win
),
393 /* Force reservation of one segment. */
394 if (sysctl_tcp_app_win
&&
395 tp
->window_clamp
> 2 * tp
->advmss
&&
396 tp
->window_clamp
+ tp
->advmss
> maxwin
)
397 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
399 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
400 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
404 static void tcp_clamp_window(struct sock
*sk
)
406 struct tcp_sock
*tp
= tcp_sk(sk
);
407 struct inet_connection_sock
*icsk
= inet_csk(sk
);
409 icsk
->icsk_ack
.quick
= 0;
411 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
412 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
413 !sk_under_memory_pressure(sk
) &&
414 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
415 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
418 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
419 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
422 /* Initialize RCV_MSS value.
423 * RCV_MSS is an our guess about MSS used by the peer.
424 * We haven't any direct information about the MSS.
425 * It's better to underestimate the RCV_MSS rather than overestimate.
426 * Overestimations make us ACKing less frequently than needed.
427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
429 void tcp_initialize_rcv_mss(struct sock
*sk
)
431 const struct tcp_sock
*tp
= tcp_sk(sk
);
432 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
434 hint
= min(hint
, tp
->rcv_wnd
/ 2);
435 hint
= min(hint
, TCP_MSS_DEFAULT
);
436 hint
= max(hint
, TCP_MIN_MSS
);
438 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
442 /* Receiver "autotuning" code.
444 * The algorithm for RTT estimation w/o timestamps is based on
445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446 * <http://public.lanl.gov/radiant/pubs.html#DRS>
448 * More detail on this code can be found at
449 * <http://staff.psc.edu/jheffner/>,
450 * though this reference is out of date. A new paper
453 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
455 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
461 if (new_sample
!= 0) {
462 /* If we sample in larger samples in the non-timestamp
463 * case, we could grossly overestimate the RTT especially
464 * with chatty applications or bulk transfer apps which
465 * are stalled on filesystem I/O.
467 * Also, since we are only going for a minimum in the
468 * non-timestamp case, we do not smooth things out
469 * else with timestamps disabled convergence takes too
473 m
-= (new_sample
>> 3);
475 } else if (m
< new_sample
)
478 /* No previous measure. */
482 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
483 tp
->rcv_rtt_est
.rtt
= new_sample
;
486 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
488 if (tp
->rcv_rtt_est
.time
== 0)
490 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
492 tcp_rcv_rtt_update(tp
, jiffies
- tp
->rcv_rtt_est
.time
, 1);
495 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
496 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
499 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
500 const struct sk_buff
*skb
)
502 struct tcp_sock
*tp
= tcp_sk(sk
);
503 if (tp
->rx_opt
.rcv_tsecr
&&
504 (TCP_SKB_CB(skb
)->end_seq
-
505 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
506 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
510 * This function should be called every time data is copied to user space.
511 * It calculates the appropriate TCP receive buffer space.
513 void tcp_rcv_space_adjust(struct sock
*sk
)
515 struct tcp_sock
*tp
= tcp_sk(sk
);
519 if (tp
->rcvq_space
.time
== 0)
522 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
523 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
526 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
528 space
= max(tp
->rcvq_space
.space
, space
);
530 if (tp
->rcvq_space
.space
!= space
) {
533 tp
->rcvq_space
.space
= space
;
535 if (sysctl_tcp_moderate_rcvbuf
&&
536 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
537 int new_clamp
= space
;
539 /* Receive space grows, normalize in order to
540 * take into account packet headers and sk_buff
541 * structure overhead.
546 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
547 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
550 space
= min(space
, sysctl_tcp_rmem
[2]);
551 if (space
> sk
->sk_rcvbuf
) {
552 sk
->sk_rcvbuf
= space
;
554 /* Make the window clamp follow along. */
555 tp
->window_clamp
= new_clamp
;
561 tp
->rcvq_space
.seq
= tp
->copied_seq
;
562 tp
->rcvq_space
.time
= tcp_time_stamp
;
565 /* There is something which you must keep in mind when you analyze the
566 * behavior of the tp->ato delayed ack timeout interval. When a
567 * connection starts up, we want to ack as quickly as possible. The
568 * problem is that "good" TCP's do slow start at the beginning of data
569 * transmission. The means that until we send the first few ACK's the
570 * sender will sit on his end and only queue most of his data, because
571 * he can only send snd_cwnd unacked packets at any given time. For
572 * each ACK we send, he increments snd_cwnd and transmits more of his
575 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
577 struct tcp_sock
*tp
= tcp_sk(sk
);
578 struct inet_connection_sock
*icsk
= inet_csk(sk
);
581 inet_csk_schedule_ack(sk
);
583 tcp_measure_rcv_mss(sk
, skb
);
585 tcp_rcv_rtt_measure(tp
);
587 now
= tcp_time_stamp
;
589 if (!icsk
->icsk_ack
.ato
) {
590 /* The _first_ data packet received, initialize
591 * delayed ACK engine.
593 tcp_incr_quickack(sk
);
594 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
596 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
598 if (m
<= TCP_ATO_MIN
/ 2) {
599 /* The fastest case is the first. */
600 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
601 } else if (m
< icsk
->icsk_ack
.ato
) {
602 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
603 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
604 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
605 } else if (m
> icsk
->icsk_rto
) {
606 /* Too long gap. Apparently sender failed to
607 * restart window, so that we send ACKs quickly.
609 tcp_incr_quickack(sk
);
613 icsk
->icsk_ack
.lrcvtime
= now
;
615 TCP_ECN_check_ce(tp
, skb
);
618 tcp_grow_window(sk
, skb
);
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622 * routine either comes from timestamps, or from segments that were
623 * known _not_ to have been retransmitted [see Karn/Partridge
624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625 * piece by Van Jacobson.
626 * NOTE: the next three routines used to be one big routine.
627 * To save cycles in the RFC 1323 implementation it was better to break
628 * it up into three procedures. -- erics
630 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
632 struct tcp_sock
*tp
= tcp_sk(sk
);
633 long m
= mrtt
; /* RTT */
635 /* The following amusing code comes from Jacobson's
636 * article in SIGCOMM '88. Note that rtt and mdev
637 * are scaled versions of rtt and mean deviation.
638 * This is designed to be as fast as possible
639 * m stands for "measurement".
641 * On a 1990 paper the rto value is changed to:
642 * RTO = rtt + 4 * mdev
644 * Funny. This algorithm seems to be very broken.
645 * These formulae increase RTO, when it should be decreased, increase
646 * too slowly, when it should be increased quickly, decrease too quickly
647 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 * does not matter how to _calculate_ it. Seems, it was trap
649 * that VJ failed to avoid. 8)
654 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
655 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
657 m
= -m
; /* m is now abs(error) */
658 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
659 /* This is similar to one of Eifel findings.
660 * Eifel blocks mdev updates when rtt decreases.
661 * This solution is a bit different: we use finer gain
662 * for mdev in this case (alpha*beta).
663 * Like Eifel it also prevents growth of rto,
664 * but also it limits too fast rto decreases,
665 * happening in pure Eifel.
670 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
672 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
673 if (tp
->mdev
> tp
->mdev_max
) {
674 tp
->mdev_max
= tp
->mdev
;
675 if (tp
->mdev_max
> tp
->rttvar
)
676 tp
->rttvar
= tp
->mdev_max
;
678 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
679 if (tp
->mdev_max
< tp
->rttvar
)
680 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
681 tp
->rtt_seq
= tp
->snd_nxt
;
682 tp
->mdev_max
= tcp_rto_min(sk
);
685 /* no previous measure. */
686 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
687 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
688 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
689 tp
->rtt_seq
= tp
->snd_nxt
;
693 /* Calculate rto without backoff. This is the second half of Van Jacobson's
694 * routine referred to above.
696 static inline void tcp_set_rto(struct sock
*sk
)
698 const struct tcp_sock
*tp
= tcp_sk(sk
);
699 /* Old crap is replaced with new one. 8)
702 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 * It cannot be less due to utterly erratic ACK generation made
704 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 * to do with delayed acks, because at cwnd>2 true delack timeout
706 * is invisible. Actually, Linux-2.4 also generates erratic
707 * ACKs in some circumstances.
709 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
711 /* 2. Fixups made earlier cannot be right.
712 * If we do not estimate RTO correctly without them,
713 * all the algo is pure shit and should be replaced
714 * with correct one. It is exactly, which we pretend to do.
717 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 * guarantees that rto is higher.
723 /* Save metrics learned by this TCP session.
724 This function is called only, when TCP finishes successfully
725 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
727 void tcp_update_metrics(struct sock
*sk
)
729 struct tcp_sock
*tp
= tcp_sk(sk
);
730 struct dst_entry
*dst
= __sk_dst_get(sk
);
732 if (sysctl_tcp_nometrics_save
)
737 if (dst
&& (dst
->flags
& DST_HOST
)) {
738 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
742 if (icsk
->icsk_backoff
|| !tp
->srtt
) {
743 /* This session failed to estimate rtt. Why?
744 * Probably, no packets returned in time.
747 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
748 dst_metric_set(dst
, RTAX_RTT
, 0);
752 rtt
= dst_metric_rtt(dst
, RTAX_RTT
);
755 /* If newly calculated rtt larger than stored one,
756 * store new one. Otherwise, use EWMA. Remember,
757 * rtt overestimation is always better than underestimation.
759 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
761 set_dst_metric_rtt(dst
, RTAX_RTT
, tp
->srtt
);
763 set_dst_metric_rtt(dst
, RTAX_RTT
, rtt
- (m
>> 3));
766 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
771 /* Scale deviation to rttvar fixed point */
776 var
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
780 var
-= (var
- m
) >> 2;
782 set_dst_metric_rtt(dst
, RTAX_RTTVAR
, var
);
785 if (tcp_in_initial_slowstart(tp
)) {
786 /* Slow start still did not finish. */
787 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
788 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
789 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
790 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_cwnd
>> 1);
791 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
792 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
793 dst_metric_set(dst
, RTAX_CWND
, tp
->snd_cwnd
);
794 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
795 icsk
->icsk_ca_state
== TCP_CA_Open
) {
796 /* Cong. avoidance phase, cwnd is reliable. */
797 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
798 dst_metric_set(dst
, RTAX_SSTHRESH
,
799 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
));
800 if (!dst_metric_locked(dst
, RTAX_CWND
))
801 dst_metric_set(dst
, RTAX_CWND
,
802 (dst_metric(dst
, RTAX_CWND
) +
805 /* Else slow start did not finish, cwnd is non-sense,
806 ssthresh may be also invalid.
808 if (!dst_metric_locked(dst
, RTAX_CWND
))
809 dst_metric_set(dst
, RTAX_CWND
,
810 (dst_metric(dst
, RTAX_CWND
) +
811 tp
->snd_ssthresh
) >> 1);
812 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
813 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
814 tp
->snd_ssthresh
> dst_metric(dst
, RTAX_SSTHRESH
))
815 dst_metric_set(dst
, RTAX_SSTHRESH
, tp
->snd_ssthresh
);
818 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
819 if (dst_metric(dst
, RTAX_REORDERING
) < tp
->reordering
&&
820 tp
->reordering
!= sysctl_tcp_reordering
)
821 dst_metric_set(dst
, RTAX_REORDERING
, tp
->reordering
);
826 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
828 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
831 cwnd
= TCP_INIT_CWND
;
832 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
835 /* Set slow start threshold and cwnd not falling to slow start */
836 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
838 struct tcp_sock
*tp
= tcp_sk(sk
);
839 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
841 tp
->prior_ssthresh
= 0;
843 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
846 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
847 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
848 tcp_packets_in_flight(tp
) + 1U);
849 tp
->snd_cwnd_cnt
= 0;
850 tp
->high_seq
= tp
->snd_nxt
;
851 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
852 TCP_ECN_queue_cwr(tp
);
854 tcp_set_ca_state(sk
, TCP_CA_CWR
);
859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
860 * disables it when reordering is detected
862 static void tcp_disable_fack(struct tcp_sock
*tp
)
864 /* RFC3517 uses different metric in lost marker => reset on change */
866 tp
->lost_skb_hint
= NULL
;
867 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
870 /* Take a notice that peer is sending D-SACKs */
871 static void tcp_dsack_seen(struct tcp_sock
*tp
)
873 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
876 /* Initialize metrics on socket. */
878 static void tcp_init_metrics(struct sock
*sk
)
880 struct tcp_sock
*tp
= tcp_sk(sk
);
881 struct dst_entry
*dst
= __sk_dst_get(sk
);
888 if (dst_metric_locked(dst
, RTAX_CWND
))
889 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
890 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
891 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
892 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
893 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
895 /* ssthresh may have been reduced unnecessarily during.
896 * 3WHS. Restore it back to its initial default.
898 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
900 if (dst_metric(dst
, RTAX_REORDERING
) &&
901 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
902 tcp_disable_fack(tp
);
903 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
906 if (dst_metric(dst
, RTAX_RTT
) == 0 || tp
->srtt
== 0)
909 /* Initial rtt is determined from SYN,SYN-ACK.
910 * The segment is small and rtt may appear much
911 * less than real one. Use per-dst memory
912 * to make it more realistic.
914 * A bit of theory. RTT is time passed after "normal" sized packet
915 * is sent until it is ACKed. In normal circumstances sending small
916 * packets force peer to delay ACKs and calculation is correct too.
917 * The algorithm is adaptive and, provided we follow specs, it
918 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 * tricks sort of "quick acks" for time long enough to decrease RTT
920 * to low value, and then abruptly stops to do it and starts to delay
921 * ACKs, wait for troubles.
923 if (dst_metric_rtt(dst
, RTAX_RTT
) > tp
->srtt
) {
924 tp
->srtt
= dst_metric_rtt(dst
, RTAX_RTT
);
925 tp
->rtt_seq
= tp
->snd_nxt
;
927 if (dst_metric_rtt(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
928 tp
->mdev
= dst_metric_rtt(dst
, RTAX_RTTVAR
);
929 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
934 /* RFC2988bis: We've failed to get a valid RTT sample from
935 * 3WHS. This is most likely due to retransmission,
936 * including spurious one. Reset the RTO back to 3secs
937 * from the more aggressive 1sec to avoid more spurious
940 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_FALLBACK
;
941 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_FALLBACK
;
943 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 * retransmission has occurred.
948 if (tp
->total_retrans
> 1)
951 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
952 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
955 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
958 struct tcp_sock
*tp
= tcp_sk(sk
);
959 if (metric
> tp
->reordering
) {
962 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
964 /* This exciting event is worth to be remembered. 8) */
966 mib_idx
= LINUX_MIB_TCPTSREORDER
;
967 else if (tcp_is_reno(tp
))
968 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
969 else if (tcp_is_fack(tp
))
970 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
972 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
974 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
975 #if FASTRETRANS_DEBUG > 1
976 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
977 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
981 tp
->undo_marker
? tp
->undo_retrans
: 0);
983 tcp_disable_fack(tp
);
987 /* This must be called before lost_out is incremented */
988 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
990 if ((tp
->retransmit_skb_hint
== NULL
) ||
991 before(TCP_SKB_CB(skb
)->seq
,
992 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
993 tp
->retransmit_skb_hint
= skb
;
996 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
997 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
1000 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1002 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1003 tcp_verify_retransmit_hint(tp
, skb
);
1005 tp
->lost_out
+= tcp_skb_pcount(skb
);
1006 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
1011 struct sk_buff
*skb
)
1013 tcp_verify_retransmit_hint(tp
, skb
);
1015 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1016 tp
->lost_out
+= tcp_skb_pcount(skb
);
1017 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024 * Packets in queue with these bits set are counted in variables
1025 * sacked_out, retrans_out and lost_out, correspondingly.
1027 * Valid combinations are:
1028 * Tag InFlight Description
1029 * 0 1 - orig segment is in flight.
1030 * S 0 - nothing flies, orig reached receiver.
1031 * L 0 - nothing flies, orig lost by net.
1032 * R 2 - both orig and retransmit are in flight.
1033 * L|R 1 - orig is lost, retransmit is in flight.
1034 * S|R 1 - orig reached receiver, retrans is still in flight.
1035 * (L|S|R is logically valid, it could occur when L|R is sacked,
1036 * but it is equivalent to plain S and code short-curcuits it to S.
1037 * L|S is logically invalid, it would mean -1 packet in flight 8))
1039 * These 6 states form finite state machine, controlled by the following events:
1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042 * 3. Loss detection event of two flavors:
1043 * A. Scoreboard estimator decided the packet is lost.
1044 * A'. Reno "three dupacks" marks head of queue lost.
1045 * A''. Its FACK modification, head until snd.fack is lost.
1046 * B. SACK arrives sacking SND.NXT at the moment, when the
1047 * segment was retransmitted.
1048 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1050 * It is pleasant to note, that state diagram turns out to be commutative,
1051 * so that we are allowed not to be bothered by order of our actions,
1052 * when multiple events arrive simultaneously. (see the function below).
1054 * Reordering detection.
1055 * --------------------
1056 * Reordering metric is maximal distance, which a packet can be displaced
1057 * in packet stream. With SACKs we can estimate it:
1059 * 1. SACK fills old hole and the corresponding segment was not
1060 * ever retransmitted -> reordering. Alas, we cannot use it
1061 * when segment was retransmitted.
1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063 * for retransmitted and already SACKed segment -> reordering..
1064 * Both of these heuristics are not used in Loss state, when we cannot
1065 * account for retransmits accurately.
1067 * SACK block validation.
1068 * ----------------------
1070 * SACK block range validation checks that the received SACK block fits to
1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072 * Note that SND.UNA is not included to the range though being valid because
1073 * it means that the receiver is rather inconsistent with itself reporting
1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075 * perfectly valid, however, in light of RFC2018 which explicitly states
1076 * that "SACK block MUST reflect the newest segment. Even if the newest
1077 * segment is going to be discarded ...", not that it looks very clever
1078 * in case of head skb. Due to potentional receiver driven attacks, we
1079 * choose to avoid immediate execution of a walk in write queue due to
1080 * reneging and defer head skb's loss recovery to standard loss recovery
1081 * procedure that will eventually trigger (nothing forbids us doing this).
1083 * Implements also blockage to start_seq wrap-around. Problem lies in the
1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085 * there's no guarantee that it will be before snd_nxt (n). The problem
1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1089 * <- outs wnd -> <- wrapzone ->
1090 * u e n u_w e_w s n_w
1092 * |<------------+------+----- TCP seqno space --------------+---------->|
1093 * ...-- <2^31 ->| |<--------...
1094 * ...---- >2^31 ------>| |<--------...
1096 * Current code wouldn't be vulnerable but it's better still to discard such
1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100 * equal to the ideal case (infinite seqno space without wrap caused issues).
1102 * With D-SACK the lower bound is extended to cover sequence space below
1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104 * again, D-SACK block must not to go across snd_una (for the same reason as
1105 * for the normal SACK blocks, explained above). But there all simplicity
1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107 * fully below undo_marker they do not affect behavior in anyway and can
1108 * therefore be safely ignored. In rare cases (which are more or less
1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110 * fragmentation and packet reordering past skb's retransmission. To consider
1111 * them correctly, the acceptable range must be extended even more though
1112 * the exact amount is rather hard to quantify. However, tp->max_window can
1113 * be used as an exaggerated estimate.
1115 static int tcp_is_sackblock_valid(struct tcp_sock
*tp
, int is_dsack
,
1116 u32 start_seq
, u32 end_seq
)
1118 /* Too far in future, or reversed (interpretation is ambiguous) */
1119 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1122 /* Nasty start_seq wrap-around check (see comments above) */
1123 if (!before(start_seq
, tp
->snd_nxt
))
1126 /* In outstanding window? ...This is valid exit for D-SACKs too.
1127 * start_seq == snd_una is non-sensical (see comments above)
1129 if (after(start_seq
, tp
->snd_una
))
1132 if (!is_dsack
|| !tp
->undo_marker
)
1135 /* ...Then it's D-SACK, and must reside below snd_una completely */
1136 if (after(end_seq
, tp
->snd_una
))
1139 if (!before(start_seq
, tp
->undo_marker
))
1143 if (!after(end_seq
, tp
->undo_marker
))
1146 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 * start_seq < undo_marker and end_seq >= undo_marker.
1149 return !before(start_seq
, end_seq
- tp
->max_window
);
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153 * Event "B". Later note: FACK people cheated me again 8), we have to account
1154 * for reordering! Ugly, but should help.
1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157 * less than what is now known to be received by the other end (derived from
1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159 * retransmitted skbs to avoid some costly processing per ACKs.
1161 static void tcp_mark_lost_retrans(struct sock
*sk
)
1163 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1164 struct tcp_sock
*tp
= tcp_sk(sk
);
1165 struct sk_buff
*skb
;
1167 u32 new_low_seq
= tp
->snd_nxt
;
1168 u32 received_upto
= tcp_highest_sack_seq(tp
);
1170 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
1171 !after(received_upto
, tp
->lost_retrans_low
) ||
1172 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1175 tcp_for_write_queue(skb
, sk
) {
1176 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
1178 if (skb
== tcp_send_head(sk
))
1180 if (cnt
== tp
->retrans_out
)
1182 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1185 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1188 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 * constraint here (see above) but figuring out that at
1190 * least tp->reordering SACK blocks reside between ack_seq
1191 * and received_upto is not easy task to do cheaply with
1192 * the available datastructures.
1194 * Whether FACK should check here for tp->reordering segs
1195 * in-between one could argue for either way (it would be
1196 * rather simple to implement as we could count fack_count
1197 * during the walk and do tp->fackets_out - fack_count).
1199 if (after(received_upto
, ack_seq
)) {
1200 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1201 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1203 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1204 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1206 if (before(ack_seq
, new_low_seq
))
1207 new_low_seq
= ack_seq
;
1208 cnt
+= tcp_skb_pcount(skb
);
1212 if (tp
->retrans_out
)
1213 tp
->lost_retrans_low
= new_low_seq
;
1216 static int tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1217 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1220 struct tcp_sock
*tp
= tcp_sk(sk
);
1221 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1222 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1225 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1228 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1229 } else if (num_sacks
> 1) {
1230 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1231 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1233 if (!after(end_seq_0
, end_seq_1
) &&
1234 !before(start_seq_0
, start_seq_1
)) {
1237 NET_INC_STATS_BH(sock_net(sk
),
1238 LINUX_MIB_TCPDSACKOFORECV
);
1242 /* D-SACK for already forgotten data... Do dumb counting. */
1243 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1244 !after(end_seq_0
, prior_snd_una
) &&
1245 after(end_seq_0
, tp
->undo_marker
))
1251 struct tcp_sacktag_state
{
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258 * the incoming SACK may not exactly match but we can find smaller MSS
1259 * aligned portion of it that matches. Therefore we might need to fragment
1260 * which may fail and creates some hassle (caller must handle error case
1263 * FIXME: this could be merged to shift decision code
1265 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1266 u32 start_seq
, u32 end_seq
)
1269 unsigned int pkt_len
;
1272 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1273 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1275 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1276 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1277 mss
= tcp_skb_mss(skb
);
1278 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1281 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1285 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1290 /* Round if necessary so that SACKs cover only full MSSes
1291 * and/or the remaining small portion (if present)
1293 if (pkt_len
> mss
) {
1294 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1295 if (!in_sack
&& new_len
< pkt_len
) {
1297 if (new_len
> skb
->len
)
1302 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1311 static u8
tcp_sacktag_one(struct sock
*sk
,
1312 struct tcp_sacktag_state
*state
, u8 sacked
,
1313 u32 start_seq
, u32 end_seq
,
1314 int dup_sack
, int pcount
)
1316 struct tcp_sock
*tp
= tcp_sk(sk
);
1317 int fack_count
= state
->fack_count
;
1319 /* Account D-SACK for retransmitted packet. */
1320 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1321 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1322 after(end_seq
, tp
->undo_marker
))
1324 if (sacked
& TCPCB_SACKED_ACKED
)
1325 state
->reord
= min(fack_count
, state
->reord
);
1328 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329 if (!after(end_seq
, tp
->snd_una
))
1332 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1333 if (sacked
& TCPCB_SACKED_RETRANS
) {
1334 /* If the segment is not tagged as lost,
1335 * we do not clear RETRANS, believing
1336 * that retransmission is still in flight.
1338 if (sacked
& TCPCB_LOST
) {
1339 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1340 tp
->lost_out
-= pcount
;
1341 tp
->retrans_out
-= pcount
;
1344 if (!(sacked
& TCPCB_RETRANS
)) {
1345 /* New sack for not retransmitted frame,
1346 * which was in hole. It is reordering.
1348 if (before(start_seq
,
1349 tcp_highest_sack_seq(tp
)))
1350 state
->reord
= min(fack_count
,
1353 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354 if (!after(end_seq
, tp
->frto_highmark
))
1355 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1358 if (sacked
& TCPCB_LOST
) {
1359 sacked
&= ~TCPCB_LOST
;
1360 tp
->lost_out
-= pcount
;
1364 sacked
|= TCPCB_SACKED_ACKED
;
1365 state
->flag
|= FLAG_DATA_SACKED
;
1366 tp
->sacked_out
+= pcount
;
1368 fack_count
+= pcount
;
1370 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1372 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1373 tp
->lost_cnt_hint
+= pcount
;
1375 if (fack_count
> tp
->fackets_out
)
1376 tp
->fackets_out
= fack_count
;
1379 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 * are accounted above as well.
1383 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1384 sacked
&= ~TCPCB_SACKED_RETRANS
;
1385 tp
->retrans_out
-= pcount
;
1391 /* Shift newly-SACKed bytes from this skb to the immediately previous
1392 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1394 static int tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1395 struct tcp_sacktag_state
*state
,
1396 unsigned int pcount
, int shifted
, int mss
,
1399 struct tcp_sock
*tp
= tcp_sk(sk
);
1400 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1401 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1402 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1406 /* Adjust hint for FACK. Non-FACK is handled in tcp_sacktag_one(). */
1407 if (tcp_is_fack(tp
) && (skb
== tp
->lost_skb_hint
))
1408 tp
->lost_cnt_hint
+= pcount
;
1410 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1411 TCP_SKB_CB(skb
)->seq
+= shifted
;
1413 skb_shinfo(prev
)->gso_segs
+= pcount
;
1414 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1415 skb_shinfo(skb
)->gso_segs
-= pcount
;
1417 /* When we're adding to gso_segs == 1, gso_size will be zero,
1418 * in theory this shouldn't be necessary but as long as DSACK
1419 * code can come after this skb later on it's better to keep
1420 * setting gso_size to something.
1422 if (!skb_shinfo(prev
)->gso_size
) {
1423 skb_shinfo(prev
)->gso_size
= mss
;
1424 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1427 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1428 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1429 skb_shinfo(skb
)->gso_size
= 0;
1430 skb_shinfo(skb
)->gso_type
= 0;
1433 /* Adjust counters and hints for the newly sacked sequence range but
1434 * discard the return value since prev is already marked.
1436 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1437 start_seq
, end_seq
, dup_sack
, pcount
);
1439 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1440 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1443 BUG_ON(!tcp_skb_pcount(skb
));
1444 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1448 /* Whole SKB was eaten :-) */
1450 if (skb
== tp
->retransmit_skb_hint
)
1451 tp
->retransmit_skb_hint
= prev
;
1452 if (skb
== tp
->scoreboard_skb_hint
)
1453 tp
->scoreboard_skb_hint
= prev
;
1454 if (skb
== tp
->lost_skb_hint
) {
1455 tp
->lost_skb_hint
= prev
;
1456 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1459 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1460 if (skb
== tcp_highest_sack(sk
))
1461 tcp_advance_highest_sack(sk
, skb
);
1463 tcp_unlink_write_queue(skb
, sk
);
1464 sk_wmem_free_skb(sk
, skb
);
1466 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1471 /* I wish gso_size would have a bit more sane initialization than
1472 * something-or-zero which complicates things
1474 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1476 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1479 /* Shifting pages past head area doesn't work */
1480 static int skb_can_shift(const struct sk_buff
*skb
)
1482 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1485 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1488 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1489 struct tcp_sacktag_state
*state
,
1490 u32 start_seq
, u32 end_seq
,
1493 struct tcp_sock
*tp
= tcp_sk(sk
);
1494 struct sk_buff
*prev
;
1500 if (!sk_can_gso(sk
))
1503 /* Normally R but no L won't result in plain S */
1505 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1507 if (!skb_can_shift(skb
))
1509 /* This frame is about to be dropped (was ACKed). */
1510 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1513 /* Can only happen with delayed DSACK + discard craziness */
1514 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1516 prev
= tcp_write_queue_prev(sk
, skb
);
1518 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1521 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1522 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1526 pcount
= tcp_skb_pcount(skb
);
1527 mss
= tcp_skb_seglen(skb
);
1529 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1530 * drop this restriction as unnecessary
1532 if (mss
!= tcp_skb_seglen(prev
))
1535 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1537 /* CHECKME: This is non-MSS split case only?, this will
1538 * cause skipped skbs due to advancing loop btw, original
1539 * has that feature too
1541 if (tcp_skb_pcount(skb
) <= 1)
1544 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1546 /* TODO: head merge to next could be attempted here
1547 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1548 * though it might not be worth of the additional hassle
1550 * ...we can probably just fallback to what was done
1551 * previously. We could try merging non-SACKed ones
1552 * as well but it probably isn't going to buy off
1553 * because later SACKs might again split them, and
1554 * it would make skb timestamp tracking considerably
1560 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1562 BUG_ON(len
> skb
->len
);
1564 /* MSS boundaries should be honoured or else pcount will
1565 * severely break even though it makes things bit trickier.
1566 * Optimize common case to avoid most of the divides
1568 mss
= tcp_skb_mss(skb
);
1570 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1571 * drop this restriction as unnecessary
1573 if (mss
!= tcp_skb_seglen(prev
))
1578 } else if (len
< mss
) {
1586 if (!skb_shift(prev
, skb
, len
))
1588 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1591 /* Hole filled allows collapsing with the next as well, this is very
1592 * useful when hole on every nth skb pattern happens
1594 if (prev
== tcp_write_queue_tail(sk
))
1596 skb
= tcp_write_queue_next(sk
, prev
);
1598 if (!skb_can_shift(skb
) ||
1599 (skb
== tcp_send_head(sk
)) ||
1600 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1601 (mss
!= tcp_skb_seglen(skb
)))
1605 if (skb_shift(prev
, skb
, len
)) {
1606 pcount
+= tcp_skb_pcount(skb
);
1607 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1611 state
->fack_count
+= pcount
;
1618 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1622 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1623 struct tcp_sack_block
*next_dup
,
1624 struct tcp_sacktag_state
*state
,
1625 u32 start_seq
, u32 end_seq
,
1628 struct tcp_sock
*tp
= tcp_sk(sk
);
1629 struct sk_buff
*tmp
;
1631 tcp_for_write_queue_from(skb
, sk
) {
1633 int dup_sack
= dup_sack_in
;
1635 if (skb
== tcp_send_head(sk
))
1638 /* queue is in-order => we can short-circuit the walk early */
1639 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1642 if ((next_dup
!= NULL
) &&
1643 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1644 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1645 next_dup
->start_seq
,
1651 /* skb reference here is a bit tricky to get right, since
1652 * shifting can eat and free both this skb and the next,
1653 * so not even _safe variant of the loop is enough.
1656 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1657 start_seq
, end_seq
, dup_sack
);
1666 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1672 if (unlikely(in_sack
< 0))
1676 TCP_SKB_CB(skb
)->sacked
=
1679 TCP_SKB_CB(skb
)->sacked
,
1680 TCP_SKB_CB(skb
)->seq
,
1681 TCP_SKB_CB(skb
)->end_seq
,
1683 tcp_skb_pcount(skb
));
1685 if (!before(TCP_SKB_CB(skb
)->seq
,
1686 tcp_highest_sack_seq(tp
)))
1687 tcp_advance_highest_sack(sk
, skb
);
1690 state
->fack_count
+= tcp_skb_pcount(skb
);
1695 /* Avoid all extra work that is being done by sacktag while walking in
1698 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1699 struct tcp_sacktag_state
*state
,
1702 tcp_for_write_queue_from(skb
, sk
) {
1703 if (skb
== tcp_send_head(sk
))
1706 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1709 state
->fack_count
+= tcp_skb_pcount(skb
);
1714 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1716 struct tcp_sack_block
*next_dup
,
1717 struct tcp_sacktag_state
*state
,
1720 if (next_dup
== NULL
)
1723 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1724 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1725 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1726 next_dup
->start_seq
, next_dup
->end_seq
,
1733 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1735 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1739 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1742 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1743 struct tcp_sock
*tp
= tcp_sk(sk
);
1744 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1745 TCP_SKB_CB(ack_skb
)->sacked
);
1746 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1747 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1748 struct tcp_sack_block
*cache
;
1749 struct tcp_sacktag_state state
;
1750 struct sk_buff
*skb
;
1751 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1753 int found_dup_sack
= 0;
1755 int first_sack_index
;
1758 state
.reord
= tp
->packets_out
;
1760 if (!tp
->sacked_out
) {
1761 if (WARN_ON(tp
->fackets_out
))
1762 tp
->fackets_out
= 0;
1763 tcp_highest_sack_reset(sk
);
1766 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1767 num_sacks
, prior_snd_una
);
1769 state
.flag
|= FLAG_DSACKING_ACK
;
1771 /* Eliminate too old ACKs, but take into
1772 * account more or less fresh ones, they can
1773 * contain valid SACK info.
1775 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1778 if (!tp
->packets_out
)
1782 first_sack_index
= 0;
1783 for (i
= 0; i
< num_sacks
; i
++) {
1784 int dup_sack
= !i
&& found_dup_sack
;
1786 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1787 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1789 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1790 sp
[used_sacks
].start_seq
,
1791 sp
[used_sacks
].end_seq
)) {
1795 if (!tp
->undo_marker
)
1796 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1798 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1800 /* Don't count olds caused by ACK reordering */
1801 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1802 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1804 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1807 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1809 first_sack_index
= -1;
1813 /* Ignore very old stuff early */
1814 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1820 /* order SACK blocks to allow in order walk of the retrans queue */
1821 for (i
= used_sacks
- 1; i
> 0; i
--) {
1822 for (j
= 0; j
< i
; j
++) {
1823 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1824 swap(sp
[j
], sp
[j
+ 1]);
1826 /* Track where the first SACK block goes to */
1827 if (j
== first_sack_index
)
1828 first_sack_index
= j
+ 1;
1833 skb
= tcp_write_queue_head(sk
);
1834 state
.fack_count
= 0;
1837 if (!tp
->sacked_out
) {
1838 /* It's already past, so skip checking against it */
1839 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1841 cache
= tp
->recv_sack_cache
;
1842 /* Skip empty blocks in at head of the cache */
1843 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1848 while (i
< used_sacks
) {
1849 u32 start_seq
= sp
[i
].start_seq
;
1850 u32 end_seq
= sp
[i
].end_seq
;
1851 int dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1852 struct tcp_sack_block
*next_dup
= NULL
;
1854 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1855 next_dup
= &sp
[i
+ 1];
1857 /* Skip too early cached blocks */
1858 while (tcp_sack_cache_ok(tp
, cache
) &&
1859 !before(start_seq
, cache
->end_seq
))
1862 /* Can skip some work by looking recv_sack_cache? */
1863 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1864 after(end_seq
, cache
->start_seq
)) {
1867 if (before(start_seq
, cache
->start_seq
)) {
1868 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1870 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1877 /* Rest of the block already fully processed? */
1878 if (!after(end_seq
, cache
->end_seq
))
1881 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1885 /* ...tail remains todo... */
1886 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1887 /* ...but better entrypoint exists! */
1888 skb
= tcp_highest_sack(sk
);
1891 state
.fack_count
= tp
->fackets_out
;
1896 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1897 /* Check overlap against next cached too (past this one already) */
1902 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1903 skb
= tcp_highest_sack(sk
);
1906 state
.fack_count
= tp
->fackets_out
;
1908 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1911 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1912 start_seq
, end_seq
, dup_sack
);
1915 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1916 * due to in-order walk
1918 if (after(end_seq
, tp
->frto_highmark
))
1919 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1924 /* Clear the head of the cache sack blocks so we can skip it next time */
1925 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1926 tp
->recv_sack_cache
[i
].start_seq
= 0;
1927 tp
->recv_sack_cache
[i
].end_seq
= 0;
1929 for (j
= 0; j
< used_sacks
; j
++)
1930 tp
->recv_sack_cache
[i
++] = sp
[j
];
1932 tcp_mark_lost_retrans(sk
);
1934 tcp_verify_left_out(tp
);
1936 if ((state
.reord
< tp
->fackets_out
) &&
1937 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1938 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1939 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1943 #if FASTRETRANS_DEBUG > 0
1944 WARN_ON((int)tp
->sacked_out
< 0);
1945 WARN_ON((int)tp
->lost_out
< 0);
1946 WARN_ON((int)tp
->retrans_out
< 0);
1947 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1952 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1953 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1955 static int tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1959 holes
= max(tp
->lost_out
, 1U);
1960 holes
= min(holes
, tp
->packets_out
);
1962 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1963 tp
->sacked_out
= tp
->packets_out
- holes
;
1969 /* If we receive more dupacks than we expected counting segments
1970 * in assumption of absent reordering, interpret this as reordering.
1971 * The only another reason could be bug in receiver TCP.
1973 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1975 struct tcp_sock
*tp
= tcp_sk(sk
);
1976 if (tcp_limit_reno_sacked(tp
))
1977 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1980 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1982 static void tcp_add_reno_sack(struct sock
*sk
)
1984 struct tcp_sock
*tp
= tcp_sk(sk
);
1986 tcp_check_reno_reordering(sk
, 0);
1987 tcp_verify_left_out(tp
);
1990 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1992 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1994 struct tcp_sock
*tp
= tcp_sk(sk
);
1997 /* One ACK acked hole. The rest eat duplicate ACKs. */
1998 if (acked
- 1 >= tp
->sacked_out
)
2001 tp
->sacked_out
-= acked
- 1;
2003 tcp_check_reno_reordering(sk
, acked
);
2004 tcp_verify_left_out(tp
);
2007 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2012 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
2014 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
2017 /* F-RTO can only be used if TCP has never retransmitted anything other than
2018 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2020 int tcp_use_frto(struct sock
*sk
)
2022 const struct tcp_sock
*tp
= tcp_sk(sk
);
2023 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2024 struct sk_buff
*skb
;
2026 if (!sysctl_tcp_frto
)
2029 /* MTU probe and F-RTO won't really play nicely along currently */
2030 if (icsk
->icsk_mtup
.probe_size
)
2033 if (tcp_is_sackfrto(tp
))
2036 /* Avoid expensive walking of rexmit queue if possible */
2037 if (tp
->retrans_out
> 1)
2040 skb
= tcp_write_queue_head(sk
);
2041 if (tcp_skb_is_last(sk
, skb
))
2043 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
2044 tcp_for_write_queue_from(skb
, sk
) {
2045 if (skb
== tcp_send_head(sk
))
2047 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2049 /* Short-circuit when first non-SACKed skb has been checked */
2050 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2056 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2057 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2058 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2059 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2060 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2061 * bits are handled if the Loss state is really to be entered (in
2062 * tcp_enter_frto_loss).
2064 * Do like tcp_enter_loss() would; when RTO expires the second time it
2066 * "Reduce ssthresh if it has not yet been made inside this window."
2068 void tcp_enter_frto(struct sock
*sk
)
2070 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2071 struct tcp_sock
*tp
= tcp_sk(sk
);
2072 struct sk_buff
*skb
;
2074 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
2075 tp
->snd_una
== tp
->high_seq
||
2076 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
2077 !icsk
->icsk_retransmits
)) {
2078 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2079 /* Our state is too optimistic in ssthresh() call because cwnd
2080 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2081 * recovery has not yet completed. Pattern would be this: RTO,
2082 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2084 * RFC4138 should be more specific on what to do, even though
2085 * RTO is quite unlikely to occur after the first Cumulative ACK
2086 * due to back-off and complexity of triggering events ...
2088 if (tp
->frto_counter
) {
2090 stored_cwnd
= tp
->snd_cwnd
;
2092 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2093 tp
->snd_cwnd
= stored_cwnd
;
2095 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2097 /* ... in theory, cong.control module could do "any tricks" in
2098 * ssthresh(), which means that ca_state, lost bits and lost_out
2099 * counter would have to be faked before the call occurs. We
2100 * consider that too expensive, unlikely and hacky, so modules
2101 * using these in ssthresh() must deal these incompatibility
2102 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2104 tcp_ca_event(sk
, CA_EVENT_FRTO
);
2107 tp
->undo_marker
= tp
->snd_una
;
2108 tp
->undo_retrans
= 0;
2110 skb
= tcp_write_queue_head(sk
);
2111 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2112 tp
->undo_marker
= 0;
2113 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2114 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2115 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2117 tcp_verify_left_out(tp
);
2119 /* Too bad if TCP was application limited */
2120 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2122 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2123 * The last condition is necessary at least in tp->frto_counter case.
2125 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
2126 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
2127 after(tp
->high_seq
, tp
->snd_una
)) {
2128 tp
->frto_highmark
= tp
->high_seq
;
2130 tp
->frto_highmark
= tp
->snd_nxt
;
2132 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
2133 tp
->high_seq
= tp
->snd_nxt
;
2134 tp
->frto_counter
= 1;
2137 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2138 * which indicates that we should follow the traditional RTO recovery,
2139 * i.e. mark everything lost and do go-back-N retransmission.
2141 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
2143 struct tcp_sock
*tp
= tcp_sk(sk
);
2144 struct sk_buff
*skb
;
2147 tp
->retrans_out
= 0;
2148 if (tcp_is_reno(tp
))
2149 tcp_reset_reno_sack(tp
);
2151 tcp_for_write_queue(skb
, sk
) {
2152 if (skb
== tcp_send_head(sk
))
2155 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2157 * Count the retransmission made on RTO correctly (only when
2158 * waiting for the first ACK and did not get it)...
2160 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
2161 /* For some reason this R-bit might get cleared? */
2162 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
2163 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2164 /* ...enter this if branch just for the first segment */
2165 flag
|= FLAG_DATA_ACKED
;
2167 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2168 tp
->undo_marker
= 0;
2169 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2172 /* Marking forward transmissions that were made after RTO lost
2173 * can cause unnecessary retransmissions in some scenarios,
2174 * SACK blocks will mitigate that in some but not in all cases.
2175 * We used to not mark them but it was causing break-ups with
2176 * receivers that do only in-order receival.
2178 * TODO: we could detect presence of such receiver and select
2179 * different behavior per flow.
2181 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2182 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2183 tp
->lost_out
+= tcp_skb_pcount(skb
);
2184 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2187 tcp_verify_left_out(tp
);
2189 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2190 tp
->snd_cwnd_cnt
= 0;
2191 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2192 tp
->frto_counter
= 0;
2193 tp
->bytes_acked
= 0;
2195 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2196 sysctl_tcp_reordering
);
2197 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2198 tp
->high_seq
= tp
->snd_nxt
;
2199 TCP_ECN_queue_cwr(tp
);
2201 tcp_clear_all_retrans_hints(tp
);
2204 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2206 tp
->retrans_out
= 0;
2209 tp
->undo_marker
= 0;
2210 tp
->undo_retrans
= 0;
2213 void tcp_clear_retrans(struct tcp_sock
*tp
)
2215 tcp_clear_retrans_partial(tp
);
2217 tp
->fackets_out
= 0;
2221 /* Enter Loss state. If "how" is not zero, forget all SACK information
2222 * and reset tags completely, otherwise preserve SACKs. If receiver
2223 * dropped its ofo queue, we will know this due to reneging detection.
2225 void tcp_enter_loss(struct sock
*sk
, int how
)
2227 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2228 struct tcp_sock
*tp
= tcp_sk(sk
);
2229 struct sk_buff
*skb
;
2231 /* Reduce ssthresh if it has not yet been made inside this window. */
2232 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2233 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2234 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2235 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2236 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2239 tp
->snd_cwnd_cnt
= 0;
2240 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2242 tp
->bytes_acked
= 0;
2243 tcp_clear_retrans_partial(tp
);
2245 if (tcp_is_reno(tp
))
2246 tcp_reset_reno_sack(tp
);
2249 /* Push undo marker, if it was plain RTO and nothing
2250 * was retransmitted. */
2251 tp
->undo_marker
= tp
->snd_una
;
2254 tp
->fackets_out
= 0;
2256 tcp_clear_all_retrans_hints(tp
);
2258 tcp_for_write_queue(skb
, sk
) {
2259 if (skb
== tcp_send_head(sk
))
2262 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2263 tp
->undo_marker
= 0;
2264 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2265 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2266 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2267 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2268 tp
->lost_out
+= tcp_skb_pcount(skb
);
2269 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2272 tcp_verify_left_out(tp
);
2274 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2275 sysctl_tcp_reordering
);
2276 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2277 tp
->high_seq
= tp
->snd_nxt
;
2278 TCP_ECN_queue_cwr(tp
);
2279 /* Abort F-RTO algorithm if one is in progress */
2280 tp
->frto_counter
= 0;
2283 /* If ACK arrived pointing to a remembered SACK, it means that our
2284 * remembered SACKs do not reflect real state of receiver i.e.
2285 * receiver _host_ is heavily congested (or buggy).
2287 * Do processing similar to RTO timeout.
2289 static int tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2291 if (flag
& FLAG_SACK_RENEGING
) {
2292 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2293 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2295 tcp_enter_loss(sk
, 1);
2296 icsk
->icsk_retransmits
++;
2297 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2298 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2299 icsk
->icsk_rto
, TCP_RTO_MAX
);
2305 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2307 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2310 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2311 * counter when SACK is enabled (without SACK, sacked_out is used for
2314 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2315 * segments up to the highest received SACK block so far and holes in
2318 * With reordering, holes may still be in flight, so RFC3517 recovery
2319 * uses pure sacked_out (total number of SACKed segments) even though
2320 * it violates the RFC that uses duplicate ACKs, often these are equal
2321 * but when e.g. out-of-window ACKs or packet duplication occurs,
2322 * they differ. Since neither occurs due to loss, TCP should really
2325 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2327 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2330 static inline int tcp_skb_timedout(const struct sock
*sk
,
2331 const struct sk_buff
*skb
)
2333 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2336 static inline int tcp_head_timedout(const struct sock
*sk
)
2338 const struct tcp_sock
*tp
= tcp_sk(sk
);
2340 return tp
->packets_out
&&
2341 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2344 /* Linux NewReno/SACK/FACK/ECN state machine.
2345 * --------------------------------------
2347 * "Open" Normal state, no dubious events, fast path.
2348 * "Disorder" In all the respects it is "Open",
2349 * but requires a bit more attention. It is entered when
2350 * we see some SACKs or dupacks. It is split of "Open"
2351 * mainly to move some processing from fast path to slow one.
2352 * "CWR" CWND was reduced due to some Congestion Notification event.
2353 * It can be ECN, ICMP source quench, local device congestion.
2354 * "Recovery" CWND was reduced, we are fast-retransmitting.
2355 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2357 * tcp_fastretrans_alert() is entered:
2358 * - each incoming ACK, if state is not "Open"
2359 * - when arrived ACK is unusual, namely:
2364 * Counting packets in flight is pretty simple.
2366 * in_flight = packets_out - left_out + retrans_out
2368 * packets_out is SND.NXT-SND.UNA counted in packets.
2370 * retrans_out is number of retransmitted segments.
2372 * left_out is number of segments left network, but not ACKed yet.
2374 * left_out = sacked_out + lost_out
2376 * sacked_out: Packets, which arrived to receiver out of order
2377 * and hence not ACKed. With SACKs this number is simply
2378 * amount of SACKed data. Even without SACKs
2379 * it is easy to give pretty reliable estimate of this number,
2380 * counting duplicate ACKs.
2382 * lost_out: Packets lost by network. TCP has no explicit
2383 * "loss notification" feedback from network (for now).
2384 * It means that this number can be only _guessed_.
2385 * Actually, it is the heuristics to predict lossage that
2386 * distinguishes different algorithms.
2388 * F.e. after RTO, when all the queue is considered as lost,
2389 * lost_out = packets_out and in_flight = retrans_out.
2391 * Essentially, we have now two algorithms counting
2394 * FACK: It is the simplest heuristics. As soon as we decided
2395 * that something is lost, we decide that _all_ not SACKed
2396 * packets until the most forward SACK are lost. I.e.
2397 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2398 * It is absolutely correct estimate, if network does not reorder
2399 * packets. And it loses any connection to reality when reordering
2400 * takes place. We use FACK by default until reordering
2401 * is suspected on the path to this destination.
2403 * NewReno: when Recovery is entered, we assume that one segment
2404 * is lost (classic Reno). While we are in Recovery and
2405 * a partial ACK arrives, we assume that one more packet
2406 * is lost (NewReno). This heuristics are the same in NewReno
2409 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2410 * deflation etc. CWND is real congestion window, never inflated, changes
2411 * only according to classic VJ rules.
2413 * Really tricky (and requiring careful tuning) part of algorithm
2414 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2415 * The first determines the moment _when_ we should reduce CWND and,
2416 * hence, slow down forward transmission. In fact, it determines the moment
2417 * when we decide that hole is caused by loss, rather than by a reorder.
2419 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2420 * holes, caused by lost packets.
2422 * And the most logically complicated part of algorithm is undo
2423 * heuristics. We detect false retransmits due to both too early
2424 * fast retransmit (reordering) and underestimated RTO, analyzing
2425 * timestamps and D-SACKs. When we detect that some segments were
2426 * retransmitted by mistake and CWND reduction was wrong, we undo
2427 * window reduction and abort recovery phase. This logic is hidden
2428 * inside several functions named tcp_try_undo_<something>.
2431 /* This function decides, when we should leave Disordered state
2432 * and enter Recovery phase, reducing congestion window.
2434 * Main question: may we further continue forward transmission
2435 * with the same cwnd?
2437 static int tcp_time_to_recover(struct sock
*sk
)
2439 struct tcp_sock
*tp
= tcp_sk(sk
);
2442 /* Do not perform any recovery during F-RTO algorithm */
2443 if (tp
->frto_counter
)
2446 /* Trick#1: The loss is proven. */
2450 /* Not-A-Trick#2 : Classic rule... */
2451 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2454 /* Trick#3 : when we use RFC2988 timer restart, fast
2455 * retransmit can be triggered by timeout of queue head.
2457 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2460 /* Trick#4: It is still not OK... But will it be useful to delay
2463 packets_out
= tp
->packets_out
;
2464 if (packets_out
<= tp
->reordering
&&
2465 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2466 !tcp_may_send_now(sk
)) {
2467 /* We have nothing to send. This connection is limited
2468 * either by receiver window or by application.
2473 /* If a thin stream is detected, retransmit after first
2474 * received dupack. Employ only if SACK is supported in order
2475 * to avoid possible corner-case series of spurious retransmissions
2476 * Use only if there are no unsent data.
2478 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2479 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2480 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2486 /* New heuristics: it is possible only after we switched to restart timer
2487 * each time when something is ACKed. Hence, we can detect timed out packets
2488 * during fast retransmit without falling to slow start.
2490 * Usefulness of this as is very questionable, since we should know which of
2491 * the segments is the next to timeout which is relatively expensive to find
2492 * in general case unless we add some data structure just for that. The
2493 * current approach certainly won't find the right one too often and when it
2494 * finally does find _something_ it usually marks large part of the window
2495 * right away (because a retransmission with a larger timestamp blocks the
2496 * loop from advancing). -ij
2498 static void tcp_timeout_skbs(struct sock
*sk
)
2500 struct tcp_sock
*tp
= tcp_sk(sk
);
2501 struct sk_buff
*skb
;
2503 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2506 skb
= tp
->scoreboard_skb_hint
;
2507 if (tp
->scoreboard_skb_hint
== NULL
)
2508 skb
= tcp_write_queue_head(sk
);
2510 tcp_for_write_queue_from(skb
, sk
) {
2511 if (skb
== tcp_send_head(sk
))
2513 if (!tcp_skb_timedout(sk
, skb
))
2516 tcp_skb_mark_lost(tp
, skb
);
2519 tp
->scoreboard_skb_hint
= skb
;
2521 tcp_verify_left_out(tp
);
2524 /* Detect loss in event "A" above by marking head of queue up as lost.
2525 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2526 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2527 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2528 * the maximum SACKed segments to pass before reaching this limit.
2530 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2532 struct tcp_sock
*tp
= tcp_sk(sk
);
2533 struct sk_buff
*skb
;
2537 /* Use SACK to deduce losses of new sequences sent during recovery */
2538 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2540 WARN_ON(packets
> tp
->packets_out
);
2541 if (tp
->lost_skb_hint
) {
2542 skb
= tp
->lost_skb_hint
;
2543 cnt
= tp
->lost_cnt_hint
;
2544 /* Head already handled? */
2545 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2548 skb
= tcp_write_queue_head(sk
);
2552 tcp_for_write_queue_from(skb
, sk
) {
2553 if (skb
== tcp_send_head(sk
))
2555 /* TODO: do this better */
2556 /* this is not the most efficient way to do this... */
2557 tp
->lost_skb_hint
= skb
;
2558 tp
->lost_cnt_hint
= cnt
;
2560 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2564 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2565 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2566 cnt
+= tcp_skb_pcount(skb
);
2568 if (cnt
> packets
) {
2569 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2570 (oldcnt
>= packets
))
2573 mss
= skb_shinfo(skb
)->gso_size
;
2574 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2580 tcp_skb_mark_lost(tp
, skb
);
2585 tcp_verify_left_out(tp
);
2588 /* Account newly detected lost packet(s) */
2590 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2592 struct tcp_sock
*tp
= tcp_sk(sk
);
2594 if (tcp_is_reno(tp
)) {
2595 tcp_mark_head_lost(sk
, 1, 1);
2596 } else if (tcp_is_fack(tp
)) {
2597 int lost
= tp
->fackets_out
- tp
->reordering
;
2600 tcp_mark_head_lost(sk
, lost
, 0);
2602 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2603 if (sacked_upto
>= 0)
2604 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2605 else if (fast_rexmit
)
2606 tcp_mark_head_lost(sk
, 1, 1);
2609 tcp_timeout_skbs(sk
);
2612 /* CWND moderation, preventing bursts due to too big ACKs
2613 * in dubious situations.
2615 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2617 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2618 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2619 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2622 /* Lower bound on congestion window is slow start threshold
2623 * unless congestion avoidance choice decides to overide it.
2625 static inline u32
tcp_cwnd_min(const struct sock
*sk
)
2627 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
2629 return ca_ops
->min_cwnd
? ca_ops
->min_cwnd(sk
) : tcp_sk(sk
)->snd_ssthresh
;
2632 /* Decrease cwnd each second ack. */
2633 static void tcp_cwnd_down(struct sock
*sk
, int flag
)
2635 struct tcp_sock
*tp
= tcp_sk(sk
);
2636 int decr
= tp
->snd_cwnd_cnt
+ 1;
2638 if ((flag
& (FLAG_ANY_PROGRESS
| FLAG_DSACKING_ACK
)) ||
2639 (tcp_is_reno(tp
) && !(flag
& FLAG_NOT_DUP
))) {
2640 tp
->snd_cwnd_cnt
= decr
& 1;
2643 if (decr
&& tp
->snd_cwnd
> tcp_cwnd_min(sk
))
2644 tp
->snd_cwnd
-= decr
;
2646 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
2647 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2651 /* Nothing was retransmitted or returned timestamp is less
2652 * than timestamp of the first retransmission.
2654 static inline int tcp_packet_delayed(const struct tcp_sock
*tp
)
2656 return !tp
->retrans_stamp
||
2657 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2658 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2661 /* Undo procedures. */
2663 #if FASTRETRANS_DEBUG > 1
2664 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2666 struct tcp_sock
*tp
= tcp_sk(sk
);
2667 struct inet_sock
*inet
= inet_sk(sk
);
2669 if (sk
->sk_family
== AF_INET
) {
2670 printk(KERN_DEBUG
"Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2672 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2673 tp
->snd_cwnd
, tcp_left_out(tp
),
2674 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2677 #if IS_ENABLED(CONFIG_IPV6)
2678 else if (sk
->sk_family
== AF_INET6
) {
2679 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2680 printk(KERN_DEBUG
"Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2682 &np
->daddr
, ntohs(inet
->inet_dport
),
2683 tp
->snd_cwnd
, tcp_left_out(tp
),
2684 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2690 #define DBGUNDO(x...) do { } while (0)
2693 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2695 struct tcp_sock
*tp
= tcp_sk(sk
);
2697 if (tp
->prior_ssthresh
) {
2698 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2700 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2701 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2703 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2705 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2706 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2707 TCP_ECN_withdraw_cwr(tp
);
2710 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2712 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2715 static inline int tcp_may_undo(const struct tcp_sock
*tp
)
2717 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2720 /* People celebrate: "We love our President!" */
2721 static int tcp_try_undo_recovery(struct sock
*sk
)
2723 struct tcp_sock
*tp
= tcp_sk(sk
);
2725 if (tcp_may_undo(tp
)) {
2728 /* Happy end! We did not retransmit anything
2729 * or our original transmission succeeded.
2731 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2732 tcp_undo_cwr(sk
, true);
2733 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2734 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2736 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2738 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2739 tp
->undo_marker
= 0;
2741 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2742 /* Hold old state until something *above* high_seq
2743 * is ACKed. For Reno it is MUST to prevent false
2744 * fast retransmits (RFC2582). SACK TCP is safe. */
2745 tcp_moderate_cwnd(tp
);
2748 tcp_set_ca_state(sk
, TCP_CA_Open
);
2752 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2753 static void tcp_try_undo_dsack(struct sock
*sk
)
2755 struct tcp_sock
*tp
= tcp_sk(sk
);
2757 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2758 DBGUNDO(sk
, "D-SACK");
2759 tcp_undo_cwr(sk
, true);
2760 tp
->undo_marker
= 0;
2761 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2765 /* We can clear retrans_stamp when there are no retransmissions in the
2766 * window. It would seem that it is trivially available for us in
2767 * tp->retrans_out, however, that kind of assumptions doesn't consider
2768 * what will happen if errors occur when sending retransmission for the
2769 * second time. ...It could the that such segment has only
2770 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2771 * the head skb is enough except for some reneging corner cases that
2772 * are not worth the effort.
2774 * Main reason for all this complexity is the fact that connection dying
2775 * time now depends on the validity of the retrans_stamp, in particular,
2776 * that successive retransmissions of a segment must not advance
2777 * retrans_stamp under any conditions.
2779 static int tcp_any_retrans_done(const struct sock
*sk
)
2781 const struct tcp_sock
*tp
= tcp_sk(sk
);
2782 struct sk_buff
*skb
;
2784 if (tp
->retrans_out
)
2787 skb
= tcp_write_queue_head(sk
);
2788 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2794 /* Undo during fast recovery after partial ACK. */
2796 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2798 struct tcp_sock
*tp
= tcp_sk(sk
);
2799 /* Partial ACK arrived. Force Hoe's retransmit. */
2800 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2802 if (tcp_may_undo(tp
)) {
2803 /* Plain luck! Hole if filled with delayed
2804 * packet, rather than with a retransmit.
2806 if (!tcp_any_retrans_done(sk
))
2807 tp
->retrans_stamp
= 0;
2809 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2812 tcp_undo_cwr(sk
, false);
2813 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2815 /* So... Do not make Hoe's retransmit yet.
2816 * If the first packet was delayed, the rest
2817 * ones are most probably delayed as well.
2824 /* Undo during loss recovery after partial ACK. */
2825 static int tcp_try_undo_loss(struct sock
*sk
)
2827 struct tcp_sock
*tp
= tcp_sk(sk
);
2829 if (tcp_may_undo(tp
)) {
2830 struct sk_buff
*skb
;
2831 tcp_for_write_queue(skb
, sk
) {
2832 if (skb
== tcp_send_head(sk
))
2834 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2837 tcp_clear_all_retrans_hints(tp
);
2839 DBGUNDO(sk
, "partial loss");
2841 tcp_undo_cwr(sk
, true);
2842 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2843 inet_csk(sk
)->icsk_retransmits
= 0;
2844 tp
->undo_marker
= 0;
2845 if (tcp_is_sack(tp
))
2846 tcp_set_ca_state(sk
, TCP_CA_Open
);
2852 static inline void tcp_complete_cwr(struct sock
*sk
)
2854 struct tcp_sock
*tp
= tcp_sk(sk
);
2856 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2857 if (tp
->undo_marker
) {
2858 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
)
2859 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2861 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2862 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2864 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2867 static void tcp_try_keep_open(struct sock
*sk
)
2869 struct tcp_sock
*tp
= tcp_sk(sk
);
2870 int state
= TCP_CA_Open
;
2872 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2873 state
= TCP_CA_Disorder
;
2875 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2876 tcp_set_ca_state(sk
, state
);
2877 tp
->high_seq
= tp
->snd_nxt
;
2881 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2883 struct tcp_sock
*tp
= tcp_sk(sk
);
2885 tcp_verify_left_out(tp
);
2887 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2888 tp
->retrans_stamp
= 0;
2890 if (flag
& FLAG_ECE
)
2891 tcp_enter_cwr(sk
, 1);
2893 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2894 tcp_try_keep_open(sk
);
2895 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2896 tcp_moderate_cwnd(tp
);
2898 tcp_cwnd_down(sk
, flag
);
2902 static void tcp_mtup_probe_failed(struct sock
*sk
)
2904 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2906 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2907 icsk
->icsk_mtup
.probe_size
= 0;
2910 static void tcp_mtup_probe_success(struct sock
*sk
)
2912 struct tcp_sock
*tp
= tcp_sk(sk
);
2913 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2915 /* FIXME: breaks with very large cwnd */
2916 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2917 tp
->snd_cwnd
= tp
->snd_cwnd
*
2918 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2919 icsk
->icsk_mtup
.probe_size
;
2920 tp
->snd_cwnd_cnt
= 0;
2921 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2922 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2924 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2925 icsk
->icsk_mtup
.probe_size
= 0;
2926 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2929 /* Do a simple retransmit without using the backoff mechanisms in
2930 * tcp_timer. This is used for path mtu discovery.
2931 * The socket is already locked here.
2933 void tcp_simple_retransmit(struct sock
*sk
)
2935 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2936 struct tcp_sock
*tp
= tcp_sk(sk
);
2937 struct sk_buff
*skb
;
2938 unsigned int mss
= tcp_current_mss(sk
);
2939 u32 prior_lost
= tp
->lost_out
;
2941 tcp_for_write_queue(skb
, sk
) {
2942 if (skb
== tcp_send_head(sk
))
2944 if (tcp_skb_seglen(skb
) > mss
&&
2945 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2946 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2947 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2948 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2950 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2954 tcp_clear_retrans_hints_partial(tp
);
2956 if (prior_lost
== tp
->lost_out
)
2959 if (tcp_is_reno(tp
))
2960 tcp_limit_reno_sacked(tp
);
2962 tcp_verify_left_out(tp
);
2964 /* Don't muck with the congestion window here.
2965 * Reason is that we do not increase amount of _data_
2966 * in network, but units changed and effective
2967 * cwnd/ssthresh really reduced now.
2969 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2970 tp
->high_seq
= tp
->snd_nxt
;
2971 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2972 tp
->prior_ssthresh
= 0;
2973 tp
->undo_marker
= 0;
2974 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2976 tcp_xmit_retransmit_queue(sk
);
2978 EXPORT_SYMBOL(tcp_simple_retransmit
);
2980 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2981 * (proportional rate reduction with slow start reduction bound) as described in
2982 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2983 * It computes the number of packets to send (sndcnt) based on packets newly
2985 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2986 * cwnd reductions across a full RTT.
2987 * 2) If packets in flight is lower than ssthresh (such as due to excess
2988 * losses and/or application stalls), do not perform any further cwnd
2989 * reductions, but instead slow start up to ssthresh.
2991 static void tcp_update_cwnd_in_recovery(struct sock
*sk
, int newly_acked_sacked
,
2992 int fast_rexmit
, int flag
)
2994 struct tcp_sock
*tp
= tcp_sk(sk
);
2996 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2998 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2999 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
3001 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
3003 sndcnt
= min_t(int, delta
,
3004 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
3005 newly_acked_sacked
) + 1);
3008 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
3009 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
3012 /* Process an event, which can update packets-in-flight not trivially.
3013 * Main goal of this function is to calculate new estimate for left_out,
3014 * taking into account both packets sitting in receiver's buffer and
3015 * packets lost by network.
3017 * Besides that it does CWND reduction, when packet loss is detected
3018 * and changes state of machine.
3020 * It does _not_ decide what to send, it is made in function
3021 * tcp_xmit_retransmit_queue().
3023 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
3024 int newly_acked_sacked
, bool is_dupack
,
3027 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3028 struct tcp_sock
*tp
= tcp_sk(sk
);
3029 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
3030 (tcp_fackets_out(tp
) > tp
->reordering
));
3031 int fast_rexmit
= 0, mib_idx
;
3033 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
3035 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
3036 tp
->fackets_out
= 0;
3038 /* Now state machine starts.
3039 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3040 if (flag
& FLAG_ECE
)
3041 tp
->prior_ssthresh
= 0;
3043 /* B. In all the states check for reneging SACKs. */
3044 if (tcp_check_sack_reneging(sk
, flag
))
3047 /* C. Check consistency of the current state. */
3048 tcp_verify_left_out(tp
);
3050 /* D. Check state exit conditions. State can be terminated
3051 * when high_seq is ACKed. */
3052 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3053 WARN_ON(tp
->retrans_out
!= 0);
3054 tp
->retrans_stamp
= 0;
3055 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3056 switch (icsk
->icsk_ca_state
) {
3058 icsk
->icsk_retransmits
= 0;
3059 if (tcp_try_undo_recovery(sk
))
3064 /* CWR is to be held something *above* high_seq
3065 * is ACKed for CWR bit to reach receiver. */
3066 if (tp
->snd_una
!= tp
->high_seq
) {
3067 tcp_complete_cwr(sk
);
3068 tcp_set_ca_state(sk
, TCP_CA_Open
);
3072 case TCP_CA_Recovery
:
3073 if (tcp_is_reno(tp
))
3074 tcp_reset_reno_sack(tp
);
3075 if (tcp_try_undo_recovery(sk
))
3077 tcp_complete_cwr(sk
);
3082 /* E. Process state. */
3083 switch (icsk
->icsk_ca_state
) {
3084 case TCP_CA_Recovery
:
3085 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3086 if (tcp_is_reno(tp
) && is_dupack
)
3087 tcp_add_reno_sack(sk
);
3089 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
3092 if (flag
& FLAG_DATA_ACKED
)
3093 icsk
->icsk_retransmits
= 0;
3094 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
3095 tcp_reset_reno_sack(tp
);
3096 if (!tcp_try_undo_loss(sk
)) {
3097 tcp_moderate_cwnd(tp
);
3098 tcp_xmit_retransmit_queue(sk
);
3101 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
3103 /* Loss is undone; fall through to processing in Open state. */
3105 if (tcp_is_reno(tp
)) {
3106 if (flag
& FLAG_SND_UNA_ADVANCED
)
3107 tcp_reset_reno_sack(tp
);
3109 tcp_add_reno_sack(sk
);
3112 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
3113 tcp_try_undo_dsack(sk
);
3115 if (!tcp_time_to_recover(sk
)) {
3116 tcp_try_to_open(sk
, flag
);
3120 /* MTU probe failure: don't reduce cwnd */
3121 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3122 icsk
->icsk_mtup
.probe_size
&&
3123 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3124 tcp_mtup_probe_failed(sk
);
3125 /* Restores the reduction we did in tcp_mtup_probe() */
3127 tcp_simple_retransmit(sk
);
3131 /* Otherwise enter Recovery state */
3133 if (tcp_is_reno(tp
))
3134 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
3136 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
3138 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
3140 tp
->high_seq
= tp
->snd_nxt
;
3141 tp
->prior_ssthresh
= 0;
3142 tp
->undo_marker
= tp
->snd_una
;
3143 tp
->undo_retrans
= tp
->retrans_out
;
3145 if (icsk
->icsk_ca_state
< TCP_CA_CWR
) {
3146 if (!(flag
& FLAG_ECE
))
3147 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
3148 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
3149 TCP_ECN_queue_cwr(tp
);
3152 tp
->bytes_acked
= 0;
3153 tp
->snd_cwnd_cnt
= 0;
3154 tp
->prior_cwnd
= tp
->snd_cwnd
;
3155 tp
->prr_delivered
= 0;
3157 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
3161 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3162 tcp_update_scoreboard(sk
, fast_rexmit
);
3163 tp
->prr_delivered
+= newly_acked_sacked
;
3164 tcp_update_cwnd_in_recovery(sk
, newly_acked_sacked
, fast_rexmit
, flag
);
3165 tcp_xmit_retransmit_queue(sk
);
3168 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3170 tcp_rtt_estimator(sk
, seq_rtt
);
3172 inet_csk(sk
)->icsk_backoff
= 0;
3174 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3176 /* Read draft-ietf-tcplw-high-performance before mucking
3177 * with this code. (Supersedes RFC1323)
3179 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3181 /* RTTM Rule: A TSecr value received in a segment is used to
3182 * update the averaged RTT measurement only if the segment
3183 * acknowledges some new data, i.e., only if it advances the
3184 * left edge of the send window.
3186 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3187 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3189 * Changed: reset backoff as soon as we see the first valid sample.
3190 * If we do not, we get strongly overestimated rto. With timestamps
3191 * samples are accepted even from very old segments: f.e., when rtt=1
3192 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3193 * answer arrives rto becomes 120 seconds! If at least one of segments
3194 * in window is lost... Voila. --ANK (010210)
3196 struct tcp_sock
*tp
= tcp_sk(sk
);
3198 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3201 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3203 /* We don't have a timestamp. Can only use
3204 * packets that are not retransmitted to determine
3205 * rtt estimates. Also, we must not reset the
3206 * backoff for rto until we get a non-retransmitted
3207 * packet. This allows us to deal with a situation
3208 * where the network delay has increased suddenly.
3209 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3212 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3215 tcp_valid_rtt_meas(sk
, seq_rtt
);
3218 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3221 const struct tcp_sock
*tp
= tcp_sk(sk
);
3222 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3223 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3224 tcp_ack_saw_tstamp(sk
, flag
);
3225 else if (seq_rtt
>= 0)
3226 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3229 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3231 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3232 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3233 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3236 /* Restart timer after forward progress on connection.
3237 * RFC2988 recommends to restart timer to now+rto.
3239 static void tcp_rearm_rto(struct sock
*sk
)
3241 const struct tcp_sock
*tp
= tcp_sk(sk
);
3243 if (!tp
->packets_out
) {
3244 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3246 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3247 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3251 /* If we get here, the whole TSO packet has not been acked. */
3252 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3254 struct tcp_sock
*tp
= tcp_sk(sk
);
3257 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3259 packets_acked
= tcp_skb_pcount(skb
);
3260 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3262 packets_acked
-= tcp_skb_pcount(skb
);
3264 if (packets_acked
) {
3265 BUG_ON(tcp_skb_pcount(skb
) == 0);
3266 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3269 return packets_acked
;
3272 /* Remove acknowledged frames from the retransmission queue. If our packet
3273 * is before the ack sequence we can discard it as it's confirmed to have
3274 * arrived at the other end.
3276 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3279 struct tcp_sock
*tp
= tcp_sk(sk
);
3280 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3281 struct sk_buff
*skb
;
3282 u32 now
= tcp_time_stamp
;
3283 int fully_acked
= 1;
3286 u32 reord
= tp
->packets_out
;
3287 u32 prior_sacked
= tp
->sacked_out
;
3289 s32 ca_seq_rtt
= -1;
3290 ktime_t last_ackt
= net_invalid_timestamp();
3292 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3293 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3295 u8 sacked
= scb
->sacked
;
3297 /* Determine how many packets and what bytes were acked, tso and else */
3298 if (after(scb
->end_seq
, tp
->snd_una
)) {
3299 if (tcp_skb_pcount(skb
) == 1 ||
3300 !after(tp
->snd_una
, scb
->seq
))
3303 acked_pcount
= tcp_tso_acked(sk
, skb
);
3309 acked_pcount
= tcp_skb_pcount(skb
);
3312 if (sacked
& TCPCB_RETRANS
) {
3313 if (sacked
& TCPCB_SACKED_RETRANS
)
3314 tp
->retrans_out
-= acked_pcount
;
3315 flag
|= FLAG_RETRANS_DATA_ACKED
;
3318 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3319 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3321 ca_seq_rtt
= now
- scb
->when
;
3322 last_ackt
= skb
->tstamp
;
3324 seq_rtt
= ca_seq_rtt
;
3326 if (!(sacked
& TCPCB_SACKED_ACKED
))
3327 reord
= min(pkts_acked
, reord
);
3330 if (sacked
& TCPCB_SACKED_ACKED
)
3331 tp
->sacked_out
-= acked_pcount
;
3332 if (sacked
& TCPCB_LOST
)
3333 tp
->lost_out
-= acked_pcount
;
3335 tp
->packets_out
-= acked_pcount
;
3336 pkts_acked
+= acked_pcount
;
3338 /* Initial outgoing SYN's get put onto the write_queue
3339 * just like anything else we transmit. It is not
3340 * true data, and if we misinform our callers that
3341 * this ACK acks real data, we will erroneously exit
3342 * connection startup slow start one packet too
3343 * quickly. This is severely frowned upon behavior.
3345 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3346 flag
|= FLAG_DATA_ACKED
;
3348 flag
|= FLAG_SYN_ACKED
;
3349 tp
->retrans_stamp
= 0;
3355 tcp_unlink_write_queue(skb
, sk
);
3356 sk_wmem_free_skb(sk
, skb
);
3357 tp
->scoreboard_skb_hint
= NULL
;
3358 if (skb
== tp
->retransmit_skb_hint
)
3359 tp
->retransmit_skb_hint
= NULL
;
3360 if (skb
== tp
->lost_skb_hint
)
3361 tp
->lost_skb_hint
= NULL
;
3364 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3365 tp
->snd_up
= tp
->snd_una
;
3367 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3368 flag
|= FLAG_SACK_RENEGING
;
3370 if (flag
& FLAG_ACKED
) {
3371 const struct tcp_congestion_ops
*ca_ops
3372 = inet_csk(sk
)->icsk_ca_ops
;
3374 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3375 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3376 tcp_mtup_probe_success(sk
);
3379 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3382 if (tcp_is_reno(tp
)) {
3383 tcp_remove_reno_sacks(sk
, pkts_acked
);
3387 /* Non-retransmitted hole got filled? That's reordering */
3388 if (reord
< prior_fackets
)
3389 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3391 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3392 prior_sacked
- tp
->sacked_out
;
3393 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3396 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3398 if (ca_ops
->pkts_acked
) {
3401 /* Is the ACK triggering packet unambiguous? */
3402 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3403 /* High resolution needed and available? */
3404 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3405 !ktime_equal(last_ackt
,
3406 net_invalid_timestamp()))
3407 rtt_us
= ktime_us_delta(ktime_get_real(),
3409 else if (ca_seq_rtt
>= 0)
3410 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3413 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3417 #if FASTRETRANS_DEBUG > 0
3418 WARN_ON((int)tp
->sacked_out
< 0);
3419 WARN_ON((int)tp
->lost_out
< 0);
3420 WARN_ON((int)tp
->retrans_out
< 0);
3421 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3422 icsk
= inet_csk(sk
);
3424 printk(KERN_DEBUG
"Leak l=%u %d\n",
3425 tp
->lost_out
, icsk
->icsk_ca_state
);
3428 if (tp
->sacked_out
) {
3429 printk(KERN_DEBUG
"Leak s=%u %d\n",
3430 tp
->sacked_out
, icsk
->icsk_ca_state
);
3433 if (tp
->retrans_out
) {
3434 printk(KERN_DEBUG
"Leak r=%u %d\n",
3435 tp
->retrans_out
, icsk
->icsk_ca_state
);
3436 tp
->retrans_out
= 0;
3443 static void tcp_ack_probe(struct sock
*sk
)
3445 const struct tcp_sock
*tp
= tcp_sk(sk
);
3446 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3448 /* Was it a usable window open? */
3450 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3451 icsk
->icsk_backoff
= 0;
3452 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3453 /* Socket must be waked up by subsequent tcp_data_snd_check().
3454 * This function is not for random using!
3457 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3458 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3463 static inline int tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3465 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3466 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3469 static inline int tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3471 const struct tcp_sock
*tp
= tcp_sk(sk
);
3472 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3473 !((1 << inet_csk(sk
)->icsk_ca_state
) & (TCPF_CA_Recovery
| TCPF_CA_CWR
));
3476 /* Check that window update is acceptable.
3477 * The function assumes that snd_una<=ack<=snd_next.
3479 static inline int tcp_may_update_window(const struct tcp_sock
*tp
,
3480 const u32 ack
, const u32 ack_seq
,
3483 return after(ack
, tp
->snd_una
) ||
3484 after(ack_seq
, tp
->snd_wl1
) ||
3485 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3488 /* Update our send window.
3490 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3491 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3493 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3496 struct tcp_sock
*tp
= tcp_sk(sk
);
3498 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3500 if (likely(!tcp_hdr(skb
)->syn
))
3501 nwin
<<= tp
->rx_opt
.snd_wscale
;
3503 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3504 flag
|= FLAG_WIN_UPDATE
;
3505 tcp_update_wl(tp
, ack_seq
);
3507 if (tp
->snd_wnd
!= nwin
) {
3510 /* Note, it is the only place, where
3511 * fast path is recovered for sending TCP.
3514 tcp_fast_path_check(sk
);
3516 if (nwin
> tp
->max_window
) {
3517 tp
->max_window
= nwin
;
3518 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3528 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3529 * continue in congestion avoidance.
3531 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3533 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3534 tp
->snd_cwnd_cnt
= 0;
3535 tp
->bytes_acked
= 0;
3536 TCP_ECN_queue_cwr(tp
);
3537 tcp_moderate_cwnd(tp
);
3540 /* A conservative spurious RTO response algorithm: reduce cwnd using
3541 * rate halving and continue in congestion avoidance.
3543 static void tcp_ratehalving_spur_to_response(struct sock
*sk
)
3545 tcp_enter_cwr(sk
, 0);
3548 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3550 if (flag
& FLAG_ECE
)
3551 tcp_ratehalving_spur_to_response(sk
);
3553 tcp_undo_cwr(sk
, true);
3556 /* F-RTO spurious RTO detection algorithm (RFC4138)
3558 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3559 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3560 * window (but not to or beyond highest sequence sent before RTO):
3561 * On First ACK, send two new segments out.
3562 * On Second ACK, RTO was likely spurious. Do spurious response (response
3563 * algorithm is not part of the F-RTO detection algorithm
3564 * given in RFC4138 but can be selected separately).
3565 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3566 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3567 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3568 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3570 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3571 * original window even after we transmit two new data segments.
3574 * on first step, wait until first cumulative ACK arrives, then move to
3575 * the second step. In second step, the next ACK decides.
3577 * F-RTO is implemented (mainly) in four functions:
3578 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3579 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3580 * called when tcp_use_frto() showed green light
3581 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3582 * - tcp_enter_frto_loss() is called if there is not enough evidence
3583 * to prove that the RTO is indeed spurious. It transfers the control
3584 * from F-RTO to the conventional RTO recovery
3586 static int tcp_process_frto(struct sock
*sk
, int flag
)
3588 struct tcp_sock
*tp
= tcp_sk(sk
);
3590 tcp_verify_left_out(tp
);
3592 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3593 if (flag
& FLAG_DATA_ACKED
)
3594 inet_csk(sk
)->icsk_retransmits
= 0;
3596 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3597 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3598 tp
->undo_marker
= 0;
3600 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3601 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3605 if (!tcp_is_sackfrto(tp
)) {
3606 /* RFC4138 shortcoming in step 2; should also have case c):
3607 * ACK isn't duplicate nor advances window, e.g., opposite dir
3610 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3613 if (!(flag
& FLAG_DATA_ACKED
)) {
3614 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3619 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3620 /* Prevent sending of new data. */
3621 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3622 tcp_packets_in_flight(tp
));
3626 if ((tp
->frto_counter
>= 2) &&
3627 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3628 ((flag
& FLAG_DATA_SACKED
) &&
3629 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3630 /* RFC4138 shortcoming (see comment above) */
3631 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3632 (flag
& FLAG_NOT_DUP
))
3635 tcp_enter_frto_loss(sk
, 3, flag
);
3640 if (tp
->frto_counter
== 1) {
3641 /* tcp_may_send_now needs to see updated state */
3642 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3643 tp
->frto_counter
= 2;
3645 if (!tcp_may_send_now(sk
))
3646 tcp_enter_frto_loss(sk
, 2, flag
);
3650 switch (sysctl_tcp_frto_response
) {
3652 tcp_undo_spur_to_response(sk
, flag
);
3655 tcp_conservative_spur_to_response(tp
);
3658 tcp_ratehalving_spur_to_response(sk
);
3661 tp
->frto_counter
= 0;
3662 tp
->undo_marker
= 0;
3663 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3668 /* This routine deals with incoming acks, but not outgoing ones. */
3669 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3671 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3672 struct tcp_sock
*tp
= tcp_sk(sk
);
3673 u32 prior_snd_una
= tp
->snd_una
;
3674 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3675 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3676 bool is_dupack
= false;
3677 u32 prior_in_flight
;
3680 int prior_sacked
= tp
->sacked_out
;
3682 int newly_acked_sacked
= 0;
3685 /* If the ack is older than previous acks
3686 * then we can probably ignore it.
3688 if (before(ack
, prior_snd_una
))
3691 /* If the ack includes data we haven't sent yet, discard
3692 * this segment (RFC793 Section 3.9).
3694 if (after(ack
, tp
->snd_nxt
))
3697 if (after(ack
, prior_snd_una
))
3698 flag
|= FLAG_SND_UNA_ADVANCED
;
3700 if (sysctl_tcp_abc
) {
3701 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3702 tp
->bytes_acked
+= ack
- prior_snd_una
;
3703 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3704 /* we assume just one segment left network */
3705 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3709 prior_fackets
= tp
->fackets_out
;
3710 prior_in_flight
= tcp_packets_in_flight(tp
);
3712 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3713 /* Window is constant, pure forward advance.
3714 * No more checks are required.
3715 * Note, we use the fact that SND.UNA>=SND.WL2.
3717 tcp_update_wl(tp
, ack_seq
);
3719 flag
|= FLAG_WIN_UPDATE
;
3721 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3723 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3725 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3728 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3730 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3732 if (TCP_SKB_CB(skb
)->sacked
)
3733 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3735 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3738 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3741 /* We passed data and got it acked, remove any soft error
3742 * log. Something worked...
3744 sk
->sk_err_soft
= 0;
3745 icsk
->icsk_probes_out
= 0;
3746 tp
->rcv_tstamp
= tcp_time_stamp
;
3747 prior_packets
= tp
->packets_out
;
3751 /* See if we can take anything off of the retransmit queue. */
3752 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3754 pkts_acked
= prior_packets
- tp
->packets_out
;
3755 newly_acked_sacked
= (prior_packets
- prior_sacked
) -
3756 (tp
->packets_out
- tp
->sacked_out
);
3758 if (tp
->frto_counter
)
3759 frto_cwnd
= tcp_process_frto(sk
, flag
);
3760 /* Guarantee sacktag reordering detection against wrap-arounds */
3761 if (before(tp
->frto_highmark
, tp
->snd_una
))
3762 tp
->frto_highmark
= 0;
3764 if (tcp_ack_is_dubious(sk
, flag
)) {
3765 /* Advance CWND, if state allows this. */
3766 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3767 tcp_may_raise_cwnd(sk
, flag
))
3768 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3769 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3770 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3773 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3774 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3777 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3778 dst_confirm(__sk_dst_get(sk
));
3783 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3784 if (flag
& FLAG_DSACKING_ACK
)
3785 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3787 /* If this ack opens up a zero window, clear backoff. It was
3788 * being used to time the probes, and is probably far higher than
3789 * it needs to be for normal retransmission.
3791 if (tcp_send_head(sk
))
3796 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3800 /* If data was SACKed, tag it and see if we should send more data.
3801 * If data was DSACKed, see if we can undo a cwnd reduction.
3803 if (TCP_SKB_CB(skb
)->sacked
) {
3804 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3805 newly_acked_sacked
= tp
->sacked_out
- prior_sacked
;
3806 tcp_fastretrans_alert(sk
, pkts_acked
, newly_acked_sacked
,
3810 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3814 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3815 * But, this can also be called on packets in the established flow when
3816 * the fast version below fails.
3818 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3819 const u8
**hvpp
, int estab
)
3821 const unsigned char *ptr
;
3822 const struct tcphdr
*th
= tcp_hdr(skb
);
3823 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3825 ptr
= (const unsigned char *)(th
+ 1);
3826 opt_rx
->saw_tstamp
= 0;
3828 while (length
> 0) {
3829 int opcode
= *ptr
++;
3835 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3840 if (opsize
< 2) /* "silly options" */
3842 if (opsize
> length
)
3843 return; /* don't parse partial options */
3846 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3847 u16 in_mss
= get_unaligned_be16(ptr
);
3849 if (opt_rx
->user_mss
&&
3850 opt_rx
->user_mss
< in_mss
)
3851 in_mss
= opt_rx
->user_mss
;
3852 opt_rx
->mss_clamp
= in_mss
;
3857 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3858 !estab
&& sysctl_tcp_window_scaling
) {
3859 __u8 snd_wscale
= *(__u8
*)ptr
;
3860 opt_rx
->wscale_ok
= 1;
3861 if (snd_wscale
> 14) {
3862 if (net_ratelimit())
3863 printk(KERN_INFO
"tcp_parse_options: Illegal window "
3864 "scaling value %d >14 received.\n",
3868 opt_rx
->snd_wscale
= snd_wscale
;
3871 case TCPOPT_TIMESTAMP
:
3872 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3873 ((estab
&& opt_rx
->tstamp_ok
) ||
3874 (!estab
&& sysctl_tcp_timestamps
))) {
3875 opt_rx
->saw_tstamp
= 1;
3876 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3877 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3880 case TCPOPT_SACK_PERM
:
3881 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3882 !estab
&& sysctl_tcp_sack
) {
3883 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3884 tcp_sack_reset(opt_rx
);
3889 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3890 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3892 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3895 #ifdef CONFIG_TCP_MD5SIG
3898 * The MD5 Hash has already been
3899 * checked (see tcp_v{4,6}_do_rcv()).
3904 /* This option is variable length.
3907 case TCPOLEN_COOKIE_BASE
:
3908 /* not yet implemented */
3910 case TCPOLEN_COOKIE_PAIR
:
3911 /* not yet implemented */
3913 case TCPOLEN_COOKIE_MIN
+0:
3914 case TCPOLEN_COOKIE_MIN
+2:
3915 case TCPOLEN_COOKIE_MIN
+4:
3916 case TCPOLEN_COOKIE_MIN
+6:
3917 case TCPOLEN_COOKIE_MAX
:
3918 /* 16-bit multiple */
3919 opt_rx
->cookie_plus
= opsize
;
3934 EXPORT_SYMBOL(tcp_parse_options
);
3936 static int tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3938 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3940 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3941 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3942 tp
->rx_opt
.saw_tstamp
= 1;
3944 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3946 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3952 /* Fast parse options. This hopes to only see timestamps.
3953 * If it is wrong it falls back on tcp_parse_options().
3955 static int tcp_fast_parse_options(const struct sk_buff
*skb
,
3956 const struct tcphdr
*th
,
3957 struct tcp_sock
*tp
, const u8
**hvpp
)
3959 /* In the spirit of fast parsing, compare doff directly to constant
3960 * values. Because equality is used, short doff can be ignored here.
3962 if (th
->doff
== (sizeof(*th
) / 4)) {
3963 tp
->rx_opt
.saw_tstamp
= 0;
3965 } else if (tp
->rx_opt
.tstamp_ok
&&
3966 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3967 if (tcp_parse_aligned_timestamp(tp
, th
))
3970 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1);
3974 #ifdef CONFIG_TCP_MD5SIG
3976 * Parse MD5 Signature option
3978 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3980 int length
= (th
->doff
<< 2) - sizeof(*th
);
3981 const u8
*ptr
= (const u8
*)(th
+ 1);
3983 /* If the TCP option is too short, we can short cut */
3984 if (length
< TCPOLEN_MD5SIG
)
3987 while (length
> 0) {
3988 int opcode
= *ptr
++;
3999 if (opsize
< 2 || opsize
> length
)
4001 if (opcode
== TCPOPT_MD5SIG
)
4002 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
4009 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
4012 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
4014 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
4015 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
4018 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
4020 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
4021 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4022 * extra check below makes sure this can only happen
4023 * for pure ACK frames. -DaveM
4025 * Not only, also it occurs for expired timestamps.
4028 if (tcp_paws_check(&tp
->rx_opt
, 0))
4029 tcp_store_ts_recent(tp
);
4033 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4035 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4036 * it can pass through stack. So, the following predicate verifies that
4037 * this segment is not used for anything but congestion avoidance or
4038 * fast retransmit. Moreover, we even are able to eliminate most of such
4039 * second order effects, if we apply some small "replay" window (~RTO)
4040 * to timestamp space.
4042 * All these measures still do not guarantee that we reject wrapped ACKs
4043 * on networks with high bandwidth, when sequence space is recycled fastly,
4044 * but it guarantees that such events will be very rare and do not affect
4045 * connection seriously. This doesn't look nice, but alas, PAWS is really
4048 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4049 * states that events when retransmit arrives after original data are rare.
4050 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4051 * the biggest problem on large power networks even with minor reordering.
4052 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4053 * up to bandwidth of 18Gigabit/sec. 8) ]
4056 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4058 const struct tcp_sock
*tp
= tcp_sk(sk
);
4059 const struct tcphdr
*th
= tcp_hdr(skb
);
4060 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4061 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4063 return (/* 1. Pure ACK with correct sequence number. */
4064 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4066 /* 2. ... and duplicate ACK. */
4067 ack
== tp
->snd_una
&&
4069 /* 3. ... and does not update window. */
4070 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4072 /* 4. ... and sits in replay window. */
4073 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4076 static inline int tcp_paws_discard(const struct sock
*sk
,
4077 const struct sk_buff
*skb
)
4079 const struct tcp_sock
*tp
= tcp_sk(sk
);
4081 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4082 !tcp_disordered_ack(sk
, skb
);
4085 /* Check segment sequence number for validity.
4087 * Segment controls are considered valid, if the segment
4088 * fits to the window after truncation to the window. Acceptability
4089 * of data (and SYN, FIN, of course) is checked separately.
4090 * See tcp_data_queue(), for example.
4092 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4093 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4094 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4095 * (borrowed from freebsd)
4098 static inline int tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4100 return !before(end_seq
, tp
->rcv_wup
) &&
4101 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4104 /* When we get a reset we do this. */
4105 static void tcp_reset(struct sock
*sk
)
4107 /* We want the right error as BSD sees it (and indeed as we do). */
4108 switch (sk
->sk_state
) {
4110 sk
->sk_err
= ECONNREFUSED
;
4112 case TCP_CLOSE_WAIT
:
4118 sk
->sk_err
= ECONNRESET
;
4120 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4123 if (!sock_flag(sk
, SOCK_DEAD
))
4124 sk
->sk_error_report(sk
);
4130 * Process the FIN bit. This now behaves as it is supposed to work
4131 * and the FIN takes effect when it is validly part of sequence
4132 * space. Not before when we get holes.
4134 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4135 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4138 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4139 * close and we go into CLOSING (and later onto TIME-WAIT)
4141 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4143 static void tcp_fin(struct sock
*sk
)
4145 struct tcp_sock
*tp
= tcp_sk(sk
);
4147 inet_csk_schedule_ack(sk
);
4149 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4150 sock_set_flag(sk
, SOCK_DONE
);
4152 switch (sk
->sk_state
) {
4154 case TCP_ESTABLISHED
:
4155 /* Move to CLOSE_WAIT */
4156 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4157 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4160 case TCP_CLOSE_WAIT
:
4162 /* Received a retransmission of the FIN, do
4167 /* RFC793: Remain in the LAST-ACK state. */
4171 /* This case occurs when a simultaneous close
4172 * happens, we must ack the received FIN and
4173 * enter the CLOSING state.
4176 tcp_set_state(sk
, TCP_CLOSING
);
4179 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4181 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4184 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4185 * cases we should never reach this piece of code.
4187 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
4188 __func__
, sk
->sk_state
);
4192 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4193 * Probably, we should reset in this case. For now drop them.
4195 __skb_queue_purge(&tp
->out_of_order_queue
);
4196 if (tcp_is_sack(tp
))
4197 tcp_sack_reset(&tp
->rx_opt
);
4200 if (!sock_flag(sk
, SOCK_DEAD
)) {
4201 sk
->sk_state_change(sk
);
4203 /* Do not send POLL_HUP for half duplex close. */
4204 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4205 sk
->sk_state
== TCP_CLOSE
)
4206 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4208 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4212 static inline int tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4215 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4216 if (before(seq
, sp
->start_seq
))
4217 sp
->start_seq
= seq
;
4218 if (after(end_seq
, sp
->end_seq
))
4219 sp
->end_seq
= end_seq
;
4225 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4227 struct tcp_sock
*tp
= tcp_sk(sk
);
4229 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4232 if (before(seq
, tp
->rcv_nxt
))
4233 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4235 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4237 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4239 tp
->rx_opt
.dsack
= 1;
4240 tp
->duplicate_sack
[0].start_seq
= seq
;
4241 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4245 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4247 struct tcp_sock
*tp
= tcp_sk(sk
);
4249 if (!tp
->rx_opt
.dsack
)
4250 tcp_dsack_set(sk
, seq
, end_seq
);
4252 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4255 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4257 struct tcp_sock
*tp
= tcp_sk(sk
);
4259 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4260 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4261 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4262 tcp_enter_quickack_mode(sk
);
4264 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4265 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4267 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4268 end_seq
= tp
->rcv_nxt
;
4269 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4276 /* These routines update the SACK block as out-of-order packets arrive or
4277 * in-order packets close up the sequence space.
4279 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4282 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4283 struct tcp_sack_block
*swalk
= sp
+ 1;
4285 /* See if the recent change to the first SACK eats into
4286 * or hits the sequence space of other SACK blocks, if so coalesce.
4288 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4289 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4292 /* Zap SWALK, by moving every further SACK up by one slot.
4293 * Decrease num_sacks.
4295 tp
->rx_opt
.num_sacks
--;
4296 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4300 this_sack
++, swalk
++;
4304 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4306 struct tcp_sock
*tp
= tcp_sk(sk
);
4307 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4308 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4314 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4315 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4316 /* Rotate this_sack to the first one. */
4317 for (; this_sack
> 0; this_sack
--, sp
--)
4318 swap(*sp
, *(sp
- 1));
4320 tcp_sack_maybe_coalesce(tp
);
4325 /* Could not find an adjacent existing SACK, build a new one,
4326 * put it at the front, and shift everyone else down. We
4327 * always know there is at least one SACK present already here.
4329 * If the sack array is full, forget about the last one.
4331 if (this_sack
>= TCP_NUM_SACKS
) {
4333 tp
->rx_opt
.num_sacks
--;
4336 for (; this_sack
> 0; this_sack
--, sp
--)
4340 /* Build the new head SACK, and we're done. */
4341 sp
->start_seq
= seq
;
4342 sp
->end_seq
= end_seq
;
4343 tp
->rx_opt
.num_sacks
++;
4346 /* RCV.NXT advances, some SACKs should be eaten. */
4348 static void tcp_sack_remove(struct tcp_sock
*tp
)
4350 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4351 int num_sacks
= tp
->rx_opt
.num_sacks
;
4354 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4355 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4356 tp
->rx_opt
.num_sacks
= 0;
4360 for (this_sack
= 0; this_sack
< num_sacks
;) {
4361 /* Check if the start of the sack is covered by RCV.NXT. */
4362 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4365 /* RCV.NXT must cover all the block! */
4366 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4368 /* Zap this SACK, by moving forward any other SACKS. */
4369 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4370 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4377 tp
->rx_opt
.num_sacks
= num_sacks
;
4380 /* This one checks to see if we can put data from the
4381 * out_of_order queue into the receive_queue.
4383 static void tcp_ofo_queue(struct sock
*sk
)
4385 struct tcp_sock
*tp
= tcp_sk(sk
);
4386 __u32 dsack_high
= tp
->rcv_nxt
;
4387 struct sk_buff
*skb
;
4389 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4390 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4393 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4394 __u32 dsack
= dsack_high
;
4395 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4396 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4397 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4400 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4401 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4402 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4406 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4407 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4408 TCP_SKB_CB(skb
)->end_seq
);
4410 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4411 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4412 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4413 if (tcp_hdr(skb
)->fin
)
4418 static int tcp_prune_ofo_queue(struct sock
*sk
);
4419 static int tcp_prune_queue(struct sock
*sk
);
4421 static inline int tcp_try_rmem_schedule(struct sock
*sk
, unsigned int size
)
4423 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4424 !sk_rmem_schedule(sk
, size
)) {
4426 if (tcp_prune_queue(sk
) < 0)
4429 if (!sk_rmem_schedule(sk
, size
)) {
4430 if (!tcp_prune_ofo_queue(sk
))
4433 if (!sk_rmem_schedule(sk
, size
))
4440 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4442 const struct tcphdr
*th
= tcp_hdr(skb
);
4443 struct tcp_sock
*tp
= tcp_sk(sk
);
4446 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4450 __skb_pull(skb
, th
->doff
* 4);
4452 TCP_ECN_accept_cwr(tp
, skb
);
4454 tp
->rx_opt
.dsack
= 0;
4456 /* Queue data for delivery to the user.
4457 * Packets in sequence go to the receive queue.
4458 * Out of sequence packets to the out_of_order_queue.
4460 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4461 if (tcp_receive_window(tp
) == 0)
4464 /* Ok. In sequence. In window. */
4465 if (tp
->ucopy
.task
== current
&&
4466 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4467 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4468 int chunk
= min_t(unsigned int, skb
->len
,
4471 __set_current_state(TASK_RUNNING
);
4474 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4475 tp
->ucopy
.len
-= chunk
;
4476 tp
->copied_seq
+= chunk
;
4477 eaten
= (chunk
== skb
->len
);
4478 tcp_rcv_space_adjust(sk
);
4486 tcp_try_rmem_schedule(sk
, skb
->truesize
))
4489 skb_set_owner_r(skb
, sk
);
4490 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4492 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4494 tcp_event_data_recv(sk
, skb
);
4498 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4501 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4502 * gap in queue is filled.
4504 if (skb_queue_empty(&tp
->out_of_order_queue
))
4505 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4508 if (tp
->rx_opt
.num_sacks
)
4509 tcp_sack_remove(tp
);
4511 tcp_fast_path_check(sk
);
4515 else if (!sock_flag(sk
, SOCK_DEAD
))
4516 sk
->sk_data_ready(sk
, 0);
4520 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4521 /* A retransmit, 2nd most common case. Force an immediate ack. */
4522 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4523 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4526 tcp_enter_quickack_mode(sk
);
4527 inet_csk_schedule_ack(sk
);
4533 /* Out of window. F.e. zero window probe. */
4534 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4537 tcp_enter_quickack_mode(sk
);
4539 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4540 /* Partial packet, seq < rcv_next < end_seq */
4541 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4542 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4543 TCP_SKB_CB(skb
)->end_seq
);
4545 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4547 /* If window is closed, drop tail of packet. But after
4548 * remembering D-SACK for its head made in previous line.
4550 if (!tcp_receive_window(tp
))
4555 TCP_ECN_check_ce(tp
, skb
);
4557 if (tcp_try_rmem_schedule(sk
, skb
->truesize
))
4560 /* Disable header prediction. */
4562 inet_csk_schedule_ack(sk
);
4564 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4565 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4567 skb_set_owner_r(skb
, sk
);
4569 if (!skb_peek(&tp
->out_of_order_queue
)) {
4570 /* Initial out of order segment, build 1 SACK. */
4571 if (tcp_is_sack(tp
)) {
4572 tp
->rx_opt
.num_sacks
= 1;
4573 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4574 tp
->selective_acks
[0].end_seq
=
4575 TCP_SKB_CB(skb
)->end_seq
;
4577 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4579 struct sk_buff
*skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4580 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4581 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4583 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4584 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4586 if (!tp
->rx_opt
.num_sacks
||
4587 tp
->selective_acks
[0].end_seq
!= seq
)
4590 /* Common case: data arrive in order after hole. */
4591 tp
->selective_acks
[0].end_seq
= end_seq
;
4595 /* Find place to insert this segment. */
4597 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4599 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4603 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4606 /* Do skb overlap to previous one? */
4607 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4608 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4609 /* All the bits are present. Drop. */
4611 tcp_dsack_set(sk
, seq
, end_seq
);
4614 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4615 /* Partial overlap. */
4616 tcp_dsack_set(sk
, seq
,
4617 TCP_SKB_CB(skb1
)->end_seq
);
4619 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4623 skb1
= skb_queue_prev(
4624 &tp
->out_of_order_queue
,
4629 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4631 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4633 /* And clean segments covered by new one as whole. */
4634 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4635 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4637 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4639 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4640 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4644 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4645 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4646 TCP_SKB_CB(skb1
)->end_seq
);
4651 if (tcp_is_sack(tp
))
4652 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4656 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4657 struct sk_buff_head
*list
)
4659 struct sk_buff
*next
= NULL
;
4661 if (!skb_queue_is_last(list
, skb
))
4662 next
= skb_queue_next(list
, skb
);
4664 __skb_unlink(skb
, list
);
4666 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4671 /* Collapse contiguous sequence of skbs head..tail with
4672 * sequence numbers start..end.
4674 * If tail is NULL, this means until the end of the list.
4676 * Segments with FIN/SYN are not collapsed (only because this
4680 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4681 struct sk_buff
*head
, struct sk_buff
*tail
,
4684 struct sk_buff
*skb
, *n
;
4687 /* First, check that queue is collapsible and find
4688 * the point where collapsing can be useful. */
4692 skb_queue_walk_from_safe(list
, skb
, n
) {
4695 /* No new bits? It is possible on ofo queue. */
4696 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4697 skb
= tcp_collapse_one(sk
, skb
, list
);
4703 /* The first skb to collapse is:
4705 * - bloated or contains data before "start" or
4706 * overlaps to the next one.
4708 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4709 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4710 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4711 end_of_skbs
= false;
4715 if (!skb_queue_is_last(list
, skb
)) {
4716 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4718 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4719 end_of_skbs
= false;
4724 /* Decided to skip this, advance start seq. */
4725 start
= TCP_SKB_CB(skb
)->end_seq
;
4727 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4730 while (before(start
, end
)) {
4731 struct sk_buff
*nskb
;
4732 unsigned int header
= skb_headroom(skb
);
4733 int copy
= SKB_MAX_ORDER(header
, 0);
4735 /* Too big header? This can happen with IPv6. */
4738 if (end
- start
< copy
)
4740 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4744 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4745 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4747 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4749 skb_reserve(nskb
, header
);
4750 memcpy(nskb
->head
, skb
->head
, header
);
4751 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4752 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4753 __skb_queue_before(list
, skb
, nskb
);
4754 skb_set_owner_r(nskb
, sk
);
4756 /* Copy data, releasing collapsed skbs. */
4758 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4759 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4763 size
= min(copy
, size
);
4764 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4766 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4770 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4771 skb
= tcp_collapse_one(sk
, skb
, list
);
4774 tcp_hdr(skb
)->syn
||
4782 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4783 * and tcp_collapse() them until all the queue is collapsed.
4785 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4787 struct tcp_sock
*tp
= tcp_sk(sk
);
4788 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4789 struct sk_buff
*head
;
4795 start
= TCP_SKB_CB(skb
)->seq
;
4796 end
= TCP_SKB_CB(skb
)->end_seq
;
4800 struct sk_buff
*next
= NULL
;
4802 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4803 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4806 /* Segment is terminated when we see gap or when
4807 * we are at the end of all the queue. */
4809 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4810 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4811 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4812 head
, skb
, start
, end
);
4816 /* Start new segment */
4817 start
= TCP_SKB_CB(skb
)->seq
;
4818 end
= TCP_SKB_CB(skb
)->end_seq
;
4820 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4821 start
= TCP_SKB_CB(skb
)->seq
;
4822 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4823 end
= TCP_SKB_CB(skb
)->end_seq
;
4829 * Purge the out-of-order queue.
4830 * Return true if queue was pruned.
4832 static int tcp_prune_ofo_queue(struct sock
*sk
)
4834 struct tcp_sock
*tp
= tcp_sk(sk
);
4837 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4838 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4839 __skb_queue_purge(&tp
->out_of_order_queue
);
4841 /* Reset SACK state. A conforming SACK implementation will
4842 * do the same at a timeout based retransmit. When a connection
4843 * is in a sad state like this, we care only about integrity
4844 * of the connection not performance.
4846 if (tp
->rx_opt
.sack_ok
)
4847 tcp_sack_reset(&tp
->rx_opt
);
4854 /* Reduce allocated memory if we can, trying to get
4855 * the socket within its memory limits again.
4857 * Return less than zero if we should start dropping frames
4858 * until the socket owning process reads some of the data
4859 * to stabilize the situation.
4861 static int tcp_prune_queue(struct sock
*sk
)
4863 struct tcp_sock
*tp
= tcp_sk(sk
);
4865 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4867 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4869 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4870 tcp_clamp_window(sk
);
4871 else if (sk_under_memory_pressure(sk
))
4872 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4874 tcp_collapse_ofo_queue(sk
);
4875 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4876 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4877 skb_peek(&sk
->sk_receive_queue
),
4879 tp
->copied_seq
, tp
->rcv_nxt
);
4882 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4885 /* Collapsing did not help, destructive actions follow.
4886 * This must not ever occur. */
4888 tcp_prune_ofo_queue(sk
);
4890 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4893 /* If we are really being abused, tell the caller to silently
4894 * drop receive data on the floor. It will get retransmitted
4895 * and hopefully then we'll have sufficient space.
4897 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4899 /* Massive buffer overcommit. */
4904 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4905 * As additional protections, we do not touch cwnd in retransmission phases,
4906 * and if application hit its sndbuf limit recently.
4908 void tcp_cwnd_application_limited(struct sock
*sk
)
4910 struct tcp_sock
*tp
= tcp_sk(sk
);
4912 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4913 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4914 /* Limited by application or receiver window. */
4915 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4916 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4917 if (win_used
< tp
->snd_cwnd
) {
4918 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4919 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4921 tp
->snd_cwnd_used
= 0;
4923 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4926 static int tcp_should_expand_sndbuf(const struct sock
*sk
)
4928 const struct tcp_sock
*tp
= tcp_sk(sk
);
4930 /* If the user specified a specific send buffer setting, do
4933 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4936 /* If we are under global TCP memory pressure, do not expand. */
4937 if (sk_under_memory_pressure(sk
))
4940 /* If we are under soft global TCP memory pressure, do not expand. */
4941 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4944 /* If we filled the congestion window, do not expand. */
4945 if (tp
->packets_out
>= tp
->snd_cwnd
)
4951 /* When incoming ACK allowed to free some skb from write_queue,
4952 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4953 * on the exit from tcp input handler.
4955 * PROBLEM: sndbuf expansion does not work well with largesend.
4957 static void tcp_new_space(struct sock
*sk
)
4959 struct tcp_sock
*tp
= tcp_sk(sk
);
4961 if (tcp_should_expand_sndbuf(sk
)) {
4962 int sndmem
= SKB_TRUESIZE(max_t(u32
,
4963 tp
->rx_opt
.mss_clamp
,
4966 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
4967 tp
->reordering
+ 1);
4968 sndmem
*= 2 * demanded
;
4969 if (sndmem
> sk
->sk_sndbuf
)
4970 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
4971 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4974 sk
->sk_write_space(sk
);
4977 static void tcp_check_space(struct sock
*sk
)
4979 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
4980 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
4981 if (sk
->sk_socket
&&
4982 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
4987 static inline void tcp_data_snd_check(struct sock
*sk
)
4989 tcp_push_pending_frames(sk
);
4990 tcp_check_space(sk
);
4994 * Check if sending an ack is needed.
4996 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
4998 struct tcp_sock
*tp
= tcp_sk(sk
);
5000 /* More than one full frame received... */
5001 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5002 /* ... and right edge of window advances far enough.
5003 * (tcp_recvmsg() will send ACK otherwise). Or...
5005 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5006 /* We ACK each frame or... */
5007 tcp_in_quickack_mode(sk
) ||
5008 /* We have out of order data. */
5009 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5010 /* Then ack it now */
5013 /* Else, send delayed ack. */
5014 tcp_send_delayed_ack(sk
);
5018 static inline void tcp_ack_snd_check(struct sock
*sk
)
5020 if (!inet_csk_ack_scheduled(sk
)) {
5021 /* We sent a data segment already. */
5024 __tcp_ack_snd_check(sk
, 1);
5028 * This routine is only called when we have urgent data
5029 * signaled. Its the 'slow' part of tcp_urg. It could be
5030 * moved inline now as tcp_urg is only called from one
5031 * place. We handle URGent data wrong. We have to - as
5032 * BSD still doesn't use the correction from RFC961.
5033 * For 1003.1g we should support a new option TCP_STDURG to permit
5034 * either form (or just set the sysctl tcp_stdurg).
5037 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5039 struct tcp_sock
*tp
= tcp_sk(sk
);
5040 u32 ptr
= ntohs(th
->urg_ptr
);
5042 if (ptr
&& !sysctl_tcp_stdurg
)
5044 ptr
+= ntohl(th
->seq
);
5046 /* Ignore urgent data that we've already seen and read. */
5047 if (after(tp
->copied_seq
, ptr
))
5050 /* Do not replay urg ptr.
5052 * NOTE: interesting situation not covered by specs.
5053 * Misbehaving sender may send urg ptr, pointing to segment,
5054 * which we already have in ofo queue. We are not able to fetch
5055 * such data and will stay in TCP_URG_NOTYET until will be eaten
5056 * by recvmsg(). Seems, we are not obliged to handle such wicked
5057 * situations. But it is worth to think about possibility of some
5058 * DoSes using some hypothetical application level deadlock.
5060 if (before(ptr
, tp
->rcv_nxt
))
5063 /* Do we already have a newer (or duplicate) urgent pointer? */
5064 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5067 /* Tell the world about our new urgent pointer. */
5070 /* We may be adding urgent data when the last byte read was
5071 * urgent. To do this requires some care. We cannot just ignore
5072 * tp->copied_seq since we would read the last urgent byte again
5073 * as data, nor can we alter copied_seq until this data arrives
5074 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5076 * NOTE. Double Dutch. Rendering to plain English: author of comment
5077 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5078 * and expect that both A and B disappear from stream. This is _wrong_.
5079 * Though this happens in BSD with high probability, this is occasional.
5080 * Any application relying on this is buggy. Note also, that fix "works"
5081 * only in this artificial test. Insert some normal data between A and B and we will
5082 * decline of BSD again. Verdict: it is better to remove to trap
5085 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5086 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5087 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5089 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5090 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5095 tp
->urg_data
= TCP_URG_NOTYET
;
5098 /* Disable header prediction. */
5102 /* This is the 'fast' part of urgent handling. */
5103 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5105 struct tcp_sock
*tp
= tcp_sk(sk
);
5107 /* Check if we get a new urgent pointer - normally not. */
5109 tcp_check_urg(sk
, th
);
5111 /* Do we wait for any urgent data? - normally not... */
5112 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5113 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5116 /* Is the urgent pointer pointing into this packet? */
5117 if (ptr
< skb
->len
) {
5119 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5121 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5122 if (!sock_flag(sk
, SOCK_DEAD
))
5123 sk
->sk_data_ready(sk
, 0);
5128 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5130 struct tcp_sock
*tp
= tcp_sk(sk
);
5131 int chunk
= skb
->len
- hlen
;
5135 if (skb_csum_unnecessary(skb
))
5136 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5138 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5142 tp
->ucopy
.len
-= chunk
;
5143 tp
->copied_seq
+= chunk
;
5144 tcp_rcv_space_adjust(sk
);
5151 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5152 struct sk_buff
*skb
)
5156 if (sock_owned_by_user(sk
)) {
5158 result
= __tcp_checksum_complete(skb
);
5161 result
= __tcp_checksum_complete(skb
);
5166 static inline int tcp_checksum_complete_user(struct sock
*sk
,
5167 struct sk_buff
*skb
)
5169 return !skb_csum_unnecessary(skb
) &&
5170 __tcp_checksum_complete_user(sk
, skb
);
5173 #ifdef CONFIG_NET_DMA
5174 static int tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5177 struct tcp_sock
*tp
= tcp_sk(sk
);
5178 int chunk
= skb
->len
- hlen
;
5180 int copied_early
= 0;
5182 if (tp
->ucopy
.wakeup
)
5185 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5186 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
5188 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5190 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5192 tp
->ucopy
.iov
, chunk
,
5193 tp
->ucopy
.pinned_list
);
5198 tp
->ucopy
.dma_cookie
= dma_cookie
;
5201 tp
->ucopy
.len
-= chunk
;
5202 tp
->copied_seq
+= chunk
;
5203 tcp_rcv_space_adjust(sk
);
5205 if ((tp
->ucopy
.len
== 0) ||
5206 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5207 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5208 tp
->ucopy
.wakeup
= 1;
5209 sk
->sk_data_ready(sk
, 0);
5211 } else if (chunk
> 0) {
5212 tp
->ucopy
.wakeup
= 1;
5213 sk
->sk_data_ready(sk
, 0);
5216 return copied_early
;
5218 #endif /* CONFIG_NET_DMA */
5220 /* Does PAWS and seqno based validation of an incoming segment, flags will
5221 * play significant role here.
5223 static int tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5224 const struct tcphdr
*th
, int syn_inerr
)
5226 const u8
*hash_location
;
5227 struct tcp_sock
*tp
= tcp_sk(sk
);
5229 /* RFC1323: H1. Apply PAWS check first. */
5230 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5231 tp
->rx_opt
.saw_tstamp
&&
5232 tcp_paws_discard(sk
, skb
)) {
5234 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5235 tcp_send_dupack(sk
, skb
);
5238 /* Reset is accepted even if it did not pass PAWS. */
5241 /* Step 1: check sequence number */
5242 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5243 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5244 * (RST) segments are validated by checking their SEQ-fields."
5245 * And page 69: "If an incoming segment is not acceptable,
5246 * an acknowledgment should be sent in reply (unless the RST
5247 * bit is set, if so drop the segment and return)".
5250 tcp_send_dupack(sk
, skb
);
5254 /* Step 2: check RST bit */
5260 /* ts_recent update must be made after we are sure that the packet
5263 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5265 /* step 3: check security and precedence [ignored] */
5267 /* step 4: Check for a SYN in window. */
5268 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5270 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5271 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONSYN
);
5284 * TCP receive function for the ESTABLISHED state.
5286 * It is split into a fast path and a slow path. The fast path is
5288 * - A zero window was announced from us - zero window probing
5289 * is only handled properly in the slow path.
5290 * - Out of order segments arrived.
5291 * - Urgent data is expected.
5292 * - There is no buffer space left
5293 * - Unexpected TCP flags/window values/header lengths are received
5294 * (detected by checking the TCP header against pred_flags)
5295 * - Data is sent in both directions. Fast path only supports pure senders
5296 * or pure receivers (this means either the sequence number or the ack
5297 * value must stay constant)
5298 * - Unexpected TCP option.
5300 * When these conditions are not satisfied it drops into a standard
5301 * receive procedure patterned after RFC793 to handle all cases.
5302 * The first three cases are guaranteed by proper pred_flags setting,
5303 * the rest is checked inline. Fast processing is turned on in
5304 * tcp_data_queue when everything is OK.
5306 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5307 const struct tcphdr
*th
, unsigned int len
)
5309 struct tcp_sock
*tp
= tcp_sk(sk
);
5313 * Header prediction.
5314 * The code loosely follows the one in the famous
5315 * "30 instruction TCP receive" Van Jacobson mail.
5317 * Van's trick is to deposit buffers into socket queue
5318 * on a device interrupt, to call tcp_recv function
5319 * on the receive process context and checksum and copy
5320 * the buffer to user space. smart...
5322 * Our current scheme is not silly either but we take the
5323 * extra cost of the net_bh soft interrupt processing...
5324 * We do checksum and copy also but from device to kernel.
5327 tp
->rx_opt
.saw_tstamp
= 0;
5329 /* pred_flags is 0xS?10 << 16 + snd_wnd
5330 * if header_prediction is to be made
5331 * 'S' will always be tp->tcp_header_len >> 2
5332 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5333 * turn it off (when there are holes in the receive
5334 * space for instance)
5335 * PSH flag is ignored.
5338 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5339 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5340 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5341 int tcp_header_len
= tp
->tcp_header_len
;
5343 /* Timestamp header prediction: tcp_header_len
5344 * is automatically equal to th->doff*4 due to pred_flags
5348 /* Check timestamp */
5349 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5350 /* No? Slow path! */
5351 if (!tcp_parse_aligned_timestamp(tp
, th
))
5354 /* If PAWS failed, check it more carefully in slow path */
5355 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5358 /* DO NOT update ts_recent here, if checksum fails
5359 * and timestamp was corrupted part, it will result
5360 * in a hung connection since we will drop all
5361 * future packets due to the PAWS test.
5365 if (len
<= tcp_header_len
) {
5366 /* Bulk data transfer: sender */
5367 if (len
== tcp_header_len
) {
5368 /* Predicted packet is in window by definition.
5369 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5370 * Hence, check seq<=rcv_wup reduces to:
5372 if (tcp_header_len
==
5373 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5374 tp
->rcv_nxt
== tp
->rcv_wup
)
5375 tcp_store_ts_recent(tp
);
5377 /* We know that such packets are checksummed
5380 tcp_ack(sk
, skb
, 0);
5382 tcp_data_snd_check(sk
);
5384 } else { /* Header too small */
5385 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5390 int copied_early
= 0;
5392 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5393 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5394 #ifdef CONFIG_NET_DMA
5395 if (tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5400 if (tp
->ucopy
.task
== current
&&
5401 sock_owned_by_user(sk
) && !copied_early
) {
5402 __set_current_state(TASK_RUNNING
);
5404 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5408 /* Predicted packet is in window by definition.
5409 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5410 * Hence, check seq<=rcv_wup reduces to:
5412 if (tcp_header_len
==
5413 (sizeof(struct tcphdr
) +
5414 TCPOLEN_TSTAMP_ALIGNED
) &&
5415 tp
->rcv_nxt
== tp
->rcv_wup
)
5416 tcp_store_ts_recent(tp
);
5418 tcp_rcv_rtt_measure_ts(sk
, skb
);
5420 __skb_pull(skb
, tcp_header_len
);
5421 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5422 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5425 tcp_cleanup_rbuf(sk
, skb
->len
);
5428 if (tcp_checksum_complete_user(sk
, skb
))
5431 /* Predicted packet is in window by definition.
5432 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5433 * Hence, check seq<=rcv_wup reduces to:
5435 if (tcp_header_len
==
5436 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5437 tp
->rcv_nxt
== tp
->rcv_wup
)
5438 tcp_store_ts_recent(tp
);
5440 tcp_rcv_rtt_measure_ts(sk
, skb
);
5442 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5445 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5447 /* Bulk data transfer: receiver */
5448 __skb_pull(skb
, tcp_header_len
);
5449 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5450 skb_set_owner_r(skb
, sk
);
5451 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5454 tcp_event_data_recv(sk
, skb
);
5456 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5457 /* Well, only one small jumplet in fast path... */
5458 tcp_ack(sk
, skb
, FLAG_DATA
);
5459 tcp_data_snd_check(sk
);
5460 if (!inet_csk_ack_scheduled(sk
))
5464 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5465 __tcp_ack_snd_check(sk
, 0);
5467 #ifdef CONFIG_NET_DMA
5469 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5475 sk
->sk_data_ready(sk
, 0);
5481 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5485 * Standard slow path.
5488 res
= tcp_validate_incoming(sk
, skb
, th
, 1);
5493 if (th
->ack
&& tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5496 tcp_rcv_rtt_measure_ts(sk
, skb
);
5498 /* Process urgent data. */
5499 tcp_urg(sk
, skb
, th
);
5501 /* step 7: process the segment text */
5502 tcp_data_queue(sk
, skb
);
5504 tcp_data_snd_check(sk
);
5505 tcp_ack_snd_check(sk
);
5509 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5515 EXPORT_SYMBOL(tcp_rcv_established
);
5517 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5518 const struct tcphdr
*th
, unsigned int len
)
5520 const u8
*hash_location
;
5521 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5522 struct tcp_sock
*tp
= tcp_sk(sk
);
5523 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5524 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5526 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0);
5530 * "If the state is SYN-SENT then
5531 * first check the ACK bit
5532 * If the ACK bit is set
5533 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5534 * a reset (unless the RST bit is set, if so drop
5535 * the segment and return)"
5537 * We do not send data with SYN, so that RFC-correct
5540 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
5541 goto reset_and_undo
;
5543 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5544 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5546 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5547 goto reset_and_undo
;
5550 /* Now ACK is acceptable.
5552 * "If the RST bit is set
5553 * If the ACK was acceptable then signal the user "error:
5554 * connection reset", drop the segment, enter CLOSED state,
5555 * delete TCB, and return."
5564 * "fifth, if neither of the SYN or RST bits is set then
5565 * drop the segment and return."
5571 goto discard_and_undo
;
5574 * "If the SYN bit is on ...
5575 * are acceptable then ...
5576 * (our SYN has been ACKed), change the connection
5577 * state to ESTABLISHED..."
5580 TCP_ECN_rcv_synack(tp
, th
);
5582 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5583 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5585 /* Ok.. it's good. Set up sequence numbers and
5586 * move to established.
5588 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5589 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5591 /* RFC1323: The window in SYN & SYN/ACK segments is
5594 tp
->snd_wnd
= ntohs(th
->window
);
5595 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5597 if (!tp
->rx_opt
.wscale_ok
) {
5598 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5599 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5602 if (tp
->rx_opt
.saw_tstamp
) {
5603 tp
->rx_opt
.tstamp_ok
= 1;
5604 tp
->tcp_header_len
=
5605 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5606 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5607 tcp_store_ts_recent(tp
);
5609 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5612 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5613 tcp_enable_fack(tp
);
5616 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5617 tcp_initialize_rcv_mss(sk
);
5619 /* Remember, tcp_poll() does not lock socket!
5620 * Change state from SYN-SENT only after copied_seq
5621 * is initialized. */
5622 tp
->copied_seq
= tp
->rcv_nxt
;
5625 cvp
->cookie_pair_size
> 0 &&
5626 tp
->rx_opt
.cookie_plus
> 0) {
5627 int cookie_size
= tp
->rx_opt
.cookie_plus
5628 - TCPOLEN_COOKIE_BASE
;
5629 int cookie_pair_size
= cookie_size
5630 + cvp
->cookie_desired
;
5632 /* A cookie extension option was sent and returned.
5633 * Note that each incoming SYNACK replaces the
5634 * Responder cookie. The initial exchange is most
5635 * fragile, as protection against spoofing relies
5636 * entirely upon the sequence and timestamp (above).
5637 * This replacement strategy allows the correct pair to
5638 * pass through, while any others will be filtered via
5639 * Responder verification later.
5641 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5642 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5643 hash_location
, cookie_size
);
5644 cvp
->cookie_pair_size
= cookie_pair_size
;
5649 tcp_set_state(sk
, TCP_ESTABLISHED
);
5651 security_inet_conn_established(sk
, skb
);
5653 /* Make sure socket is routed, for correct metrics. */
5654 icsk
->icsk_af_ops
->rebuild_header(sk
);
5656 tcp_init_metrics(sk
);
5658 tcp_init_congestion_control(sk
);
5660 /* Prevent spurious tcp_cwnd_restart() on first data
5663 tp
->lsndtime
= tcp_time_stamp
;
5665 tcp_init_buffer_space(sk
);
5667 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5668 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5670 if (!tp
->rx_opt
.snd_wscale
)
5671 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5675 if (!sock_flag(sk
, SOCK_DEAD
)) {
5676 sk
->sk_state_change(sk
);
5677 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5680 if (sk
->sk_write_pending
||
5681 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5682 icsk
->icsk_ack
.pingpong
) {
5683 /* Save one ACK. Data will be ready after
5684 * several ticks, if write_pending is set.
5686 * It may be deleted, but with this feature tcpdumps
5687 * look so _wonderfully_ clever, that I was not able
5688 * to stand against the temptation 8) --ANK
5690 inet_csk_schedule_ack(sk
);
5691 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5692 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
5693 tcp_incr_quickack(sk
);
5694 tcp_enter_quickack_mode(sk
);
5695 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5696 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5707 /* No ACK in the segment */
5711 * "If the RST bit is set
5713 * Otherwise (no ACK) drop the segment and return."
5716 goto discard_and_undo
;
5720 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5721 tcp_paws_reject(&tp
->rx_opt
, 0))
5722 goto discard_and_undo
;
5725 /* We see SYN without ACK. It is attempt of
5726 * simultaneous connect with crossed SYNs.
5727 * Particularly, it can be connect to self.
5729 tcp_set_state(sk
, TCP_SYN_RECV
);
5731 if (tp
->rx_opt
.saw_tstamp
) {
5732 tp
->rx_opt
.tstamp_ok
= 1;
5733 tcp_store_ts_recent(tp
);
5734 tp
->tcp_header_len
=
5735 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5737 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5740 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5741 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5743 /* RFC1323: The window in SYN & SYN/ACK segments is
5746 tp
->snd_wnd
= ntohs(th
->window
);
5747 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5748 tp
->max_window
= tp
->snd_wnd
;
5750 TCP_ECN_rcv_syn(tp
, th
);
5753 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5754 tcp_initialize_rcv_mss(sk
);
5756 tcp_send_synack(sk
);
5758 /* Note, we could accept data and URG from this segment.
5759 * There are no obstacles to make this.
5761 * However, if we ignore data in ACKless segments sometimes,
5762 * we have no reasons to accept it sometimes.
5763 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5764 * is not flawless. So, discard packet for sanity.
5765 * Uncomment this return to process the data.
5772 /* "fifth, if neither of the SYN or RST bits is set then
5773 * drop the segment and return."
5777 tcp_clear_options(&tp
->rx_opt
);
5778 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5782 tcp_clear_options(&tp
->rx_opt
);
5783 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5788 * This function implements the receiving procedure of RFC 793 for
5789 * all states except ESTABLISHED and TIME_WAIT.
5790 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5791 * address independent.
5794 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5795 const struct tcphdr
*th
, unsigned int len
)
5797 struct tcp_sock
*tp
= tcp_sk(sk
);
5798 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5802 tp
->rx_opt
.saw_tstamp
= 0;
5804 switch (sk
->sk_state
) {
5818 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5821 /* Now we have several options: In theory there is
5822 * nothing else in the frame. KA9Q has an option to
5823 * send data with the syn, BSD accepts data with the
5824 * syn up to the [to be] advertised window and
5825 * Solaris 2.1 gives you a protocol error. For now
5826 * we just ignore it, that fits the spec precisely
5827 * and avoids incompatibilities. It would be nice in
5828 * future to drop through and process the data.
5830 * Now that TTCP is starting to be used we ought to
5832 * But, this leaves one open to an easy denial of
5833 * service attack, and SYN cookies can't defend
5834 * against this problem. So, we drop the data
5835 * in the interest of security over speed unless
5836 * it's still in use.
5844 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5848 /* Do step6 onward by hand. */
5849 tcp_urg(sk
, skb
, th
);
5851 tcp_data_snd_check(sk
);
5855 res
= tcp_validate_incoming(sk
, skb
, th
, 0);
5859 /* step 5: check the ACK field */
5861 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5863 switch (sk
->sk_state
) {
5866 tp
->copied_seq
= tp
->rcv_nxt
;
5868 tcp_set_state(sk
, TCP_ESTABLISHED
);
5869 sk
->sk_state_change(sk
);
5871 /* Note, that this wakeup is only for marginal
5872 * crossed SYN case. Passively open sockets
5873 * are not waked up, because sk->sk_sleep ==
5874 * NULL and sk->sk_socket == NULL.
5878 SOCK_WAKE_IO
, POLL_OUT
);
5880 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5881 tp
->snd_wnd
= ntohs(th
->window
) <<
5882 tp
->rx_opt
.snd_wscale
;
5883 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5885 if (tp
->rx_opt
.tstamp_ok
)
5886 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5888 /* Make sure socket is routed, for
5891 icsk
->icsk_af_ops
->rebuild_header(sk
);
5893 tcp_init_metrics(sk
);
5895 tcp_init_congestion_control(sk
);
5897 /* Prevent spurious tcp_cwnd_restart() on
5898 * first data packet.
5900 tp
->lsndtime
= tcp_time_stamp
;
5903 tcp_initialize_rcv_mss(sk
);
5904 tcp_init_buffer_space(sk
);
5905 tcp_fast_path_on(tp
);
5912 if (tp
->snd_una
== tp
->write_seq
) {
5913 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5914 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5915 dst_confirm(__sk_dst_get(sk
));
5917 if (!sock_flag(sk
, SOCK_DEAD
))
5918 /* Wake up lingering close() */
5919 sk
->sk_state_change(sk
);
5923 if (tp
->linger2
< 0 ||
5924 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5925 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
5927 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5931 tmo
= tcp_fin_time(sk
);
5932 if (tmo
> TCP_TIMEWAIT_LEN
) {
5933 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5934 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5935 /* Bad case. We could lose such FIN otherwise.
5936 * It is not a big problem, but it looks confusing
5937 * and not so rare event. We still can lose it now,
5938 * if it spins in bh_lock_sock(), but it is really
5941 inet_csk_reset_keepalive_timer(sk
, tmo
);
5943 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
5951 if (tp
->snd_una
== tp
->write_seq
) {
5952 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
5958 if (tp
->snd_una
== tp
->write_seq
) {
5959 tcp_update_metrics(sk
);
5968 /* step 6: check the URG bit */
5969 tcp_urg(sk
, skb
, th
);
5971 /* step 7: process the segment text */
5972 switch (sk
->sk_state
) {
5973 case TCP_CLOSE_WAIT
:
5976 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
5980 /* RFC 793 says to queue data in these states,
5981 * RFC 1122 says we MUST send a reset.
5982 * BSD 4.4 also does reset.
5984 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
5985 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5986 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5987 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5993 case TCP_ESTABLISHED
:
5994 tcp_data_queue(sk
, skb
);
5999 /* tcp_data could move socket to TIME-WAIT */
6000 if (sk
->sk_state
!= TCP_CLOSE
) {
6001 tcp_data_snd_check(sk
);
6002 tcp_ack_snd_check(sk
);
6011 EXPORT_SYMBOL(tcp_rcv_state_process
);