drm/amd/display: Update MST edid property every time
[linux/fpc-iii.git] / drivers / crypto / mediatek / mtk-platform.c
blobb182e941b0cd86141f9a7bc0bef129e43c69743a
1 /*
2 * Driver for EIP97 cryptographic accelerator.
4 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/clk.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include "mtk-platform.h"
20 #define MTK_BURST_SIZE_MSK GENMASK(7, 4)
21 #define MTK_BURST_SIZE(x) ((x) << 4)
22 #define MTK_DESC_SIZE(x) ((x) << 0)
23 #define MTK_DESC_OFFSET(x) ((x) << 16)
24 #define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
25 #define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
26 #define MTK_DESC_OVL_IRQ_EN BIT(25)
27 #define MTK_DESC_ATP_PRESENT BIT(30)
29 #define MTK_DFSE_IDLE GENMASK(3, 0)
30 #define MTK_DFSE_THR_CTRL_EN BIT(30)
31 #define MTK_DFSE_THR_CTRL_RESET BIT(31)
32 #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
33 #define MTK_DFSE_MIN_DATA(x) ((x) << 0)
34 #define MTK_DFSE_MAX_DATA(x) ((x) << 8)
35 #define MTK_DFE_MIN_CTRL(x) ((x) << 16)
36 #define MTK_DFE_MAX_CTRL(x) ((x) << 24)
38 #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
39 #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
40 #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
41 #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
42 #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
43 #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
44 #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
45 #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
46 #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
48 #define MTK_PE_TK_LOC_AVL BIT(2)
49 #define MTK_PE_PROC_HELD BIT(14)
50 #define MTK_PE_TK_TIMEOUT_EN BIT(22)
51 #define MTK_PE_INPUT_DMA_ERR BIT(0)
52 #define MTK_PE_OUTPUT_DMA_ERR BIT(1)
53 #define MTK_PE_PKT_PORC_ERR BIT(2)
54 #define MTK_PE_PKT_TIMEOUT BIT(3)
55 #define MTK_PE_FATAL_ERR BIT(14)
56 #define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
57 #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
58 #define MTK_PE_PKT_PORC_ERR_EN BIT(18)
59 #define MTK_PE_PKT_TIMEOUT_EN BIT(19)
60 #define MTK_PE_FATAL_ERR_EN BIT(30)
61 #define MTK_PE_INT_OUT_EN BIT(31)
63 #define MTK_HIA_SIGNATURE ((u16)0x35ca)
64 #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
65 #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
66 #define MTK_CDR_STAT_CLR GENMASK(4, 0)
67 #define MTK_RDR_STAT_CLR GENMASK(7, 0)
69 #define MTK_AIC_INT_MSK GENMASK(5, 0)
70 #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
71 #define MTK_AIC_VER11 0x011036c9
72 #define MTK_AIC_VER12 0x012036c9
73 #define MTK_AIC_G_CLR GENMASK(30, 20)
75 /**
76 * EIP97 is an integrated security subsystem to accelerate cryptographic
77 * functions and protocols to offload the host processor.
78 * Some important hardware modules are briefly introduced below:
80 * Host Interface Adapter(HIA) - the main interface between the host
81 * system and the hardware subsystem. It is responsible for attaching
82 * processing engine to the specific host bus interface and provides a
83 * standardized software view for off loading tasks to the engine.
85 * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
86 * CD the host has prepared in the CDR. It monitors the fill level of its
87 * CD-FIFO and if there's sufficient space for the next block of descriptors,
88 * then it fires off a DMA request to fetch a block of CDs.
90 * Data fetch engine(DFE) - It is responsible for parsing the CD and
91 * setting up the required control and packet data DMA transfers from
92 * system memory to the processing engine.
94 * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
95 * but target is result descriptors, Moreover, it also handles the RD
96 * updates under control of the DSE. For each packet data segment
97 * processed, the DSE triggers the RDR Manager to write the updated RD.
98 * If triggered to update, the RDR Manager sets up a DMA operation to
99 * copy the RD from the DSE to the correct location in the RDR.
101 * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
102 * and setting up the required control and packet data DMA transfers from
103 * the processing engine to system memory.
105 * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
106 * from various sources and combine them into one interrupt output.
107 * The AICs are used by:
108 * - One for the HIA global and processing engine interrupts.
109 * - The others for the descriptor ring interrupts.
112 /* Cryptographic engine capabilities */
113 struct mtk_sys_cap {
114 /* host interface adapter */
115 u32 hia_ver;
116 u32 hia_opt;
117 /* packet engine */
118 u32 pkt_eng_opt;
119 /* global hardware */
120 u32 hw_opt;
123 static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
125 /* Assign rings to DFE/DSE thread and enable it */
126 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
127 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
130 static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
131 struct mtk_sys_cap *cap)
133 u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
134 u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
135 u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
136 u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
137 u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
139 writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
140 MTK_DFSE_MAX_DATA(ipbuf) |
141 MTK_DFE_MIN_CTRL(itbuf - 1) |
142 MTK_DFE_MAX_CTRL(itbuf),
143 cryp->base + DFE_CFG);
145 writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
146 MTK_DFSE_MAX_DATA(opbuf),
147 cryp->base + DSE_CFG);
149 writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
150 MTK_IN_BUF_MAX_THRESH(ipbuf),
151 cryp->base + PE_IN_DBUF_THRESH);
153 writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
154 MTK_IN_BUF_MAX_THRESH(itbuf),
155 cryp->base + PE_IN_TBUF_THRESH);
157 writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
158 MTK_OUT_BUF_MAX_THRESH(opbuf),
159 cryp->base + PE_OUT_DBUF_THRESH);
161 writel(0, cryp->base + PE_OUT_TBUF_THRESH);
162 writel(0, cryp->base + PE_OUT_BUF_CTRL);
165 static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
167 int ret = -EINVAL;
168 u32 val;
170 /* Check for completion of all DMA transfers */
171 val = readl(cryp->base + DFE_THR_STAT);
172 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
173 val = readl(cryp->base + DSE_THR_STAT);
174 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
175 ret = 0;
178 if (!ret) {
179 /* Take DFE/DSE thread out of reset */
180 writel(0, cryp->base + DFE_THR_CTRL);
181 writel(0, cryp->base + DSE_THR_CTRL);
182 } else {
183 return -EBUSY;
186 return 0;
189 static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
191 int err;
193 /* Reset DSE/DFE and correct system priorities for all rings. */
194 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
195 writel(0, cryp->base + DFE_PRIO_0);
196 writel(0, cryp->base + DFE_PRIO_1);
197 writel(0, cryp->base + DFE_PRIO_2);
198 writel(0, cryp->base + DFE_PRIO_3);
200 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
201 writel(0, cryp->base + DSE_PRIO_0);
202 writel(0, cryp->base + DSE_PRIO_1);
203 writel(0, cryp->base + DSE_PRIO_2);
204 writel(0, cryp->base + DSE_PRIO_3);
206 err = mtk_dfe_dse_state_check(cryp);
207 if (err)
208 return err;
210 return 0;
213 static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
214 int i, struct mtk_sys_cap *cap)
216 /* Full descriptor that fits FIFO minus one */
217 u32 count =
218 ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
220 /* Temporarily disable external triggering */
221 writel(0, cryp->base + CDR_CFG(i));
223 /* Clear CDR count */
224 writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
225 writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
227 writel(0, cryp->base + CDR_PREP_PNTR(i));
228 writel(0, cryp->base + CDR_PROC_PNTR(i));
229 writel(0, cryp->base + CDR_DMA_CFG(i));
231 /* Configure CDR host address space */
232 writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
233 writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
235 writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
237 /* Clear and disable all CDR interrupts */
238 writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
241 * Set command descriptor offset and enable additional
242 * token present in descriptor.
244 writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
245 MTK_DESC_OFFSET(MTK_DESC_OFF) |
246 MTK_DESC_ATP_PRESENT,
247 cryp->base + CDR_DESC_SIZE(i));
249 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
250 MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
251 cryp->base + CDR_CFG(i));
254 static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
255 int i, struct mtk_sys_cap *cap)
257 u32 rndup = 2;
258 u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
260 /* Temporarily disable external triggering */
261 writel(0, cryp->base + RDR_CFG(i));
263 /* Clear RDR count */
264 writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
265 writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
267 writel(0, cryp->base + RDR_PREP_PNTR(i));
268 writel(0, cryp->base + RDR_PROC_PNTR(i));
269 writel(0, cryp->base + RDR_DMA_CFG(i));
271 /* Configure RDR host address space */
272 writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
273 writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
275 writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
276 writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
279 * RDR manager generates update interrupts on a per-completed-packet,
280 * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
281 * for the RDR exceeds the number of packets.
283 writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
284 cryp->base + RDR_THRESH(i));
287 * Configure a threshold and time-out value for the processed
288 * result descriptors (or complete packets) that are written to
289 * the RDR.
291 writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
292 cryp->base + RDR_DESC_SIZE(i));
295 * Configure HIA fetch size and fetch threshold that are used to
296 * fetch blocks of multiple descriptors.
298 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
299 MTK_DESC_FETCH_THRESH(count * rndup) |
300 MTK_DESC_OVL_IRQ_EN,
301 cryp->base + RDR_CFG(i));
304 static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
306 struct mtk_sys_cap cap;
307 int i, err;
308 u32 val;
310 cap.hia_ver = readl(cryp->base + HIA_VERSION);
311 cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
312 cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
314 if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
315 return -EINVAL;
317 /* Configure endianness conversion method for master (DMA) interface */
318 writel(0, cryp->base + EIP97_MST_CTRL);
320 /* Set HIA burst size */
321 val = readl(cryp->base + HIA_MST_CTRL);
322 val &= ~MTK_BURST_SIZE_MSK;
323 val |= MTK_BURST_SIZE(5);
324 writel(val, cryp->base + HIA_MST_CTRL);
326 err = mtk_dfe_dse_reset(cryp);
327 if (err) {
328 dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
329 return err;
332 mtk_dfe_dse_buf_setup(cryp, &cap);
334 /* Enable the 4 rings for the packet engines. */
335 mtk_desc_ring_link(cryp, 0xf);
337 for (i = 0; i < MTK_RING_MAX; i++) {
338 mtk_cmd_desc_ring_setup(cryp, i, &cap);
339 mtk_res_desc_ring_setup(cryp, i, &cap);
342 writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
343 cryp->base + PE_TOKEN_CTRL_STAT);
345 /* Clear all pending interrupts */
346 writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
347 writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
348 MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
349 MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
350 MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
351 MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
352 MTK_PE_INT_OUT_EN,
353 cryp->base + PE_INTERRUPT_CTRL_STAT);
355 return 0;
358 static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
360 u32 val;
362 if (hw == MTK_RING_MAX)
363 val = readl(cryp->base + AIC_G_VERSION);
364 else
365 val = readl(cryp->base + AIC_VERSION(hw));
367 val &= MTK_AIC_VER_MSK;
368 if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
369 return -ENXIO;
371 if (hw == MTK_RING_MAX)
372 val = readl(cryp->base + AIC_G_OPTIONS);
373 else
374 val = readl(cryp->base + AIC_OPTIONS(hw));
376 val &= MTK_AIC_INT_MSK;
377 if (!val || val > 32)
378 return -ENXIO;
380 return 0;
383 static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
385 int err;
387 err = mtk_aic_cap_check(cryp, hw);
388 if (err)
389 return err;
391 /* Disable all interrupts and set initial configuration */
392 if (hw == MTK_RING_MAX) {
393 writel(0, cryp->base + AIC_G_ENABLE_CTRL);
394 writel(0, cryp->base + AIC_G_POL_CTRL);
395 writel(0, cryp->base + AIC_G_TYPE_CTRL);
396 writel(0, cryp->base + AIC_G_ENABLE_SET);
397 } else {
398 writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
399 writel(0, cryp->base + AIC_POL_CTRL(hw));
400 writel(0, cryp->base + AIC_TYPE_CTRL(hw));
401 writel(0, cryp->base + AIC_ENABLE_SET(hw));
404 return 0;
407 static int mtk_accelerator_init(struct mtk_cryp *cryp)
409 int i, err;
411 /* Initialize advanced interrupt controller(AIC) */
412 for (i = 0; i < MTK_IRQ_NUM; i++) {
413 err = mtk_aic_init(cryp, i);
414 if (err) {
415 dev_err(cryp->dev, "Failed to initialize AIC.\n");
416 return err;
420 /* Initialize packet engine */
421 err = mtk_packet_engine_setup(cryp);
422 if (err) {
423 dev_err(cryp->dev, "Failed to configure packet engine.\n");
424 return err;
427 return 0;
430 static void mtk_desc_dma_free(struct mtk_cryp *cryp)
432 int i;
434 for (i = 0; i < MTK_RING_MAX; i++) {
435 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
436 cryp->ring[i]->res_base,
437 cryp->ring[i]->res_dma);
438 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
439 cryp->ring[i]->cmd_base,
440 cryp->ring[i]->cmd_dma);
441 kfree(cryp->ring[i]);
445 static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
447 struct mtk_ring **ring = cryp->ring;
448 int i, err = ENOMEM;
450 for (i = 0; i < MTK_RING_MAX; i++) {
451 ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
452 if (!ring[i])
453 goto err_cleanup;
455 ring[i]->cmd_base = dma_zalloc_coherent(cryp->dev,
456 MTK_DESC_RING_SZ,
457 &ring[i]->cmd_dma,
458 GFP_KERNEL);
459 if (!ring[i]->cmd_base)
460 goto err_cleanup;
462 ring[i]->res_base = dma_zalloc_coherent(cryp->dev,
463 MTK_DESC_RING_SZ,
464 &ring[i]->res_dma,
465 GFP_KERNEL);
466 if (!ring[i]->res_base)
467 goto err_cleanup;
469 ring[i]->cmd_next = ring[i]->cmd_base;
470 ring[i]->res_next = ring[i]->res_base;
472 return 0;
474 err_cleanup:
475 for (; i--; ) {
476 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
477 ring[i]->res_base, ring[i]->res_dma);
478 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
479 ring[i]->cmd_base, ring[i]->cmd_dma);
480 kfree(ring[i]);
482 return err;
485 static int mtk_crypto_probe(struct platform_device *pdev)
487 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
488 struct mtk_cryp *cryp;
489 int i, err;
491 cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
492 if (!cryp)
493 return -ENOMEM;
495 cryp->base = devm_ioremap_resource(&pdev->dev, res);
496 if (IS_ERR(cryp->base))
497 return PTR_ERR(cryp->base);
499 for (i = 0; i < MTK_IRQ_NUM; i++) {
500 cryp->irq[i] = platform_get_irq(pdev, i);
501 if (cryp->irq[i] < 0) {
502 dev_err(cryp->dev, "no IRQ:%d resource info\n", i);
503 return cryp->irq[i];
507 cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
508 if (IS_ERR(cryp->clk_cryp))
509 return -EPROBE_DEFER;
511 cryp->dev = &pdev->dev;
512 pm_runtime_enable(cryp->dev);
513 pm_runtime_get_sync(cryp->dev);
515 err = clk_prepare_enable(cryp->clk_cryp);
516 if (err)
517 goto err_clk_cryp;
519 /* Allocate four command/result descriptor rings */
520 err = mtk_desc_ring_alloc(cryp);
521 if (err) {
522 dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
523 goto err_resource;
526 /* Initialize hardware modules */
527 err = mtk_accelerator_init(cryp);
528 if (err) {
529 dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
530 goto err_engine;
533 err = mtk_cipher_alg_register(cryp);
534 if (err) {
535 dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
536 goto err_cipher;
539 err = mtk_hash_alg_register(cryp);
540 if (err) {
541 dev_err(cryp->dev, "Unable to register hash algorithm.\n");
542 goto err_hash;
545 platform_set_drvdata(pdev, cryp);
546 return 0;
548 err_hash:
549 mtk_cipher_alg_release(cryp);
550 err_cipher:
551 mtk_dfe_dse_reset(cryp);
552 err_engine:
553 mtk_desc_dma_free(cryp);
554 err_resource:
555 clk_disable_unprepare(cryp->clk_cryp);
556 err_clk_cryp:
557 pm_runtime_put_sync(cryp->dev);
558 pm_runtime_disable(cryp->dev);
560 return err;
563 static int mtk_crypto_remove(struct platform_device *pdev)
565 struct mtk_cryp *cryp = platform_get_drvdata(pdev);
567 mtk_hash_alg_release(cryp);
568 mtk_cipher_alg_release(cryp);
569 mtk_desc_dma_free(cryp);
571 clk_disable_unprepare(cryp->clk_cryp);
573 pm_runtime_put_sync(cryp->dev);
574 pm_runtime_disable(cryp->dev);
575 platform_set_drvdata(pdev, NULL);
577 return 0;
580 static const struct of_device_id of_crypto_id[] = {
581 { .compatible = "mediatek,eip97-crypto" },
584 MODULE_DEVICE_TABLE(of, of_crypto_id);
586 static struct platform_driver mtk_crypto_driver = {
587 .probe = mtk_crypto_probe,
588 .remove = mtk_crypto_remove,
589 .driver = {
590 .name = "mtk-crypto",
591 .of_match_table = of_crypto_id,
594 module_platform_driver(mtk_crypto_driver);
596 MODULE_LICENSE("GPL");
597 MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
598 MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");