1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Tomas Winkler <tomas.winkler@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <net/mac80211.h>
67 #include "iwl-calib.h"
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 int iwl_send_calib_results(struct iwl_priv
*priv
)
78 struct iwl_host_cmd hcmd
= {
79 .id
= REPLY_PHY_CALIBRATION_CMD
,
80 .meta
.flags
= CMD_SIZE_HUGE
,
83 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
84 if ((BIT(i
) & priv
->hw_params
.calib_init_cfg
) &&
85 priv
->calib_results
[i
].buf
) {
86 hcmd
.len
= priv
->calib_results
[i
].buf_len
;
87 hcmd
.data
= priv
->calib_results
[i
].buf
;
88 ret
= iwl_send_cmd_sync(priv
, &hcmd
);
96 IWL_ERROR("Error %d iteration %d\n", ret
, i
);
99 EXPORT_SYMBOL(iwl_send_calib_results
);
101 int iwl_calib_set(struct iwl_calib_result
*res
, const u8
*buf
, int len
)
103 if (res
->buf_len
!= len
) {
105 res
->buf
= kzalloc(len
, GFP_ATOMIC
);
107 if (unlikely(res
->buf
== NULL
))
111 memcpy(res
->buf
, buf
, len
);
114 EXPORT_SYMBOL(iwl_calib_set
);
116 void iwl_calib_free_results(struct iwl_priv
*priv
)
120 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
121 kfree(priv
->calib_results
[i
].buf
);
122 priv
->calib_results
[i
].buf
= NULL
;
123 priv
->calib_results
[i
].buf_len
= 0;
127 /*****************************************************************************
128 * RUNTIME calibrations framework
129 *****************************************************************************/
131 /* "false alarms" are signals that our DSP tries to lock onto,
132 * but then determines that they are either noise, or transmissions
133 * from a distant wireless network (also "noise", really) that get
134 * "stepped on" by stronger transmissions within our own network.
135 * This algorithm attempts to set a sensitivity level that is high
136 * enough to receive all of our own network traffic, but not so
137 * high that our DSP gets too busy trying to lock onto non-network
139 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
142 struct statistics_general_data
*rx_info
)
146 u8 max_silence_rssi
= 0;
148 u8 silence_rssi_a
= 0;
149 u8 silence_rssi_b
= 0;
150 u8 silence_rssi_c
= 0;
153 /* "false_alarms" values below are cross-multiplications to assess the
154 * numbers of false alarms within the measured period of actual Rx
155 * (Rx is off when we're txing), vs the min/max expected false alarms
156 * (some should be expected if rx is sensitive enough) in a
157 * hypothetical listening period of 200 time units (TU), 204.8 msec:
159 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
162 u32 false_alarms
= norm_fa
* 200 * 1024;
163 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
164 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
165 struct iwl_sensitivity_data
*data
= NULL
;
166 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
168 data
= &(priv
->sensitivity_data
);
170 data
->nrg_auto_corr_silence_diff
= 0;
172 /* Find max silence rssi among all 3 receivers.
173 * This is background noise, which may include transmissions from other
174 * networks, measured during silence before our network's beacon */
175 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
176 ALL_BAND_FILTER
) >> 8);
177 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
178 ALL_BAND_FILTER
) >> 8);
179 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
180 ALL_BAND_FILTER
) >> 8);
182 val
= max(silence_rssi_b
, silence_rssi_c
);
183 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
185 /* Store silence rssi in 20-beacon history table */
186 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
187 data
->nrg_silence_idx
++;
188 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
189 data
->nrg_silence_idx
= 0;
191 /* Find max silence rssi across 20 beacon history */
192 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
193 val
= data
->nrg_silence_rssi
[i
];
194 silence_ref
= max(silence_ref
, val
);
196 IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
197 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
200 /* Find max rx energy (min value!) among all 3 receivers,
201 * measured during beacon frame.
202 * Save it in 10-beacon history table. */
203 i
= data
->nrg_energy_idx
;
204 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
205 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
207 data
->nrg_energy_idx
++;
208 if (data
->nrg_energy_idx
>= 10)
209 data
->nrg_energy_idx
= 0;
211 /* Find min rx energy (max value) across 10 beacon history.
212 * This is the minimum signal level that we want to receive well.
213 * Add backoff (margin so we don't miss slightly lower energy frames).
214 * This establishes an upper bound (min value) for energy threshold. */
215 max_nrg_cck
= data
->nrg_value
[0];
216 for (i
= 1; i
< 10; i
++)
217 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
220 IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
221 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
222 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
224 /* Count number of consecutive beacons with fewer-than-desired
226 if (false_alarms
< min_false_alarms
)
227 data
->num_in_cck_no_fa
++;
229 data
->num_in_cck_no_fa
= 0;
230 IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
231 data
->num_in_cck_no_fa
);
233 /* If we got too many false alarms this time, reduce sensitivity */
234 if ((false_alarms
> max_false_alarms
) &&
235 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
236 IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
237 false_alarms
, max_false_alarms
);
238 IWL_DEBUG_CALIB("... reducing sensitivity\n");
239 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
240 /* Store for "fewer than desired" on later beacon */
241 data
->nrg_silence_ref
= silence_ref
;
243 /* increase energy threshold (reduce nrg value)
244 * to decrease sensitivity */
245 if (data
->nrg_th_cck
>
246 (ranges
->max_nrg_cck
+ NRG_STEP_CCK
))
247 data
->nrg_th_cck
= data
->nrg_th_cck
250 data
->nrg_th_cck
= ranges
->max_nrg_cck
;
251 /* Else if we got fewer than desired, increase sensitivity */
252 } else if (false_alarms
< min_false_alarms
) {
253 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
255 /* Compare silence level with silence level for most recent
256 * healthy number or too many false alarms */
257 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
260 IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
261 false_alarms
, min_false_alarms
,
262 data
->nrg_auto_corr_silence_diff
);
264 /* Increase value to increase sensitivity, but only if:
265 * 1a) previous beacon did *not* have *too many* false alarms
266 * 1b) AND there's a significant difference in Rx levels
267 * from a previous beacon with too many, or healthy # FAs
268 * OR 2) We've seen a lot of beacons (100) with too few
270 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
271 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
272 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
274 IWL_DEBUG_CALIB("... increasing sensitivity\n");
275 /* Increase nrg value to increase sensitivity */
276 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
277 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
279 IWL_DEBUG_CALIB("... but not changing sensitivity\n");
282 /* Else we got a healthy number of false alarms, keep status quo */
284 IWL_DEBUG_CALIB(" FA in safe zone\n");
285 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
287 /* Store for use in "fewer than desired" with later beacon */
288 data
->nrg_silence_ref
= silence_ref
;
290 /* If previous beacon had too many false alarms,
291 * give it some extra margin by reducing sensitivity again
292 * (but don't go below measured energy of desired Rx) */
293 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
294 IWL_DEBUG_CALIB("... increasing margin\n");
295 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
296 data
->nrg_th_cck
-= NRG_MARGIN
;
298 data
->nrg_th_cck
= max_nrg_cck
;
302 /* Make sure the energy threshold does not go above the measured
303 * energy of the desired Rx signals (reduced by backoff margin),
304 * or else we might start missing Rx frames.
305 * Lower value is higher energy, so we use max()!
307 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
308 IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data
->nrg_th_cck
);
310 data
->nrg_prev_state
= data
->nrg_curr_state
;
312 /* Auto-correlation CCK algorithm */
313 if (false_alarms
> min_false_alarms
) {
315 /* increase auto_corr values to decrease sensitivity
316 * so the DSP won't be disturbed by the noise
318 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
319 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
321 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
322 data
->auto_corr_cck
=
323 min((u32
)ranges
->auto_corr_max_cck
, val
);
325 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
326 data
->auto_corr_cck_mrc
=
327 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
328 } else if ((false_alarms
< min_false_alarms
) &&
329 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
330 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
332 /* Decrease auto_corr values to increase sensitivity */
333 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
334 data
->auto_corr_cck
=
335 max((u32
)ranges
->auto_corr_min_cck
, val
);
336 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
337 data
->auto_corr_cck_mrc
=
338 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
345 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
350 u32 false_alarms
= norm_fa
* 200 * 1024;
351 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
352 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
353 struct iwl_sensitivity_data
*data
= NULL
;
354 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
356 data
= &(priv
->sensitivity_data
);
358 /* If we got too many false alarms this time, reduce sensitivity */
359 if (false_alarms
> max_false_alarms
) {
361 IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
362 false_alarms
, max_false_alarms
);
364 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
365 data
->auto_corr_ofdm
=
366 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
368 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
369 data
->auto_corr_ofdm_mrc
=
370 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
372 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
373 data
->auto_corr_ofdm_x1
=
374 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
376 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
377 data
->auto_corr_ofdm_mrc_x1
=
378 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
381 /* Else if we got fewer than desired, increase sensitivity */
382 else if (false_alarms
< min_false_alarms
) {
384 IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
385 false_alarms
, min_false_alarms
);
387 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
388 data
->auto_corr_ofdm
=
389 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
391 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
392 data
->auto_corr_ofdm_mrc
=
393 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
395 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
396 data
->auto_corr_ofdm_x1
=
397 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
399 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
400 data
->auto_corr_ofdm_mrc_x1
=
401 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
403 IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
404 min_false_alarms
, false_alarms
, max_false_alarms
);
409 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
410 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
413 struct iwl_sensitivity_cmd cmd
;
414 struct iwl_sensitivity_data
*data
= NULL
;
415 struct iwl_host_cmd cmd_out
= {
416 .id
= SENSITIVITY_CMD
,
417 .len
= sizeof(struct iwl_sensitivity_cmd
),
418 .meta
.flags
= CMD_ASYNC
,
422 data
= &(priv
->sensitivity_data
);
424 memset(&cmd
, 0, sizeof(cmd
));
426 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
427 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
428 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
429 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
430 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
431 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
432 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
433 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
435 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
436 cpu_to_le16((u16
)data
->auto_corr_cck
);
437 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
438 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
440 cmd
.table
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
441 cpu_to_le16((u16
)data
->nrg_th_cck
);
442 cmd
.table
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
443 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
445 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
446 __constant_cpu_to_le16(190);
447 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
448 __constant_cpu_to_le16(390);
449 cmd
.table
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
450 __constant_cpu_to_le16(62);
452 IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
453 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
454 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
457 IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
458 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
461 /* Update uCode's "work" table, and copy it to DSP */
462 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
464 /* Don't send command to uCode if nothing has changed */
465 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
466 sizeof(u16
)*HD_TABLE_SIZE
)) {
467 IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
471 /* Copy table for comparison next time */
472 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
473 sizeof(u16
)*HD_TABLE_SIZE
);
475 ret
= iwl_send_cmd(priv
, &cmd_out
);
477 IWL_ERROR("SENSITIVITY_CMD failed\n");
482 void iwl_init_sensitivity(struct iwl_priv
*priv
)
486 struct iwl_sensitivity_data
*data
= NULL
;
487 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
489 if (priv
->disable_sens_cal
)
492 IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
494 /* Clear driver's sensitivity algo data */
495 data
= &(priv
->sensitivity_data
);
500 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
502 data
->num_in_cck_no_fa
= 0;
503 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
504 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
505 data
->nrg_silence_ref
= 0;
506 data
->nrg_silence_idx
= 0;
507 data
->nrg_energy_idx
= 0;
509 for (i
= 0; i
< 10; i
++)
510 data
->nrg_value
[i
] = 0;
512 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
513 data
->nrg_silence_rssi
[i
] = 0;
515 data
->auto_corr_ofdm
= 90;
516 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
517 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
518 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
519 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
520 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
521 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
522 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
524 data
->last_bad_plcp_cnt_ofdm
= 0;
525 data
->last_fa_cnt_ofdm
= 0;
526 data
->last_bad_plcp_cnt_cck
= 0;
527 data
->last_fa_cnt_cck
= 0;
529 ret
|= iwl_sensitivity_write(priv
);
530 IWL_DEBUG_CALIB("<<return 0x%X\n", ret
);
532 EXPORT_SYMBOL(iwl_init_sensitivity
);
534 void iwl_sensitivity_calibration(struct iwl_priv
*priv
,
535 struct iwl_notif_statistics
*resp
)
544 struct iwl_sensitivity_data
*data
= NULL
;
545 struct statistics_rx_non_phy
*rx_info
= &(resp
->rx
.general
);
546 struct statistics_rx
*statistics
= &(resp
->rx
);
548 struct statistics_general_data statis
;
550 if (priv
->disable_sens_cal
)
553 data
= &(priv
->sensitivity_data
);
555 if (!iwl_is_associated(priv
)) {
556 IWL_DEBUG_CALIB("<< - not associated\n");
560 spin_lock_irqsave(&priv
->lock
, flags
);
561 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
562 IWL_DEBUG_CALIB("<< invalid data.\n");
563 spin_unlock_irqrestore(&priv
->lock
, flags
);
567 /* Extract Statistics: */
568 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
569 fa_cck
= le32_to_cpu(statistics
->cck
.false_alarm_cnt
);
570 fa_ofdm
= le32_to_cpu(statistics
->ofdm
.false_alarm_cnt
);
571 bad_plcp_cck
= le32_to_cpu(statistics
->cck
.plcp_err
);
572 bad_plcp_ofdm
= le32_to_cpu(statistics
->ofdm
.plcp_err
);
574 statis
.beacon_silence_rssi_a
=
575 le32_to_cpu(statistics
->general
.beacon_silence_rssi_a
);
576 statis
.beacon_silence_rssi_b
=
577 le32_to_cpu(statistics
->general
.beacon_silence_rssi_b
);
578 statis
.beacon_silence_rssi_c
=
579 le32_to_cpu(statistics
->general
.beacon_silence_rssi_c
);
580 statis
.beacon_energy_a
=
581 le32_to_cpu(statistics
->general
.beacon_energy_a
);
582 statis
.beacon_energy_b
=
583 le32_to_cpu(statistics
->general
.beacon_energy_b
);
584 statis
.beacon_energy_c
=
585 le32_to_cpu(statistics
->general
.beacon_energy_c
);
587 spin_unlock_irqrestore(&priv
->lock
, flags
);
589 IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time
);
591 if (!rx_enable_time
) {
592 IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
596 /* These statistics increase monotonically, and do not reset
597 * at each beacon. Calculate difference from last value, or just
598 * use the new statistics value if it has reset or wrapped around. */
599 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
600 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
602 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
603 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
606 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
607 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
609 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
610 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
613 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
614 data
->last_fa_cnt_ofdm
= fa_ofdm
;
616 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
617 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
620 if (data
->last_fa_cnt_cck
> fa_cck
)
621 data
->last_fa_cnt_cck
= fa_cck
;
623 fa_cck
-= data
->last_fa_cnt_cck
;
624 data
->last_fa_cnt_cck
+= fa_cck
;
627 /* Total aborted signal locks */
628 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
629 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
631 IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
632 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
634 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
635 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
636 iwl_sensitivity_write(priv
);
640 EXPORT_SYMBOL(iwl_sensitivity_calibration
);
643 * Accumulate 20 beacons of signal and noise statistics for each of
644 * 3 receivers/antennas/rx-chains, then figure out:
645 * 1) Which antennas are connected.
646 * 2) Differential rx gain settings to balance the 3 receivers.
648 void iwl_chain_noise_calibration(struct iwl_priv
*priv
,
649 struct iwl_notif_statistics
*stat_resp
)
651 struct iwl_chain_noise_data
*data
= NULL
;
659 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
660 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
662 u16 max_average_sig_antenna_i
;
663 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
664 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
666 u16 rxon_chnum
= INITIALIZATION_VALUE
;
667 u16 stat_chnum
= INITIALIZATION_VALUE
;
670 u32 active_chains
= 0;
673 struct statistics_rx_non_phy
*rx_info
= &(stat_resp
->rx
.general
);
675 if (priv
->disable_chain_noise_cal
)
678 data
= &(priv
->chain_noise_data
);
680 /* Accumulate just the first 20 beacons after the first association,
681 * then we're done forever. */
682 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
683 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
684 IWL_DEBUG_CALIB("Wait for noise calib reset\n");
688 spin_lock_irqsave(&priv
->lock
, flags
);
689 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
690 IWL_DEBUG_CALIB(" << Interference data unavailable\n");
691 spin_unlock_irqrestore(&priv
->lock
, flags
);
695 rxon_band24
= !!(priv
->staging_rxon
.flags
& RXON_FLG_BAND_24G_MSK
);
696 rxon_chnum
= le16_to_cpu(priv
->staging_rxon
.channel
);
697 stat_band24
= !!(stat_resp
->flag
& STATISTICS_REPLY_FLG_BAND_24G_MSK
);
698 stat_chnum
= le32_to_cpu(stat_resp
->flag
) >> 16;
700 /* Make sure we accumulate data for just the associated channel
701 * (even if scanning). */
702 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
703 IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
704 rxon_chnum
, rxon_band24
);
705 spin_unlock_irqrestore(&priv
->lock
, flags
);
709 /* Accumulate beacon statistics values across 20 beacons */
710 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
712 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
714 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
717 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
718 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
719 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
721 spin_unlock_irqrestore(&priv
->lock
, flags
);
723 data
->beacon_count
++;
725 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
726 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
727 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
729 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
730 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
731 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
733 IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
734 rxon_chnum
, rxon_band24
, data
->beacon_count
);
735 IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
736 chain_sig_a
, chain_sig_b
, chain_sig_c
);
737 IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
738 chain_noise_a
, chain_noise_b
, chain_noise_c
);
740 /* If this is the 20th beacon, determine:
741 * 1) Disconnected antennas (using signal strengths)
742 * 2) Differential gain (using silence noise) to balance receivers */
743 if (data
->beacon_count
!= CAL_NUM_OF_BEACONS
)
746 /* Analyze signal for disconnected antenna */
747 average_sig
[0] = (data
->chain_signal_a
) / CAL_NUM_OF_BEACONS
;
748 average_sig
[1] = (data
->chain_signal_b
) / CAL_NUM_OF_BEACONS
;
749 average_sig
[2] = (data
->chain_signal_c
) / CAL_NUM_OF_BEACONS
;
751 if (average_sig
[0] >= average_sig
[1]) {
752 max_average_sig
= average_sig
[0];
753 max_average_sig_antenna_i
= 0;
754 active_chains
= (1 << max_average_sig_antenna_i
);
756 max_average_sig
= average_sig
[1];
757 max_average_sig_antenna_i
= 1;
758 active_chains
= (1 << max_average_sig_antenna_i
);
761 if (average_sig
[2] >= max_average_sig
) {
762 max_average_sig
= average_sig
[2];
763 max_average_sig_antenna_i
= 2;
764 active_chains
= (1 << max_average_sig_antenna_i
);
767 IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
768 average_sig
[0], average_sig
[1], average_sig
[2]);
769 IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
770 max_average_sig
, max_average_sig_antenna_i
);
772 /* Compare signal strengths for all 3 receivers. */
773 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
774 if (i
!= max_average_sig_antenna_i
) {
775 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
777 /* If signal is very weak, compared with
778 * strongest, mark it as disconnected. */
779 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
780 data
->disconn_array
[i
] = 1;
782 active_chains
|= (1 << i
);
783 IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
784 "disconn_array[i] = %d\n",
785 i
, rssi_delta
, data
->disconn_array
[i
]);
790 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
791 /* loops on all the bits of
792 * priv->hw_setting.valid_tx_ant */
793 u8 ant_msk
= (1 << i
);
794 if (!(priv
->hw_params
.valid_tx_ant
& ant_msk
))
798 if (data
->disconn_array
[i
] == 0)
799 /* there is a Tx antenna connected */
801 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
802 data
->disconn_array
[i
]) {
803 /* This is the last TX antenna and is also
804 * disconnected connect it anyway */
805 data
->disconn_array
[i
] = 0;
806 active_chains
|= ant_msk
;
807 IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
808 "declare %d as connected\n", i
);
813 /* Save for use within RXON, TX, SCAN commands, etc. */
814 priv
->chain_noise_data
.active_chains
= active_chains
;
815 IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
818 /* Analyze noise for rx balance */
819 average_noise
[0] = ((data
->chain_noise_a
)/CAL_NUM_OF_BEACONS
);
820 average_noise
[1] = ((data
->chain_noise_b
)/CAL_NUM_OF_BEACONS
);
821 average_noise
[2] = ((data
->chain_noise_c
)/CAL_NUM_OF_BEACONS
);
823 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
824 if (!(data
->disconn_array
[i
]) &&
825 (average_noise
[i
] <= min_average_noise
)) {
826 /* This means that chain i is active and has
827 * lower noise values so far: */
828 min_average_noise
= average_noise
[i
];
829 min_average_noise_antenna_i
= i
;
833 IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
834 average_noise
[0], average_noise
[1],
837 IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
838 min_average_noise
, min_average_noise_antenna_i
);
840 priv
->cfg
->ops
->utils
->gain_computation(priv
, average_noise
,
841 min_average_noise_antenna_i
, min_average_noise
);
843 /* Some power changes may have been made during the calibration.
844 * Update and commit the RXON
846 if (priv
->cfg
->ops
->lib
->update_chain_flags
)
847 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
849 data
->state
= IWL_CHAIN_NOISE_DONE
;
850 iwl_power_enable_management(priv
);
852 EXPORT_SYMBOL(iwl_chain_noise_calibration
);
855 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
858 memset(&(priv
->sensitivity_data
), 0,
859 sizeof(struct iwl_sensitivity_data
));
860 memset(&(priv
->chain_noise_data
), 0,
861 sizeof(struct iwl_chain_noise_data
));
862 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
863 priv
->chain_noise_data
.delta_gain_code
[i
] =
864 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
866 /* Ask for statistics now, the uCode will send notification
867 * periodically after association */
868 iwl_send_statistics_request(priv
, CMD_ASYNC
);
870 EXPORT_SYMBOL(iwl_reset_run_time_calib
);