2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
23 #include "cpufreq_governor.h"
25 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC)
27 static DEFINE_PER_CPU(struct cpu_dbs_info
, cpu_dbs
);
29 static DEFINE_MUTEX(gov_dbs_data_mutex
);
31 /* Common sysfs tunables */
33 * store_sampling_rate - update sampling rate effective immediately if needed.
35 * If new rate is smaller than the old, simply updating
36 * dbs.sampling_rate might not be appropriate. For example, if the
37 * original sampling_rate was 1 second and the requested new sampling rate is 10
38 * ms because the user needs immediate reaction from ondemand governor, but not
39 * sure if higher frequency will be required or not, then, the governor may
40 * change the sampling rate too late; up to 1 second later. Thus, if we are
41 * reducing the sampling rate, we need to make the new value effective
44 * This must be called with dbs_data->mutex held, otherwise traversing
45 * policy_dbs_list isn't safe.
47 ssize_t
store_sampling_rate(struct gov_attr_set
*attr_set
, const char *buf
,
50 struct dbs_data
*dbs_data
= to_dbs_data(attr_set
);
51 struct policy_dbs_info
*policy_dbs
;
52 unsigned int sampling_interval
;
55 ret
= sscanf(buf
, "%u", &sampling_interval
);
56 if (ret
!= 1 || sampling_interval
< CPUFREQ_DBS_MIN_SAMPLING_INTERVAL
)
59 dbs_data
->sampling_rate
= sampling_interval
;
62 * We are operating under dbs_data->mutex and so the list and its
63 * entries can't be freed concurrently.
65 list_for_each_entry(policy_dbs
, &attr_set
->policy_list
, list
) {
66 mutex_lock(&policy_dbs
->update_mutex
);
68 * On 32-bit architectures this may race with the
69 * sample_delay_ns read in dbs_update_util_handler(), but that
70 * really doesn't matter. If the read returns a value that's
71 * too big, the sample will be skipped, but the next invocation
72 * of dbs_update_util_handler() (when the update has been
73 * completed) will take a sample.
75 * If this runs in parallel with dbs_work_handler(), we may end
76 * up overwriting the sample_delay_ns value that it has just
77 * written, but it will be corrected next time a sample is
78 * taken, so it shouldn't be significant.
80 gov_update_sample_delay(policy_dbs
, 0);
81 mutex_unlock(&policy_dbs
->update_mutex
);
86 EXPORT_SYMBOL_GPL(store_sampling_rate
);
89 * gov_update_cpu_data - Update CPU load data.
90 * @dbs_data: Top-level governor data pointer.
92 * Update CPU load data for all CPUs in the domain governed by @dbs_data
93 * (that may be a single policy or a bunch of them if governor tunables are
96 * Call under the @dbs_data mutex.
98 void gov_update_cpu_data(struct dbs_data
*dbs_data
)
100 struct policy_dbs_info
*policy_dbs
;
102 list_for_each_entry(policy_dbs
, &dbs_data
->attr_set
.policy_list
, list
) {
105 for_each_cpu(j
, policy_dbs
->policy
->cpus
) {
106 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
108 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
, &j_cdbs
->prev_update_time
,
109 dbs_data
->io_is_busy
);
110 if (dbs_data
->ignore_nice_load
)
111 j_cdbs
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
115 EXPORT_SYMBOL_GPL(gov_update_cpu_data
);
117 unsigned int dbs_update(struct cpufreq_policy
*policy
)
119 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
120 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
121 unsigned int ignore_nice
= dbs_data
->ignore_nice_load
;
122 unsigned int max_load
= 0, idle_periods
= UINT_MAX
;
123 unsigned int sampling_rate
, io_busy
, j
;
126 * Sometimes governors may use an additional multiplier to increase
127 * sample delays temporarily. Apply that multiplier to sampling_rate
128 * so as to keep the wake-up-from-idle detection logic a bit
131 sampling_rate
= dbs_data
->sampling_rate
* policy_dbs
->rate_mult
;
133 * For the purpose of ondemand, waiting for disk IO is an indication
134 * that you're performance critical, and not that the system is actually
135 * idle, so do not add the iowait time to the CPU idle time then.
137 io_busy
= dbs_data
->io_is_busy
;
139 /* Get Absolute Load */
140 for_each_cpu(j
, policy
->cpus
) {
141 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
142 u64 update_time
, cur_idle_time
;
143 unsigned int idle_time
, time_elapsed
;
146 cur_idle_time
= get_cpu_idle_time(j
, &update_time
, io_busy
);
148 time_elapsed
= update_time
- j_cdbs
->prev_update_time
;
149 j_cdbs
->prev_update_time
= update_time
;
151 idle_time
= cur_idle_time
- j_cdbs
->prev_cpu_idle
;
152 j_cdbs
->prev_cpu_idle
= cur_idle_time
;
155 u64 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
157 idle_time
+= div_u64(cur_nice
- j_cdbs
->prev_cpu_nice
, NSEC_PER_USEC
);
158 j_cdbs
->prev_cpu_nice
= cur_nice
;
161 if (unlikely(!time_elapsed
)) {
163 * That can only happen when this function is called
164 * twice in a row with a very short interval between the
165 * calls, so the previous load value can be used then.
167 load
= j_cdbs
->prev_load
;
168 } else if (unlikely(time_elapsed
> 2 * sampling_rate
&&
169 j_cdbs
->prev_load
)) {
171 * If the CPU had gone completely idle and a task has
172 * just woken up on this CPU now, it would be unfair to
173 * calculate 'load' the usual way for this elapsed
174 * time-window, because it would show near-zero load,
175 * irrespective of how CPU intensive that task actually
176 * was. This is undesirable for latency-sensitive bursty
179 * To avoid this, reuse the 'load' from the previous
180 * time-window and give this task a chance to start with
181 * a reasonably high CPU frequency. However, that
182 * shouldn't be over-done, lest we get stuck at a high
183 * load (high frequency) for too long, even when the
184 * current system load has actually dropped down, so
185 * clear prev_load to guarantee that the load will be
186 * computed again next time.
188 * Detecting this situation is easy: the governor's
189 * utilization update handler would not have run during
190 * CPU-idle periods. Hence, an unusually large
191 * 'time_elapsed' (as compared to the sampling rate)
192 * indicates this scenario.
194 load
= j_cdbs
->prev_load
;
195 j_cdbs
->prev_load
= 0;
197 if (time_elapsed
>= idle_time
) {
198 load
= 100 * (time_elapsed
- idle_time
) / time_elapsed
;
201 * That can happen if idle_time is returned by
202 * get_cpu_idle_time_jiffy(). In that case
203 * idle_time is roughly equal to the difference
204 * between time_elapsed and "busy time" obtained
205 * from CPU statistics. Then, the "busy time"
206 * can end up being greater than time_elapsed
207 * (for example, if jiffies_64 and the CPU
208 * statistics are updated by different CPUs),
209 * so idle_time may in fact be negative. That
210 * means, though, that the CPU was busy all
211 * the time (on the rough average) during the
212 * last sampling interval and 100 can be
213 * returned as the load.
215 load
= (int)idle_time
< 0 ? 100 : 0;
217 j_cdbs
->prev_load
= load
;
220 if (time_elapsed
> 2 * sampling_rate
) {
221 unsigned int periods
= time_elapsed
/ sampling_rate
;
223 if (periods
< idle_periods
)
224 idle_periods
= periods
;
231 policy_dbs
->idle_periods
= idle_periods
;
235 EXPORT_SYMBOL_GPL(dbs_update
);
237 static void dbs_work_handler(struct work_struct
*work
)
239 struct policy_dbs_info
*policy_dbs
;
240 struct cpufreq_policy
*policy
;
241 struct dbs_governor
*gov
;
243 policy_dbs
= container_of(work
, struct policy_dbs_info
, work
);
244 policy
= policy_dbs
->policy
;
245 gov
= dbs_governor_of(policy
);
248 * Make sure cpufreq_governor_limits() isn't evaluating load or the
249 * ondemand governor isn't updating the sampling rate in parallel.
251 mutex_lock(&policy_dbs
->update_mutex
);
252 gov_update_sample_delay(policy_dbs
, gov
->gov_dbs_update(policy
));
253 mutex_unlock(&policy_dbs
->update_mutex
);
255 /* Allow the utilization update handler to queue up more work. */
256 atomic_set(&policy_dbs
->work_count
, 0);
258 * If the update below is reordered with respect to the sample delay
259 * modification, the utilization update handler may end up using a stale
260 * sample delay value.
263 policy_dbs
->work_in_progress
= false;
266 static void dbs_irq_work(struct irq_work
*irq_work
)
268 struct policy_dbs_info
*policy_dbs
;
270 policy_dbs
= container_of(irq_work
, struct policy_dbs_info
, irq_work
);
271 schedule_work_on(smp_processor_id(), &policy_dbs
->work
);
274 static void dbs_update_util_handler(struct update_util_data
*data
, u64 time
,
277 struct cpu_dbs_info
*cdbs
= container_of(data
, struct cpu_dbs_info
, update_util
);
278 struct policy_dbs_info
*policy_dbs
= cdbs
->policy_dbs
;
281 if (!cpufreq_can_do_remote_dvfs(policy_dbs
->policy
))
285 * The work may not be allowed to be queued up right now.
287 * - Work has already been queued up or is in progress.
288 * - It is too early (too little time from the previous sample).
290 if (policy_dbs
->work_in_progress
)
294 * If the reads below are reordered before the check above, the value
295 * of sample_delay_ns used in the computation may be stale.
298 lst
= READ_ONCE(policy_dbs
->last_sample_time
);
299 delta_ns
= time
- lst
;
300 if ((s64
)delta_ns
< policy_dbs
->sample_delay_ns
)
304 * If the policy is not shared, the irq_work may be queued up right away
305 * at this point. Otherwise, we need to ensure that only one of the
306 * CPUs sharing the policy will do that.
308 if (policy_dbs
->is_shared
) {
309 if (!atomic_add_unless(&policy_dbs
->work_count
, 1, 1))
313 * If another CPU updated last_sample_time in the meantime, we
314 * shouldn't be here, so clear the work counter and bail out.
316 if (unlikely(lst
!= READ_ONCE(policy_dbs
->last_sample_time
))) {
317 atomic_set(&policy_dbs
->work_count
, 0);
322 policy_dbs
->last_sample_time
= time
;
323 policy_dbs
->work_in_progress
= true;
324 irq_work_queue(&policy_dbs
->irq_work
);
327 static void gov_set_update_util(struct policy_dbs_info
*policy_dbs
,
328 unsigned int delay_us
)
330 struct cpufreq_policy
*policy
= policy_dbs
->policy
;
333 gov_update_sample_delay(policy_dbs
, delay_us
);
334 policy_dbs
->last_sample_time
= 0;
336 for_each_cpu(cpu
, policy
->cpus
) {
337 struct cpu_dbs_info
*cdbs
= &per_cpu(cpu_dbs
, cpu
);
339 cpufreq_add_update_util_hook(cpu
, &cdbs
->update_util
,
340 dbs_update_util_handler
);
344 static inline void gov_clear_update_util(struct cpufreq_policy
*policy
)
348 for_each_cpu(i
, policy
->cpus
)
349 cpufreq_remove_update_util_hook(i
);
354 static struct policy_dbs_info
*alloc_policy_dbs_info(struct cpufreq_policy
*policy
,
355 struct dbs_governor
*gov
)
357 struct policy_dbs_info
*policy_dbs
;
360 /* Allocate memory for per-policy governor data. */
361 policy_dbs
= gov
->alloc();
365 policy_dbs
->policy
= policy
;
366 mutex_init(&policy_dbs
->update_mutex
);
367 atomic_set(&policy_dbs
->work_count
, 0);
368 init_irq_work(&policy_dbs
->irq_work
, dbs_irq_work
);
369 INIT_WORK(&policy_dbs
->work
, dbs_work_handler
);
371 /* Set policy_dbs for all CPUs, online+offline */
372 for_each_cpu(j
, policy
->related_cpus
) {
373 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
375 j_cdbs
->policy_dbs
= policy_dbs
;
380 static void free_policy_dbs_info(struct policy_dbs_info
*policy_dbs
,
381 struct dbs_governor
*gov
)
385 mutex_destroy(&policy_dbs
->update_mutex
);
387 for_each_cpu(j
, policy_dbs
->policy
->related_cpus
) {
388 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
390 j_cdbs
->policy_dbs
= NULL
;
391 j_cdbs
->update_util
.func
= NULL
;
393 gov
->free(policy_dbs
);
396 int cpufreq_dbs_governor_init(struct cpufreq_policy
*policy
)
398 struct dbs_governor
*gov
= dbs_governor_of(policy
);
399 struct dbs_data
*dbs_data
;
400 struct policy_dbs_info
*policy_dbs
;
403 /* State should be equivalent to EXIT */
404 if (policy
->governor_data
)
407 policy_dbs
= alloc_policy_dbs_info(policy
, gov
);
411 /* Protect gov->gdbs_data against concurrent updates. */
412 mutex_lock(&gov_dbs_data_mutex
);
414 dbs_data
= gov
->gdbs_data
;
416 if (WARN_ON(have_governor_per_policy())) {
418 goto free_policy_dbs_info
;
420 policy_dbs
->dbs_data
= dbs_data
;
421 policy
->governor_data
= policy_dbs
;
423 gov_attr_set_get(&dbs_data
->attr_set
, &policy_dbs
->list
);
427 dbs_data
= kzalloc(sizeof(*dbs_data
), GFP_KERNEL
);
430 goto free_policy_dbs_info
;
433 gov_attr_set_init(&dbs_data
->attr_set
, &policy_dbs
->list
);
435 ret
= gov
->init(dbs_data
);
437 goto free_policy_dbs_info
;
440 * The sampling interval should not be less than the transition latency
441 * of the CPU and it also cannot be too small for dbs_update() to work
444 dbs_data
->sampling_rate
= max_t(unsigned int,
445 CPUFREQ_DBS_MIN_SAMPLING_INTERVAL
,
446 cpufreq_policy_transition_delay_us(policy
));
448 if (!have_governor_per_policy())
449 gov
->gdbs_data
= dbs_data
;
451 policy_dbs
->dbs_data
= dbs_data
;
452 policy
->governor_data
= policy_dbs
;
454 gov
->kobj_type
.sysfs_ops
= &governor_sysfs_ops
;
455 ret
= kobject_init_and_add(&dbs_data
->attr_set
.kobj
, &gov
->kobj_type
,
456 get_governor_parent_kobj(policy
),
457 "%s", gov
->gov
.name
);
461 /* Failure, so roll back. */
462 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret
);
464 policy
->governor_data
= NULL
;
466 if (!have_governor_per_policy())
467 gov
->gdbs_data
= NULL
;
471 free_policy_dbs_info
:
472 free_policy_dbs_info(policy_dbs
, gov
);
475 mutex_unlock(&gov_dbs_data_mutex
);
478 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init
);
480 void cpufreq_dbs_governor_exit(struct cpufreq_policy
*policy
)
482 struct dbs_governor
*gov
= dbs_governor_of(policy
);
483 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
484 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
487 /* Protect gov->gdbs_data against concurrent updates. */
488 mutex_lock(&gov_dbs_data_mutex
);
490 count
= gov_attr_set_put(&dbs_data
->attr_set
, &policy_dbs
->list
);
492 policy
->governor_data
= NULL
;
495 if (!have_governor_per_policy())
496 gov
->gdbs_data
= NULL
;
502 free_policy_dbs_info(policy_dbs
, gov
);
504 mutex_unlock(&gov_dbs_data_mutex
);
506 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit
);
508 int cpufreq_dbs_governor_start(struct cpufreq_policy
*policy
)
510 struct dbs_governor
*gov
= dbs_governor_of(policy
);
511 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
512 struct dbs_data
*dbs_data
= policy_dbs
->dbs_data
;
513 unsigned int sampling_rate
, ignore_nice
, j
;
514 unsigned int io_busy
;
519 policy_dbs
->is_shared
= policy_is_shared(policy
);
520 policy_dbs
->rate_mult
= 1;
522 sampling_rate
= dbs_data
->sampling_rate
;
523 ignore_nice
= dbs_data
->ignore_nice_load
;
524 io_busy
= dbs_data
->io_is_busy
;
526 for_each_cpu(j
, policy
->cpus
) {
527 struct cpu_dbs_info
*j_cdbs
= &per_cpu(cpu_dbs
, j
);
529 j_cdbs
->prev_cpu_idle
= get_cpu_idle_time(j
, &j_cdbs
->prev_update_time
, io_busy
);
531 * Make the first invocation of dbs_update() compute the load.
533 j_cdbs
->prev_load
= 0;
536 j_cdbs
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
541 gov_set_update_util(policy_dbs
, sampling_rate
);
544 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start
);
546 void cpufreq_dbs_governor_stop(struct cpufreq_policy
*policy
)
548 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
550 gov_clear_update_util(policy_dbs
->policy
);
551 irq_work_sync(&policy_dbs
->irq_work
);
552 cancel_work_sync(&policy_dbs
->work
);
553 atomic_set(&policy_dbs
->work_count
, 0);
554 policy_dbs
->work_in_progress
= false;
556 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop
);
558 void cpufreq_dbs_governor_limits(struct cpufreq_policy
*policy
)
560 struct policy_dbs_info
*policy_dbs
= policy
->governor_data
;
562 mutex_lock(&policy_dbs
->update_mutex
);
563 cpufreq_policy_apply_limits(policy
);
564 gov_update_sample_delay(policy_dbs
, 0);
566 mutex_unlock(&policy_dbs
->update_mutex
);
568 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits
);