2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
15 #include <traceevent/event-parse.h>
19 #include "util/util.h"
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
49 struct perf_tool tool
;
50 struct per_pid
*all_data
;
51 struct power_event
*power_events
;
52 struct wake_event
*wake_events
;
55 u64 min_freq
, /* Lowest CPU frequency seen */
56 max_freq
, /* Highest CPU frequency seen */
58 first_time
, last_time
;
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
89 struct per_pidcomm
*all
;
90 struct per_pidcomm
*current
;
95 struct per_pidcomm
*next
;
109 struct cpu_sample
*samples
;
112 struct sample_wrapper
{
113 struct sample_wrapper
*next
;
116 unsigned char data
[0];
120 #define TYPE_RUNNING 1
121 #define TYPE_WAITING 2
122 #define TYPE_BLOCKED 3
125 struct cpu_sample
*next
;
131 const char *backtrace
;
138 struct power_event
*next
;
147 struct wake_event
*next
;
151 const char *backtrace
;
154 struct process_filter
{
157 struct process_filter
*next
;
160 static struct process_filter
*process_filter
;
163 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
165 struct per_pid
*cursor
= tchart
->all_data
;
168 if (cursor
->pid
== pid
)
170 cursor
= cursor
->next
;
172 cursor
= zalloc(sizeof(*cursor
));
173 assert(cursor
!= NULL
);
175 cursor
->next
= tchart
->all_data
;
176 tchart
->all_data
= cursor
;
180 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
183 struct per_pidcomm
*c
;
184 p
= find_create_pid(tchart
, pid
);
187 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
192 c
->comm
= strdup(comm
);
198 c
= zalloc(sizeof(*c
));
200 c
->comm
= strdup(comm
);
206 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
208 struct per_pid
*p
, *pp
;
209 p
= find_create_pid(tchart
, pid
);
210 pp
= find_create_pid(tchart
, ppid
);
212 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
213 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
215 p
->start_time
= timestamp
;
217 p
->current
->start_time
= timestamp
;
218 p
->current
->state_since
= timestamp
;
222 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
225 p
= find_create_pid(tchart
, pid
);
226 p
->end_time
= timestamp
;
228 p
->current
->end_time
= timestamp
;
231 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
232 unsigned int cpu
, u64 start
, u64 end
,
233 const char *backtrace
)
236 struct per_pidcomm
*c
;
237 struct cpu_sample
*sample
;
239 p
= find_create_pid(tchart
, pid
);
242 c
= zalloc(sizeof(*c
));
249 sample
= zalloc(sizeof(*sample
));
250 assert(sample
!= NULL
);
251 sample
->start_time
= start
;
252 sample
->end_time
= end
;
254 sample
->next
= c
->samples
;
256 sample
->backtrace
= backtrace
;
259 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
260 c
->total_time
+= (end
-start
);
261 p
->total_time
+= (end
-start
);
264 if (c
->start_time
== 0 || c
->start_time
> start
)
265 c
->start_time
= start
;
266 if (p
->start_time
== 0 || p
->start_time
> start
)
267 p
->start_time
= start
;
270 #define MAX_CPUS 4096
272 static u64 cpus_cstate_start_times
[MAX_CPUS
];
273 static int cpus_cstate_state
[MAX_CPUS
];
274 static u64 cpus_pstate_start_times
[MAX_CPUS
];
275 static u64 cpus_pstate_state
[MAX_CPUS
];
277 static int process_comm_event(struct perf_tool
*tool
,
278 union perf_event
*event
,
279 struct perf_sample
*sample __maybe_unused
,
280 struct machine
*machine __maybe_unused
)
282 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
283 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
287 static int process_fork_event(struct perf_tool
*tool
,
288 union perf_event
*event
,
289 struct perf_sample
*sample __maybe_unused
,
290 struct machine
*machine __maybe_unused
)
292 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
293 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
297 static int process_exit_event(struct perf_tool
*tool
,
298 union perf_event
*event
,
299 struct perf_sample
*sample __maybe_unused
,
300 struct machine
*machine __maybe_unused
)
302 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
303 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
307 #ifdef SUPPORT_OLD_POWER_EVENTS
308 static int use_old_power_events
;
311 static void c_state_start(int cpu
, u64 timestamp
, int state
)
313 cpus_cstate_start_times
[cpu
] = timestamp
;
314 cpus_cstate_state
[cpu
] = state
;
317 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
319 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
324 pwr
->state
= cpus_cstate_state
[cpu
];
325 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
326 pwr
->end_time
= timestamp
;
329 pwr
->next
= tchart
->power_events
;
331 tchart
->power_events
= pwr
;
334 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
336 struct power_event
*pwr
;
338 if (new_freq
> 8000000) /* detect invalid data */
341 pwr
= zalloc(sizeof(*pwr
));
345 pwr
->state
= cpus_pstate_state
[cpu
];
346 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
347 pwr
->end_time
= timestamp
;
350 pwr
->next
= tchart
->power_events
;
352 if (!pwr
->start_time
)
353 pwr
->start_time
= tchart
->first_time
;
355 tchart
->power_events
= pwr
;
357 cpus_pstate_state
[cpu
] = new_freq
;
358 cpus_pstate_start_times
[cpu
] = timestamp
;
360 if ((u64
)new_freq
> tchart
->max_freq
)
361 tchart
->max_freq
= new_freq
;
363 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
364 tchart
->min_freq
= new_freq
;
366 if (new_freq
== tchart
->max_freq
- 1000)
367 tchart
->turbo_frequency
= tchart
->max_freq
;
370 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
371 int waker
, int wakee
, u8 flags
, const char *backtrace
)
374 struct wake_event
*we
= zalloc(sizeof(*we
));
379 we
->time
= timestamp
;
381 we
->backtrace
= backtrace
;
383 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
387 we
->next
= tchart
->wake_events
;
388 tchart
->wake_events
= we
;
389 p
= find_create_pid(tchart
, we
->wakee
);
391 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
392 p
->current
->state_since
= timestamp
;
393 p
->current
->state
= TYPE_WAITING
;
395 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
396 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
397 p
->current
->state_since
, timestamp
, NULL
);
398 p
->current
->state_since
= timestamp
;
399 p
->current
->state
= TYPE_WAITING
;
403 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
404 int prev_pid
, int next_pid
, u64 prev_state
,
405 const char *backtrace
)
407 struct per_pid
*p
= NULL
, *prev_p
;
409 prev_p
= find_create_pid(tchart
, prev_pid
);
411 p
= find_create_pid(tchart
, next_pid
);
413 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
414 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
415 prev_p
->current
->state_since
, timestamp
,
417 if (p
&& p
->current
) {
418 if (p
->current
->state
!= TYPE_NONE
)
419 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
420 p
->current
->state_since
, timestamp
,
423 p
->current
->state_since
= timestamp
;
424 p
->current
->state
= TYPE_RUNNING
;
427 if (prev_p
->current
) {
428 prev_p
->current
->state
= TYPE_NONE
;
429 prev_p
->current
->state_since
= timestamp
;
431 prev_p
->current
->state
= TYPE_BLOCKED
;
433 prev_p
->current
->state
= TYPE_WAITING
;
437 static const char *cat_backtrace(union perf_event
*event
,
438 struct perf_sample
*sample
,
439 struct machine
*machine
)
441 struct addr_location al
;
445 u8 cpumode
= PERF_RECORD_MISC_USER
;
446 struct addr_location tal
;
447 struct ip_callchain
*chain
= sample
->callchain
;
448 FILE *f
= open_memstream(&p
, &p_len
);
451 perror("open_memstream error");
458 if (perf_event__preprocess_sample(event
, machine
, &al
, sample
) < 0) {
459 fprintf(stderr
, "problem processing %d event, skipping it.\n",
464 for (i
= 0; i
< chain
->nr
; i
++) {
467 if (callchain_param
.order
== ORDER_CALLEE
)
470 ip
= chain
->ips
[chain
->nr
- i
- 1];
472 if (ip
>= PERF_CONTEXT_MAX
) {
474 case PERF_CONTEXT_HV
:
475 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
477 case PERF_CONTEXT_KERNEL
:
478 cpumode
= PERF_RECORD_MISC_KERNEL
;
480 case PERF_CONTEXT_USER
:
481 cpumode
= PERF_RECORD_MISC_USER
;
484 pr_debug("invalid callchain context: "
485 "%"PRId64
"\n", (s64
) ip
);
488 * It seems the callchain is corrupted.
497 tal
.filtered
= false;
498 thread__find_addr_location(al
.thread
, machine
, cpumode
,
499 MAP__FUNCTION
, ip
, &tal
);
502 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
,
505 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
514 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
515 struct perf_evsel
*evsel
,
516 struct perf_sample
*sample
,
517 const char *backtrace
);
519 static int process_sample_event(struct perf_tool
*tool
,
520 union perf_event
*event
,
521 struct perf_sample
*sample
,
522 struct perf_evsel
*evsel
,
523 struct machine
*machine
)
525 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
527 if (evsel
->attr
.sample_type
& PERF_SAMPLE_TIME
) {
528 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
529 tchart
->first_time
= sample
->time
;
530 if (tchart
->last_time
< sample
->time
)
531 tchart
->last_time
= sample
->time
;
534 if (evsel
->handler
!= NULL
) {
535 tracepoint_handler f
= evsel
->handler
;
536 return f(tchart
, evsel
, sample
,
537 cat_backtrace(event
, sample
, machine
));
544 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
545 struct perf_evsel
*evsel
,
546 struct perf_sample
*sample
,
547 const char *backtrace __maybe_unused
)
549 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
550 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
552 if (state
== (u32
)PWR_EVENT_EXIT
)
553 c_state_end(tchart
, cpu_id
, sample
->time
);
555 c_state_start(cpu_id
, sample
->time
, state
);
560 process_sample_cpu_frequency(struct timechart
*tchart
,
561 struct perf_evsel
*evsel
,
562 struct perf_sample
*sample
,
563 const char *backtrace __maybe_unused
)
565 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
566 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
568 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
573 process_sample_sched_wakeup(struct timechart
*tchart
,
574 struct perf_evsel
*evsel
,
575 struct perf_sample
*sample
,
576 const char *backtrace
)
578 u8 flags
= perf_evsel__intval(evsel
, sample
, "common_flags");
579 int waker
= perf_evsel__intval(evsel
, sample
, "common_pid");
580 int wakee
= perf_evsel__intval(evsel
, sample
, "pid");
582 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
587 process_sample_sched_switch(struct timechart
*tchart
,
588 struct perf_evsel
*evsel
,
589 struct perf_sample
*sample
,
590 const char *backtrace
)
592 int prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid");
593 int next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
594 u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
596 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
597 prev_state
, backtrace
);
601 #ifdef SUPPORT_OLD_POWER_EVENTS
603 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
604 struct perf_evsel
*evsel
,
605 struct perf_sample
*sample
,
606 const char *backtrace __maybe_unused
)
608 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
609 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
611 c_state_start(cpu_id
, sample
->time
, value
);
616 process_sample_power_end(struct timechart
*tchart
,
617 struct perf_evsel
*evsel __maybe_unused
,
618 struct perf_sample
*sample
,
619 const char *backtrace __maybe_unused
)
621 c_state_end(tchart
, sample
->cpu
, sample
->time
);
626 process_sample_power_frequency(struct timechart
*tchart
,
627 struct perf_evsel
*evsel
,
628 struct perf_sample
*sample
,
629 const char *backtrace __maybe_unused
)
631 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
632 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
634 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
637 #endif /* SUPPORT_OLD_POWER_EVENTS */
640 * After the last sample we need to wrap up the current C/P state
641 * and close out each CPU for these.
643 static void end_sample_processing(struct timechart
*tchart
)
646 struct power_event
*pwr
;
648 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
651 pwr
= zalloc(sizeof(*pwr
));
655 pwr
->state
= cpus_cstate_state
[cpu
];
656 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
657 pwr
->end_time
= tchart
->last_time
;
660 pwr
->next
= tchart
->power_events
;
662 tchart
->power_events
= pwr
;
666 pwr
= zalloc(sizeof(*pwr
));
670 pwr
->state
= cpus_pstate_state
[cpu
];
671 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
672 pwr
->end_time
= tchart
->last_time
;
675 pwr
->next
= tchart
->power_events
;
677 if (!pwr
->start_time
)
678 pwr
->start_time
= tchart
->first_time
;
680 pwr
->state
= tchart
->min_freq
;
681 tchart
->power_events
= pwr
;
686 * Sort the pid datastructure
688 static void sort_pids(struct timechart
*tchart
)
690 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
691 /* sort by ppid first, then by pid, lowest to highest */
695 while (tchart
->all_data
) {
696 p
= tchart
->all_data
;
697 tchart
->all_data
= p
->next
;
700 if (new_list
== NULL
) {
708 if (cursor
->ppid
> p
->ppid
||
709 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
710 /* must insert before */
712 p
->next
= prev
->next
;
725 cursor
= cursor
->next
;
730 tchart
->all_data
= new_list
;
734 static void draw_c_p_states(struct timechart
*tchart
)
736 struct power_event
*pwr
;
737 pwr
= tchart
->power_events
;
740 * two pass drawing so that the P state bars are on top of the C state blocks
743 if (pwr
->type
== CSTATE
)
744 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
748 pwr
= tchart
->power_events
;
750 if (pwr
->type
== PSTATE
) {
752 pwr
->state
= tchart
->min_freq
;
753 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
759 static void draw_wakeups(struct timechart
*tchart
)
761 struct wake_event
*we
;
763 struct per_pidcomm
*c
;
765 we
= tchart
->wake_events
;
767 int from
= 0, to
= 0;
768 char *task_from
= NULL
, *task_to
= NULL
;
770 /* locate the column of the waker and wakee */
771 p
= tchart
->all_data
;
773 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
776 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
777 if (p
->pid
== we
->waker
&& !from
) {
779 task_from
= strdup(c
->comm
);
781 if (p
->pid
== we
->wakee
&& !to
) {
783 task_to
= strdup(c
->comm
);
790 if (p
->pid
== we
->waker
&& !from
) {
792 task_from
= strdup(c
->comm
);
794 if (p
->pid
== we
->wakee
&& !to
) {
796 task_to
= strdup(c
->comm
);
805 task_from
= malloc(40);
806 sprintf(task_from
, "[%i]", we
->waker
);
809 task_to
= malloc(40);
810 sprintf(task_to
, "[%i]", we
->wakee
);
814 svg_interrupt(we
->time
, to
, we
->backtrace
);
815 else if (from
&& to
&& abs(from
- to
) == 1)
816 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
818 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
819 task_to
, we
->backtrace
);
827 static void draw_cpu_usage(struct timechart
*tchart
)
830 struct per_pidcomm
*c
;
831 struct cpu_sample
*sample
;
832 p
= tchart
->all_data
;
838 if (sample
->type
== TYPE_RUNNING
) {
839 svg_process(sample
->cpu
,
847 sample
= sample
->next
;
855 static void draw_process_bars(struct timechart
*tchart
)
858 struct per_pidcomm
*c
;
859 struct cpu_sample
*sample
;
862 Y
= 2 * tchart
->numcpus
+ 2;
864 p
= tchart
->all_data
;
874 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
877 if (sample
->type
== TYPE_RUNNING
)
878 svg_running(Y
, sample
->cpu
,
882 if (sample
->type
== TYPE_BLOCKED
)
883 svg_blocked(Y
, sample
->cpu
,
887 if (sample
->type
== TYPE_WAITING
)
888 svg_waiting(Y
, sample
->cpu
,
892 sample
= sample
->next
;
897 if (c
->total_time
> 5000000000) /* 5 seconds */
898 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ 1000000000.0);
900 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ 1000000.0);
902 svg_text(Y
, c
->start_time
, comm
);
912 static void add_process_filter(const char *string
)
914 int pid
= strtoull(string
, NULL
, 10);
915 struct process_filter
*filt
= malloc(sizeof(*filt
));
920 filt
->name
= strdup(string
);
922 filt
->next
= process_filter
;
924 process_filter
= filt
;
927 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
929 struct process_filter
*filt
;
933 filt
= process_filter
;
935 if (filt
->pid
&& p
->pid
== filt
->pid
)
937 if (strcmp(filt
->name
, c
->comm
) == 0)
944 static int determine_display_tasks_filtered(struct timechart
*tchart
)
947 struct per_pidcomm
*c
;
950 p
= tchart
->all_data
;
953 if (p
->start_time
== 1)
954 p
->start_time
= tchart
->first_time
;
956 /* no exit marker, task kept running to the end */
957 if (p
->end_time
== 0)
958 p
->end_time
= tchart
->last_time
;
965 if (c
->start_time
== 1)
966 c
->start_time
= tchart
->first_time
;
968 if (passes_filter(p
, c
)) {
974 if (c
->end_time
== 0)
975 c
->end_time
= tchart
->last_time
;
984 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
987 struct per_pidcomm
*c
;
991 return determine_display_tasks_filtered(tchart
);
993 p
= tchart
->all_data
;
996 if (p
->start_time
== 1)
997 p
->start_time
= tchart
->first_time
;
999 /* no exit marker, task kept running to the end */
1000 if (p
->end_time
== 0)
1001 p
->end_time
= tchart
->last_time
;
1002 if (p
->total_time
>= threshold
)
1010 if (c
->start_time
== 1)
1011 c
->start_time
= tchart
->first_time
;
1013 if (c
->total_time
>= threshold
) {
1018 if (c
->end_time
== 0)
1019 c
->end_time
= tchart
->last_time
;
1030 #define TIME_THRESH 10000000
1032 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1036 int thresh
= TIME_THRESH
;
1038 if (tchart
->power_only
)
1039 tchart
->proc_num
= 0;
1041 /* We'd like to show at least proc_num tasks;
1042 * be less picky if we have fewer */
1044 count
= determine_display_tasks(tchart
, thresh
);
1046 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1048 if (!tchart
->proc_num
)
1051 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1056 for (i
= 0; i
< tchart
->numcpus
; i
++)
1057 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1059 draw_cpu_usage(tchart
);
1060 if (tchart
->proc_num
)
1061 draw_process_bars(tchart
);
1062 if (!tchart
->tasks_only
)
1063 draw_c_p_states(tchart
);
1064 if (tchart
->proc_num
)
1065 draw_wakeups(tchart
);
1070 static int process_header(struct perf_file_section
*section __maybe_unused
,
1071 struct perf_header
*ph
,
1073 int fd __maybe_unused
,
1076 struct timechart
*tchart
= data
;
1080 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1083 case HEADER_CPU_TOPOLOGY
:
1084 if (!tchart
->topology
)
1087 if (svg_build_topology_map(ph
->env
.sibling_cores
,
1088 ph
->env
.nr_sibling_cores
,
1089 ph
->env
.sibling_threads
,
1090 ph
->env
.nr_sibling_threads
))
1091 fprintf(stderr
, "problem building topology\n");
1101 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1103 const struct perf_evsel_str_handler power_tracepoints
[] = {
1104 { "power:cpu_idle", process_sample_cpu_idle
},
1105 { "power:cpu_frequency", process_sample_cpu_frequency
},
1106 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1107 { "sched:sched_switch", process_sample_sched_switch
},
1108 #ifdef SUPPORT_OLD_POWER_EVENTS
1109 { "power:power_start", process_sample_power_start
},
1110 { "power:power_end", process_sample_power_end
},
1111 { "power:power_frequency", process_sample_power_frequency
},
1114 struct perf_data_file file
= {
1116 .mode
= PERF_DATA_MODE_READ
,
1119 struct perf_session
*session
= perf_session__new(&file
, false,
1123 if (session
== NULL
)
1126 (void)perf_header__process_sections(&session
->header
,
1127 perf_data_file__fd(session
->file
),
1131 if (!perf_session__has_traces(session
, "timechart record"))
1134 if (perf_session__set_tracepoints_handlers(session
,
1135 power_tracepoints
)) {
1136 pr_err("Initializing session tracepoint handlers failed\n");
1140 ret
= perf_session__process_events(session
, &tchart
->tool
);
1144 end_sample_processing(tchart
);
1148 write_svg_file(tchart
, output_name
);
1150 pr_info("Written %2.1f seconds of trace to %s.\n",
1151 (tchart
->last_time
- tchart
->first_time
) / 1000000000.0, output_name
);
1153 perf_session__delete(session
);
1157 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1159 unsigned int rec_argc
, i
, j
;
1160 const char **rec_argv
;
1162 unsigned int record_elems
;
1164 const char * const common_args
[] = {
1165 "record", "-a", "-R", "-c", "1",
1167 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1169 const char * const backtrace_args
[] = {
1172 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1174 const char * const power_args
[] = {
1175 "-e", "power:cpu_frequency",
1176 "-e", "power:cpu_idle",
1178 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1180 const char * const old_power_args
[] = {
1181 #ifdef SUPPORT_OLD_POWER_EVENTS
1182 "-e", "power:power_start",
1183 "-e", "power:power_end",
1184 "-e", "power:power_frequency",
1187 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1189 const char * const tasks_args
[] = {
1190 "-e", "sched:sched_wakeup",
1191 "-e", "sched:sched_switch",
1193 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1195 #ifdef SUPPORT_OLD_POWER_EVENTS
1196 if (!is_valid_tracepoint("power:cpu_idle") &&
1197 is_valid_tracepoint("power:power_start")) {
1198 use_old_power_events
= 1;
1201 old_power_args_nr
= 0;
1205 if (tchart
->power_only
)
1208 if (tchart
->tasks_only
) {
1210 old_power_args_nr
= 0;
1213 if (!tchart
->with_backtrace
)
1214 backtrace_args_no
= 0;
1216 record_elems
= common_args_nr
+ tasks_args_nr
+
1217 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1219 rec_argc
= record_elems
+ argc
;
1220 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1222 if (rec_argv
== NULL
)
1226 for (i
= 0; i
< common_args_nr
; i
++)
1227 *p
++ = strdup(common_args
[i
]);
1229 for (i
= 0; i
< backtrace_args_no
; i
++)
1230 *p
++ = strdup(backtrace_args
[i
]);
1232 for (i
= 0; i
< tasks_args_nr
; i
++)
1233 *p
++ = strdup(tasks_args
[i
]);
1235 for (i
= 0; i
< power_args_nr
; i
++)
1236 *p
++ = strdup(power_args
[i
]);
1238 for (i
= 0; i
< old_power_args_nr
; i
++)
1239 *p
++ = strdup(old_power_args
[i
]);
1241 for (j
= 1; j
< (unsigned int)argc
; j
++)
1244 return cmd_record(rec_argc
, rec_argv
, NULL
);
1248 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1249 int __maybe_unused unset
)
1252 add_process_filter(arg
);
1257 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1258 int __maybe_unused unset
)
1260 unsigned long duration
= strtoul(arg
, NULL
, 0);
1262 if (svg_highlight
|| svg_highlight_name
)
1266 svg_highlight
= duration
;
1268 svg_highlight_name
= strdup(arg
);
1273 int cmd_timechart(int argc
, const char **argv
,
1274 const char *prefix __maybe_unused
)
1276 struct timechart tchart
= {
1278 .comm
= process_comm_event
,
1279 .fork
= process_fork_event
,
1280 .exit
= process_exit_event
,
1281 .sample
= process_sample_event
,
1282 .ordered_samples
= true,
1286 const char *output_name
= "output.svg";
1287 const struct option timechart_options
[] = {
1288 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1289 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1290 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1291 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1292 "highlight tasks. Pass duration in ns or process name.",
1294 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1295 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1296 "output processes data only"),
1297 OPT_CALLBACK('p', "process", NULL
, "process",
1298 "process selector. Pass a pid or process name.",
1300 OPT_STRING(0, "symfs", &symbol_conf
.symfs
, "directory",
1301 "Look for files with symbols relative to this directory"),
1302 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1303 "min. number of tasks to print"),
1304 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1305 "sort CPUs according to topology"),
1308 const char * const timechart_usage
[] = {
1309 "perf timechart [<options>] {record}",
1313 const struct option record_options
[] = {
1314 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1315 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1316 "output processes data only"),
1317 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1320 const char * const record_usage
[] = {
1321 "perf timechart record [<options>]",
1324 argc
= parse_options(argc
, argv
, timechart_options
, timechart_usage
,
1325 PARSE_OPT_STOP_AT_NON_OPTION
);
1327 if (tchart
.power_only
&& tchart
.tasks_only
) {
1328 pr_err("-P and -T options cannot be used at the same time.\n");
1334 if (argc
&& !strncmp(argv
[0], "rec", 3)) {
1335 argc
= parse_options(argc
, argv
, record_options
, record_usage
,
1336 PARSE_OPT_STOP_AT_NON_OPTION
);
1338 if (tchart
.power_only
&& tchart
.tasks_only
) {
1339 pr_err("-P and -T options cannot be used at the same time.\n");
1343 return timechart__record(&tchart
, argc
, argv
);
1345 usage_with_options(timechart_usage
, timechart_options
);
1349 return __cmd_timechart(&tchart
, output_name
);