Linux 3.3-rc6
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob5a5e504a8ffbc9cbf1d22bf8e35949311990406e
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "led.h"
26 #include "mesh.h"
27 #include "wep.h"
28 #include "wpa.h"
29 #include "tkip.h"
30 #include "wme.h"
31 #include "rate.h"
34 * monitor mode reception
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb)
42 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
43 if (likely(skb->len > FCS_LEN))
44 __pskb_trim(skb, skb->len - FCS_LEN);
45 else {
46 /* driver bug */
47 WARN_ON(1);
48 dev_kfree_skb(skb);
49 skb = NULL;
53 return skb;
56 static inline int should_drop_frame(struct sk_buff *skb,
57 int present_fcs_len)
59 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
60 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
62 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
63 return 1;
64 if (unlikely(skb->len < 16 + present_fcs_len))
65 return 1;
66 if (ieee80211_is_ctl(hdr->frame_control) &&
67 !ieee80211_is_pspoll(hdr->frame_control) &&
68 !ieee80211_is_back_req(hdr->frame_control))
69 return 1;
70 return 0;
73 static int
74 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
75 struct ieee80211_rx_status *status)
77 int len;
79 /* always present fields */
80 len = sizeof(struct ieee80211_radiotap_header) + 9;
82 if (status->flag & RX_FLAG_MACTIME_MPDU)
83 len += 8;
84 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
85 len += 1;
87 if (len & 1) /* padding for RX_FLAGS if necessary */
88 len++;
90 if (status->flag & RX_FLAG_HT) /* HT info */
91 len += 3;
93 return len;
97 * ieee80211_add_rx_radiotap_header - add radiotap header
99 * add a radiotap header containing all the fields which the hardware provided.
101 static void
102 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
103 struct sk_buff *skb,
104 struct ieee80211_rate *rate,
105 int rtap_len)
107 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
108 struct ieee80211_radiotap_header *rthdr;
109 unsigned char *pos;
110 u16 rx_flags = 0;
112 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
113 memset(rthdr, 0, rtap_len);
115 /* radiotap header, set always present flags */
116 rthdr->it_present =
117 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
118 (1 << IEEE80211_RADIOTAP_CHANNEL) |
119 (1 << IEEE80211_RADIOTAP_ANTENNA) |
120 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
121 rthdr->it_len = cpu_to_le16(rtap_len);
123 pos = (unsigned char *)(rthdr+1);
125 /* the order of the following fields is important */
127 /* IEEE80211_RADIOTAP_TSFT */
128 if (status->flag & RX_FLAG_MACTIME_MPDU) {
129 put_unaligned_le64(status->mactime, pos);
130 rthdr->it_present |=
131 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
132 pos += 8;
135 /* IEEE80211_RADIOTAP_FLAGS */
136 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
137 *pos |= IEEE80211_RADIOTAP_F_FCS;
138 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
139 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
140 if (status->flag & RX_FLAG_SHORTPRE)
141 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
142 pos++;
144 /* IEEE80211_RADIOTAP_RATE */
145 if (!rate || status->flag & RX_FLAG_HT) {
147 * Without rate information don't add it. If we have,
148 * MCS information is a separate field in radiotap,
149 * added below. The byte here is needed as padding
150 * for the channel though, so initialise it to 0.
152 *pos = 0;
153 } else {
154 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
155 *pos = rate->bitrate / 5;
157 pos++;
159 /* IEEE80211_RADIOTAP_CHANNEL */
160 put_unaligned_le16(status->freq, pos);
161 pos += 2;
162 if (status->band == IEEE80211_BAND_5GHZ)
163 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
164 pos);
165 else if (status->flag & RX_FLAG_HT)
166 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
167 pos);
168 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
169 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
170 pos);
171 else if (rate)
172 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
173 pos);
174 else
175 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
176 pos += 2;
178 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
179 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
180 *pos = status->signal;
181 rthdr->it_present |=
182 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
183 pos++;
186 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
188 /* IEEE80211_RADIOTAP_ANTENNA */
189 *pos = status->antenna;
190 pos++;
192 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
194 /* IEEE80211_RADIOTAP_RX_FLAGS */
195 /* ensure 2 byte alignment for the 2 byte field as required */
196 if ((pos - (u8 *)rthdr) & 1)
197 pos++;
198 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
199 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
200 put_unaligned_le16(rx_flags, pos);
201 pos += 2;
203 if (status->flag & RX_FLAG_HT) {
204 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
205 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
206 IEEE80211_RADIOTAP_MCS_HAVE_GI |
207 IEEE80211_RADIOTAP_MCS_HAVE_BW;
208 *pos = 0;
209 if (status->flag & RX_FLAG_SHORT_GI)
210 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
211 if (status->flag & RX_FLAG_40MHZ)
212 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
213 pos++;
214 *pos++ = status->rate_idx;
219 * This function copies a received frame to all monitor interfaces and
220 * returns a cleaned-up SKB that no longer includes the FCS nor the
221 * radiotap header the driver might have added.
223 static struct sk_buff *
224 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
225 struct ieee80211_rate *rate)
227 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
228 struct ieee80211_sub_if_data *sdata;
229 int needed_headroom = 0;
230 struct sk_buff *skb, *skb2;
231 struct net_device *prev_dev = NULL;
232 int present_fcs_len = 0;
235 * First, we may need to make a copy of the skb because
236 * (1) we need to modify it for radiotap (if not present), and
237 * (2) the other RX handlers will modify the skb we got.
239 * We don't need to, of course, if we aren't going to return
240 * the SKB because it has a bad FCS/PLCP checksum.
243 /* room for the radiotap header based on driver features */
244 needed_headroom = ieee80211_rx_radiotap_len(local, status);
246 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
247 present_fcs_len = FCS_LEN;
249 /* make sure hdr->frame_control is on the linear part */
250 if (!pskb_may_pull(origskb, 2)) {
251 dev_kfree_skb(origskb);
252 return NULL;
255 if (!local->monitors) {
256 if (should_drop_frame(origskb, present_fcs_len)) {
257 dev_kfree_skb(origskb);
258 return NULL;
261 return remove_monitor_info(local, origskb);
264 if (should_drop_frame(origskb, present_fcs_len)) {
265 /* only need to expand headroom if necessary */
266 skb = origskb;
267 origskb = NULL;
270 * This shouldn't trigger often because most devices have an
271 * RX header they pull before we get here, and that should
272 * be big enough for our radiotap information. We should
273 * probably export the length to drivers so that we can have
274 * them allocate enough headroom to start with.
276 if (skb_headroom(skb) < needed_headroom &&
277 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
278 dev_kfree_skb(skb);
279 return NULL;
281 } else {
283 * Need to make a copy and possibly remove radiotap header
284 * and FCS from the original.
286 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
288 origskb = remove_monitor_info(local, origskb);
290 if (!skb)
291 return origskb;
294 /* prepend radiotap information */
295 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
297 skb_reset_mac_header(skb);
298 skb->ip_summed = CHECKSUM_UNNECESSARY;
299 skb->pkt_type = PACKET_OTHERHOST;
300 skb->protocol = htons(ETH_P_802_2);
302 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
303 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
304 continue;
306 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
307 continue;
309 if (!ieee80211_sdata_running(sdata))
310 continue;
312 if (prev_dev) {
313 skb2 = skb_clone(skb, GFP_ATOMIC);
314 if (skb2) {
315 skb2->dev = prev_dev;
316 netif_receive_skb(skb2);
320 prev_dev = sdata->dev;
321 sdata->dev->stats.rx_packets++;
322 sdata->dev->stats.rx_bytes += skb->len;
325 if (prev_dev) {
326 skb->dev = prev_dev;
327 netif_receive_skb(skb);
328 } else
329 dev_kfree_skb(skb);
331 return origskb;
335 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
337 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
338 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
339 int tid, seqno_idx, security_idx;
341 /* does the frame have a qos control field? */
342 if (ieee80211_is_data_qos(hdr->frame_control)) {
343 u8 *qc = ieee80211_get_qos_ctl(hdr);
344 /* frame has qos control */
345 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
346 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
347 status->rx_flags |= IEEE80211_RX_AMSDU;
349 seqno_idx = tid;
350 security_idx = tid;
351 } else {
353 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
355 * Sequence numbers for management frames, QoS data
356 * frames with a broadcast/multicast address in the
357 * Address 1 field, and all non-QoS data frames sent
358 * by QoS STAs are assigned using an additional single
359 * modulo-4096 counter, [...]
361 * We also use that counter for non-QoS STAs.
363 seqno_idx = NUM_RX_DATA_QUEUES;
364 security_idx = 0;
365 if (ieee80211_is_mgmt(hdr->frame_control))
366 security_idx = NUM_RX_DATA_QUEUES;
367 tid = 0;
370 rx->seqno_idx = seqno_idx;
371 rx->security_idx = security_idx;
372 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
373 * For now, set skb->priority to 0 for other cases. */
374 rx->skb->priority = (tid > 7) ? 0 : tid;
378 * DOC: Packet alignment
380 * Drivers always need to pass packets that are aligned to two-byte boundaries
381 * to the stack.
383 * Additionally, should, if possible, align the payload data in a way that
384 * guarantees that the contained IP header is aligned to a four-byte
385 * boundary. In the case of regular frames, this simply means aligning the
386 * payload to a four-byte boundary (because either the IP header is directly
387 * contained, or IV/RFC1042 headers that have a length divisible by four are
388 * in front of it). If the payload data is not properly aligned and the
389 * architecture doesn't support efficient unaligned operations, mac80211
390 * will align the data.
392 * With A-MSDU frames, however, the payload data address must yield two modulo
393 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
394 * push the IP header further back to a multiple of four again. Thankfully, the
395 * specs were sane enough this time around to require padding each A-MSDU
396 * subframe to a length that is a multiple of four.
398 * Padding like Atheros hardware adds which is between the 802.11 header and
399 * the payload is not supported, the driver is required to move the 802.11
400 * header to be directly in front of the payload in that case.
402 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
404 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
405 WARN_ONCE((unsigned long)rx->skb->data & 1,
406 "unaligned packet at 0x%p\n", rx->skb->data);
407 #endif
411 /* rx handlers */
413 static ieee80211_rx_result debug_noinline
414 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
416 struct ieee80211_local *local = rx->local;
417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
418 struct sk_buff *skb = rx->skb;
420 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
421 !local->sched_scanning))
422 return RX_CONTINUE;
424 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
425 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
426 local->sched_scanning)
427 return ieee80211_scan_rx(rx->sdata, skb);
429 /* scanning finished during invoking of handlers */
430 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
431 return RX_DROP_UNUSABLE;
435 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
437 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
439 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
440 return 0;
442 return ieee80211_is_robust_mgmt_frame(hdr);
446 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
448 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
450 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
451 return 0;
453 return ieee80211_is_robust_mgmt_frame(hdr);
457 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
458 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
460 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
461 struct ieee80211_mmie *mmie;
463 if (skb->len < 24 + sizeof(*mmie) ||
464 !is_multicast_ether_addr(hdr->da))
465 return -1;
467 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
468 return -1; /* not a robust management frame */
470 mmie = (struct ieee80211_mmie *)
471 (skb->data + skb->len - sizeof(*mmie));
472 if (mmie->element_id != WLAN_EID_MMIE ||
473 mmie->length != sizeof(*mmie) - 2)
474 return -1;
476 return le16_to_cpu(mmie->key_id);
480 static ieee80211_rx_result
481 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
483 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
484 char *dev_addr = rx->sdata->vif.addr;
486 if (ieee80211_is_data(hdr->frame_control)) {
487 if (is_multicast_ether_addr(hdr->addr1)) {
488 if (ieee80211_has_tods(hdr->frame_control) ||
489 !ieee80211_has_fromds(hdr->frame_control))
490 return RX_DROP_MONITOR;
491 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
492 return RX_DROP_MONITOR;
493 } else {
494 if (!ieee80211_has_a4(hdr->frame_control))
495 return RX_DROP_MONITOR;
496 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
497 return RX_DROP_MONITOR;
501 /* If there is not an established peer link and this is not a peer link
502 * establisment frame, beacon or probe, drop the frame.
505 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
506 struct ieee80211_mgmt *mgmt;
508 if (!ieee80211_is_mgmt(hdr->frame_control))
509 return RX_DROP_MONITOR;
511 if (ieee80211_is_action(hdr->frame_control)) {
512 u8 category;
513 mgmt = (struct ieee80211_mgmt *)hdr;
514 category = mgmt->u.action.category;
515 if (category != WLAN_CATEGORY_MESH_ACTION &&
516 category != WLAN_CATEGORY_SELF_PROTECTED)
517 return RX_DROP_MONITOR;
518 return RX_CONTINUE;
521 if (ieee80211_is_probe_req(hdr->frame_control) ||
522 ieee80211_is_probe_resp(hdr->frame_control) ||
523 ieee80211_is_beacon(hdr->frame_control) ||
524 ieee80211_is_auth(hdr->frame_control))
525 return RX_CONTINUE;
527 return RX_DROP_MONITOR;
531 return RX_CONTINUE;
534 #define SEQ_MODULO 0x1000
535 #define SEQ_MASK 0xfff
537 static inline int seq_less(u16 sq1, u16 sq2)
539 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
542 static inline u16 seq_inc(u16 sq)
544 return (sq + 1) & SEQ_MASK;
547 static inline u16 seq_sub(u16 sq1, u16 sq2)
549 return (sq1 - sq2) & SEQ_MASK;
553 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
554 struct tid_ampdu_rx *tid_agg_rx,
555 int index)
557 struct ieee80211_local *local = hw_to_local(hw);
558 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
559 struct ieee80211_rx_status *status;
561 lockdep_assert_held(&tid_agg_rx->reorder_lock);
563 if (!skb)
564 goto no_frame;
566 /* release the frame from the reorder ring buffer */
567 tid_agg_rx->stored_mpdu_num--;
568 tid_agg_rx->reorder_buf[index] = NULL;
569 status = IEEE80211_SKB_RXCB(skb);
570 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
571 skb_queue_tail(&local->rx_skb_queue, skb);
573 no_frame:
574 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
577 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
578 struct tid_ampdu_rx *tid_agg_rx,
579 u16 head_seq_num)
581 int index;
583 lockdep_assert_held(&tid_agg_rx->reorder_lock);
585 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
586 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
587 tid_agg_rx->buf_size;
588 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
593 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
594 * the skb was added to the buffer longer than this time ago, the earlier
595 * frames that have not yet been received are assumed to be lost and the skb
596 * can be released for processing. This may also release other skb's from the
597 * reorder buffer if there are no additional gaps between the frames.
599 * Callers must hold tid_agg_rx->reorder_lock.
601 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
603 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
604 struct tid_ampdu_rx *tid_agg_rx)
606 int index, j;
608 lockdep_assert_held(&tid_agg_rx->reorder_lock);
610 /* release the buffer until next missing frame */
611 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
612 tid_agg_rx->buf_size;
613 if (!tid_agg_rx->reorder_buf[index] &&
614 tid_agg_rx->stored_mpdu_num) {
616 * No buffers ready to be released, but check whether any
617 * frames in the reorder buffer have timed out.
619 int skipped = 1;
620 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
621 j = (j + 1) % tid_agg_rx->buf_size) {
622 if (!tid_agg_rx->reorder_buf[j]) {
623 skipped++;
624 continue;
626 if (skipped &&
627 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
628 HT_RX_REORDER_BUF_TIMEOUT))
629 goto set_release_timer;
631 #ifdef CONFIG_MAC80211_HT_DEBUG
632 if (net_ratelimit())
633 wiphy_debug(hw->wiphy,
634 "release an RX reorder frame due to timeout on earlier frames\n");
635 #endif
636 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
639 * Increment the head seq# also for the skipped slots.
641 tid_agg_rx->head_seq_num =
642 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
643 skipped = 0;
645 } else while (tid_agg_rx->reorder_buf[index]) {
646 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
647 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
648 tid_agg_rx->buf_size;
651 if (tid_agg_rx->stored_mpdu_num) {
652 j = index = seq_sub(tid_agg_rx->head_seq_num,
653 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
655 for (; j != (index - 1) % tid_agg_rx->buf_size;
656 j = (j + 1) % tid_agg_rx->buf_size) {
657 if (tid_agg_rx->reorder_buf[j])
658 break;
661 set_release_timer:
663 mod_timer(&tid_agg_rx->reorder_timer,
664 tid_agg_rx->reorder_time[j] + 1 +
665 HT_RX_REORDER_BUF_TIMEOUT);
666 } else {
667 del_timer(&tid_agg_rx->reorder_timer);
672 * As this function belongs to the RX path it must be under
673 * rcu_read_lock protection. It returns false if the frame
674 * can be processed immediately, true if it was consumed.
676 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
677 struct tid_ampdu_rx *tid_agg_rx,
678 struct sk_buff *skb)
680 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
681 u16 sc = le16_to_cpu(hdr->seq_ctrl);
682 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
683 u16 head_seq_num, buf_size;
684 int index;
685 bool ret = true;
687 spin_lock(&tid_agg_rx->reorder_lock);
689 buf_size = tid_agg_rx->buf_size;
690 head_seq_num = tid_agg_rx->head_seq_num;
692 /* frame with out of date sequence number */
693 if (seq_less(mpdu_seq_num, head_seq_num)) {
694 dev_kfree_skb(skb);
695 goto out;
699 * If frame the sequence number exceeds our buffering window
700 * size release some previous frames to make room for this one.
702 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
703 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
704 /* release stored frames up to new head to stack */
705 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
708 /* Now the new frame is always in the range of the reordering buffer */
710 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
712 /* check if we already stored this frame */
713 if (tid_agg_rx->reorder_buf[index]) {
714 dev_kfree_skb(skb);
715 goto out;
719 * If the current MPDU is in the right order and nothing else
720 * is stored we can process it directly, no need to buffer it.
721 * If it is first but there's something stored, we may be able
722 * to release frames after this one.
724 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
725 tid_agg_rx->stored_mpdu_num == 0) {
726 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
727 ret = false;
728 goto out;
731 /* put the frame in the reordering buffer */
732 tid_agg_rx->reorder_buf[index] = skb;
733 tid_agg_rx->reorder_time[index] = jiffies;
734 tid_agg_rx->stored_mpdu_num++;
735 ieee80211_sta_reorder_release(hw, tid_agg_rx);
737 out:
738 spin_unlock(&tid_agg_rx->reorder_lock);
739 return ret;
743 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
744 * true if the MPDU was buffered, false if it should be processed.
746 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
748 struct sk_buff *skb = rx->skb;
749 struct ieee80211_local *local = rx->local;
750 struct ieee80211_hw *hw = &local->hw;
751 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
752 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
753 struct sta_info *sta = rx->sta;
754 struct tid_ampdu_rx *tid_agg_rx;
755 u16 sc;
756 u8 tid, ack_policy;
758 if (!ieee80211_is_data_qos(hdr->frame_control))
759 goto dont_reorder;
762 * filter the QoS data rx stream according to
763 * STA/TID and check if this STA/TID is on aggregation
766 if (!sta)
767 goto dont_reorder;
769 ack_policy = *ieee80211_get_qos_ctl(hdr) &
770 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
771 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
773 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
774 if (!tid_agg_rx)
775 goto dont_reorder;
777 /* qos null data frames are excluded */
778 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
779 goto dont_reorder;
781 /* not part of a BA session */
782 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
783 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
784 goto dont_reorder;
786 /* not actually part of this BA session */
787 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
788 goto dont_reorder;
790 /* new, potentially un-ordered, ampdu frame - process it */
792 /* reset session timer */
793 if (tid_agg_rx->timeout)
794 mod_timer(&tid_agg_rx->session_timer,
795 TU_TO_EXP_TIME(tid_agg_rx->timeout));
797 /* if this mpdu is fragmented - terminate rx aggregation session */
798 sc = le16_to_cpu(hdr->seq_ctrl);
799 if (sc & IEEE80211_SCTL_FRAG) {
800 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
801 skb_queue_tail(&rx->sdata->skb_queue, skb);
802 ieee80211_queue_work(&local->hw, &rx->sdata->work);
803 return;
807 * No locking needed -- we will only ever process one
808 * RX packet at a time, and thus own tid_agg_rx. All
809 * other code manipulating it needs to (and does) make
810 * sure that we cannot get to it any more before doing
811 * anything with it.
813 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
814 return;
816 dont_reorder:
817 skb_queue_tail(&local->rx_skb_queue, skb);
820 static ieee80211_rx_result debug_noinline
821 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
823 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
824 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
826 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
827 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
828 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
829 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
830 hdr->seq_ctrl)) {
831 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
832 rx->local->dot11FrameDuplicateCount++;
833 rx->sta->num_duplicates++;
835 return RX_DROP_UNUSABLE;
836 } else
837 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
840 if (unlikely(rx->skb->len < 16)) {
841 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
842 return RX_DROP_MONITOR;
845 /* Drop disallowed frame classes based on STA auth/assoc state;
846 * IEEE 802.11, Chap 5.5.
848 * mac80211 filters only based on association state, i.e. it drops
849 * Class 3 frames from not associated stations. hostapd sends
850 * deauth/disassoc frames when needed. In addition, hostapd is
851 * responsible for filtering on both auth and assoc states.
854 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
855 return ieee80211_rx_mesh_check(rx);
857 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
858 ieee80211_is_pspoll(hdr->frame_control)) &&
859 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
860 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
861 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
862 if (rx->sta && rx->sta->dummy &&
863 ieee80211_is_data_present(hdr->frame_control)) {
864 u16 ethertype;
865 u8 *payload;
867 payload = rx->skb->data +
868 ieee80211_hdrlen(hdr->frame_control);
869 ethertype = (payload[6] << 8) | payload[7];
870 if (cpu_to_be16(ethertype) ==
871 rx->sdata->control_port_protocol)
872 return RX_CONTINUE;
875 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
876 cfg80211_rx_spurious_frame(rx->sdata->dev,
877 hdr->addr2,
878 GFP_ATOMIC))
879 return RX_DROP_UNUSABLE;
881 return RX_DROP_MONITOR;
884 return RX_CONTINUE;
888 static ieee80211_rx_result debug_noinline
889 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
891 struct sk_buff *skb = rx->skb;
892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
893 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
894 int keyidx;
895 int hdrlen;
896 ieee80211_rx_result result = RX_DROP_UNUSABLE;
897 struct ieee80211_key *sta_ptk = NULL;
898 int mmie_keyidx = -1;
899 __le16 fc;
902 * Key selection 101
904 * There are four types of keys:
905 * - GTK (group keys)
906 * - IGTK (group keys for management frames)
907 * - PTK (pairwise keys)
908 * - STK (station-to-station pairwise keys)
910 * When selecting a key, we have to distinguish between multicast
911 * (including broadcast) and unicast frames, the latter can only
912 * use PTKs and STKs while the former always use GTKs and IGTKs.
913 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
914 * unicast frames can also use key indices like GTKs. Hence, if we
915 * don't have a PTK/STK we check the key index for a WEP key.
917 * Note that in a regular BSS, multicast frames are sent by the
918 * AP only, associated stations unicast the frame to the AP first
919 * which then multicasts it on their behalf.
921 * There is also a slight problem in IBSS mode: GTKs are negotiated
922 * with each station, that is something we don't currently handle.
923 * The spec seems to expect that one negotiates the same key with
924 * every station but there's no such requirement; VLANs could be
925 * possible.
929 * No point in finding a key and decrypting if the frame is neither
930 * addressed to us nor a multicast frame.
932 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
933 return RX_CONTINUE;
935 /* start without a key */
936 rx->key = NULL;
938 if (rx->sta)
939 sta_ptk = rcu_dereference(rx->sta->ptk);
941 fc = hdr->frame_control;
943 if (!ieee80211_has_protected(fc))
944 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
946 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
947 rx->key = sta_ptk;
948 if ((status->flag & RX_FLAG_DECRYPTED) &&
949 (status->flag & RX_FLAG_IV_STRIPPED))
950 return RX_CONTINUE;
951 /* Skip decryption if the frame is not protected. */
952 if (!ieee80211_has_protected(fc))
953 return RX_CONTINUE;
954 } else if (mmie_keyidx >= 0) {
955 /* Broadcast/multicast robust management frame / BIP */
956 if ((status->flag & RX_FLAG_DECRYPTED) &&
957 (status->flag & RX_FLAG_IV_STRIPPED))
958 return RX_CONTINUE;
960 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
961 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
962 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
963 if (rx->sta)
964 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
965 if (!rx->key)
966 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
967 } else if (!ieee80211_has_protected(fc)) {
969 * The frame was not protected, so skip decryption. However, we
970 * need to set rx->key if there is a key that could have been
971 * used so that the frame may be dropped if encryption would
972 * have been expected.
974 struct ieee80211_key *key = NULL;
975 struct ieee80211_sub_if_data *sdata = rx->sdata;
976 int i;
978 if (ieee80211_is_mgmt(fc) &&
979 is_multicast_ether_addr(hdr->addr1) &&
980 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
981 rx->key = key;
982 else {
983 if (rx->sta) {
984 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
985 key = rcu_dereference(rx->sta->gtk[i]);
986 if (key)
987 break;
990 if (!key) {
991 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
992 key = rcu_dereference(sdata->keys[i]);
993 if (key)
994 break;
997 if (key)
998 rx->key = key;
1000 return RX_CONTINUE;
1001 } else {
1002 u8 keyid;
1004 * The device doesn't give us the IV so we won't be
1005 * able to look up the key. That's ok though, we
1006 * don't need to decrypt the frame, we just won't
1007 * be able to keep statistics accurate.
1008 * Except for key threshold notifications, should
1009 * we somehow allow the driver to tell us which key
1010 * the hardware used if this flag is set?
1012 if ((status->flag & RX_FLAG_DECRYPTED) &&
1013 (status->flag & RX_FLAG_IV_STRIPPED))
1014 return RX_CONTINUE;
1016 hdrlen = ieee80211_hdrlen(fc);
1018 if (rx->skb->len < 8 + hdrlen)
1019 return RX_DROP_UNUSABLE; /* TODO: count this? */
1022 * no need to call ieee80211_wep_get_keyidx,
1023 * it verifies a bunch of things we've done already
1025 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1026 keyidx = keyid >> 6;
1028 /* check per-station GTK first, if multicast packet */
1029 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1030 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1032 /* if not found, try default key */
1033 if (!rx->key) {
1034 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1037 * RSNA-protected unicast frames should always be
1038 * sent with pairwise or station-to-station keys,
1039 * but for WEP we allow using a key index as well.
1041 if (rx->key &&
1042 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1043 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1044 !is_multicast_ether_addr(hdr->addr1))
1045 rx->key = NULL;
1049 if (rx->key) {
1050 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1051 return RX_DROP_MONITOR;
1053 rx->key->tx_rx_count++;
1054 /* TODO: add threshold stuff again */
1055 } else {
1056 return RX_DROP_MONITOR;
1059 if (skb_linearize(rx->skb))
1060 return RX_DROP_UNUSABLE;
1061 /* the hdr variable is invalid now! */
1063 switch (rx->key->conf.cipher) {
1064 case WLAN_CIPHER_SUITE_WEP40:
1065 case WLAN_CIPHER_SUITE_WEP104:
1066 /* Check for weak IVs if possible */
1067 if (rx->sta && ieee80211_is_data(fc) &&
1068 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1069 !(status->flag & RX_FLAG_DECRYPTED)) &&
1070 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1071 rx->sta->wep_weak_iv_count++;
1073 result = ieee80211_crypto_wep_decrypt(rx);
1074 break;
1075 case WLAN_CIPHER_SUITE_TKIP:
1076 result = ieee80211_crypto_tkip_decrypt(rx);
1077 break;
1078 case WLAN_CIPHER_SUITE_CCMP:
1079 result = ieee80211_crypto_ccmp_decrypt(rx);
1080 break;
1081 case WLAN_CIPHER_SUITE_AES_CMAC:
1082 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1083 break;
1084 default:
1086 * We can reach here only with HW-only algorithms
1087 * but why didn't it decrypt the frame?!
1089 return RX_DROP_UNUSABLE;
1092 /* either the frame has been decrypted or will be dropped */
1093 status->flag |= RX_FLAG_DECRYPTED;
1095 return result;
1098 static ieee80211_rx_result debug_noinline
1099 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1101 struct ieee80211_local *local;
1102 struct ieee80211_hdr *hdr;
1103 struct sk_buff *skb;
1105 local = rx->local;
1106 skb = rx->skb;
1107 hdr = (struct ieee80211_hdr *) skb->data;
1109 if (!local->pspolling)
1110 return RX_CONTINUE;
1112 if (!ieee80211_has_fromds(hdr->frame_control))
1113 /* this is not from AP */
1114 return RX_CONTINUE;
1116 if (!ieee80211_is_data(hdr->frame_control))
1117 return RX_CONTINUE;
1119 if (!ieee80211_has_moredata(hdr->frame_control)) {
1120 /* AP has no more frames buffered for us */
1121 local->pspolling = false;
1122 return RX_CONTINUE;
1125 /* more data bit is set, let's request a new frame from the AP */
1126 ieee80211_send_pspoll(local, rx->sdata);
1128 return RX_CONTINUE;
1131 static void ap_sta_ps_start(struct sta_info *sta)
1133 struct ieee80211_sub_if_data *sdata = sta->sdata;
1134 struct ieee80211_local *local = sdata->local;
1136 atomic_inc(&sdata->bss->num_sta_ps);
1137 set_sta_flag(sta, WLAN_STA_PS_STA);
1138 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1139 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1140 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1141 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1142 sdata->name, sta->sta.addr, sta->sta.aid);
1143 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1146 static void ap_sta_ps_end(struct sta_info *sta)
1148 struct ieee80211_sub_if_data *sdata = sta->sdata;
1150 atomic_dec(&sdata->bss->num_sta_ps);
1152 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1153 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1154 sdata->name, sta->sta.addr, sta->sta.aid);
1155 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1157 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1158 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1159 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1160 sdata->name, sta->sta.addr, sta->sta.aid);
1161 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1162 return;
1165 ieee80211_sta_ps_deliver_wakeup(sta);
1168 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1170 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1171 bool in_ps;
1173 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1175 /* Don't let the same PS state be set twice */
1176 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1177 if ((start && in_ps) || (!start && !in_ps))
1178 return -EINVAL;
1180 if (start)
1181 ap_sta_ps_start(sta_inf);
1182 else
1183 ap_sta_ps_end(sta_inf);
1185 return 0;
1187 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1189 static ieee80211_rx_result debug_noinline
1190 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1192 struct ieee80211_sub_if_data *sdata = rx->sdata;
1193 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1194 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1195 int tid, ac;
1197 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1198 return RX_CONTINUE;
1200 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1201 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1202 return RX_CONTINUE;
1205 * The device handles station powersave, so don't do anything about
1206 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1207 * it to mac80211 since they're handled.)
1209 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1210 return RX_CONTINUE;
1213 * Don't do anything if the station isn't already asleep. In
1214 * the uAPSD case, the station will probably be marked asleep,
1215 * in the PS-Poll case the station must be confused ...
1217 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1218 return RX_CONTINUE;
1220 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1221 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1222 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1223 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1224 else
1225 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1228 /* Free PS Poll skb here instead of returning RX_DROP that would
1229 * count as an dropped frame. */
1230 dev_kfree_skb(rx->skb);
1232 return RX_QUEUED;
1233 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1234 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1235 ieee80211_has_pm(hdr->frame_control) &&
1236 (ieee80211_is_data_qos(hdr->frame_control) ||
1237 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1238 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1239 ac = ieee802_1d_to_ac[tid & 7];
1242 * If this AC is not trigger-enabled do nothing.
1244 * NB: This could/should check a separate bitmap of trigger-
1245 * enabled queues, but for now we only implement uAPSD w/o
1246 * TSPEC changes to the ACs, so they're always the same.
1248 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1249 return RX_CONTINUE;
1251 /* if we are in a service period, do nothing */
1252 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1253 return RX_CONTINUE;
1255 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1256 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1257 else
1258 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1261 return RX_CONTINUE;
1264 static ieee80211_rx_result debug_noinline
1265 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1267 struct sta_info *sta = rx->sta;
1268 struct sk_buff *skb = rx->skb;
1269 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1270 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1272 if (!sta)
1273 return RX_CONTINUE;
1276 * Update last_rx only for IBSS packets which are for the current
1277 * BSSID to avoid keeping the current IBSS network alive in cases
1278 * where other STAs start using different BSSID.
1280 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1281 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1282 NL80211_IFTYPE_ADHOC);
1283 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1284 sta->last_rx = jiffies;
1285 if (ieee80211_is_data(hdr->frame_control)) {
1286 sta->last_rx_rate_idx = status->rate_idx;
1287 sta->last_rx_rate_flag = status->flag;
1290 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1292 * Mesh beacons will update last_rx when if they are found to
1293 * match the current local configuration when processed.
1295 sta->last_rx = jiffies;
1296 if (ieee80211_is_data(hdr->frame_control)) {
1297 sta->last_rx_rate_idx = status->rate_idx;
1298 sta->last_rx_rate_flag = status->flag;
1302 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1303 return RX_CONTINUE;
1305 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1306 ieee80211_sta_rx_notify(rx->sdata, hdr);
1308 sta->rx_fragments++;
1309 sta->rx_bytes += rx->skb->len;
1310 sta->last_signal = status->signal;
1311 ewma_add(&sta->avg_signal, -status->signal);
1314 * Change STA power saving mode only at the end of a frame
1315 * exchange sequence.
1317 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1318 !ieee80211_has_morefrags(hdr->frame_control) &&
1319 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1320 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1321 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1322 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1324 * Ignore doze->wake transitions that are
1325 * indicated by non-data frames, the standard
1326 * is unclear here, but for example going to
1327 * PS mode and then scanning would cause a
1328 * doze->wake transition for the probe request,
1329 * and that is clearly undesirable.
1331 if (ieee80211_is_data(hdr->frame_control) &&
1332 !ieee80211_has_pm(hdr->frame_control))
1333 ap_sta_ps_end(sta);
1334 } else {
1335 if (ieee80211_has_pm(hdr->frame_control))
1336 ap_sta_ps_start(sta);
1341 * Drop (qos-)data::nullfunc frames silently, since they
1342 * are used only to control station power saving mode.
1344 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1345 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1346 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1349 * If we receive a 4-addr nullfunc frame from a STA
1350 * that was not moved to a 4-addr STA vlan yet send
1351 * the event to userspace and for older hostapd drop
1352 * the frame to the monitor interface.
1354 if (ieee80211_has_a4(hdr->frame_control) &&
1355 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1356 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1357 !rx->sdata->u.vlan.sta))) {
1358 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1359 cfg80211_rx_unexpected_4addr_frame(
1360 rx->sdata->dev, sta->sta.addr,
1361 GFP_ATOMIC);
1362 return RX_DROP_MONITOR;
1365 * Update counter and free packet here to avoid
1366 * counting this as a dropped packed.
1368 sta->rx_packets++;
1369 dev_kfree_skb(rx->skb);
1370 return RX_QUEUED;
1373 return RX_CONTINUE;
1374 } /* ieee80211_rx_h_sta_process */
1376 static inline struct ieee80211_fragment_entry *
1377 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1378 unsigned int frag, unsigned int seq, int rx_queue,
1379 struct sk_buff **skb)
1381 struct ieee80211_fragment_entry *entry;
1382 int idx;
1384 idx = sdata->fragment_next;
1385 entry = &sdata->fragments[sdata->fragment_next++];
1386 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1387 sdata->fragment_next = 0;
1389 if (!skb_queue_empty(&entry->skb_list)) {
1390 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1391 struct ieee80211_hdr *hdr =
1392 (struct ieee80211_hdr *) entry->skb_list.next->data;
1393 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1394 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1395 "addr1=%pM addr2=%pM\n",
1396 sdata->name, idx,
1397 jiffies - entry->first_frag_time, entry->seq,
1398 entry->last_frag, hdr->addr1, hdr->addr2);
1399 #endif
1400 __skb_queue_purge(&entry->skb_list);
1403 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1404 *skb = NULL;
1405 entry->first_frag_time = jiffies;
1406 entry->seq = seq;
1407 entry->rx_queue = rx_queue;
1408 entry->last_frag = frag;
1409 entry->ccmp = 0;
1410 entry->extra_len = 0;
1412 return entry;
1415 static inline struct ieee80211_fragment_entry *
1416 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1417 unsigned int frag, unsigned int seq,
1418 int rx_queue, struct ieee80211_hdr *hdr)
1420 struct ieee80211_fragment_entry *entry;
1421 int i, idx;
1423 idx = sdata->fragment_next;
1424 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1425 struct ieee80211_hdr *f_hdr;
1427 idx--;
1428 if (idx < 0)
1429 idx = IEEE80211_FRAGMENT_MAX - 1;
1431 entry = &sdata->fragments[idx];
1432 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1433 entry->rx_queue != rx_queue ||
1434 entry->last_frag + 1 != frag)
1435 continue;
1437 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1440 * Check ftype and addresses are equal, else check next fragment
1442 if (((hdr->frame_control ^ f_hdr->frame_control) &
1443 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1444 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1445 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1446 continue;
1448 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1449 __skb_queue_purge(&entry->skb_list);
1450 continue;
1452 return entry;
1455 return NULL;
1458 static ieee80211_rx_result debug_noinline
1459 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1461 struct ieee80211_hdr *hdr;
1462 u16 sc;
1463 __le16 fc;
1464 unsigned int frag, seq;
1465 struct ieee80211_fragment_entry *entry;
1466 struct sk_buff *skb;
1467 struct ieee80211_rx_status *status;
1469 hdr = (struct ieee80211_hdr *)rx->skb->data;
1470 fc = hdr->frame_control;
1471 sc = le16_to_cpu(hdr->seq_ctrl);
1472 frag = sc & IEEE80211_SCTL_FRAG;
1474 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1475 (rx->skb)->len < 24 ||
1476 is_multicast_ether_addr(hdr->addr1))) {
1477 /* not fragmented */
1478 goto out;
1480 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1482 if (skb_linearize(rx->skb))
1483 return RX_DROP_UNUSABLE;
1486 * skb_linearize() might change the skb->data and
1487 * previously cached variables (in this case, hdr) need to
1488 * be refreshed with the new data.
1490 hdr = (struct ieee80211_hdr *)rx->skb->data;
1491 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1493 if (frag == 0) {
1494 /* This is the first fragment of a new frame. */
1495 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1496 rx->seqno_idx, &(rx->skb));
1497 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1498 ieee80211_has_protected(fc)) {
1499 int queue = rx->security_idx;
1500 /* Store CCMP PN so that we can verify that the next
1501 * fragment has a sequential PN value. */
1502 entry->ccmp = 1;
1503 memcpy(entry->last_pn,
1504 rx->key->u.ccmp.rx_pn[queue],
1505 CCMP_PN_LEN);
1507 return RX_QUEUED;
1510 /* This is a fragment for a frame that should already be pending in
1511 * fragment cache. Add this fragment to the end of the pending entry.
1513 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1514 rx->seqno_idx, hdr);
1515 if (!entry) {
1516 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1517 return RX_DROP_MONITOR;
1520 /* Verify that MPDUs within one MSDU have sequential PN values.
1521 * (IEEE 802.11i, 8.3.3.4.5) */
1522 if (entry->ccmp) {
1523 int i;
1524 u8 pn[CCMP_PN_LEN], *rpn;
1525 int queue;
1526 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1527 return RX_DROP_UNUSABLE;
1528 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1529 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1530 pn[i]++;
1531 if (pn[i])
1532 break;
1534 queue = rx->security_idx;
1535 rpn = rx->key->u.ccmp.rx_pn[queue];
1536 if (memcmp(pn, rpn, CCMP_PN_LEN))
1537 return RX_DROP_UNUSABLE;
1538 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1541 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1542 __skb_queue_tail(&entry->skb_list, rx->skb);
1543 entry->last_frag = frag;
1544 entry->extra_len += rx->skb->len;
1545 if (ieee80211_has_morefrags(fc)) {
1546 rx->skb = NULL;
1547 return RX_QUEUED;
1550 rx->skb = __skb_dequeue(&entry->skb_list);
1551 if (skb_tailroom(rx->skb) < entry->extra_len) {
1552 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1553 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1554 GFP_ATOMIC))) {
1555 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1556 __skb_queue_purge(&entry->skb_list);
1557 return RX_DROP_UNUSABLE;
1560 while ((skb = __skb_dequeue(&entry->skb_list))) {
1561 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1562 dev_kfree_skb(skb);
1565 /* Complete frame has been reassembled - process it now */
1566 status = IEEE80211_SKB_RXCB(rx->skb);
1567 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1569 out:
1570 if (rx->sta)
1571 rx->sta->rx_packets++;
1572 if (is_multicast_ether_addr(hdr->addr1))
1573 rx->local->dot11MulticastReceivedFrameCount++;
1574 else
1575 ieee80211_led_rx(rx->local);
1576 return RX_CONTINUE;
1579 static int
1580 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1582 if (unlikely(!rx->sta ||
1583 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1584 return -EACCES;
1586 return 0;
1589 static int
1590 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1592 struct sk_buff *skb = rx->skb;
1593 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1596 * Pass through unencrypted frames if the hardware has
1597 * decrypted them already.
1599 if (status->flag & RX_FLAG_DECRYPTED)
1600 return 0;
1602 /* Drop unencrypted frames if key is set. */
1603 if (unlikely(!ieee80211_has_protected(fc) &&
1604 !ieee80211_is_nullfunc(fc) &&
1605 ieee80211_is_data(fc) &&
1606 (rx->key || rx->sdata->drop_unencrypted)))
1607 return -EACCES;
1609 return 0;
1612 static int
1613 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1615 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1616 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1617 __le16 fc = hdr->frame_control;
1620 * Pass through unencrypted frames if the hardware has
1621 * decrypted them already.
1623 if (status->flag & RX_FLAG_DECRYPTED)
1624 return 0;
1626 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1627 if (unlikely(!ieee80211_has_protected(fc) &&
1628 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1629 rx->key)) {
1630 if (ieee80211_is_deauth(fc))
1631 cfg80211_send_unprot_deauth(rx->sdata->dev,
1632 rx->skb->data,
1633 rx->skb->len);
1634 else if (ieee80211_is_disassoc(fc))
1635 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1636 rx->skb->data,
1637 rx->skb->len);
1638 return -EACCES;
1640 /* BIP does not use Protected field, so need to check MMIE */
1641 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1642 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1643 if (ieee80211_is_deauth(fc))
1644 cfg80211_send_unprot_deauth(rx->sdata->dev,
1645 rx->skb->data,
1646 rx->skb->len);
1647 else if (ieee80211_is_disassoc(fc))
1648 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1649 rx->skb->data,
1650 rx->skb->len);
1651 return -EACCES;
1654 * When using MFP, Action frames are not allowed prior to
1655 * having configured keys.
1657 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1658 ieee80211_is_robust_mgmt_frame(
1659 (struct ieee80211_hdr *) rx->skb->data)))
1660 return -EACCES;
1663 return 0;
1666 static int
1667 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1669 struct ieee80211_sub_if_data *sdata = rx->sdata;
1670 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1671 bool check_port_control = false;
1672 struct ethhdr *ehdr;
1673 int ret;
1675 *port_control = false;
1676 if (ieee80211_has_a4(hdr->frame_control) &&
1677 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1678 return -1;
1680 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1681 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1683 if (!sdata->u.mgd.use_4addr)
1684 return -1;
1685 else
1686 check_port_control = true;
1689 if (is_multicast_ether_addr(hdr->addr1) &&
1690 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1691 return -1;
1693 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1694 if (ret < 0)
1695 return ret;
1697 ehdr = (struct ethhdr *) rx->skb->data;
1698 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1699 *port_control = true;
1700 else if (check_port_control)
1701 return -1;
1703 return 0;
1707 * requires that rx->skb is a frame with ethernet header
1709 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1711 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1712 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1713 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1716 * Allow EAPOL frames to us/the PAE group address regardless
1717 * of whether the frame was encrypted or not.
1719 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1720 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1721 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1722 return true;
1724 if (ieee80211_802_1x_port_control(rx) ||
1725 ieee80211_drop_unencrypted(rx, fc))
1726 return false;
1728 return true;
1732 * requires that rx->skb is a frame with ethernet header
1734 static void
1735 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1737 struct ieee80211_sub_if_data *sdata = rx->sdata;
1738 struct net_device *dev = sdata->dev;
1739 struct sk_buff *skb, *xmit_skb;
1740 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1741 struct sta_info *dsta;
1742 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1744 skb = rx->skb;
1745 xmit_skb = NULL;
1747 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1748 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1749 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1750 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1751 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1752 if (is_multicast_ether_addr(ehdr->h_dest)) {
1754 * send multicast frames both to higher layers in
1755 * local net stack and back to the wireless medium
1757 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1758 if (!xmit_skb && net_ratelimit())
1759 printk(KERN_DEBUG "%s: failed to clone "
1760 "multicast frame\n", dev->name);
1761 } else {
1762 dsta = sta_info_get(sdata, skb->data);
1763 if (dsta) {
1765 * The destination station is associated to
1766 * this AP (in this VLAN), so send the frame
1767 * directly to it and do not pass it to local
1768 * net stack.
1770 xmit_skb = skb;
1771 skb = NULL;
1776 if (skb) {
1777 int align __maybe_unused;
1779 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1781 * 'align' will only take the values 0 or 2 here
1782 * since all frames are required to be aligned
1783 * to 2-byte boundaries when being passed to
1784 * mac80211. That also explains the __skb_push()
1785 * below.
1787 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1788 if (align) {
1789 if (WARN_ON(skb_headroom(skb) < 3)) {
1790 dev_kfree_skb(skb);
1791 skb = NULL;
1792 } else {
1793 u8 *data = skb->data;
1794 size_t len = skb_headlen(skb);
1795 skb->data -= align;
1796 memmove(skb->data, data, len);
1797 skb_set_tail_pointer(skb, len);
1800 #endif
1802 if (skb) {
1803 /* deliver to local stack */
1804 skb->protocol = eth_type_trans(skb, dev);
1805 memset(skb->cb, 0, sizeof(skb->cb));
1806 netif_receive_skb(skb);
1810 if (xmit_skb) {
1812 * Send to wireless media and increase priority by 256 to
1813 * keep the received priority instead of reclassifying
1814 * the frame (see cfg80211_classify8021d).
1816 xmit_skb->priority += 256;
1817 xmit_skb->protocol = htons(ETH_P_802_3);
1818 skb_reset_network_header(xmit_skb);
1819 skb_reset_mac_header(xmit_skb);
1820 dev_queue_xmit(xmit_skb);
1824 static ieee80211_rx_result debug_noinline
1825 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1827 struct net_device *dev = rx->sdata->dev;
1828 struct sk_buff *skb = rx->skb;
1829 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1830 __le16 fc = hdr->frame_control;
1831 struct sk_buff_head frame_list;
1832 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1834 if (unlikely(!ieee80211_is_data(fc)))
1835 return RX_CONTINUE;
1837 if (unlikely(!ieee80211_is_data_present(fc)))
1838 return RX_DROP_MONITOR;
1840 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1841 return RX_CONTINUE;
1843 if (ieee80211_has_a4(hdr->frame_control) &&
1844 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1845 !rx->sdata->u.vlan.sta)
1846 return RX_DROP_UNUSABLE;
1848 if (is_multicast_ether_addr(hdr->addr1) &&
1849 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1850 rx->sdata->u.vlan.sta) ||
1851 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1852 rx->sdata->u.mgd.use_4addr)))
1853 return RX_DROP_UNUSABLE;
1855 skb->dev = dev;
1856 __skb_queue_head_init(&frame_list);
1858 if (skb_linearize(skb))
1859 return RX_DROP_UNUSABLE;
1861 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1862 rx->sdata->vif.type,
1863 rx->local->hw.extra_tx_headroom, true);
1865 while (!skb_queue_empty(&frame_list)) {
1866 rx->skb = __skb_dequeue(&frame_list);
1868 if (!ieee80211_frame_allowed(rx, fc)) {
1869 dev_kfree_skb(rx->skb);
1870 continue;
1872 dev->stats.rx_packets++;
1873 dev->stats.rx_bytes += rx->skb->len;
1875 ieee80211_deliver_skb(rx);
1878 return RX_QUEUED;
1881 #ifdef CONFIG_MAC80211_MESH
1882 static ieee80211_rx_result
1883 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1885 struct ieee80211_hdr *fwd_hdr, *hdr;
1886 struct ieee80211_tx_info *info;
1887 struct ieee80211s_hdr *mesh_hdr;
1888 struct sk_buff *skb = rx->skb, *fwd_skb;
1889 struct ieee80211_local *local = rx->local;
1890 struct ieee80211_sub_if_data *sdata = rx->sdata;
1891 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1892 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1893 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1894 u16 q, hdrlen;
1896 hdr = (struct ieee80211_hdr *) skb->data;
1897 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1898 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1900 /* frame is in RMC, don't forward */
1901 if (ieee80211_is_data(hdr->frame_control) &&
1902 is_multicast_ether_addr(hdr->addr1) &&
1903 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1904 return RX_DROP_MONITOR;
1906 if (!ieee80211_is_data(hdr->frame_control))
1907 return RX_CONTINUE;
1909 if (!mesh_hdr->ttl)
1910 return RX_DROP_MONITOR;
1912 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1913 struct mesh_path *mppath;
1914 char *proxied_addr;
1915 char *mpp_addr;
1917 if (is_multicast_ether_addr(hdr->addr1)) {
1918 mpp_addr = hdr->addr3;
1919 proxied_addr = mesh_hdr->eaddr1;
1920 } else {
1921 mpp_addr = hdr->addr4;
1922 proxied_addr = mesh_hdr->eaddr2;
1925 rcu_read_lock();
1926 mppath = mpp_path_lookup(proxied_addr, sdata);
1927 if (!mppath) {
1928 mpp_path_add(proxied_addr, mpp_addr, sdata);
1929 } else {
1930 spin_lock_bh(&mppath->state_lock);
1931 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1932 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1933 spin_unlock_bh(&mppath->state_lock);
1935 rcu_read_unlock();
1938 /* Frame has reached destination. Don't forward */
1939 if (!is_multicast_ether_addr(hdr->addr1) &&
1940 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1941 return RX_CONTINUE;
1943 q = ieee80211_select_queue_80211(local, skb, hdr);
1944 if (ieee80211_queue_stopped(&local->hw, q)) {
1945 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1946 return RX_DROP_MONITOR;
1948 skb_set_queue_mapping(skb, q);
1950 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1951 goto out;
1953 if (!--mesh_hdr->ttl) {
1954 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1955 return RX_DROP_MONITOR;
1958 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1959 if (!fwd_skb) {
1960 if (net_ratelimit())
1961 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1962 sdata->name);
1963 goto out;
1966 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1967 info = IEEE80211_SKB_CB(fwd_skb);
1968 memset(info, 0, sizeof(*info));
1969 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1970 info->control.vif = &rx->sdata->vif;
1971 info->control.jiffies = jiffies;
1972 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1973 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
1974 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1975 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
1976 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
1977 } else {
1978 /* unable to resolve next hop */
1979 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
1980 0, reason, fwd_hdr->addr2, sdata);
1981 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
1982 kfree_skb(fwd_skb);
1983 return RX_DROP_MONITOR;
1986 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
1987 ieee80211_add_pending_skb(local, fwd_skb);
1988 out:
1989 if (is_multicast_ether_addr(hdr->addr1) ||
1990 sdata->dev->flags & IFF_PROMISC)
1991 return RX_CONTINUE;
1992 else
1993 return RX_DROP_MONITOR;
1995 #endif
1997 static ieee80211_rx_result debug_noinline
1998 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2000 struct ieee80211_sub_if_data *sdata = rx->sdata;
2001 struct ieee80211_local *local = rx->local;
2002 struct net_device *dev = sdata->dev;
2003 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2004 __le16 fc = hdr->frame_control;
2005 bool port_control;
2006 int err;
2008 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2009 return RX_CONTINUE;
2011 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2012 return RX_DROP_MONITOR;
2015 * Send unexpected-4addr-frame event to hostapd. For older versions,
2016 * also drop the frame to cooked monitor interfaces.
2018 if (ieee80211_has_a4(hdr->frame_control) &&
2019 sdata->vif.type == NL80211_IFTYPE_AP) {
2020 if (rx->sta &&
2021 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2022 cfg80211_rx_unexpected_4addr_frame(
2023 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2024 return RX_DROP_MONITOR;
2027 err = __ieee80211_data_to_8023(rx, &port_control);
2028 if (unlikely(err))
2029 return RX_DROP_UNUSABLE;
2031 if (!ieee80211_frame_allowed(rx, fc))
2032 return RX_DROP_MONITOR;
2034 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2035 unlikely(port_control) && sdata->bss) {
2036 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2037 u.ap);
2038 dev = sdata->dev;
2039 rx->sdata = sdata;
2042 rx->skb->dev = dev;
2044 dev->stats.rx_packets++;
2045 dev->stats.rx_bytes += rx->skb->len;
2047 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2048 !is_multicast_ether_addr(
2049 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2050 (!local->scanning &&
2051 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2052 mod_timer(&local->dynamic_ps_timer, jiffies +
2053 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2056 ieee80211_deliver_skb(rx);
2058 return RX_QUEUED;
2061 static ieee80211_rx_result debug_noinline
2062 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2064 struct ieee80211_local *local = rx->local;
2065 struct ieee80211_hw *hw = &local->hw;
2066 struct sk_buff *skb = rx->skb;
2067 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2068 struct tid_ampdu_rx *tid_agg_rx;
2069 u16 start_seq_num;
2070 u16 tid;
2072 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2073 return RX_CONTINUE;
2075 if (ieee80211_is_back_req(bar->frame_control)) {
2076 struct {
2077 __le16 control, start_seq_num;
2078 } __packed bar_data;
2080 if (!rx->sta)
2081 return RX_DROP_MONITOR;
2083 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2084 &bar_data, sizeof(bar_data)))
2085 return RX_DROP_MONITOR;
2087 tid = le16_to_cpu(bar_data.control) >> 12;
2089 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2090 if (!tid_agg_rx)
2091 return RX_DROP_MONITOR;
2093 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2095 /* reset session timer */
2096 if (tid_agg_rx->timeout)
2097 mod_timer(&tid_agg_rx->session_timer,
2098 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2100 spin_lock(&tid_agg_rx->reorder_lock);
2101 /* release stored frames up to start of BAR */
2102 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2103 spin_unlock(&tid_agg_rx->reorder_lock);
2105 kfree_skb(skb);
2106 return RX_QUEUED;
2110 * After this point, we only want management frames,
2111 * so we can drop all remaining control frames to
2112 * cooked monitor interfaces.
2114 return RX_DROP_MONITOR;
2117 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2118 struct ieee80211_mgmt *mgmt,
2119 size_t len)
2121 struct ieee80211_local *local = sdata->local;
2122 struct sk_buff *skb;
2123 struct ieee80211_mgmt *resp;
2125 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2126 /* Not to own unicast address */
2127 return;
2130 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2131 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2132 /* Not from the current AP or not associated yet. */
2133 return;
2136 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2137 /* Too short SA Query request frame */
2138 return;
2141 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2142 if (skb == NULL)
2143 return;
2145 skb_reserve(skb, local->hw.extra_tx_headroom);
2146 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2147 memset(resp, 0, 24);
2148 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2149 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2150 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2151 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2152 IEEE80211_STYPE_ACTION);
2153 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2154 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2155 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2156 memcpy(resp->u.action.u.sa_query.trans_id,
2157 mgmt->u.action.u.sa_query.trans_id,
2158 WLAN_SA_QUERY_TR_ID_LEN);
2160 ieee80211_tx_skb(sdata, skb);
2163 static ieee80211_rx_result debug_noinline
2164 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2166 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2167 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2170 * From here on, look only at management frames.
2171 * Data and control frames are already handled,
2172 * and unknown (reserved) frames are useless.
2174 if (rx->skb->len < 24)
2175 return RX_DROP_MONITOR;
2177 if (!ieee80211_is_mgmt(mgmt->frame_control))
2178 return RX_DROP_MONITOR;
2180 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2181 ieee80211_is_beacon(mgmt->frame_control) &&
2182 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2183 struct ieee80211_rx_status *status;
2185 status = IEEE80211_SKB_RXCB(rx->skb);
2186 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2187 rx->skb->data, rx->skb->len,
2188 status->freq, GFP_ATOMIC);
2189 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2192 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2193 return RX_DROP_MONITOR;
2195 if (ieee80211_drop_unencrypted_mgmt(rx))
2196 return RX_DROP_UNUSABLE;
2198 return RX_CONTINUE;
2201 static ieee80211_rx_result debug_noinline
2202 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2204 struct ieee80211_local *local = rx->local;
2205 struct ieee80211_sub_if_data *sdata = rx->sdata;
2206 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2208 int len = rx->skb->len;
2210 if (!ieee80211_is_action(mgmt->frame_control))
2211 return RX_CONTINUE;
2213 /* drop too small frames */
2214 if (len < IEEE80211_MIN_ACTION_SIZE)
2215 return RX_DROP_UNUSABLE;
2217 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2218 return RX_DROP_UNUSABLE;
2220 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2221 return RX_DROP_UNUSABLE;
2223 switch (mgmt->u.action.category) {
2224 case WLAN_CATEGORY_HT:
2225 /* reject HT action frames from stations not supporting HT */
2226 if (!rx->sta->sta.ht_cap.ht_supported)
2227 goto invalid;
2229 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2230 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2231 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2232 sdata->vif.type != NL80211_IFTYPE_AP &&
2233 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2234 break;
2236 /* verify action & smps_control are present */
2237 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2238 goto invalid;
2240 switch (mgmt->u.action.u.ht_smps.action) {
2241 case WLAN_HT_ACTION_SMPS: {
2242 struct ieee80211_supported_band *sband;
2243 u8 smps;
2245 /* convert to HT capability */
2246 switch (mgmt->u.action.u.ht_smps.smps_control) {
2247 case WLAN_HT_SMPS_CONTROL_DISABLED:
2248 smps = WLAN_HT_CAP_SM_PS_DISABLED;
2249 break;
2250 case WLAN_HT_SMPS_CONTROL_STATIC:
2251 smps = WLAN_HT_CAP_SM_PS_STATIC;
2252 break;
2253 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2254 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
2255 break;
2256 default:
2257 goto invalid;
2259 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
2261 /* if no change do nothing */
2262 if ((rx->sta->sta.ht_cap.cap &
2263 IEEE80211_HT_CAP_SM_PS) == smps)
2264 goto handled;
2266 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2267 rx->sta->sta.ht_cap.cap |= smps;
2269 sband = rx->local->hw.wiphy->bands[status->band];
2271 rate_control_rate_update(local, sband, rx->sta,
2272 IEEE80211_RC_SMPS_CHANGED,
2273 local->_oper_channel_type);
2274 goto handled;
2276 default:
2277 goto invalid;
2280 break;
2281 case WLAN_CATEGORY_BACK:
2282 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2283 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2284 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2285 sdata->vif.type != NL80211_IFTYPE_AP &&
2286 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2287 break;
2289 /* verify action_code is present */
2290 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2291 break;
2293 switch (mgmt->u.action.u.addba_req.action_code) {
2294 case WLAN_ACTION_ADDBA_REQ:
2295 if (len < (IEEE80211_MIN_ACTION_SIZE +
2296 sizeof(mgmt->u.action.u.addba_req)))
2297 goto invalid;
2298 break;
2299 case WLAN_ACTION_ADDBA_RESP:
2300 if (len < (IEEE80211_MIN_ACTION_SIZE +
2301 sizeof(mgmt->u.action.u.addba_resp)))
2302 goto invalid;
2303 break;
2304 case WLAN_ACTION_DELBA:
2305 if (len < (IEEE80211_MIN_ACTION_SIZE +
2306 sizeof(mgmt->u.action.u.delba)))
2307 goto invalid;
2308 break;
2309 default:
2310 goto invalid;
2313 goto queue;
2314 case WLAN_CATEGORY_SPECTRUM_MGMT:
2315 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2316 break;
2318 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2319 break;
2321 /* verify action_code is present */
2322 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2323 break;
2325 switch (mgmt->u.action.u.measurement.action_code) {
2326 case WLAN_ACTION_SPCT_MSR_REQ:
2327 if (len < (IEEE80211_MIN_ACTION_SIZE +
2328 sizeof(mgmt->u.action.u.measurement)))
2329 break;
2330 ieee80211_process_measurement_req(sdata, mgmt, len);
2331 goto handled;
2332 case WLAN_ACTION_SPCT_CHL_SWITCH:
2333 if (len < (IEEE80211_MIN_ACTION_SIZE +
2334 sizeof(mgmt->u.action.u.chan_switch)))
2335 break;
2337 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2338 break;
2340 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2341 break;
2343 goto queue;
2345 break;
2346 case WLAN_CATEGORY_SA_QUERY:
2347 if (len < (IEEE80211_MIN_ACTION_SIZE +
2348 sizeof(mgmt->u.action.u.sa_query)))
2349 break;
2351 switch (mgmt->u.action.u.sa_query.action) {
2352 case WLAN_ACTION_SA_QUERY_REQUEST:
2353 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2354 break;
2355 ieee80211_process_sa_query_req(sdata, mgmt, len);
2356 goto handled;
2358 break;
2359 case WLAN_CATEGORY_SELF_PROTECTED:
2360 switch (mgmt->u.action.u.self_prot.action_code) {
2361 case WLAN_SP_MESH_PEERING_OPEN:
2362 case WLAN_SP_MESH_PEERING_CLOSE:
2363 case WLAN_SP_MESH_PEERING_CONFIRM:
2364 if (!ieee80211_vif_is_mesh(&sdata->vif))
2365 goto invalid;
2366 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2367 /* userspace handles this frame */
2368 break;
2369 goto queue;
2370 case WLAN_SP_MGK_INFORM:
2371 case WLAN_SP_MGK_ACK:
2372 if (!ieee80211_vif_is_mesh(&sdata->vif))
2373 goto invalid;
2374 break;
2376 break;
2377 case WLAN_CATEGORY_MESH_ACTION:
2378 if (!ieee80211_vif_is_mesh(&sdata->vif))
2379 break;
2380 if (mesh_action_is_path_sel(mgmt) &&
2381 (!mesh_path_sel_is_hwmp(sdata)))
2382 break;
2383 goto queue;
2386 return RX_CONTINUE;
2388 invalid:
2389 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2390 /* will return in the next handlers */
2391 return RX_CONTINUE;
2393 handled:
2394 if (rx->sta)
2395 rx->sta->rx_packets++;
2396 dev_kfree_skb(rx->skb);
2397 return RX_QUEUED;
2399 queue:
2400 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2401 skb_queue_tail(&sdata->skb_queue, rx->skb);
2402 ieee80211_queue_work(&local->hw, &sdata->work);
2403 if (rx->sta)
2404 rx->sta->rx_packets++;
2405 return RX_QUEUED;
2408 static ieee80211_rx_result debug_noinline
2409 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2413 /* skip known-bad action frames and return them in the next handler */
2414 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2415 return RX_CONTINUE;
2418 * Getting here means the kernel doesn't know how to handle
2419 * it, but maybe userspace does ... include returned frames
2420 * so userspace can register for those to know whether ones
2421 * it transmitted were processed or returned.
2424 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2425 rx->skb->data, rx->skb->len,
2426 GFP_ATOMIC)) {
2427 if (rx->sta)
2428 rx->sta->rx_packets++;
2429 dev_kfree_skb(rx->skb);
2430 return RX_QUEUED;
2434 return RX_CONTINUE;
2437 static ieee80211_rx_result debug_noinline
2438 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2440 struct ieee80211_local *local = rx->local;
2441 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2442 struct sk_buff *nskb;
2443 struct ieee80211_sub_if_data *sdata = rx->sdata;
2444 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2446 if (!ieee80211_is_action(mgmt->frame_control))
2447 return RX_CONTINUE;
2450 * For AP mode, hostapd is responsible for handling any action
2451 * frames that we didn't handle, including returning unknown
2452 * ones. For all other modes we will return them to the sender,
2453 * setting the 0x80 bit in the action category, as required by
2454 * 802.11-2007 7.3.1.11.
2455 * Newer versions of hostapd shall also use the management frame
2456 * registration mechanisms, but older ones still use cooked
2457 * monitor interfaces so push all frames there.
2459 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2460 (sdata->vif.type == NL80211_IFTYPE_AP ||
2461 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2462 return RX_DROP_MONITOR;
2464 /* do not return rejected action frames */
2465 if (mgmt->u.action.category & 0x80)
2466 return RX_DROP_UNUSABLE;
2468 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2469 GFP_ATOMIC);
2470 if (nskb) {
2471 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2473 nmgmt->u.action.category |= 0x80;
2474 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2475 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2477 memset(nskb->cb, 0, sizeof(nskb->cb));
2479 ieee80211_tx_skb(rx->sdata, nskb);
2481 dev_kfree_skb(rx->skb);
2482 return RX_QUEUED;
2485 static ieee80211_rx_result debug_noinline
2486 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2488 struct ieee80211_sub_if_data *sdata = rx->sdata;
2489 ieee80211_rx_result rxs;
2490 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2491 __le16 stype;
2493 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2494 if (rxs != RX_CONTINUE)
2495 return rxs;
2497 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2499 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2500 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2501 sdata->vif.type != NL80211_IFTYPE_STATION)
2502 return RX_DROP_MONITOR;
2504 switch (stype) {
2505 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2506 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2507 /* process for all: mesh, mlme, ibss */
2508 break;
2509 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2510 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2511 if (is_multicast_ether_addr(mgmt->da) &&
2512 !is_broadcast_ether_addr(mgmt->da))
2513 return RX_DROP_MONITOR;
2515 /* process only for station */
2516 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2517 return RX_DROP_MONITOR;
2518 break;
2519 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2520 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2521 /* process only for ibss */
2522 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2523 return RX_DROP_MONITOR;
2524 break;
2525 default:
2526 return RX_DROP_MONITOR;
2529 /* queue up frame and kick off work to process it */
2530 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2531 skb_queue_tail(&sdata->skb_queue, rx->skb);
2532 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2533 if (rx->sta)
2534 rx->sta->rx_packets++;
2536 return RX_QUEUED;
2539 /* TODO: use IEEE80211_RX_FRAGMENTED */
2540 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2541 struct ieee80211_rate *rate)
2543 struct ieee80211_sub_if_data *sdata;
2544 struct ieee80211_local *local = rx->local;
2545 struct ieee80211_rtap_hdr {
2546 struct ieee80211_radiotap_header hdr;
2547 u8 flags;
2548 u8 rate_or_pad;
2549 __le16 chan_freq;
2550 __le16 chan_flags;
2551 } __packed *rthdr;
2552 struct sk_buff *skb = rx->skb, *skb2;
2553 struct net_device *prev_dev = NULL;
2554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2557 * If cooked monitor has been processed already, then
2558 * don't do it again. If not, set the flag.
2560 if (rx->flags & IEEE80211_RX_CMNTR)
2561 goto out_free_skb;
2562 rx->flags |= IEEE80211_RX_CMNTR;
2564 /* If there are no cooked monitor interfaces, just free the SKB */
2565 if (!local->cooked_mntrs)
2566 goto out_free_skb;
2568 if (skb_headroom(skb) < sizeof(*rthdr) &&
2569 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2570 goto out_free_skb;
2572 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2573 memset(rthdr, 0, sizeof(*rthdr));
2574 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2575 rthdr->hdr.it_present =
2576 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2577 (1 << IEEE80211_RADIOTAP_CHANNEL));
2579 if (rate) {
2580 rthdr->rate_or_pad = rate->bitrate / 5;
2581 rthdr->hdr.it_present |=
2582 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2584 rthdr->chan_freq = cpu_to_le16(status->freq);
2586 if (status->band == IEEE80211_BAND_5GHZ)
2587 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2588 IEEE80211_CHAN_5GHZ);
2589 else
2590 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2591 IEEE80211_CHAN_2GHZ);
2593 skb_set_mac_header(skb, 0);
2594 skb->ip_summed = CHECKSUM_UNNECESSARY;
2595 skb->pkt_type = PACKET_OTHERHOST;
2596 skb->protocol = htons(ETH_P_802_2);
2598 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2599 if (!ieee80211_sdata_running(sdata))
2600 continue;
2602 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2603 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2604 continue;
2606 if (prev_dev) {
2607 skb2 = skb_clone(skb, GFP_ATOMIC);
2608 if (skb2) {
2609 skb2->dev = prev_dev;
2610 netif_receive_skb(skb2);
2614 prev_dev = sdata->dev;
2615 sdata->dev->stats.rx_packets++;
2616 sdata->dev->stats.rx_bytes += skb->len;
2619 if (prev_dev) {
2620 skb->dev = prev_dev;
2621 netif_receive_skb(skb);
2622 return;
2625 out_free_skb:
2626 dev_kfree_skb(skb);
2629 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2630 ieee80211_rx_result res)
2632 switch (res) {
2633 case RX_DROP_MONITOR:
2634 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2635 if (rx->sta)
2636 rx->sta->rx_dropped++;
2637 /* fall through */
2638 case RX_CONTINUE: {
2639 struct ieee80211_rate *rate = NULL;
2640 struct ieee80211_supported_band *sband;
2641 struct ieee80211_rx_status *status;
2643 status = IEEE80211_SKB_RXCB((rx->skb));
2645 sband = rx->local->hw.wiphy->bands[status->band];
2646 if (!(status->flag & RX_FLAG_HT))
2647 rate = &sband->bitrates[status->rate_idx];
2649 ieee80211_rx_cooked_monitor(rx, rate);
2650 break;
2652 case RX_DROP_UNUSABLE:
2653 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2654 if (rx->sta)
2655 rx->sta->rx_dropped++;
2656 dev_kfree_skb(rx->skb);
2657 break;
2658 case RX_QUEUED:
2659 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2660 break;
2664 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2666 ieee80211_rx_result res = RX_DROP_MONITOR;
2667 struct sk_buff *skb;
2669 #define CALL_RXH(rxh) \
2670 do { \
2671 res = rxh(rx); \
2672 if (res != RX_CONTINUE) \
2673 goto rxh_next; \
2674 } while (0);
2676 spin_lock(&rx->local->rx_skb_queue.lock);
2677 if (rx->local->running_rx_handler)
2678 goto unlock;
2680 rx->local->running_rx_handler = true;
2682 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2683 spin_unlock(&rx->local->rx_skb_queue.lock);
2686 * all the other fields are valid across frames
2687 * that belong to an aMPDU since they are on the
2688 * same TID from the same station
2690 rx->skb = skb;
2692 CALL_RXH(ieee80211_rx_h_decrypt)
2693 CALL_RXH(ieee80211_rx_h_check_more_data)
2694 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2695 CALL_RXH(ieee80211_rx_h_sta_process)
2696 CALL_RXH(ieee80211_rx_h_defragment)
2697 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2698 /* must be after MMIC verify so header is counted in MPDU mic */
2699 #ifdef CONFIG_MAC80211_MESH
2700 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2701 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2702 #endif
2703 CALL_RXH(ieee80211_rx_h_amsdu)
2704 CALL_RXH(ieee80211_rx_h_data)
2705 CALL_RXH(ieee80211_rx_h_ctrl);
2706 CALL_RXH(ieee80211_rx_h_mgmt_check)
2707 CALL_RXH(ieee80211_rx_h_action)
2708 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2709 CALL_RXH(ieee80211_rx_h_action_return)
2710 CALL_RXH(ieee80211_rx_h_mgmt)
2712 rxh_next:
2713 ieee80211_rx_handlers_result(rx, res);
2714 spin_lock(&rx->local->rx_skb_queue.lock);
2715 #undef CALL_RXH
2718 rx->local->running_rx_handler = false;
2720 unlock:
2721 spin_unlock(&rx->local->rx_skb_queue.lock);
2724 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2726 ieee80211_rx_result res = RX_DROP_MONITOR;
2728 #define CALL_RXH(rxh) \
2729 do { \
2730 res = rxh(rx); \
2731 if (res != RX_CONTINUE) \
2732 goto rxh_next; \
2733 } while (0);
2735 CALL_RXH(ieee80211_rx_h_passive_scan)
2736 CALL_RXH(ieee80211_rx_h_check)
2738 ieee80211_rx_reorder_ampdu(rx);
2740 ieee80211_rx_handlers(rx);
2741 return;
2743 rxh_next:
2744 ieee80211_rx_handlers_result(rx, res);
2746 #undef CALL_RXH
2750 * This function makes calls into the RX path, therefore
2751 * it has to be invoked under RCU read lock.
2753 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2755 struct ieee80211_rx_data rx = {
2756 .sta = sta,
2757 .sdata = sta->sdata,
2758 .local = sta->local,
2759 /* This is OK -- must be QoS data frame */
2760 .security_idx = tid,
2761 .seqno_idx = tid,
2762 .flags = 0,
2764 struct tid_ampdu_rx *tid_agg_rx;
2766 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2767 if (!tid_agg_rx)
2768 return;
2770 spin_lock(&tid_agg_rx->reorder_lock);
2771 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2772 spin_unlock(&tid_agg_rx->reorder_lock);
2774 ieee80211_rx_handlers(&rx);
2777 /* main receive path */
2779 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2780 struct ieee80211_hdr *hdr)
2782 struct ieee80211_sub_if_data *sdata = rx->sdata;
2783 struct sk_buff *skb = rx->skb;
2784 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2785 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2786 int multicast = is_multicast_ether_addr(hdr->addr1);
2788 switch (sdata->vif.type) {
2789 case NL80211_IFTYPE_STATION:
2790 if (!bssid && !sdata->u.mgd.use_4addr)
2791 return 0;
2792 if (!multicast &&
2793 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2794 if (!(sdata->dev->flags & IFF_PROMISC) ||
2795 sdata->u.mgd.use_4addr)
2796 return 0;
2797 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2799 break;
2800 case NL80211_IFTYPE_ADHOC:
2801 if (!bssid)
2802 return 0;
2803 if (ieee80211_is_beacon(hdr->frame_control)) {
2804 return 1;
2806 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2807 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2808 return 0;
2809 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2810 } else if (!multicast &&
2811 compare_ether_addr(sdata->vif.addr,
2812 hdr->addr1) != 0) {
2813 if (!(sdata->dev->flags & IFF_PROMISC))
2814 return 0;
2815 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2816 } else if (!rx->sta) {
2817 int rate_idx;
2818 if (status->flag & RX_FLAG_HT)
2819 rate_idx = 0; /* TODO: HT rates */
2820 else
2821 rate_idx = status->rate_idx;
2822 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2823 BIT(rate_idx));
2825 break;
2826 case NL80211_IFTYPE_MESH_POINT:
2827 if (!multicast &&
2828 compare_ether_addr(sdata->vif.addr,
2829 hdr->addr1) != 0) {
2830 if (!(sdata->dev->flags & IFF_PROMISC))
2831 return 0;
2833 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2835 break;
2836 case NL80211_IFTYPE_AP_VLAN:
2837 case NL80211_IFTYPE_AP:
2838 if (!bssid) {
2839 if (compare_ether_addr(sdata->vif.addr,
2840 hdr->addr1))
2841 return 0;
2842 } else if (!ieee80211_bssid_match(bssid,
2843 sdata->vif.addr)) {
2845 * Accept public action frames even when the
2846 * BSSID doesn't match, this is used for P2P
2847 * and location updates. Note that mac80211
2848 * itself never looks at these frames.
2850 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2851 ieee80211_is_public_action(hdr, skb->len))
2852 return 1;
2853 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2854 !ieee80211_is_beacon(hdr->frame_control))
2855 return 0;
2856 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2858 break;
2859 case NL80211_IFTYPE_WDS:
2860 if (bssid || !ieee80211_is_data(hdr->frame_control))
2861 return 0;
2862 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2863 return 0;
2864 break;
2865 default:
2866 /* should never get here */
2867 WARN_ON(1);
2868 break;
2871 return 1;
2875 * This function returns whether or not the SKB
2876 * was destined for RX processing or not, which,
2877 * if consume is true, is equivalent to whether
2878 * or not the skb was consumed.
2880 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2881 struct sk_buff *skb, bool consume)
2883 struct ieee80211_local *local = rx->local;
2884 struct ieee80211_sub_if_data *sdata = rx->sdata;
2885 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2886 struct ieee80211_hdr *hdr = (void *)skb->data;
2887 int prepares;
2889 rx->skb = skb;
2890 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2891 prepares = prepare_for_handlers(rx, hdr);
2893 if (!prepares)
2894 return false;
2896 if (!consume) {
2897 skb = skb_copy(skb, GFP_ATOMIC);
2898 if (!skb) {
2899 if (net_ratelimit())
2900 wiphy_debug(local->hw.wiphy,
2901 "failed to copy skb for %s\n",
2902 sdata->name);
2903 return true;
2906 rx->skb = skb;
2909 ieee80211_invoke_rx_handlers(rx);
2910 return true;
2914 * This is the actual Rx frames handler. as it blongs to Rx path it must
2915 * be called with rcu_read_lock protection.
2917 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2918 struct sk_buff *skb)
2920 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2921 struct ieee80211_local *local = hw_to_local(hw);
2922 struct ieee80211_sub_if_data *sdata;
2923 struct ieee80211_hdr *hdr;
2924 __le16 fc;
2925 struct ieee80211_rx_data rx;
2926 struct ieee80211_sub_if_data *prev;
2927 struct sta_info *sta, *tmp, *prev_sta;
2928 int err = 0;
2930 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2931 memset(&rx, 0, sizeof(rx));
2932 rx.skb = skb;
2933 rx.local = local;
2935 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2936 local->dot11ReceivedFragmentCount++;
2938 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2939 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2940 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2942 if (ieee80211_is_mgmt(fc))
2943 err = skb_linearize(skb);
2944 else
2945 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2947 if (err) {
2948 dev_kfree_skb(skb);
2949 return;
2952 hdr = (struct ieee80211_hdr *)skb->data;
2953 ieee80211_parse_qos(&rx);
2954 ieee80211_verify_alignment(&rx);
2956 if (ieee80211_is_data(fc)) {
2957 prev_sta = NULL;
2959 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2960 if (!prev_sta) {
2961 prev_sta = sta;
2962 continue;
2965 rx.sta = prev_sta;
2966 rx.sdata = prev_sta->sdata;
2967 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2969 prev_sta = sta;
2972 if (prev_sta) {
2973 rx.sta = prev_sta;
2974 rx.sdata = prev_sta->sdata;
2976 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2977 return;
2978 goto out;
2982 prev = NULL;
2984 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2985 if (!ieee80211_sdata_running(sdata))
2986 continue;
2988 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2989 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2990 continue;
2993 * frame is destined for this interface, but if it's
2994 * not also for the previous one we handle that after
2995 * the loop to avoid copying the SKB once too much
2998 if (!prev) {
2999 prev = sdata;
3000 continue;
3003 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
3004 rx.sdata = prev;
3005 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3007 prev = sdata;
3010 if (prev) {
3011 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
3012 rx.sdata = prev;
3014 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3015 return;
3018 out:
3019 dev_kfree_skb(skb);
3023 * This is the receive path handler. It is called by a low level driver when an
3024 * 802.11 MPDU is received from the hardware.
3026 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3028 struct ieee80211_local *local = hw_to_local(hw);
3029 struct ieee80211_rate *rate = NULL;
3030 struct ieee80211_supported_band *sband;
3031 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3033 WARN_ON_ONCE(softirq_count() == 0);
3035 if (WARN_ON(status->band < 0 ||
3036 status->band >= IEEE80211_NUM_BANDS))
3037 goto drop;
3039 sband = local->hw.wiphy->bands[status->band];
3040 if (WARN_ON(!sband))
3041 goto drop;
3044 * If we're suspending, it is possible although not too likely
3045 * that we'd be receiving frames after having already partially
3046 * quiesced the stack. We can't process such frames then since
3047 * that might, for example, cause stations to be added or other
3048 * driver callbacks be invoked.
3050 if (unlikely(local->quiescing || local->suspended))
3051 goto drop;
3054 * The same happens when we're not even started,
3055 * but that's worth a warning.
3057 if (WARN_ON(!local->started))
3058 goto drop;
3060 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3062 * Validate the rate, unless a PLCP error means that
3063 * we probably can't have a valid rate here anyway.
3066 if (status->flag & RX_FLAG_HT) {
3068 * rate_idx is MCS index, which can be [0-76]
3069 * as documented on:
3071 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3073 * Anything else would be some sort of driver or
3074 * hardware error. The driver should catch hardware
3075 * errors.
3077 if (WARN((status->rate_idx < 0 ||
3078 status->rate_idx > 76),
3079 "Rate marked as an HT rate but passed "
3080 "status->rate_idx is not "
3081 "an MCS index [0-76]: %d (0x%02x)\n",
3082 status->rate_idx,
3083 status->rate_idx))
3084 goto drop;
3085 } else {
3086 if (WARN_ON(status->rate_idx < 0 ||
3087 status->rate_idx >= sband->n_bitrates))
3088 goto drop;
3089 rate = &sband->bitrates[status->rate_idx];
3093 status->rx_flags = 0;
3096 * key references and virtual interfaces are protected using RCU
3097 * and this requires that we are in a read-side RCU section during
3098 * receive processing
3100 rcu_read_lock();
3103 * Frames with failed FCS/PLCP checksum are not returned,
3104 * all other frames are returned without radiotap header
3105 * if it was previously present.
3106 * Also, frames with less than 16 bytes are dropped.
3108 skb = ieee80211_rx_monitor(local, skb, rate);
3109 if (!skb) {
3110 rcu_read_unlock();
3111 return;
3114 ieee80211_tpt_led_trig_rx(local,
3115 ((struct ieee80211_hdr *)skb->data)->frame_control,
3116 skb->len);
3117 __ieee80211_rx_handle_packet(hw, skb);
3119 rcu_read_unlock();
3121 return;
3122 drop:
3123 kfree_skb(skb);
3125 EXPORT_SYMBOL(ieee80211_rx);
3127 /* This is a version of the rx handler that can be called from hard irq
3128 * context. Post the skb on the queue and schedule the tasklet */
3129 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3131 struct ieee80211_local *local = hw_to_local(hw);
3133 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3135 skb->pkt_type = IEEE80211_RX_MSG;
3136 skb_queue_tail(&local->skb_queue, skb);
3137 tasklet_schedule(&local->tasklet);
3139 EXPORT_SYMBOL(ieee80211_rx_irqsafe);