2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
17 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
19 unsigned long data
, text
, lib
, swap
;
20 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
29 hiwater_vm
= total_vm
= mm
->total_vm
;
30 if (hiwater_vm
< mm
->hiwater_vm
)
31 hiwater_vm
= mm
->hiwater_vm
;
32 hiwater_rss
= total_rss
= get_mm_rss(mm
);
33 if (hiwater_rss
< mm
->hiwater_rss
)
34 hiwater_rss
= mm
->hiwater_rss
;
36 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
37 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
38 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
39 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
52 hiwater_vm
<< (PAGE_SHIFT
-10),
53 (total_vm
- mm
->reserved_vm
) << (PAGE_SHIFT
-10),
54 mm
->locked_vm
<< (PAGE_SHIFT
-10),
55 hiwater_rss
<< (PAGE_SHIFT
-10),
56 total_rss
<< (PAGE_SHIFT
-10),
57 data
<< (PAGE_SHIFT
-10),
58 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
59 (PTRS_PER_PTE
*sizeof(pte_t
)*mm
->nr_ptes
) >> 10,
60 swap
<< (PAGE_SHIFT
-10));
63 unsigned long task_vsize(struct mm_struct
*mm
)
65 return PAGE_SIZE
* mm
->total_vm
;
68 int task_statm(struct mm_struct
*mm
, int *shared
, int *text
,
69 int *data
, int *resident
)
71 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
72 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
74 *data
= mm
->total_vm
- mm
->shared_vm
;
75 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
79 static void pad_len_spaces(struct seq_file
*m
, int len
)
81 len
= 25 + sizeof(void*) * 6 - len
;
84 seq_printf(m
, "%*c", len
, ' ');
87 static void vma_stop(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
89 if (vma
&& vma
!= priv
->tail_vma
) {
90 struct mm_struct
*mm
= vma
->vm_mm
;
91 up_read(&mm
->mmap_sem
);
96 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
98 struct proc_maps_private
*priv
= m
->private;
99 unsigned long last_addr
= m
->version
;
100 struct mm_struct
*mm
;
101 struct vm_area_struct
*vma
, *tail_vma
= NULL
;
104 /* Clear the per syscall fields in priv */
106 priv
->tail_vma
= NULL
;
109 * We remember last_addr rather than next_addr to hit with
110 * mmap_cache most of the time. We have zero last_addr at
111 * the beginning and also after lseek. We will have -1 last_addr
112 * after the end of the vmas.
115 if (last_addr
== -1UL)
118 priv
->task
= get_pid_task(priv
->pid
, PIDTYPE_PID
);
122 mm
= mm_for_maps(priv
->task
);
125 down_read(&mm
->mmap_sem
);
127 tail_vma
= get_gate_vma(priv
->task
);
128 priv
->tail_vma
= tail_vma
;
130 /* Start with last addr hint */
131 vma
= find_vma(mm
, last_addr
);
132 if (last_addr
&& vma
) {
138 * Check the vma index is within the range and do
139 * sequential scan until m_index.
142 if ((unsigned long)l
< mm
->map_count
) {
149 if (l
!= mm
->map_count
)
150 tail_vma
= NULL
; /* After gate vma */
156 /* End of vmas has been reached */
157 m
->version
= (tail_vma
!= NULL
)? 0: -1UL;
158 up_read(&mm
->mmap_sem
);
163 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
165 struct proc_maps_private
*priv
= m
->private;
166 struct vm_area_struct
*vma
= v
;
167 struct vm_area_struct
*tail_vma
= priv
->tail_vma
;
170 if (vma
&& (vma
!= tail_vma
) && vma
->vm_next
)
173 return (vma
!= tail_vma
)? tail_vma
: NULL
;
176 static void m_stop(struct seq_file
*m
, void *v
)
178 struct proc_maps_private
*priv
= m
->private;
179 struct vm_area_struct
*vma
= v
;
183 put_task_struct(priv
->task
);
186 static int do_maps_open(struct inode
*inode
, struct file
*file
,
187 const struct seq_operations
*ops
)
189 struct proc_maps_private
*priv
;
191 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
193 priv
->pid
= proc_pid(inode
);
194 ret
= seq_open(file
, ops
);
196 struct seq_file
*m
= file
->private_data
;
205 static void show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
207 struct mm_struct
*mm
= vma
->vm_mm
;
208 struct file
*file
= vma
->vm_file
;
209 int flags
= vma
->vm_flags
;
210 unsigned long ino
= 0;
211 unsigned long long pgoff
= 0;
216 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
217 dev
= inode
->i_sb
->s_dev
;
219 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
222 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
225 flags
& VM_READ
? 'r' : '-',
226 flags
& VM_WRITE
? 'w' : '-',
227 flags
& VM_EXEC
? 'x' : '-',
228 flags
& VM_MAYSHARE
? 's' : 'p',
230 MAJOR(dev
), MINOR(dev
), ino
, &len
);
233 * Print the dentry name for named mappings, and a
234 * special [heap] marker for the heap:
237 pad_len_spaces(m
, len
);
238 seq_path(m
, &file
->f_path
, "\n");
240 const char *name
= arch_vma_name(vma
);
243 if (vma
->vm_start
<= mm
->start_brk
&&
244 vma
->vm_end
>= mm
->brk
) {
246 } else if (vma
->vm_start
<= mm
->start_stack
&&
247 vma
->vm_end
>= mm
->start_stack
) {
250 unsigned long stack_start
;
251 struct proc_maps_private
*pmp
;
254 stack_start
= pmp
->task
->stack_start
;
256 if (vma
->vm_start
<= stack_start
&&
257 vma
->vm_end
>= stack_start
) {
258 pad_len_spaces(m
, len
);
260 "[threadstack:%08lx]",
261 #ifdef CONFIG_STACK_GROWSUP
262 vma
->vm_end
- stack_start
264 stack_start
- vma
->vm_start
274 pad_len_spaces(m
, len
);
281 static int show_map(struct seq_file
*m
, void *v
)
283 struct vm_area_struct
*vma
= v
;
284 struct proc_maps_private
*priv
= m
->private;
285 struct task_struct
*task
= priv
->task
;
287 show_map_vma(m
, vma
);
289 if (m
->count
< m
->size
) /* vma is copied successfully */
290 m
->version
= (vma
!= get_gate_vma(task
))? vma
->vm_start
: 0;
294 static const struct seq_operations proc_pid_maps_op
= {
301 static int maps_open(struct inode
*inode
, struct file
*file
)
303 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
306 const struct file_operations proc_maps_operations
= {
310 .release
= seq_release_private
,
314 * Proportional Set Size(PSS): my share of RSS.
316 * PSS of a process is the count of pages it has in memory, where each
317 * page is divided by the number of processes sharing it. So if a
318 * process has 1000 pages all to itself, and 1000 shared with one other
319 * process, its PSS will be 1500.
321 * To keep (accumulated) division errors low, we adopt a 64bit
322 * fixed-point pss counter to minimize division errors. So (pss >>
323 * PSS_SHIFT) would be the real byte count.
325 * A shift of 12 before division means (assuming 4K page size):
326 * - 1M 3-user-pages add up to 8KB errors;
327 * - supports mapcount up to 2^24, or 16M;
328 * - supports PSS up to 2^52 bytes, or 4PB.
332 #ifdef CONFIG_PROC_PAGE_MONITOR
333 struct mem_size_stats
{
334 struct vm_area_struct
*vma
;
335 unsigned long resident
;
336 unsigned long shared_clean
;
337 unsigned long shared_dirty
;
338 unsigned long private_clean
;
339 unsigned long private_dirty
;
340 unsigned long referenced
;
345 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
346 struct mm_walk
*walk
)
348 struct mem_size_stats
*mss
= walk
->private;
349 struct vm_area_struct
*vma
= mss
->vma
;
355 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
356 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
359 if (is_swap_pte(ptent
)) {
360 mss
->swap
+= PAGE_SIZE
;
364 if (!pte_present(ptent
))
367 page
= vm_normal_page(vma
, addr
, ptent
);
371 mss
->resident
+= PAGE_SIZE
;
372 /* Accumulate the size in pages that have been accessed. */
373 if (pte_young(ptent
) || PageReferenced(page
))
374 mss
->referenced
+= PAGE_SIZE
;
375 mapcount
= page_mapcount(page
);
377 if (pte_dirty(ptent
))
378 mss
->shared_dirty
+= PAGE_SIZE
;
380 mss
->shared_clean
+= PAGE_SIZE
;
381 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
383 if (pte_dirty(ptent
))
384 mss
->private_dirty
+= PAGE_SIZE
;
386 mss
->private_clean
+= PAGE_SIZE
;
387 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
);
390 pte_unmap_unlock(pte
- 1, ptl
);
395 static int show_smap(struct seq_file
*m
, void *v
)
397 struct proc_maps_private
*priv
= m
->private;
398 struct task_struct
*task
= priv
->task
;
399 struct vm_area_struct
*vma
= v
;
400 struct mem_size_stats mss
;
401 struct mm_walk smaps_walk
= {
402 .pmd_entry
= smaps_pte_range
,
407 memset(&mss
, 0, sizeof mss
);
409 if (vma
->vm_mm
&& !is_vm_hugetlb_page(vma
))
410 walk_page_range(vma
->vm_start
, vma
->vm_end
, &smaps_walk
);
412 show_map_vma(m
, vma
);
418 "Shared_Clean: %8lu kB\n"
419 "Shared_Dirty: %8lu kB\n"
420 "Private_Clean: %8lu kB\n"
421 "Private_Dirty: %8lu kB\n"
422 "Referenced: %8lu kB\n"
424 "KernelPageSize: %8lu kB\n"
425 "MMUPageSize: %8lu kB\n",
426 (vma
->vm_end
- vma
->vm_start
) >> 10,
428 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
429 mss
.shared_clean
>> 10,
430 mss
.shared_dirty
>> 10,
431 mss
.private_clean
>> 10,
432 mss
.private_dirty
>> 10,
433 mss
.referenced
>> 10,
435 vma_kernel_pagesize(vma
) >> 10,
436 vma_mmu_pagesize(vma
) >> 10);
438 if (m
->count
< m
->size
) /* vma is copied successfully */
439 m
->version
= (vma
!= get_gate_vma(task
)) ? vma
->vm_start
: 0;
443 static const struct seq_operations proc_pid_smaps_op
= {
450 static int smaps_open(struct inode
*inode
, struct file
*file
)
452 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
455 const struct file_operations proc_smaps_operations
= {
459 .release
= seq_release_private
,
462 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
463 unsigned long end
, struct mm_walk
*walk
)
465 struct vm_area_struct
*vma
= walk
->private;
470 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
471 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
473 if (!pte_present(ptent
))
476 page
= vm_normal_page(vma
, addr
, ptent
);
480 /* Clear accessed and referenced bits. */
481 ptep_test_and_clear_young(vma
, addr
, pte
);
482 ClearPageReferenced(page
);
484 pte_unmap_unlock(pte
- 1, ptl
);
489 #define CLEAR_REFS_ALL 1
490 #define CLEAR_REFS_ANON 2
491 #define CLEAR_REFS_MAPPED 3
493 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
494 size_t count
, loff_t
*ppos
)
496 struct task_struct
*task
;
497 char buffer
[PROC_NUMBUF
];
498 struct mm_struct
*mm
;
499 struct vm_area_struct
*vma
;
502 memset(buffer
, 0, sizeof(buffer
));
503 if (count
> sizeof(buffer
) - 1)
504 count
= sizeof(buffer
) - 1;
505 if (copy_from_user(buffer
, buf
, count
))
507 if (strict_strtol(strstrip(buffer
), 10, &type
))
509 if (type
< CLEAR_REFS_ALL
|| type
> CLEAR_REFS_MAPPED
)
511 task
= get_proc_task(file
->f_path
.dentry
->d_inode
);
514 mm
= get_task_mm(task
);
516 struct mm_walk clear_refs_walk
= {
517 .pmd_entry
= clear_refs_pte_range
,
520 down_read(&mm
->mmap_sem
);
521 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
522 clear_refs_walk
.private = vma
;
523 if (is_vm_hugetlb_page(vma
))
526 * Writing 1 to /proc/pid/clear_refs affects all pages.
528 * Writing 2 to /proc/pid/clear_refs only affects
531 * Writing 3 to /proc/pid/clear_refs only affects file
534 if (type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
536 if (type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
538 walk_page_range(vma
->vm_start
, vma
->vm_end
,
542 up_read(&mm
->mmap_sem
);
545 put_task_struct(task
);
550 const struct file_operations proc_clear_refs_operations
= {
551 .write
= clear_refs_write
,
555 u64 __user
*out
, *end
;
558 #define PM_ENTRY_BYTES sizeof(u64)
559 #define PM_STATUS_BITS 3
560 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
561 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
562 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
563 #define PM_PSHIFT_BITS 6
564 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
565 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
566 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
567 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
568 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
570 #define PM_PRESENT PM_STATUS(4LL)
571 #define PM_SWAP PM_STATUS(2LL)
572 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
573 #define PM_END_OF_BUFFER 1
575 static int add_to_pagemap(unsigned long addr
, u64 pfn
,
576 struct pagemapread
*pm
)
578 if (put_user(pfn
, pm
->out
))
581 if (pm
->out
>= pm
->end
)
582 return PM_END_OF_BUFFER
;
586 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
587 struct mm_walk
*walk
)
589 struct pagemapread
*pm
= walk
->private;
592 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
593 err
= add_to_pagemap(addr
, PM_NOT_PRESENT
, pm
);
600 static u64
swap_pte_to_pagemap_entry(pte_t pte
)
602 swp_entry_t e
= pte_to_swp_entry(pte
);
603 return swp_type(e
) | (swp_offset(e
) << MAX_SWAPFILES_SHIFT
);
606 static u64
pte_to_pagemap_entry(pte_t pte
)
609 if (is_swap_pte(pte
))
610 pme
= PM_PFRAME(swap_pte_to_pagemap_entry(pte
))
611 | PM_PSHIFT(PAGE_SHIFT
) | PM_SWAP
;
612 else if (pte_present(pte
))
613 pme
= PM_PFRAME(pte_pfn(pte
))
614 | PM_PSHIFT(PAGE_SHIFT
) | PM_PRESENT
;
618 static int pagemap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
619 struct mm_walk
*walk
)
621 struct vm_area_struct
*vma
;
622 struct pagemapread
*pm
= walk
->private;
626 /* find the first VMA at or above 'addr' */
627 vma
= find_vma(walk
->mm
, addr
);
628 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
629 u64 pfn
= PM_NOT_PRESENT
;
631 /* check to see if we've left 'vma' behind
632 * and need a new, higher one */
633 if (vma
&& (addr
>= vma
->vm_end
))
634 vma
= find_vma(walk
->mm
, addr
);
636 /* check that 'vma' actually covers this address,
637 * and that it isn't a huge page vma */
638 if (vma
&& (vma
->vm_start
<= addr
) &&
639 !is_vm_hugetlb_page(vma
)) {
640 pte
= pte_offset_map(pmd
, addr
);
641 pfn
= pte_to_pagemap_entry(*pte
);
642 /* unmap before userspace copy */
645 err
= add_to_pagemap(addr
, pfn
, pm
);
655 static u64
huge_pte_to_pagemap_entry(pte_t pte
, int offset
)
658 if (pte_present(pte
))
659 pme
= PM_PFRAME(pte_pfn(pte
) + offset
)
660 | PM_PSHIFT(PAGE_SHIFT
) | PM_PRESENT
;
664 static int pagemap_hugetlb_range(pte_t
*pte
, unsigned long addr
,
665 unsigned long end
, struct mm_walk
*walk
)
667 struct vm_area_struct
*vma
;
668 struct pagemapread
*pm
= walk
->private;
669 struct hstate
*hs
= NULL
;
672 vma
= find_vma(walk
->mm
, addr
);
674 hs
= hstate_vma(vma
);
675 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
676 u64 pfn
= PM_NOT_PRESENT
;
678 if (vma
&& (addr
>= vma
->vm_end
)) {
679 vma
= find_vma(walk
->mm
, addr
);
681 hs
= hstate_vma(vma
);
684 if (vma
&& (vma
->vm_start
<= addr
) && is_vm_hugetlb_page(vma
)) {
685 /* calculate pfn of the "raw" page in the hugepage. */
686 int offset
= (addr
& ~huge_page_mask(hs
)) >> PAGE_SHIFT
;
687 pfn
= huge_pte_to_pagemap_entry(*pte
, offset
);
689 err
= add_to_pagemap(addr
, pfn
, pm
);
700 * /proc/pid/pagemap - an array mapping virtual pages to pfns
702 * For each page in the address space, this file contains one 64-bit entry
703 * consisting of the following:
705 * Bits 0-55 page frame number (PFN) if present
706 * Bits 0-4 swap type if swapped
707 * Bits 5-55 swap offset if swapped
708 * Bits 55-60 page shift (page size = 1<<page shift)
709 * Bit 61 reserved for future use
710 * Bit 62 page swapped
711 * Bit 63 page present
713 * If the page is not present but in swap, then the PFN contains an
714 * encoding of the swap file number and the page's offset into the
715 * swap. Unmapped pages return a null PFN. This allows determining
716 * precisely which pages are mapped (or in swap) and comparing mapped
717 * pages between processes.
719 * Efficient users of this interface will use /proc/pid/maps to
720 * determine which areas of memory are actually mapped and llseek to
721 * skip over unmapped regions.
723 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
724 size_t count
, loff_t
*ppos
)
726 struct task_struct
*task
= get_proc_task(file
->f_path
.dentry
->d_inode
);
727 struct page
**pages
, *page
;
728 unsigned long uaddr
, uend
;
729 struct mm_struct
*mm
;
730 struct pagemapread pm
;
733 struct mm_walk pagemap_walk
= {};
736 unsigned long start_vaddr
;
737 unsigned long end_vaddr
;
743 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
747 /* file position must be aligned */
748 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
756 mm
= get_task_mm(task
);
761 uaddr
= (unsigned long)buf
& PAGE_MASK
;
762 uend
= (unsigned long)(buf
+ count
);
763 pagecount
= (PAGE_ALIGN(uend
) - uaddr
) / PAGE_SIZE
;
767 pages
= kcalloc(pagecount
, sizeof(struct page
*), GFP_KERNEL
);
772 down_read(¤t
->mm
->mmap_sem
);
773 ret
= get_user_pages(current
, current
->mm
, uaddr
, pagecount
,
775 up_read(¤t
->mm
->mmap_sem
);
780 if (ret
!= pagecount
) {
786 pm
.out
= (u64 __user
*)buf
;
787 pm
.end
= (u64 __user
*)(buf
+ count
);
789 pagemap_walk
.pmd_entry
= pagemap_pte_range
;
790 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
791 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
792 pagemap_walk
.mm
= mm
;
793 pagemap_walk
.private = &pm
;
796 svpfn
= src
/ PM_ENTRY_BYTES
;
797 start_vaddr
= svpfn
<< PAGE_SHIFT
;
798 end_vaddr
= TASK_SIZE_OF(task
);
800 /* watch out for wraparound */
801 if (svpfn
> TASK_SIZE_OF(task
) >> PAGE_SHIFT
)
802 start_vaddr
= end_vaddr
;
805 * The odds are that this will stop walking way
806 * before end_vaddr, because the length of the
807 * user buffer is tracked in "pm", and the walk
808 * will stop when we hit the end of the buffer.
810 ret
= walk_page_range(start_vaddr
, end_vaddr
, &pagemap_walk
);
811 if (ret
== PM_END_OF_BUFFER
)
813 /* don't need mmap_sem for these, but this looks cleaner */
814 *ppos
+= (char __user
*)pm
.out
- buf
;
816 ret
= (char __user
*)pm
.out
- buf
;
819 for (; pagecount
; pagecount
--) {
820 page
= pages
[pagecount
-1];
821 if (!PageReserved(page
))
823 page_cache_release(page
);
830 put_task_struct(task
);
835 const struct file_operations proc_pagemap_operations
= {
836 .llseek
= mem_lseek
, /* borrow this */
837 .read
= pagemap_read
,
839 #endif /* CONFIG_PROC_PAGE_MONITOR */
842 extern int show_numa_map(struct seq_file
*m
, void *v
);
844 static const struct seq_operations proc_pid_numa_maps_op
= {
848 .show
= show_numa_map
,
851 static int numa_maps_open(struct inode
*inode
, struct file
*file
)
853 return do_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
856 const struct file_operations proc_numa_maps_operations
= {
857 .open
= numa_maps_open
,
860 .release
= seq_release_private
,