1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr
;
94 EXPORT_SYMBOL(max_mapnr
);
97 EXPORT_SYMBOL(mem_map
);
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 EXPORT_SYMBOL(high_memory
);
111 * Randomize the address space (stacks, mmaps, brk, etc.).
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
116 int randomize_va_space __read_mostly
=
117 #ifdef CONFIG_COMPAT_BRK
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
135 static int __init
disable_randmaps(char *s
)
137 randomize_va_space
= 0;
140 __setup("norandmaps", disable_randmaps
);
142 unsigned long zero_pfn __read_mostly
;
143 EXPORT_SYMBOL(zero_pfn
);
145 unsigned long highest_memmap_pfn __read_mostly
;
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 static int __init
init_zero_pfn(void)
152 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
155 core_initcall(init_zero_pfn
);
157 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
, long count
)
159 trace_rss_stat(mm
, member
, count
);
162 #if defined(SPLIT_RSS_COUNTING)
164 void sync_mm_rss(struct mm_struct
*mm
)
168 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
169 if (current
->rss_stat
.count
[i
]) {
170 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
171 current
->rss_stat
.count
[i
] = 0;
174 current
->rss_stat
.events
= 0;
177 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
179 struct task_struct
*task
= current
;
181 if (likely(task
->mm
== mm
))
182 task
->rss_stat
.count
[member
] += val
;
184 add_mm_counter(mm
, member
, val
);
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct
*task
)
193 if (unlikely(task
!= current
))
195 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
196 sync_mm_rss(task
->mm
);
198 #else /* SPLIT_RSS_COUNTING */
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203 static void check_sync_rss_stat(struct task_struct
*task
)
207 #endif /* SPLIT_RSS_COUNTING */
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
213 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
216 pgtable_t token
= pmd_pgtable(*pmd
);
218 pte_free_tlb(tlb
, token
, addr
);
219 mm_dec_nr_ptes(tlb
->mm
);
222 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
223 unsigned long addr
, unsigned long end
,
224 unsigned long floor
, unsigned long ceiling
)
231 pmd
= pmd_offset(pud
, addr
);
233 next
= pmd_addr_end(addr
, end
);
234 if (pmd_none_or_clear_bad(pmd
))
236 free_pte_range(tlb
, pmd
, addr
);
237 } while (pmd
++, addr
= next
, addr
!= end
);
247 if (end
- 1 > ceiling
- 1)
250 pmd
= pmd_offset(pud
, start
);
252 pmd_free_tlb(tlb
, pmd
, start
);
253 mm_dec_nr_pmds(tlb
->mm
);
256 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
257 unsigned long addr
, unsigned long end
,
258 unsigned long floor
, unsigned long ceiling
)
265 pud
= pud_offset(p4d
, addr
);
267 next
= pud_addr_end(addr
, end
);
268 if (pud_none_or_clear_bad(pud
))
270 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
271 } while (pud
++, addr
= next
, addr
!= end
);
281 if (end
- 1 > ceiling
- 1)
284 pud
= pud_offset(p4d
, start
);
286 pud_free_tlb(tlb
, pud
, start
);
287 mm_dec_nr_puds(tlb
->mm
);
290 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
291 unsigned long addr
, unsigned long end
,
292 unsigned long floor
, unsigned long ceiling
)
299 p4d
= p4d_offset(pgd
, addr
);
301 next
= p4d_addr_end(addr
, end
);
302 if (p4d_none_or_clear_bad(p4d
))
304 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
305 } while (p4d
++, addr
= next
, addr
!= end
);
311 ceiling
&= PGDIR_MASK
;
315 if (end
- 1 > ceiling
- 1)
318 p4d
= p4d_offset(pgd
, start
);
320 p4d_free_tlb(tlb
, p4d
, start
);
324 * This function frees user-level page tables of a process.
326 void free_pgd_range(struct mmu_gather
*tlb
,
327 unsigned long addr
, unsigned long end
,
328 unsigned long floor
, unsigned long ceiling
)
334 * The next few lines have given us lots of grief...
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
370 if (end
- 1 > ceiling
- 1)
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
378 tlb_change_page_size(tlb
, PAGE_SIZE
);
379 pgd
= pgd_offset(tlb
->mm
, addr
);
381 next
= pgd_addr_end(addr
, end
);
382 if (pgd_none_or_clear_bad(pgd
))
384 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
385 } while (pgd
++, addr
= next
, addr
!= end
);
388 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
389 unsigned long floor
, unsigned long ceiling
)
392 struct vm_area_struct
*next
= vma
->vm_next
;
393 unsigned long addr
= vma
->vm_start
;
396 * Hide vma from rmap and truncate_pagecache before freeing
399 unlink_anon_vmas(vma
);
400 unlink_file_vma(vma
);
402 if (is_vm_hugetlb_page(vma
)) {
403 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
404 floor
, next
? next
->vm_start
: ceiling
);
407 * Optimization: gather nearby vmas into one call down
409 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
410 && !is_vm_hugetlb_page(next
)) {
413 unlink_anon_vmas(vma
);
414 unlink_file_vma(vma
);
416 free_pgd_range(tlb
, addr
, vma
->vm_end
,
417 floor
, next
? next
->vm_start
: ceiling
);
423 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
426 pgtable_t
new = pte_alloc_one(mm
);
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 ptl
= pmd_lock(mm
, pmd
);
446 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
448 pmd_populate(mm
, pmd
, new);
457 int __pte_alloc_kernel(pmd_t
*pmd
)
459 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
463 smp_wmb(); /* See comment in __pte_alloc */
465 spin_lock(&init_mm
.page_table_lock
);
466 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm
, pmd
, new);
470 spin_unlock(&init_mm
.page_table_lock
);
472 pte_free_kernel(&init_mm
, new);
476 static inline void init_rss_vec(int *rss
)
478 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
481 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
485 if (current
->mm
== mm
)
487 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
489 add_mm_counter(mm
, i
, rss
[i
]);
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
497 * The calling function must still handle the error.
499 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
500 pte_t pte
, struct page
*page
)
502 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
503 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
504 pud_t
*pud
= pud_offset(p4d
, addr
);
505 pmd_t
*pmd
= pmd_offset(pud
, addr
);
506 struct address_space
*mapping
;
508 static unsigned long resume
;
509 static unsigned long nr_shown
;
510 static unsigned long nr_unshown
;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown
== 60) {
517 if (time_before(jiffies
, resume
)) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
529 resume
= jiffies
+ 60 * HZ
;
531 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
532 index
= linear_page_index(vma
, addr
);
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
538 dump_page(page
, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
544 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
545 mapping
? mapping
->a_ops
->readpage
: NULL
);
547 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
595 unsigned long pfn
= pte_pfn(pte
);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
598 if (likely(!pte_special(pte
)))
600 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
601 return vma
->vm_ops
->find_special_page(vma
, addr
);
602 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
604 if (is_zero_pfn(pfn
))
609 print_bad_pte(vma
, addr
, pte
, NULL
);
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
616 if (vma
->vm_flags
& VM_MIXEDMAP
) {
622 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
623 if (pfn
== vma
->vm_pgoff
+ off
)
625 if (!is_cow_mapping(vma
->vm_flags
))
630 if (is_zero_pfn(pfn
))
634 if (unlikely(pfn
> highest_memmap_pfn
)) {
635 print_bad_pte(vma
, addr
, pte
, NULL
);
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
644 return pfn_to_page(pfn
);
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
651 unsigned long pfn
= pmd_pfn(pmd
);
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
659 if (vma
->vm_flags
& VM_MIXEDMAP
) {
665 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
666 if (pfn
== vma
->vm_pgoff
+ off
)
668 if (!is_cow_mapping(vma
->vm_flags
))
675 if (is_huge_zero_pmd(pmd
))
677 if (unlikely(pfn
> highest_memmap_pfn
))
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
685 return pfn_to_page(pfn
);
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
695 static inline unsigned long
696 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
697 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
698 unsigned long addr
, int *rss
)
700 unsigned long vm_flags
= vma
->vm_flags
;
701 pte_t pte
= *src_pte
;
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte
))) {
706 swp_entry_t entry
= pte_to_swp_entry(pte
);
708 if (likely(!non_swap_entry(entry
))) {
709 if (swap_duplicate(entry
) < 0)
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
714 spin_lock(&mmlist_lock
);
715 if (list_empty(&dst_mm
->mmlist
))
716 list_add(&dst_mm
->mmlist
,
718 spin_unlock(&mmlist_lock
);
721 } else if (is_migration_entry(entry
)) {
722 page
= migration_entry_to_page(entry
);
724 rss
[mm_counter(page
)]++;
726 if (is_write_migration_entry(entry
) &&
727 is_cow_mapping(vm_flags
)) {
729 * COW mappings require pages in both
730 * parent and child to be set to read.
732 make_migration_entry_read(&entry
);
733 pte
= swp_entry_to_pte(entry
);
734 if (pte_swp_soft_dirty(*src_pte
))
735 pte
= pte_swp_mksoft_dirty(pte
);
736 set_pte_at(src_mm
, addr
, src_pte
, pte
);
738 } else if (is_device_private_entry(entry
)) {
739 page
= device_private_entry_to_page(entry
);
742 * Update rss count even for unaddressable pages, as
743 * they should treated just like normal pages in this
746 * We will likely want to have some new rss counters
747 * for unaddressable pages, at some point. But for now
748 * keep things as they are.
751 rss
[mm_counter(page
)]++;
752 page_dup_rmap(page
, false);
755 * We do not preserve soft-dirty information, because so
756 * far, checkpoint/restore is the only feature that
757 * requires that. And checkpoint/restore does not work
758 * when a device driver is involved (you cannot easily
759 * save and restore device driver state).
761 if (is_write_device_private_entry(entry
) &&
762 is_cow_mapping(vm_flags
)) {
763 make_device_private_entry_read(&entry
);
764 pte
= swp_entry_to_pte(entry
);
765 set_pte_at(src_mm
, addr
, src_pte
, pte
);
772 * If it's a COW mapping, write protect it both
773 * in the parent and the child
775 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
776 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
777 pte
= pte_wrprotect(pte
);
781 * If it's a shared mapping, mark it clean in
784 if (vm_flags
& VM_SHARED
)
785 pte
= pte_mkclean(pte
);
786 pte
= pte_mkold(pte
);
788 page
= vm_normal_page(vma
, addr
, pte
);
791 page_dup_rmap(page
, false);
792 rss
[mm_counter(page
)]++;
793 } else if (pte_devmap(pte
)) {
794 page
= pte_page(pte
);
798 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
802 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
803 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
804 unsigned long addr
, unsigned long end
)
806 pte_t
*orig_src_pte
, *orig_dst_pte
;
807 pte_t
*src_pte
, *dst_pte
;
808 spinlock_t
*src_ptl
, *dst_ptl
;
810 int rss
[NR_MM_COUNTERS
];
811 swp_entry_t entry
= (swp_entry_t
){0};
816 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
819 src_pte
= pte_offset_map(src_pmd
, addr
);
820 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
821 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
822 orig_src_pte
= src_pte
;
823 orig_dst_pte
= dst_pte
;
824 arch_enter_lazy_mmu_mode();
828 * We are holding two locks at this point - either of them
829 * could generate latencies in another task on another CPU.
831 if (progress
>= 32) {
833 if (need_resched() ||
834 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
837 if (pte_none(*src_pte
)) {
841 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
846 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
848 arch_leave_lazy_mmu_mode();
849 spin_unlock(src_ptl
);
850 pte_unmap(orig_src_pte
);
851 add_mm_rss_vec(dst_mm
, rss
);
852 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
856 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
865 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
866 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
867 unsigned long addr
, unsigned long end
)
869 pmd_t
*src_pmd
, *dst_pmd
;
872 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
875 src_pmd
= pmd_offset(src_pud
, addr
);
877 next
= pmd_addr_end(addr
, end
);
878 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
879 || pmd_devmap(*src_pmd
)) {
881 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
882 err
= copy_huge_pmd(dst_mm
, src_mm
,
883 dst_pmd
, src_pmd
, addr
, vma
);
890 if (pmd_none_or_clear_bad(src_pmd
))
892 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
895 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
899 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
900 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
901 unsigned long addr
, unsigned long end
)
903 pud_t
*src_pud
, *dst_pud
;
906 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
909 src_pud
= pud_offset(src_p4d
, addr
);
911 next
= pud_addr_end(addr
, end
);
912 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
915 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
916 err
= copy_huge_pud(dst_mm
, src_mm
,
917 dst_pud
, src_pud
, addr
, vma
);
924 if (pud_none_or_clear_bad(src_pud
))
926 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
929 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
933 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
934 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
935 unsigned long addr
, unsigned long end
)
937 p4d_t
*src_p4d
, *dst_p4d
;
940 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
943 src_p4d
= p4d_offset(src_pgd
, addr
);
945 next
= p4d_addr_end(addr
, end
);
946 if (p4d_none_or_clear_bad(src_p4d
))
948 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
951 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
955 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
956 struct vm_area_struct
*vma
)
958 pgd_t
*src_pgd
, *dst_pgd
;
960 unsigned long addr
= vma
->vm_start
;
961 unsigned long end
= vma
->vm_end
;
962 struct mmu_notifier_range range
;
967 * Don't copy ptes where a page fault will fill them correctly.
968 * Fork becomes much lighter when there are big shared or private
969 * readonly mappings. The tradeoff is that copy_page_range is more
970 * efficient than faulting.
972 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
976 if (is_vm_hugetlb_page(vma
))
977 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
979 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
981 * We do not free on error cases below as remove_vma
982 * gets called on error from higher level routine
984 ret
= track_pfn_copy(vma
);
990 * We need to invalidate the secondary MMU mappings only when
991 * there could be a permission downgrade on the ptes of the
992 * parent mm. And a permission downgrade will only happen if
993 * is_cow_mapping() returns true.
995 is_cow
= is_cow_mapping(vma
->vm_flags
);
998 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
999 0, vma
, src_mm
, addr
, end
);
1000 mmu_notifier_invalidate_range_start(&range
);
1004 dst_pgd
= pgd_offset(dst_mm
, addr
);
1005 src_pgd
= pgd_offset(src_mm
, addr
);
1007 next
= pgd_addr_end(addr
, end
);
1008 if (pgd_none_or_clear_bad(src_pgd
))
1010 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1011 vma
, addr
, next
))) {
1015 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1018 mmu_notifier_invalidate_range_end(&range
);
1022 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1023 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1024 unsigned long addr
, unsigned long end
,
1025 struct zap_details
*details
)
1027 struct mm_struct
*mm
= tlb
->mm
;
1028 int force_flush
= 0;
1029 int rss
[NR_MM_COUNTERS
];
1035 tlb_change_page_size(tlb
, PAGE_SIZE
);
1038 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1040 flush_tlb_batched_pending(mm
);
1041 arch_enter_lazy_mmu_mode();
1044 if (pte_none(ptent
))
1050 if (pte_present(ptent
)) {
1053 page
= vm_normal_page(vma
, addr
, ptent
);
1054 if (unlikely(details
) && page
) {
1056 * unmap_shared_mapping_pages() wants to
1057 * invalidate cache without truncating:
1058 * unmap shared but keep private pages.
1060 if (details
->check_mapping
&&
1061 details
->check_mapping
!= page_rmapping(page
))
1064 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1066 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1067 if (unlikely(!page
))
1070 if (!PageAnon(page
)) {
1071 if (pte_dirty(ptent
)) {
1073 set_page_dirty(page
);
1075 if (pte_young(ptent
) &&
1076 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1077 mark_page_accessed(page
);
1079 rss
[mm_counter(page
)]--;
1080 page_remove_rmap(page
, false);
1081 if (unlikely(page_mapcount(page
) < 0))
1082 print_bad_pte(vma
, addr
, ptent
, page
);
1083 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1091 entry
= pte_to_swp_entry(ptent
);
1092 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1093 struct page
*page
= device_private_entry_to_page(entry
);
1095 if (unlikely(details
&& details
->check_mapping
)) {
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1101 if (details
->check_mapping
!=
1102 page_rmapping(page
))
1106 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1107 rss
[mm_counter(page
)]--;
1108 page_remove_rmap(page
, false);
1113 /* If details->check_mapping, we leave swap entries. */
1114 if (unlikely(details
))
1117 if (!non_swap_entry(entry
))
1119 else if (is_migration_entry(entry
)) {
1122 page
= migration_entry_to_page(entry
);
1123 rss
[mm_counter(page
)]--;
1125 if (unlikely(!free_swap_and_cache(entry
)))
1126 print_bad_pte(vma
, addr
, ptent
, NULL
);
1127 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1128 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1130 add_mm_rss_vec(mm
, rss
);
1131 arch_leave_lazy_mmu_mode();
1133 /* Do the actual TLB flush before dropping ptl */
1135 tlb_flush_mmu_tlbonly(tlb
);
1136 pte_unmap_unlock(start_pte
, ptl
);
1139 * If we forced a TLB flush (either due to running out of
1140 * batch buffers or because we needed to flush dirty TLB
1141 * entries before releasing the ptl), free the batched
1142 * memory too. Restart if we didn't do everything.
1157 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1158 struct vm_area_struct
*vma
, pud_t
*pud
,
1159 unsigned long addr
, unsigned long end
,
1160 struct zap_details
*details
)
1165 pmd
= pmd_offset(pud
, addr
);
1167 next
= pmd_addr_end(addr
, end
);
1168 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1169 if (next
- addr
!= HPAGE_PMD_SIZE
)
1170 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1171 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1176 * Here there can be other concurrent MADV_DONTNEED or
1177 * trans huge page faults running, and if the pmd is
1178 * none or trans huge it can change under us. This is
1179 * because MADV_DONTNEED holds the mmap_sem in read
1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1184 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1187 } while (pmd
++, addr
= next
, addr
!= end
);
1192 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1193 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1194 unsigned long addr
, unsigned long end
,
1195 struct zap_details
*details
)
1200 pud
= pud_offset(p4d
, addr
);
1202 next
= pud_addr_end(addr
, end
);
1203 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1204 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1206 split_huge_pud(vma
, pud
, addr
);
1207 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1211 if (pud_none_or_clear_bad(pud
))
1213 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1216 } while (pud
++, addr
= next
, addr
!= end
);
1221 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1222 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1223 unsigned long addr
, unsigned long end
,
1224 struct zap_details
*details
)
1229 p4d
= p4d_offset(pgd
, addr
);
1231 next
= p4d_addr_end(addr
, end
);
1232 if (p4d_none_or_clear_bad(p4d
))
1234 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1235 } while (p4d
++, addr
= next
, addr
!= end
);
1240 void unmap_page_range(struct mmu_gather
*tlb
,
1241 struct vm_area_struct
*vma
,
1242 unsigned long addr
, unsigned long end
,
1243 struct zap_details
*details
)
1248 BUG_ON(addr
>= end
);
1249 tlb_start_vma(tlb
, vma
);
1250 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1252 next
= pgd_addr_end(addr
, end
);
1253 if (pgd_none_or_clear_bad(pgd
))
1255 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1256 } while (pgd
++, addr
= next
, addr
!= end
);
1257 tlb_end_vma(tlb
, vma
);
1261 static void unmap_single_vma(struct mmu_gather
*tlb
,
1262 struct vm_area_struct
*vma
, unsigned long start_addr
,
1263 unsigned long end_addr
,
1264 struct zap_details
*details
)
1266 unsigned long start
= max(vma
->vm_start
, start_addr
);
1269 if (start
>= vma
->vm_end
)
1271 end
= min(vma
->vm_end
, end_addr
);
1272 if (end
<= vma
->vm_start
)
1276 uprobe_munmap(vma
, start
, end
);
1278 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1279 untrack_pfn(vma
, 0, 0);
1282 if (unlikely(is_vm_hugetlb_page(vma
))) {
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
1287 * cleanup path of mmap_region. When
1288 * hugetlbfs ->mmap method fails,
1289 * mmap_region() nullifies vma->vm_file
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1295 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1296 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1297 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1300 unmap_page_range(tlb
, vma
, start
, end
, details
);
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306 * @tlb: address of the caller's struct mmu_gather
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1311 * Unmap all pages in the vma list.
1313 * Only addresses between `start' and `end' will be unmapped.
1315 * The VMA list must be sorted in ascending virtual address order.
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1322 void unmap_vmas(struct mmu_gather
*tlb
,
1323 struct vm_area_struct
*vma
, unsigned long start_addr
,
1324 unsigned long end_addr
)
1326 struct mmu_notifier_range range
;
1328 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, vma
->vm_mm
,
1329 start_addr
, end_addr
);
1330 mmu_notifier_invalidate_range_start(&range
);
1331 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1332 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1333 mmu_notifier_invalidate_range_end(&range
);
1337 * zap_page_range - remove user pages in a given range
1338 * @vma: vm_area_struct holding the applicable pages
1339 * @start: starting address of pages to zap
1340 * @size: number of bytes to zap
1342 * Caller must protect the VMA list
1344 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1347 struct mmu_notifier_range range
;
1348 struct mmu_gather tlb
;
1351 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1352 start
, start
+ size
);
1353 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1354 update_hiwater_rss(vma
->vm_mm
);
1355 mmu_notifier_invalidate_range_start(&range
);
1356 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1357 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1358 mmu_notifier_invalidate_range_end(&range
);
1359 tlb_finish_mmu(&tlb
, start
, range
.end
);
1363 * zap_page_range_single - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @address: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1369 * The range must fit into one VMA.
1371 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1372 unsigned long size
, struct zap_details
*details
)
1374 struct mmu_notifier_range range
;
1375 struct mmu_gather tlb
;
1378 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1379 address
, address
+ size
);
1380 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1381 update_hiwater_rss(vma
->vm_mm
);
1382 mmu_notifier_invalidate_range_start(&range
);
1383 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1384 mmu_notifier_invalidate_range_end(&range
);
1385 tlb_finish_mmu(&tlb
, address
, range
.end
);
1389 * zap_vma_ptes - remove ptes mapping the vma
1390 * @vma: vm_area_struct holding ptes to be zapped
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 * The entire address range must be fully contained within the vma.
1399 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1402 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1403 !(vma
->vm_flags
& VM_PFNMAP
))
1406 zap_page_range_single(vma
, address
, size
, NULL
);
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1410 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1418 pgd
= pgd_offset(mm
, addr
);
1419 p4d
= p4d_alloc(mm
, pgd
, addr
);
1422 pud
= pud_alloc(mm
, p4d
, addr
);
1425 pmd
= pmd_alloc(mm
, pud
, addr
);
1429 VM_BUG_ON(pmd_trans_huge(*pmd
));
1430 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1434 * This is the old fallback for page remapping.
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1440 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1441 struct page
*page
, pgprot_t prot
)
1443 struct mm_struct
*mm
= vma
->vm_mm
;
1449 if (PageAnon(page
) || PageSlab(page
) || page_has_type(page
))
1452 flush_dcache_page(page
);
1453 pte
= get_locked_pte(mm
, addr
, &ptl
);
1457 if (!pte_none(*pte
))
1460 /* Ok, finally just insert the thing.. */
1462 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1463 page_add_file_rmap(page
, false);
1464 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1468 pte_unmap_unlock(pte
, ptl
);
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1479 * This allows drivers to insert individual pages they've allocated
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
1485 * (see split_page()).
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1493 * The page does not need to be reserved.
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
1500 * Return: %0 on success, negative error code otherwise.
1502 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1505 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1507 if (!page_count(page
))
1509 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1510 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1511 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1512 vma
->vm_flags
|= VM_MIXEDMAP
;
1514 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1516 EXPORT_SYMBOL(vm_insert_page
);
1519 * __vm_map_pages - maps range of kernel pages into user vma
1520 * @vma: user vma to map to
1521 * @pages: pointer to array of source kernel pages
1522 * @num: number of pages in page array
1523 * @offset: user's requested vm_pgoff
1525 * This allows drivers to map range of kernel pages into a user vma.
1527 * Return: 0 on success and error code otherwise.
1529 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1530 unsigned long num
, unsigned long offset
)
1532 unsigned long count
= vma_pages(vma
);
1533 unsigned long uaddr
= vma
->vm_start
;
1536 /* Fail if the user requested offset is beyond the end of the object */
1540 /* Fail if the user requested size exceeds available object size */
1541 if (count
> num
- offset
)
1544 for (i
= 0; i
< count
; i
++) {
1545 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
1555 * vm_map_pages - maps range of kernel pages starts with non zero offset
1556 * @vma: user vma to map to
1557 * @pages: pointer to array of source kernel pages
1558 * @num: number of pages in page array
1560 * Maps an object consisting of @num pages, catering for the user's
1561 * requested vm_pgoff
1563 * If we fail to insert any page into the vma, the function will return
1564 * immediately leaving any previously inserted pages present. Callers
1565 * from the mmap handler may immediately return the error as their caller
1566 * will destroy the vma, removing any successfully inserted pages. Other
1567 * callers should make their own arrangements for calling unmap_region().
1569 * Context: Process context. Called by mmap handlers.
1570 * Return: 0 on success and error code otherwise.
1572 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1575 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
1577 EXPORT_SYMBOL(vm_map_pages
);
1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581 * @vma: user vma to map to
1582 * @pages: pointer to array of source kernel pages
1583 * @num: number of pages in page array
1585 * Similar to vm_map_pages(), except that it explicitly sets the offset
1586 * to 0. This function is intended for the drivers that did not consider
1589 * Context: Process context. Called by mmap handlers.
1590 * Return: 0 on success and error code otherwise.
1592 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
1595 return __vm_map_pages(vma
, pages
, num
, 0);
1597 EXPORT_SYMBOL(vm_map_pages_zero
);
1599 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1600 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1602 struct mm_struct
*mm
= vma
->vm_mm
;
1606 pte
= get_locked_pte(mm
, addr
, &ptl
);
1608 return VM_FAULT_OOM
;
1609 if (!pte_none(*pte
)) {
1612 * For read faults on private mappings the PFN passed
1613 * in may not match the PFN we have mapped if the
1614 * mapped PFN is a writeable COW page. In the mkwrite
1615 * case we are creating a writable PTE for a shared
1616 * mapping and we expect the PFNs to match. If they
1617 * don't match, we are likely racing with block
1618 * allocation and mapping invalidation so just skip the
1621 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1625 entry
= pte_mkyoung(*pte
);
1626 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1627 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1628 update_mmu_cache(vma
, addr
, pte
);
1633 /* Ok, finally just insert the thing.. */
1634 if (pfn_t_devmap(pfn
))
1635 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1637 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1640 entry
= pte_mkyoung(entry
);
1641 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1644 set_pte_at(mm
, addr
, pte
, entry
);
1645 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1648 pte_unmap_unlock(pte
, ptl
);
1649 return VM_FAULT_NOPAGE
;
1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654 * @vma: user vma to map to
1655 * @addr: target user address of this page
1656 * @pfn: source kernel pfn
1657 * @pgprot: pgprot flags for the inserted page
1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660 * to override pgprot on a per-page basis.
1662 * This only makes sense for IO mappings, and it makes no sense for
1663 * COW mappings. In general, using multiple vmas is preferable;
1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1667 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668 * a value of @pgprot different from that of @vma->vm_page_prot.
1670 * Context: Process context. May allocate using %GFP_KERNEL.
1671 * Return: vm_fault_t value.
1673 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1674 unsigned long pfn
, pgprot_t pgprot
)
1677 * Technically, architectures with pte_special can avoid all these
1678 * restrictions (same for remap_pfn_range). However we would like
1679 * consistency in testing and feature parity among all, so we should
1680 * try to keep these invariants in place for everybody.
1682 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1683 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1684 (VM_PFNMAP
|VM_MIXEDMAP
));
1685 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1686 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1688 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1689 return VM_FAULT_SIGBUS
;
1691 if (!pfn_modify_allowed(pfn
, pgprot
))
1692 return VM_FAULT_SIGBUS
;
1694 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1696 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1699 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1702 * vmf_insert_pfn - insert single pfn into user vma
1703 * @vma: user vma to map to
1704 * @addr: target user address of this page
1705 * @pfn: source kernel pfn
1707 * Similar to vm_insert_page, this allows drivers to insert individual pages
1708 * they've allocated into a user vma. Same comments apply.
1710 * This function should only be called from a vm_ops->fault handler, and
1711 * in that case the handler should return the result of this function.
1713 * vma cannot be a COW mapping.
1715 * As this is called only for pages that do not currently exist, we
1716 * do not need to flush old virtual caches or the TLB.
1718 * Context: Process context. May allocate using %GFP_KERNEL.
1719 * Return: vm_fault_t value.
1721 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1724 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1726 EXPORT_SYMBOL(vmf_insert_pfn
);
1728 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1730 /* these checks mirror the abort conditions in vm_normal_page */
1731 if (vma
->vm_flags
& VM_MIXEDMAP
)
1733 if (pfn_t_devmap(pfn
))
1735 if (pfn_t_special(pfn
))
1737 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1742 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1743 unsigned long addr
, pfn_t pfn
, pgprot_t pgprot
,
1748 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1750 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1751 return VM_FAULT_SIGBUS
;
1753 track_pfn_insert(vma
, &pgprot
, pfn
);
1755 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1756 return VM_FAULT_SIGBUS
;
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
1765 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1766 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1770 * At this point we are committed to insert_page()
1771 * regardless of whether the caller specified flags that
1772 * result in pfn_t_has_page() == false.
1774 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1775 err
= insert_page(vma
, addr
, page
, pgprot
);
1777 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1781 return VM_FAULT_OOM
;
1782 if (err
< 0 && err
!= -EBUSY
)
1783 return VM_FAULT_SIGBUS
;
1785 return VM_FAULT_NOPAGE
;
1789 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790 * @vma: user vma to map to
1791 * @addr: target user address of this page
1792 * @pfn: source kernel pfn
1793 * @pgprot: pgprot flags for the inserted page
1795 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796 * to override pgprot on a per-page basis.
1798 * Typically this function should be used by drivers to set caching- and
1799 * encryption bits different than those of @vma->vm_page_prot, because
1800 * the caching- or encryption mode may not be known at mmap() time.
1801 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802 * to set caching and encryption bits for those vmas (except for COW pages).
1803 * This is ensured by core vm only modifying these page table entries using
1804 * functions that don't touch caching- or encryption bits, using pte_modify()
1805 * if needed. (See for example mprotect()).
1806 * Also when new page-table entries are created, this is only done using the
1807 * fault() callback, and never using the value of vma->vm_page_prot,
1808 * except for page-table entries that point to anonymous pages as the result
1811 * Context: Process context. May allocate using %GFP_KERNEL.
1812 * Return: vm_fault_t value.
1814 vm_fault_t
vmf_insert_mixed_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1815 pfn_t pfn
, pgprot_t pgprot
)
1817 return __vm_insert_mixed(vma
, addr
, pfn
, pgprot
, false);
1819 EXPORT_SYMBOL(vmf_insert_mixed_prot
);
1821 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1824 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, false);
1826 EXPORT_SYMBOL(vmf_insert_mixed
);
1829 * If the insertion of PTE failed because someone else already added a
1830 * different entry in the mean time, we treat that as success as we assume
1831 * the same entry was actually inserted.
1833 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1834 unsigned long addr
, pfn_t pfn
)
1836 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, true);
1838 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1841 * maps a range of physical memory into the requested pages. the old
1842 * mappings are removed. any references to nonexistent pages results
1843 * in null mappings (currently treated as "copy-on-access")
1845 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1846 unsigned long addr
, unsigned long end
,
1847 unsigned long pfn
, pgprot_t prot
)
1853 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1856 arch_enter_lazy_mmu_mode();
1858 BUG_ON(!pte_none(*pte
));
1859 if (!pfn_modify_allowed(pfn
, prot
)) {
1863 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1865 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1866 arch_leave_lazy_mmu_mode();
1867 pte_unmap_unlock(pte
- 1, ptl
);
1871 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1872 unsigned long addr
, unsigned long end
,
1873 unsigned long pfn
, pgprot_t prot
)
1879 pfn
-= addr
>> PAGE_SHIFT
;
1880 pmd
= pmd_alloc(mm
, pud
, addr
);
1883 VM_BUG_ON(pmd_trans_huge(*pmd
));
1885 next
= pmd_addr_end(addr
, end
);
1886 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1887 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1890 } while (pmd
++, addr
= next
, addr
!= end
);
1894 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1895 unsigned long addr
, unsigned long end
,
1896 unsigned long pfn
, pgprot_t prot
)
1902 pfn
-= addr
>> PAGE_SHIFT
;
1903 pud
= pud_alloc(mm
, p4d
, addr
);
1907 next
= pud_addr_end(addr
, end
);
1908 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1909 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1912 } while (pud
++, addr
= next
, addr
!= end
);
1916 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1917 unsigned long addr
, unsigned long end
,
1918 unsigned long pfn
, pgprot_t prot
)
1924 pfn
-= addr
>> PAGE_SHIFT
;
1925 p4d
= p4d_alloc(mm
, pgd
, addr
);
1929 next
= p4d_addr_end(addr
, end
);
1930 err
= remap_pud_range(mm
, p4d
, addr
, next
,
1931 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1934 } while (p4d
++, addr
= next
, addr
!= end
);
1939 * remap_pfn_range - remap kernel memory to userspace
1940 * @vma: user vma to map to
1941 * @addr: target user address to start at
1942 * @pfn: physical address of kernel memory
1943 * @size: size of map area
1944 * @prot: page protection flags for this mapping
1946 * Note: this is only safe if the mm semaphore is held when called.
1948 * Return: %0 on success, negative error code otherwise.
1950 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1951 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1955 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1956 struct mm_struct
*mm
= vma
->vm_mm
;
1957 unsigned long remap_pfn
= pfn
;
1961 * Physically remapped pages are special. Tell the
1962 * rest of the world about it:
1963 * VM_IO tells people not to look at these pages
1964 * (accesses can have side effects).
1965 * VM_PFNMAP tells the core MM that the base pages are just
1966 * raw PFN mappings, and do not have a "struct page" associated
1969 * Disable vma merging and expanding with mremap().
1971 * Omit vma from core dump, even when VM_IO turned off.
1973 * There's a horrible special case to handle copy-on-write
1974 * behaviour that some programs depend on. We mark the "original"
1975 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1976 * See vm_normal_page() for details.
1978 if (is_cow_mapping(vma
->vm_flags
)) {
1979 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1981 vma
->vm_pgoff
= pfn
;
1984 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1988 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1990 BUG_ON(addr
>= end
);
1991 pfn
-= addr
>> PAGE_SHIFT
;
1992 pgd
= pgd_offset(mm
, addr
);
1993 flush_cache_range(vma
, addr
, end
);
1995 next
= pgd_addr_end(addr
, end
);
1996 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
1997 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2000 } while (pgd
++, addr
= next
, addr
!= end
);
2003 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2007 EXPORT_SYMBOL(remap_pfn_range
);
2010 * vm_iomap_memory - remap memory to userspace
2011 * @vma: user vma to map to
2012 * @start: start of area
2013 * @len: size of area
2015 * This is a simplified io_remap_pfn_range() for common driver use. The
2016 * driver just needs to give us the physical memory range to be mapped,
2017 * we'll figure out the rest from the vma information.
2019 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2020 * whatever write-combining details or similar.
2022 * Return: %0 on success, negative error code otherwise.
2024 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2026 unsigned long vm_len
, pfn
, pages
;
2028 /* Check that the physical memory area passed in looks valid */
2029 if (start
+ len
< start
)
2032 * You *really* shouldn't map things that aren't page-aligned,
2033 * but we've historically allowed it because IO memory might
2034 * just have smaller alignment.
2036 len
+= start
& ~PAGE_MASK
;
2037 pfn
= start
>> PAGE_SHIFT
;
2038 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2039 if (pfn
+ pages
< pfn
)
2042 /* We start the mapping 'vm_pgoff' pages into the area */
2043 if (vma
->vm_pgoff
> pages
)
2045 pfn
+= vma
->vm_pgoff
;
2046 pages
-= vma
->vm_pgoff
;
2048 /* Can we fit all of the mapping? */
2049 vm_len
= vma
->vm_end
- vma
->vm_start
;
2050 if (vm_len
>> PAGE_SHIFT
> pages
)
2053 /* Ok, let it rip */
2054 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2056 EXPORT_SYMBOL(vm_iomap_memory
);
2058 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2059 unsigned long addr
, unsigned long end
,
2060 pte_fn_t fn
, void *data
, bool create
)
2064 spinlock_t
*uninitialized_var(ptl
);
2067 pte
= (mm
== &init_mm
) ?
2068 pte_alloc_kernel(pmd
, addr
) :
2069 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2073 pte
= (mm
== &init_mm
) ?
2074 pte_offset_kernel(pmd
, addr
) :
2075 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
2078 BUG_ON(pmd_huge(*pmd
));
2080 arch_enter_lazy_mmu_mode();
2083 if (create
|| !pte_none(*pte
)) {
2084 err
= fn(pte
++, addr
, data
);
2088 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2090 arch_leave_lazy_mmu_mode();
2093 pte_unmap_unlock(pte
-1, ptl
);
2097 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2098 unsigned long addr
, unsigned long end
,
2099 pte_fn_t fn
, void *data
, bool create
)
2105 BUG_ON(pud_huge(*pud
));
2108 pmd
= pmd_alloc(mm
, pud
, addr
);
2112 pmd
= pmd_offset(pud
, addr
);
2115 next
= pmd_addr_end(addr
, end
);
2116 if (create
|| !pmd_none_or_clear_bad(pmd
)) {
2117 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
,
2122 } while (pmd
++, addr
= next
, addr
!= end
);
2126 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2127 unsigned long addr
, unsigned long end
,
2128 pte_fn_t fn
, void *data
, bool create
)
2135 pud
= pud_alloc(mm
, p4d
, addr
);
2139 pud
= pud_offset(p4d
, addr
);
2142 next
= pud_addr_end(addr
, end
);
2143 if (create
|| !pud_none_or_clear_bad(pud
)) {
2144 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
,
2149 } while (pud
++, addr
= next
, addr
!= end
);
2153 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2154 unsigned long addr
, unsigned long end
,
2155 pte_fn_t fn
, void *data
, bool create
)
2162 p4d
= p4d_alloc(mm
, pgd
, addr
);
2166 p4d
= p4d_offset(pgd
, addr
);
2169 next
= p4d_addr_end(addr
, end
);
2170 if (create
|| !p4d_none_or_clear_bad(p4d
)) {
2171 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
,
2176 } while (p4d
++, addr
= next
, addr
!= end
);
2180 static int __apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2181 unsigned long size
, pte_fn_t fn
,
2182 void *data
, bool create
)
2186 unsigned long end
= addr
+ size
;
2189 if (WARN_ON(addr
>= end
))
2192 pgd
= pgd_offset(mm
, addr
);
2194 next
= pgd_addr_end(addr
, end
);
2195 if (!create
&& pgd_none_or_clear_bad(pgd
))
2197 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
, create
);
2200 } while (pgd
++, addr
= next
, addr
!= end
);
2206 * Scan a region of virtual memory, filling in page tables as necessary
2207 * and calling a provided function on each leaf page table.
2209 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2210 unsigned long size
, pte_fn_t fn
, void *data
)
2212 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, true);
2214 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2217 * Scan a region of virtual memory, calling a provided function on
2218 * each leaf page table where it exists.
2220 * Unlike apply_to_page_range, this does _not_ fill in page tables
2221 * where they are absent.
2223 int apply_to_existing_page_range(struct mm_struct
*mm
, unsigned long addr
,
2224 unsigned long size
, pte_fn_t fn
, void *data
)
2226 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, false);
2228 EXPORT_SYMBOL_GPL(apply_to_existing_page_range
);
2231 * handle_pte_fault chooses page fault handler according to an entry which was
2232 * read non-atomically. Before making any commitment, on those architectures
2233 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2234 * parts, do_swap_page must check under lock before unmapping the pte and
2235 * proceeding (but do_wp_page is only called after already making such a check;
2236 * and do_anonymous_page can safely check later on).
2238 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2239 pte_t
*page_table
, pte_t orig_pte
)
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2243 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2244 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2246 same
= pte_same(*page_table
, orig_pte
);
2250 pte_unmap(page_table
);
2254 static inline bool cow_user_page(struct page
*dst
, struct page
*src
,
2255 struct vm_fault
*vmf
)
2260 bool locked
= false;
2261 struct vm_area_struct
*vma
= vmf
->vma
;
2262 struct mm_struct
*mm
= vma
->vm_mm
;
2263 unsigned long addr
= vmf
->address
;
2265 debug_dma_assert_idle(src
);
2268 copy_user_highpage(dst
, src
, addr
, vma
);
2273 * If the source page was a PFN mapping, we don't have
2274 * a "struct page" for it. We do a best-effort copy by
2275 * just copying from the original user address. If that
2276 * fails, we just zero-fill it. Live with it.
2278 kaddr
= kmap_atomic(dst
);
2279 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
2282 * On architectures with software "accessed" bits, we would
2283 * take a double page fault, so mark it accessed here.
2285 if (arch_faults_on_old_pte() && !pte_young(vmf
->orig_pte
)) {
2288 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2290 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2292 * Other thread has already handled the fault
2293 * and we don't need to do anything. If it's
2294 * not the case, the fault will be triggered
2295 * again on the same address.
2301 entry
= pte_mkyoung(vmf
->orig_pte
);
2302 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
2303 update_mmu_cache(vma
, addr
, vmf
->pte
);
2307 * This really shouldn't fail, because the page is there
2308 * in the page tables. But it might just be unreadable,
2309 * in which case we just give up and fill the result with
2312 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2316 /* Re-validate under PTL if the page is still mapped */
2317 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2319 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2320 /* The PTE changed under us. Retry page fault. */
2326 * The same page can be mapped back since last copy attampt.
2327 * Try to copy again under PTL.
2329 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2331 * Give a warn in case there can be some obscure
2344 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2345 kunmap_atomic(kaddr
);
2346 flush_dcache_page(dst
);
2351 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2353 struct file
*vm_file
= vma
->vm_file
;
2356 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2359 * Special mappings (e.g. VDSO) do not have any file so fake
2360 * a default GFP_KERNEL for them.
2366 * Notify the address space that the page is about to become writable so that
2367 * it can prohibit this or wait for the page to get into an appropriate state.
2369 * We do this without the lock held, so that it can sleep if it needs to.
2371 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2374 struct page
*page
= vmf
->page
;
2375 unsigned int old_flags
= vmf
->flags
;
2377 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2379 if (vmf
->vma
->vm_file
&&
2380 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
2381 return VM_FAULT_SIGBUS
;
2383 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2384 /* Restore original flags so that caller is not surprised */
2385 vmf
->flags
= old_flags
;
2386 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2388 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2390 if (!page
->mapping
) {
2392 return 0; /* retry */
2394 ret
|= VM_FAULT_LOCKED
;
2396 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2401 * Handle dirtying of a page in shared file mapping on a write fault.
2403 * The function expects the page to be locked and unlocks it.
2405 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
2407 struct vm_area_struct
*vma
= vmf
->vma
;
2408 struct address_space
*mapping
;
2409 struct page
*page
= vmf
->page
;
2411 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2413 dirtied
= set_page_dirty(page
);
2414 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2416 * Take a local copy of the address_space - page.mapping may be zeroed
2417 * by truncate after unlock_page(). The address_space itself remains
2418 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2419 * release semantics to prevent the compiler from undoing this copying.
2421 mapping
= page_rmapping(page
);
2425 file_update_time(vma
->vm_file
);
2428 * Throttle page dirtying rate down to writeback speed.
2430 * mapping may be NULL here because some device drivers do not
2431 * set page.mapping but still dirty their pages
2433 * Drop the mmap_sem before waiting on IO, if we can. The file
2434 * is pinning the mapping, as per above.
2436 if ((dirtied
|| page_mkwrite
) && mapping
) {
2439 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
2440 balance_dirty_pages_ratelimited(mapping
);
2443 return VM_FAULT_RETRY
;
2451 * Handle write page faults for pages that can be reused in the current vma
2453 * This can happen either due to the mapping being with the VM_SHARED flag,
2454 * or due to us being the last reference standing to the page. In either
2455 * case, all we need to do here is to mark the page as writable and update
2456 * any related book-keeping.
2458 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2459 __releases(vmf
->ptl
)
2461 struct vm_area_struct
*vma
= vmf
->vma
;
2462 struct page
*page
= vmf
->page
;
2465 * Clear the pages cpupid information as the existing
2466 * information potentially belongs to a now completely
2467 * unrelated process.
2470 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2472 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2473 entry
= pte_mkyoung(vmf
->orig_pte
);
2474 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2475 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2476 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2477 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2481 * Handle the case of a page which we actually need to copy to a new page.
2483 * Called with mmap_sem locked and the old page referenced, but
2484 * without the ptl held.
2486 * High level logic flow:
2488 * - Allocate a page, copy the content of the old page to the new one.
2489 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490 * - Take the PTL. If the pte changed, bail out and release the allocated page
2491 * - If the pte is still the way we remember it, update the page table and all
2492 * relevant references. This includes dropping the reference the page-table
2493 * held to the old page, as well as updating the rmap.
2494 * - In any case, unlock the PTL and drop the reference we took to the old page.
2496 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2498 struct vm_area_struct
*vma
= vmf
->vma
;
2499 struct mm_struct
*mm
= vma
->vm_mm
;
2500 struct page
*old_page
= vmf
->page
;
2501 struct page
*new_page
= NULL
;
2503 int page_copied
= 0;
2504 struct mem_cgroup
*memcg
;
2505 struct mmu_notifier_range range
;
2507 if (unlikely(anon_vma_prepare(vma
)))
2510 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2511 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2516 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2521 if (!cow_user_page(new_page
, old_page
, vmf
)) {
2523 * COW failed, if the fault was solved by other,
2524 * it's fine. If not, userspace would re-fault on
2525 * the same address and we will handle the fault
2526 * from the second attempt.
2535 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2538 __SetPageUptodate(new_page
);
2540 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
2541 vmf
->address
& PAGE_MASK
,
2542 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2543 mmu_notifier_invalidate_range_start(&range
);
2546 * Re-check the pte - we dropped the lock
2548 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2549 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2551 if (!PageAnon(old_page
)) {
2552 dec_mm_counter_fast(mm
,
2553 mm_counter_file(old_page
));
2554 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2557 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2559 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2560 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2561 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2563 * Clear the pte entry and flush it first, before updating the
2564 * pte with the new entry. This will avoid a race condition
2565 * seen in the presence of one thread doing SMC and another
2568 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2569 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2570 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2571 lru_cache_add_active_or_unevictable(new_page
, vma
);
2573 * We call the notify macro here because, when using secondary
2574 * mmu page tables (such as kvm shadow page tables), we want the
2575 * new page to be mapped directly into the secondary page table.
2577 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2578 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2581 * Only after switching the pte to the new page may
2582 * we remove the mapcount here. Otherwise another
2583 * process may come and find the rmap count decremented
2584 * before the pte is switched to the new page, and
2585 * "reuse" the old page writing into it while our pte
2586 * here still points into it and can be read by other
2589 * The critical issue is to order this
2590 * page_remove_rmap with the ptp_clear_flush above.
2591 * Those stores are ordered by (if nothing else,)
2592 * the barrier present in the atomic_add_negative
2593 * in page_remove_rmap.
2595 * Then the TLB flush in ptep_clear_flush ensures that
2596 * no process can access the old page before the
2597 * decremented mapcount is visible. And the old page
2598 * cannot be reused until after the decremented
2599 * mapcount is visible. So transitively, TLBs to
2600 * old page will be flushed before it can be reused.
2602 page_remove_rmap(old_page
, false);
2605 /* Free the old page.. */
2606 new_page
= old_page
;
2609 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2615 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2617 * No need to double call mmu_notifier->invalidate_range() callback as
2618 * the above ptep_clear_flush_notify() did already call it.
2620 mmu_notifier_invalidate_range_only_end(&range
);
2623 * Don't let another task, with possibly unlocked vma,
2624 * keep the mlocked page.
2626 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2627 lock_page(old_page
); /* LRU manipulation */
2628 if (PageMlocked(old_page
))
2629 munlock_vma_page(old_page
);
2630 unlock_page(old_page
);
2634 return page_copied
? VM_FAULT_WRITE
: 0;
2640 return VM_FAULT_OOM
;
2644 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2645 * writeable once the page is prepared
2647 * @vmf: structure describing the fault
2649 * This function handles all that is needed to finish a write page fault in a
2650 * shared mapping due to PTE being read-only once the mapped page is prepared.
2651 * It handles locking of PTE and modifying it.
2653 * The function expects the page to be locked or other protection against
2654 * concurrent faults / writeback (such as DAX radix tree locks).
2656 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2657 * we acquired PTE lock.
2659 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2661 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2662 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2665 * We might have raced with another page fault while we released the
2666 * pte_offset_map_lock.
2668 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2669 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2670 return VM_FAULT_NOPAGE
;
2677 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2680 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2682 struct vm_area_struct
*vma
= vmf
->vma
;
2684 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2687 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2688 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2689 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2690 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2692 return finish_mkwrite_fault(vmf
);
2695 return VM_FAULT_WRITE
;
2698 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2699 __releases(vmf
->ptl
)
2701 struct vm_area_struct
*vma
= vmf
->vma
;
2702 vm_fault_t ret
= VM_FAULT_WRITE
;
2704 get_page(vmf
->page
);
2706 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2709 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2710 tmp
= do_page_mkwrite(vmf
);
2711 if (unlikely(!tmp
|| (tmp
&
2712 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2713 put_page(vmf
->page
);
2716 tmp
= finish_mkwrite_fault(vmf
);
2717 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2718 unlock_page(vmf
->page
);
2719 put_page(vmf
->page
);
2724 lock_page(vmf
->page
);
2726 ret
|= fault_dirty_shared_page(vmf
);
2727 put_page(vmf
->page
);
2733 * This routine handles present pages, when users try to write
2734 * to a shared page. It is done by copying the page to a new address
2735 * and decrementing the shared-page counter for the old page.
2737 * Note that this routine assumes that the protection checks have been
2738 * done by the caller (the low-level page fault routine in most cases).
2739 * Thus we can safely just mark it writable once we've done any necessary
2742 * We also mark the page dirty at this point even though the page will
2743 * change only once the write actually happens. This avoids a few races,
2744 * and potentially makes it more efficient.
2746 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2747 * but allow concurrent faults), with pte both mapped and locked.
2748 * We return with mmap_sem still held, but pte unmapped and unlocked.
2750 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2751 __releases(vmf
->ptl
)
2753 struct vm_area_struct
*vma
= vmf
->vma
;
2755 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2758 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2761 * We should not cow pages in a shared writeable mapping.
2762 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2764 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2765 (VM_WRITE
|VM_SHARED
))
2766 return wp_pfn_shared(vmf
);
2768 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2769 return wp_page_copy(vmf
);
2773 * Take out anonymous pages first, anonymous shared vmas are
2774 * not dirty accountable.
2776 if (PageAnon(vmf
->page
)) {
2777 int total_map_swapcount
;
2778 if (PageKsm(vmf
->page
) && (PageSwapCache(vmf
->page
) ||
2779 page_count(vmf
->page
) != 1))
2781 if (!trylock_page(vmf
->page
)) {
2782 get_page(vmf
->page
);
2783 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2784 lock_page(vmf
->page
);
2785 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2786 vmf
->address
, &vmf
->ptl
);
2787 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2788 unlock_page(vmf
->page
);
2789 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2790 put_page(vmf
->page
);
2793 put_page(vmf
->page
);
2795 if (PageKsm(vmf
->page
)) {
2796 bool reused
= reuse_ksm_page(vmf
->page
, vmf
->vma
,
2798 unlock_page(vmf
->page
);
2802 return VM_FAULT_WRITE
;
2804 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2805 if (total_map_swapcount
== 1) {
2807 * The page is all ours. Move it to
2808 * our anon_vma so the rmap code will
2809 * not search our parent or siblings.
2810 * Protected against the rmap code by
2813 page_move_anon_rmap(vmf
->page
, vma
);
2815 unlock_page(vmf
->page
);
2817 return VM_FAULT_WRITE
;
2819 unlock_page(vmf
->page
);
2820 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2821 (VM_WRITE
|VM_SHARED
))) {
2822 return wp_page_shared(vmf
);
2826 * Ok, we need to copy. Oh, well..
2828 get_page(vmf
->page
);
2830 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2831 return wp_page_copy(vmf
);
2834 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2835 unsigned long start_addr
, unsigned long end_addr
,
2836 struct zap_details
*details
)
2838 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2841 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2842 struct zap_details
*details
)
2844 struct vm_area_struct
*vma
;
2845 pgoff_t vba
, vea
, zba
, zea
;
2847 vma_interval_tree_foreach(vma
, root
,
2848 details
->first_index
, details
->last_index
) {
2850 vba
= vma
->vm_pgoff
;
2851 vea
= vba
+ vma_pages(vma
) - 1;
2852 zba
= details
->first_index
;
2855 zea
= details
->last_index
;
2859 unmap_mapping_range_vma(vma
,
2860 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2861 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2867 * unmap_mapping_pages() - Unmap pages from processes.
2868 * @mapping: The address space containing pages to be unmapped.
2869 * @start: Index of first page to be unmapped.
2870 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2871 * @even_cows: Whether to unmap even private COWed pages.
2873 * Unmap the pages in this address space from any userspace process which
2874 * has them mmaped. Generally, you want to remove COWed pages as well when
2875 * a file is being truncated, but not when invalidating pages from the page
2878 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2879 pgoff_t nr
, bool even_cows
)
2881 struct zap_details details
= { };
2883 details
.check_mapping
= even_cows
? NULL
: mapping
;
2884 details
.first_index
= start
;
2885 details
.last_index
= start
+ nr
- 1;
2886 if (details
.last_index
< details
.first_index
)
2887 details
.last_index
= ULONG_MAX
;
2889 i_mmap_lock_write(mapping
);
2890 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2891 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2892 i_mmap_unlock_write(mapping
);
2896 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2897 * address_space corresponding to the specified byte range in the underlying
2900 * @mapping: the address space containing mmaps to be unmapped.
2901 * @holebegin: byte in first page to unmap, relative to the start of
2902 * the underlying file. This will be rounded down to a PAGE_SIZE
2903 * boundary. Note that this is different from truncate_pagecache(), which
2904 * must keep the partial page. In contrast, we must get rid of
2906 * @holelen: size of prospective hole in bytes. This will be rounded
2907 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2909 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2910 * but 0 when invalidating pagecache, don't throw away private data.
2912 void unmap_mapping_range(struct address_space
*mapping
,
2913 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2915 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2916 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2918 /* Check for overflow. */
2919 if (sizeof(holelen
) > sizeof(hlen
)) {
2921 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2922 if (holeend
& ~(long long)ULONG_MAX
)
2923 hlen
= ULONG_MAX
- hba
+ 1;
2926 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2928 EXPORT_SYMBOL(unmap_mapping_range
);
2931 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2932 * but allow concurrent faults), and pte mapped but not yet locked.
2933 * We return with pte unmapped and unlocked.
2935 * We return with the mmap_sem locked or unlocked in the same cases
2936 * as does filemap_fault().
2938 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
2940 struct vm_area_struct
*vma
= vmf
->vma
;
2941 struct page
*page
= NULL
, *swapcache
;
2942 struct mem_cgroup
*memcg
;
2949 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2952 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2953 if (unlikely(non_swap_entry(entry
))) {
2954 if (is_migration_entry(entry
)) {
2955 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2957 } else if (is_device_private_entry(entry
)) {
2958 vmf
->page
= device_private_entry_to_page(entry
);
2959 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
2960 } else if (is_hwpoison_entry(entry
)) {
2961 ret
= VM_FAULT_HWPOISON
;
2963 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2964 ret
= VM_FAULT_SIGBUS
;
2970 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2971 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
2975 struct swap_info_struct
*si
= swp_swap_info(entry
);
2977 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2978 __swap_count(entry
) == 1) {
2979 /* skip swapcache */
2980 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2983 __SetPageLocked(page
);
2984 __SetPageSwapBacked(page
);
2985 set_page_private(page
, entry
.val
);
2986 lru_cache_add_anon(page
);
2987 swap_readpage(page
, true);
2990 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2997 * Back out if somebody else faulted in this pte
2998 * while we released the pte lock.
3000 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3001 vmf
->address
, &vmf
->ptl
);
3002 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3004 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3008 /* Had to read the page from swap area: Major fault */
3009 ret
= VM_FAULT_MAJOR
;
3010 count_vm_event(PGMAJFAULT
);
3011 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
3012 } else if (PageHWPoison(page
)) {
3014 * hwpoisoned dirty swapcache pages are kept for killing
3015 * owner processes (which may be unknown at hwpoison time)
3017 ret
= VM_FAULT_HWPOISON
;
3018 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3022 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
3024 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3026 ret
|= VM_FAULT_RETRY
;
3031 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3032 * release the swapcache from under us. The page pin, and pte_same
3033 * test below, are not enough to exclude that. Even if it is still
3034 * swapcache, we need to check that the page's swap has not changed.
3036 if (unlikely((!PageSwapCache(page
) ||
3037 page_private(page
) != entry
.val
)) && swapcache
)
3040 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
3041 if (unlikely(!page
)) {
3047 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
3054 * Back out if somebody else already faulted in this pte.
3056 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3058 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3061 if (unlikely(!PageUptodate(page
))) {
3062 ret
= VM_FAULT_SIGBUS
;
3067 * The page isn't present yet, go ahead with the fault.
3069 * Be careful about the sequence of operations here.
3070 * To get its accounting right, reuse_swap_page() must be called
3071 * while the page is counted on swap but not yet in mapcount i.e.
3072 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3073 * must be called after the swap_free(), or it will never succeed.
3076 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3077 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3078 pte
= mk_pte(page
, vma
->vm_page_prot
);
3079 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3080 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3081 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3082 ret
|= VM_FAULT_WRITE
;
3083 exclusive
= RMAP_EXCLUSIVE
;
3085 flush_icache_page(vma
, page
);
3086 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3087 pte
= pte_mksoft_dirty(pte
);
3088 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3089 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
3090 vmf
->orig_pte
= pte
;
3092 /* ksm created a completely new copy */
3093 if (unlikely(page
!= swapcache
&& swapcache
)) {
3094 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3095 mem_cgroup_commit_charge(page
, memcg
, false, false);
3096 lru_cache_add_active_or_unevictable(page
, vma
);
3098 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3099 mem_cgroup_commit_charge(page
, memcg
, true, false);
3100 activate_page(page
);
3104 if (mem_cgroup_swap_full(page
) ||
3105 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3106 try_to_free_swap(page
);
3108 if (page
!= swapcache
&& swapcache
) {
3110 * Hold the lock to avoid the swap entry to be reused
3111 * until we take the PT lock for the pte_same() check
3112 * (to avoid false positives from pte_same). For
3113 * further safety release the lock after the swap_free
3114 * so that the swap count won't change under a
3115 * parallel locked swapcache.
3117 unlock_page(swapcache
);
3118 put_page(swapcache
);
3121 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3122 ret
|= do_wp_page(vmf
);
3123 if (ret
& VM_FAULT_ERROR
)
3124 ret
&= VM_FAULT_ERROR
;
3128 /* No need to invalidate - it was non-present before */
3129 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3131 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3135 mem_cgroup_cancel_charge(page
, memcg
, false);
3136 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3141 if (page
!= swapcache
&& swapcache
) {
3142 unlock_page(swapcache
);
3143 put_page(swapcache
);
3149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150 * but allow concurrent faults), and pte mapped but not yet locked.
3151 * We return with mmap_sem still held, but pte unmapped and unlocked.
3153 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3155 struct vm_area_struct
*vma
= vmf
->vma
;
3156 struct mem_cgroup
*memcg
;
3161 /* File mapping without ->vm_ops ? */
3162 if (vma
->vm_flags
& VM_SHARED
)
3163 return VM_FAULT_SIGBUS
;
3166 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3167 * pte_offset_map() on pmds where a huge pmd might be created
3168 * from a different thread.
3170 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3171 * parallel threads are excluded by other means.
3173 * Here we only have down_read(mmap_sem).
3175 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
3176 return VM_FAULT_OOM
;
3178 /* See the comment in pte_alloc_one_map() */
3179 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3182 /* Use the zero-page for reads */
3183 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3184 !mm_forbids_zeropage(vma
->vm_mm
)) {
3185 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3186 vma
->vm_page_prot
));
3187 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3188 vmf
->address
, &vmf
->ptl
);
3189 if (!pte_none(*vmf
->pte
))
3191 ret
= check_stable_address_space(vma
->vm_mm
);
3194 /* Deliver the page fault to userland, check inside PT lock */
3195 if (userfaultfd_missing(vma
)) {
3196 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3197 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3202 /* Allocate our own private page. */
3203 if (unlikely(anon_vma_prepare(vma
)))
3205 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3209 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
3214 * The memory barrier inside __SetPageUptodate makes sure that
3215 * preceding stores to the page contents become visible before
3216 * the set_pte_at() write.
3218 __SetPageUptodate(page
);
3220 entry
= mk_pte(page
, vma
->vm_page_prot
);
3221 if (vma
->vm_flags
& VM_WRITE
)
3222 entry
= pte_mkwrite(pte_mkdirty(entry
));
3224 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3226 if (!pte_none(*vmf
->pte
))
3229 ret
= check_stable_address_space(vma
->vm_mm
);
3233 /* Deliver the page fault to userland, check inside PT lock */
3234 if (userfaultfd_missing(vma
)) {
3235 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3236 mem_cgroup_cancel_charge(page
, memcg
, false);
3238 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3241 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3242 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3243 mem_cgroup_commit_charge(page
, memcg
, false, false);
3244 lru_cache_add_active_or_unevictable(page
, vma
);
3246 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3248 /* No need to invalidate - it was non-present before */
3249 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3251 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3254 mem_cgroup_cancel_charge(page
, memcg
, false);
3260 return VM_FAULT_OOM
;
3264 * The mmap_sem must have been held on entry, and may have been
3265 * released depending on flags and vma->vm_ops->fault() return value.
3266 * See filemap_fault() and __lock_page_retry().
3268 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3270 struct vm_area_struct
*vma
= vmf
->vma
;
3274 * Preallocate pte before we take page_lock because this might lead to
3275 * deadlocks for memcg reclaim which waits for pages under writeback:
3277 * SetPageWriteback(A)
3283 * wait_on_page_writeback(A)
3284 * SetPageWriteback(B)
3286 * # flush A, B to clear the writeback
3288 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3289 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3290 if (!vmf
->prealloc_pte
)
3291 return VM_FAULT_OOM
;
3292 smp_wmb(); /* See comment in __pte_alloc() */
3295 ret
= vma
->vm_ops
->fault(vmf
);
3296 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3297 VM_FAULT_DONE_COW
)))
3300 if (unlikely(PageHWPoison(vmf
->page
))) {
3301 if (ret
& VM_FAULT_LOCKED
)
3302 unlock_page(vmf
->page
);
3303 put_page(vmf
->page
);
3305 return VM_FAULT_HWPOISON
;
3308 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3309 lock_page(vmf
->page
);
3311 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3317 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3318 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3319 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3320 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3322 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3324 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3327 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3329 struct vm_area_struct
*vma
= vmf
->vma
;
3331 if (!pmd_none(*vmf
->pmd
))
3333 if (vmf
->prealloc_pte
) {
3334 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3335 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3336 spin_unlock(vmf
->ptl
);
3340 mm_inc_nr_ptes(vma
->vm_mm
);
3341 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3342 spin_unlock(vmf
->ptl
);
3343 vmf
->prealloc_pte
= NULL
;
3344 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3345 return VM_FAULT_OOM
;
3349 * If a huge pmd materialized under us just retry later. Use
3350 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3351 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3352 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3353 * running immediately after a huge pmd fault in a different thread of
3354 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3355 * All we have to ensure is that it is a regular pmd that we can walk
3356 * with pte_offset_map() and we can do that through an atomic read in
3357 * C, which is what pmd_trans_unstable() provides.
3359 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3360 return VM_FAULT_NOPAGE
;
3363 * At this point we know that our vmf->pmd points to a page of ptes
3364 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3365 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3366 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3367 * be valid and we will re-check to make sure the vmf->pte isn't
3368 * pte_none() under vmf->ptl protection when we return to
3371 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3376 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3377 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3379 struct vm_area_struct
*vma
= vmf
->vma
;
3381 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3383 * We are going to consume the prealloc table,
3384 * count that as nr_ptes.
3386 mm_inc_nr_ptes(vma
->vm_mm
);
3387 vmf
->prealloc_pte
= NULL
;
3390 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3392 struct vm_area_struct
*vma
= vmf
->vma
;
3393 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3394 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3399 if (!transhuge_vma_suitable(vma
, haddr
))
3400 return VM_FAULT_FALLBACK
;
3402 ret
= VM_FAULT_FALLBACK
;
3403 page
= compound_head(page
);
3406 * Archs like ppc64 need additonal space to store information
3407 * related to pte entry. Use the preallocated table for that.
3409 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3410 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3411 if (!vmf
->prealloc_pte
)
3412 return VM_FAULT_OOM
;
3413 smp_wmb(); /* See comment in __pte_alloc() */
3416 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3417 if (unlikely(!pmd_none(*vmf
->pmd
)))
3420 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3421 flush_icache_page(vma
, page
+ i
);
3423 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3425 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3427 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3428 page_add_file_rmap(page
, true);
3430 * deposit and withdraw with pmd lock held
3432 if (arch_needs_pgtable_deposit())
3433 deposit_prealloc_pte(vmf
);
3435 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3437 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3439 /* fault is handled */
3441 count_vm_event(THP_FILE_MAPPED
);
3443 spin_unlock(vmf
->ptl
);
3447 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3455 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3456 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3458 * @vmf: fault environment
3459 * @memcg: memcg to charge page (only for private mappings)
3460 * @page: page to map
3462 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3465 * Target users are page handler itself and implementations of
3466 * vm_ops->map_pages.
3468 * Return: %0 on success, %VM_FAULT_ code in case of error.
3470 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3473 struct vm_area_struct
*vma
= vmf
->vma
;
3474 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3478 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3479 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3481 VM_BUG_ON_PAGE(memcg
, page
);
3483 ret
= do_set_pmd(vmf
, page
);
3484 if (ret
!= VM_FAULT_FALLBACK
)
3489 ret
= pte_alloc_one_map(vmf
);
3494 /* Re-check under ptl */
3495 if (unlikely(!pte_none(*vmf
->pte
)))
3496 return VM_FAULT_NOPAGE
;
3498 flush_icache_page(vma
, page
);
3499 entry
= mk_pte(page
, vma
->vm_page_prot
);
3501 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3502 /* copy-on-write page */
3503 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3504 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3505 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3506 mem_cgroup_commit_charge(page
, memcg
, false, false);
3507 lru_cache_add_active_or_unevictable(page
, vma
);
3509 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3510 page_add_file_rmap(page
, false);
3512 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3514 /* no need to invalidate: a not-present page won't be cached */
3515 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3522 * finish_fault - finish page fault once we have prepared the page to fault
3524 * @vmf: structure describing the fault
3526 * This function handles all that is needed to finish a page fault once the
3527 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3528 * given page, adds reverse page mapping, handles memcg charges and LRU
3531 * The function expects the page to be locked and on success it consumes a
3532 * reference of a page being mapped (for the PTE which maps it).
3534 * Return: %0 on success, %VM_FAULT_ code in case of error.
3536 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3541 /* Did we COW the page? */
3542 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3543 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3544 page
= vmf
->cow_page
;
3549 * check even for read faults because we might have lost our CoWed
3552 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3553 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3555 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3557 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3561 static unsigned long fault_around_bytes __read_mostly
=
3562 rounddown_pow_of_two(65536);
3564 #ifdef CONFIG_DEBUG_FS
3565 static int fault_around_bytes_get(void *data
, u64
*val
)
3567 *val
= fault_around_bytes
;
3572 * fault_around_bytes must be rounded down to the nearest page order as it's
3573 * what do_fault_around() expects to see.
3575 static int fault_around_bytes_set(void *data
, u64 val
)
3577 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3579 if (val
> PAGE_SIZE
)
3580 fault_around_bytes
= rounddown_pow_of_two(val
);
3582 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3585 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3586 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3588 static int __init
fault_around_debugfs(void)
3590 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3591 &fault_around_bytes_fops
);
3594 late_initcall(fault_around_debugfs
);
3598 * do_fault_around() tries to map few pages around the fault address. The hope
3599 * is that the pages will be needed soon and this will lower the number of
3602 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3603 * not ready to be mapped: not up-to-date, locked, etc.
3605 * This function is called with the page table lock taken. In the split ptlock
3606 * case the page table lock only protects only those entries which belong to
3607 * the page table corresponding to the fault address.
3609 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3612 * fault_around_bytes defines how many bytes we'll try to map.
3613 * do_fault_around() expects it to be set to a power of two less than or equal
3616 * The virtual address of the area that we map is naturally aligned to
3617 * fault_around_bytes rounded down to the machine page size
3618 * (and therefore to page order). This way it's easier to guarantee
3619 * that we don't cross page table boundaries.
3621 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3623 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3624 pgoff_t start_pgoff
= vmf
->pgoff
;
3629 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3630 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3632 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3633 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3637 * end_pgoff is either the end of the page table, the end of
3638 * the vma or nr_pages from start_pgoff, depending what is nearest.
3640 end_pgoff
= start_pgoff
-
3641 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3643 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3644 start_pgoff
+ nr_pages
- 1);
3646 if (pmd_none(*vmf
->pmd
)) {
3647 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3648 if (!vmf
->prealloc_pte
)
3650 smp_wmb(); /* See comment in __pte_alloc() */
3653 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3655 /* Huge page is mapped? Page fault is solved */
3656 if (pmd_trans_huge(*vmf
->pmd
)) {
3657 ret
= VM_FAULT_NOPAGE
;
3661 /* ->map_pages() haven't done anything useful. Cold page cache? */
3665 /* check if the page fault is solved */
3666 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3667 if (!pte_none(*vmf
->pte
))
3668 ret
= VM_FAULT_NOPAGE
;
3669 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3671 vmf
->address
= address
;
3676 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3678 struct vm_area_struct
*vma
= vmf
->vma
;
3682 * Let's call ->map_pages() first and use ->fault() as fallback
3683 * if page by the offset is not ready to be mapped (cold cache or
3686 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3687 ret
= do_fault_around(vmf
);
3692 ret
= __do_fault(vmf
);
3693 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3696 ret
|= finish_fault(vmf
);
3697 unlock_page(vmf
->page
);
3698 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3699 put_page(vmf
->page
);
3703 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3705 struct vm_area_struct
*vma
= vmf
->vma
;
3708 if (unlikely(anon_vma_prepare(vma
)))
3709 return VM_FAULT_OOM
;
3711 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3713 return VM_FAULT_OOM
;
3715 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3716 &vmf
->memcg
, false)) {
3717 put_page(vmf
->cow_page
);
3718 return VM_FAULT_OOM
;
3721 ret
= __do_fault(vmf
);
3722 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3724 if (ret
& VM_FAULT_DONE_COW
)
3727 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3728 __SetPageUptodate(vmf
->cow_page
);
3730 ret
|= finish_fault(vmf
);
3731 unlock_page(vmf
->page
);
3732 put_page(vmf
->page
);
3733 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3737 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3738 put_page(vmf
->cow_page
);
3742 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3744 struct vm_area_struct
*vma
= vmf
->vma
;
3745 vm_fault_t ret
, tmp
;
3747 ret
= __do_fault(vmf
);
3748 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3752 * Check if the backing address space wants to know that the page is
3753 * about to become writable
3755 if (vma
->vm_ops
->page_mkwrite
) {
3756 unlock_page(vmf
->page
);
3757 tmp
= do_page_mkwrite(vmf
);
3758 if (unlikely(!tmp
||
3759 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3760 put_page(vmf
->page
);
3765 ret
|= finish_fault(vmf
);
3766 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3768 unlock_page(vmf
->page
);
3769 put_page(vmf
->page
);
3773 ret
|= fault_dirty_shared_page(vmf
);
3778 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3779 * but allow concurrent faults).
3780 * The mmap_sem may have been released depending on flags and our
3781 * return value. See filemap_fault() and __lock_page_or_retry().
3782 * If mmap_sem is released, vma may become invalid (for example
3783 * by other thread calling munmap()).
3785 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3787 struct vm_area_struct
*vma
= vmf
->vma
;
3788 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3792 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3794 if (!vma
->vm_ops
->fault
) {
3796 * If we find a migration pmd entry or a none pmd entry, which
3797 * should never happen, return SIGBUS
3799 if (unlikely(!pmd_present(*vmf
->pmd
)))
3800 ret
= VM_FAULT_SIGBUS
;
3802 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3807 * Make sure this is not a temporary clearing of pte
3808 * by holding ptl and checking again. A R/M/W update
3809 * of pte involves: take ptl, clearing the pte so that
3810 * we don't have concurrent modification by hardware
3811 * followed by an update.
3813 if (unlikely(pte_none(*vmf
->pte
)))
3814 ret
= VM_FAULT_SIGBUS
;
3816 ret
= VM_FAULT_NOPAGE
;
3818 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3820 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3821 ret
= do_read_fault(vmf
);
3822 else if (!(vma
->vm_flags
& VM_SHARED
))
3823 ret
= do_cow_fault(vmf
);
3825 ret
= do_shared_fault(vmf
);
3827 /* preallocated pagetable is unused: free it */
3828 if (vmf
->prealloc_pte
) {
3829 pte_free(vm_mm
, vmf
->prealloc_pte
);
3830 vmf
->prealloc_pte
= NULL
;
3835 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3836 unsigned long addr
, int page_nid
,
3841 count_vm_numa_event(NUMA_HINT_FAULTS
);
3842 if (page_nid
== numa_node_id()) {
3843 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3844 *flags
|= TNF_FAULT_LOCAL
;
3847 return mpol_misplaced(page
, vma
, addr
);
3850 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3852 struct vm_area_struct
*vma
= vmf
->vma
;
3853 struct page
*page
= NULL
;
3854 int page_nid
= NUMA_NO_NODE
;
3857 bool migrated
= false;
3859 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3863 * The "pte" at this point cannot be used safely without
3864 * validation through pte_unmap_same(). It's of NUMA type but
3865 * the pfn may be screwed if the read is non atomic.
3867 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3868 spin_lock(vmf
->ptl
);
3869 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3870 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3875 * Make it present again, Depending on how arch implementes non
3876 * accessible ptes, some can allow access by kernel mode.
3878 old_pte
= ptep_modify_prot_start(vma
, vmf
->address
, vmf
->pte
);
3879 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
3880 pte
= pte_mkyoung(pte
);
3882 pte
= pte_mkwrite(pte
);
3883 ptep_modify_prot_commit(vma
, vmf
->address
, vmf
->pte
, old_pte
, pte
);
3884 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3886 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3888 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3892 /* TODO: handle PTE-mapped THP */
3893 if (PageCompound(page
)) {
3894 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3899 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3900 * much anyway since they can be in shared cache state. This misses
3901 * the case where a mapping is writable but the process never writes
3902 * to it but pte_write gets cleared during protection updates and
3903 * pte_dirty has unpredictable behaviour between PTE scan updates,
3904 * background writeback, dirty balancing and application behaviour.
3906 if (!pte_write(pte
))
3907 flags
|= TNF_NO_GROUP
;
3910 * Flag if the page is shared between multiple address spaces. This
3911 * is later used when determining whether to group tasks together
3913 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3914 flags
|= TNF_SHARED
;
3916 last_cpupid
= page_cpupid_last(page
);
3917 page_nid
= page_to_nid(page
);
3918 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3920 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3921 if (target_nid
== NUMA_NO_NODE
) {
3926 /* Migrate to the requested node */
3927 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3929 page_nid
= target_nid
;
3930 flags
|= TNF_MIGRATED
;
3932 flags
|= TNF_MIGRATE_FAIL
;
3935 if (page_nid
!= NUMA_NO_NODE
)
3936 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3940 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
3942 if (vma_is_anonymous(vmf
->vma
))
3943 return do_huge_pmd_anonymous_page(vmf
);
3944 if (vmf
->vma
->vm_ops
->huge_fault
)
3945 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3946 return VM_FAULT_FALLBACK
;
3949 /* `inline' is required to avoid gcc 4.1.2 build error */
3950 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3952 if (vma_is_anonymous(vmf
->vma
))
3953 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3954 if (vmf
->vma
->vm_ops
->huge_fault
)
3955 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3957 /* COW handled on pte level: split pmd */
3958 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3959 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3961 return VM_FAULT_FALLBACK
;
3964 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3966 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3969 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972 /* No support for anonymous transparent PUD pages yet */
3973 if (vma_is_anonymous(vmf
->vma
))
3974 return VM_FAULT_FALLBACK
;
3975 if (vmf
->vma
->vm_ops
->huge_fault
)
3976 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3978 return VM_FAULT_FALLBACK
;
3981 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3984 /* No support for anonymous transparent PUD pages yet */
3985 if (vma_is_anonymous(vmf
->vma
))
3986 return VM_FAULT_FALLBACK
;
3987 if (vmf
->vma
->vm_ops
->huge_fault
)
3988 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3990 return VM_FAULT_FALLBACK
;
3994 * These routines also need to handle stuff like marking pages dirty
3995 * and/or accessed for architectures that don't do it in hardware (most
3996 * RISC architectures). The early dirtying is also good on the i386.
3998 * There is also a hook called "update_mmu_cache()" that architectures
3999 * with external mmu caches can use to update those (ie the Sparc or
4000 * PowerPC hashed page tables that act as extended TLBs).
4002 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4003 * concurrent faults).
4005 * The mmap_sem may have been released depending on flags and our return value.
4006 * See filemap_fault() and __lock_page_or_retry().
4008 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
4012 if (unlikely(pmd_none(*vmf
->pmd
))) {
4014 * Leave __pte_alloc() until later: because vm_ops->fault may
4015 * want to allocate huge page, and if we expose page table
4016 * for an instant, it will be difficult to retract from
4017 * concurrent faults and from rmap lookups.
4021 /* See comment in pte_alloc_one_map() */
4022 if (pmd_devmap_trans_unstable(vmf
->pmd
))
4025 * A regular pmd is established and it can't morph into a huge
4026 * pmd from under us anymore at this point because we hold the
4027 * mmap_sem read mode and khugepaged takes it in write mode.
4028 * So now it's safe to run pte_offset_map().
4030 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
4031 vmf
->orig_pte
= *vmf
->pte
;
4034 * some architectures can have larger ptes than wordsize,
4035 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4036 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4037 * accesses. The code below just needs a consistent view
4038 * for the ifs and we later double check anyway with the
4039 * ptl lock held. So here a barrier will do.
4042 if (pte_none(vmf
->orig_pte
)) {
4043 pte_unmap(vmf
->pte
);
4049 if (vma_is_anonymous(vmf
->vma
))
4050 return do_anonymous_page(vmf
);
4052 return do_fault(vmf
);
4055 if (!pte_present(vmf
->orig_pte
))
4056 return do_swap_page(vmf
);
4058 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
4059 return do_numa_page(vmf
);
4061 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
4062 spin_lock(vmf
->ptl
);
4063 entry
= vmf
->orig_pte
;
4064 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
4066 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4067 if (!pte_write(entry
))
4068 return do_wp_page(vmf
);
4069 entry
= pte_mkdirty(entry
);
4071 entry
= pte_mkyoung(entry
);
4072 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4073 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4074 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4077 * This is needed only for protection faults but the arch code
4078 * is not yet telling us if this is a protection fault or not.
4079 * This still avoids useless tlb flushes for .text page faults
4082 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4083 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4086 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4091 * By the time we get here, we already hold the mm semaphore
4093 * The mmap_sem may have been released depending on flags and our
4094 * return value. See filemap_fault() and __lock_page_or_retry().
4096 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
4097 unsigned long address
, unsigned int flags
)
4099 struct vm_fault vmf
= {
4101 .address
= address
& PAGE_MASK
,
4103 .pgoff
= linear_page_index(vma
, address
),
4104 .gfp_mask
= __get_fault_gfp_mask(vma
),
4106 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4107 struct mm_struct
*mm
= vma
->vm_mm
;
4112 pgd
= pgd_offset(mm
, address
);
4113 p4d
= p4d_alloc(mm
, pgd
, address
);
4115 return VM_FAULT_OOM
;
4117 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4119 return VM_FAULT_OOM
;
4121 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
4122 ret
= create_huge_pud(&vmf
);
4123 if (!(ret
& VM_FAULT_FALLBACK
))
4126 pud_t orig_pud
= *vmf
.pud
;
4129 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4131 /* NUMA case for anonymous PUDs would go here */
4133 if (dirty
&& !pud_write(orig_pud
)) {
4134 ret
= wp_huge_pud(&vmf
, orig_pud
);
4135 if (!(ret
& VM_FAULT_FALLBACK
))
4138 huge_pud_set_accessed(&vmf
, orig_pud
);
4144 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4146 return VM_FAULT_OOM
;
4148 /* Huge pud page fault raced with pmd_alloc? */
4149 if (pud_trans_unstable(vmf
.pud
))
4152 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
4153 ret
= create_huge_pmd(&vmf
);
4154 if (!(ret
& VM_FAULT_FALLBACK
))
4157 pmd_t orig_pmd
= *vmf
.pmd
;
4160 if (unlikely(is_swap_pmd(orig_pmd
))) {
4161 VM_BUG_ON(thp_migration_supported() &&
4162 !is_pmd_migration_entry(orig_pmd
));
4163 if (is_pmd_migration_entry(orig_pmd
))
4164 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4167 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4168 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4169 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4171 if (dirty
&& !pmd_write(orig_pmd
)) {
4172 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4173 if (!(ret
& VM_FAULT_FALLBACK
))
4176 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4182 return handle_pte_fault(&vmf
);
4186 * By the time we get here, we already hold the mm semaphore
4188 * The mmap_sem may have been released depending on flags and our
4189 * return value. See filemap_fault() and __lock_page_or_retry().
4191 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4196 __set_current_state(TASK_RUNNING
);
4198 count_vm_event(PGFAULT
);
4199 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4201 /* do counter updates before entering really critical section. */
4202 check_sync_rss_stat(current
);
4204 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4205 flags
& FAULT_FLAG_INSTRUCTION
,
4206 flags
& FAULT_FLAG_REMOTE
))
4207 return VM_FAULT_SIGSEGV
;
4210 * Enable the memcg OOM handling for faults triggered in user
4211 * space. Kernel faults are handled more gracefully.
4213 if (flags
& FAULT_FLAG_USER
)
4214 mem_cgroup_enter_user_fault();
4216 if (unlikely(is_vm_hugetlb_page(vma
)))
4217 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4219 ret
= __handle_mm_fault(vma
, address
, flags
);
4221 if (flags
& FAULT_FLAG_USER
) {
4222 mem_cgroup_exit_user_fault();
4224 * The task may have entered a memcg OOM situation but
4225 * if the allocation error was handled gracefully (no
4226 * VM_FAULT_OOM), there is no need to kill anything.
4227 * Just clean up the OOM state peacefully.
4229 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4230 mem_cgroup_oom_synchronize(false);
4235 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4237 #ifndef __PAGETABLE_P4D_FOLDED
4239 * Allocate p4d page table.
4240 * We've already handled the fast-path in-line.
4242 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4244 p4d_t
*new = p4d_alloc_one(mm
, address
);
4248 smp_wmb(); /* See comment in __pte_alloc */
4250 spin_lock(&mm
->page_table_lock
);
4251 if (pgd_present(*pgd
)) /* Another has populated it */
4254 pgd_populate(mm
, pgd
, new);
4255 spin_unlock(&mm
->page_table_lock
);
4258 #endif /* __PAGETABLE_P4D_FOLDED */
4260 #ifndef __PAGETABLE_PUD_FOLDED
4262 * Allocate page upper directory.
4263 * We've already handled the fast-path in-line.
4265 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4267 pud_t
*new = pud_alloc_one(mm
, address
);
4271 smp_wmb(); /* See comment in __pte_alloc */
4273 spin_lock(&mm
->page_table_lock
);
4274 #ifndef __ARCH_HAS_5LEVEL_HACK
4275 if (!p4d_present(*p4d
)) {
4277 p4d_populate(mm
, p4d
, new);
4278 } else /* Another has populated it */
4281 if (!pgd_present(*p4d
)) {
4283 pgd_populate(mm
, p4d
, new);
4284 } else /* Another has populated it */
4286 #endif /* __ARCH_HAS_5LEVEL_HACK */
4287 spin_unlock(&mm
->page_table_lock
);
4290 #endif /* __PAGETABLE_PUD_FOLDED */
4292 #ifndef __PAGETABLE_PMD_FOLDED
4294 * Allocate page middle directory.
4295 * We've already handled the fast-path in-line.
4297 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4300 pmd_t
*new = pmd_alloc_one(mm
, address
);
4304 smp_wmb(); /* See comment in __pte_alloc */
4306 ptl
= pud_lock(mm
, pud
);
4307 if (!pud_present(*pud
)) {
4309 pud_populate(mm
, pud
, new);
4310 } else /* Another has populated it */
4315 #endif /* __PAGETABLE_PMD_FOLDED */
4317 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4318 struct mmu_notifier_range
*range
,
4319 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4327 pgd
= pgd_offset(mm
, address
);
4328 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4331 p4d
= p4d_offset(pgd
, address
);
4332 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4335 pud
= pud_offset(p4d
, address
);
4336 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4339 pmd
= pmd_offset(pud
, address
);
4340 VM_BUG_ON(pmd_trans_huge(*pmd
));
4342 if (pmd_huge(*pmd
)) {
4347 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0,
4348 NULL
, mm
, address
& PMD_MASK
,
4349 (address
& PMD_MASK
) + PMD_SIZE
);
4350 mmu_notifier_invalidate_range_start(range
);
4352 *ptlp
= pmd_lock(mm
, pmd
);
4353 if (pmd_huge(*pmd
)) {
4359 mmu_notifier_invalidate_range_end(range
);
4362 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4366 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
4367 address
& PAGE_MASK
,
4368 (address
& PAGE_MASK
) + PAGE_SIZE
);
4369 mmu_notifier_invalidate_range_start(range
);
4371 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4372 if (!pte_present(*ptep
))
4377 pte_unmap_unlock(ptep
, *ptlp
);
4379 mmu_notifier_invalidate_range_end(range
);
4384 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4385 pte_t
**ptepp
, spinlock_t
**ptlp
)
4389 /* (void) is needed to make gcc happy */
4390 (void) __cond_lock(*ptlp
,
4391 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4392 ptepp
, NULL
, ptlp
)));
4396 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4397 struct mmu_notifier_range
*range
,
4398 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4402 /* (void) is needed to make gcc happy */
4403 (void) __cond_lock(*ptlp
,
4404 !(res
= __follow_pte_pmd(mm
, address
, range
,
4405 ptepp
, pmdpp
, ptlp
)));
4408 EXPORT_SYMBOL(follow_pte_pmd
);
4411 * follow_pfn - look up PFN at a user virtual address
4412 * @vma: memory mapping
4413 * @address: user virtual address
4414 * @pfn: location to store found PFN
4416 * Only IO mappings and raw PFN mappings are allowed.
4418 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4420 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4427 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4430 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4433 *pfn
= pte_pfn(*ptep
);
4434 pte_unmap_unlock(ptep
, ptl
);
4437 EXPORT_SYMBOL(follow_pfn
);
4439 #ifdef CONFIG_HAVE_IOREMAP_PROT
4440 int follow_phys(struct vm_area_struct
*vma
,
4441 unsigned long address
, unsigned int flags
,
4442 unsigned long *prot
, resource_size_t
*phys
)
4448 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4451 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4455 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4458 *prot
= pgprot_val(pte_pgprot(pte
));
4459 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4463 pte_unmap_unlock(ptep
, ptl
);
4468 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4469 void *buf
, int len
, int write
)
4471 resource_size_t phys_addr
;
4472 unsigned long prot
= 0;
4473 void __iomem
*maddr
;
4474 int offset
= addr
& (PAGE_SIZE
-1);
4476 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4479 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4484 memcpy_toio(maddr
+ offset
, buf
, len
);
4486 memcpy_fromio(buf
, maddr
+ offset
, len
);
4491 EXPORT_SYMBOL_GPL(generic_access_phys
);
4495 * Access another process' address space as given in mm. If non-NULL, use the
4496 * given task for page fault accounting.
4498 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4499 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4501 struct vm_area_struct
*vma
;
4502 void *old_buf
= buf
;
4503 int write
= gup_flags
& FOLL_WRITE
;
4505 if (down_read_killable(&mm
->mmap_sem
))
4508 /* ignore errors, just check how much was successfully transferred */
4510 int bytes
, ret
, offset
;
4512 struct page
*page
= NULL
;
4514 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4515 gup_flags
, &page
, &vma
, NULL
);
4517 #ifndef CONFIG_HAVE_IOREMAP_PROT
4521 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4522 * we can access using slightly different code.
4524 vma
= find_vma(mm
, addr
);
4525 if (!vma
|| vma
->vm_start
> addr
)
4527 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4528 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4536 offset
= addr
& (PAGE_SIZE
-1);
4537 if (bytes
> PAGE_SIZE
-offset
)
4538 bytes
= PAGE_SIZE
-offset
;
4542 copy_to_user_page(vma
, page
, addr
,
4543 maddr
+ offset
, buf
, bytes
);
4544 set_page_dirty_lock(page
);
4546 copy_from_user_page(vma
, page
, addr
,
4547 buf
, maddr
+ offset
, bytes
);
4556 up_read(&mm
->mmap_sem
);
4558 return buf
- old_buf
;
4562 * access_remote_vm - access another process' address space
4563 * @mm: the mm_struct of the target address space
4564 * @addr: start address to access
4565 * @buf: source or destination buffer
4566 * @len: number of bytes to transfer
4567 * @gup_flags: flags modifying lookup behaviour
4569 * The caller must hold a reference on @mm.
4571 * Return: number of bytes copied from source to destination.
4573 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4574 void *buf
, int len
, unsigned int gup_flags
)
4576 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4580 * Access another process' address space.
4581 * Source/target buffer must be kernel space,
4582 * Do not walk the page table directly, use get_user_pages
4584 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4585 void *buf
, int len
, unsigned int gup_flags
)
4587 struct mm_struct
*mm
;
4590 mm
= get_task_mm(tsk
);
4594 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4600 EXPORT_SYMBOL_GPL(access_process_vm
);
4603 * Print the name of a VMA.
4605 void print_vma_addr(char *prefix
, unsigned long ip
)
4607 struct mm_struct
*mm
= current
->mm
;
4608 struct vm_area_struct
*vma
;
4611 * we might be running from an atomic context so we cannot sleep
4613 if (!down_read_trylock(&mm
->mmap_sem
))
4616 vma
= find_vma(mm
, ip
);
4617 if (vma
&& vma
->vm_file
) {
4618 struct file
*f
= vma
->vm_file
;
4619 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4623 p
= file_path(f
, buf
, PAGE_SIZE
);
4626 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4628 vma
->vm_end
- vma
->vm_start
);
4629 free_page((unsigned long)buf
);
4632 up_read(&mm
->mmap_sem
);
4635 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4636 void __might_fault(const char *file
, int line
)
4639 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4640 * holding the mmap_sem, this is safe because kernel memory doesn't
4641 * get paged out, therefore we'll never actually fault, and the
4642 * below annotations will generate false positives.
4644 if (uaccess_kernel())
4646 if (pagefault_disabled())
4648 __might_sleep(file
, line
, 0);
4649 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4651 might_lock_read(¤t
->mm
->mmap_sem
);
4654 EXPORT_SYMBOL(__might_fault
);
4657 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4659 * Process all subpages of the specified huge page with the specified
4660 * operation. The target subpage will be processed last to keep its
4663 static inline void process_huge_page(
4664 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4665 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4669 unsigned long addr
= addr_hint
&
4670 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4672 /* Process target subpage last to keep its cache lines hot */
4674 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4675 if (2 * n
<= pages_per_huge_page
) {
4676 /* If target subpage in first half of huge page */
4679 /* Process subpages at the end of huge page */
4680 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4682 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4685 /* If target subpage in second half of huge page */
4686 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4687 l
= pages_per_huge_page
- n
;
4688 /* Process subpages at the begin of huge page */
4689 for (i
= 0; i
< base
; i
++) {
4691 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4695 * Process remaining subpages in left-right-left-right pattern
4696 * towards the target subpage
4698 for (i
= 0; i
< l
; i
++) {
4699 int left_idx
= base
+ i
;
4700 int right_idx
= base
+ 2 * l
- 1 - i
;
4703 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4705 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4709 static void clear_gigantic_page(struct page
*page
,
4711 unsigned int pages_per_huge_page
)
4714 struct page
*p
= page
;
4717 for (i
= 0; i
< pages_per_huge_page
;
4718 i
++, p
= mem_map_next(p
, page
, i
)) {
4720 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4724 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4726 struct page
*page
= arg
;
4728 clear_user_highpage(page
+ idx
, addr
);
4731 void clear_huge_page(struct page
*page
,
4732 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4734 unsigned long addr
= addr_hint
&
4735 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4737 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4738 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4742 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4745 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4747 struct vm_area_struct
*vma
,
4748 unsigned int pages_per_huge_page
)
4751 struct page
*dst_base
= dst
;
4752 struct page
*src_base
= src
;
4754 for (i
= 0; i
< pages_per_huge_page
; ) {
4756 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4759 dst
= mem_map_next(dst
, dst_base
, i
);
4760 src
= mem_map_next(src
, src_base
, i
);
4764 struct copy_subpage_arg
{
4767 struct vm_area_struct
*vma
;
4770 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4772 struct copy_subpage_arg
*copy_arg
= arg
;
4774 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4775 addr
, copy_arg
->vma
);
4778 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4779 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4780 unsigned int pages_per_huge_page
)
4782 unsigned long addr
= addr_hint
&
4783 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4784 struct copy_subpage_arg arg
= {
4790 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4791 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4792 pages_per_huge_page
);
4796 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4799 long copy_huge_page_from_user(struct page
*dst_page
,
4800 const void __user
*usr_src
,
4801 unsigned int pages_per_huge_page
,
4802 bool allow_pagefault
)
4804 void *src
= (void *)usr_src
;
4806 unsigned long i
, rc
= 0;
4807 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4809 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4810 if (allow_pagefault
)
4811 page_kaddr
= kmap(dst_page
+ i
);
4813 page_kaddr
= kmap_atomic(dst_page
+ i
);
4814 rc
= copy_from_user(page_kaddr
,
4815 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4817 if (allow_pagefault
)
4818 kunmap(dst_page
+ i
);
4820 kunmap_atomic(page_kaddr
);
4822 ret_val
-= (PAGE_SIZE
- rc
);
4830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4834 static struct kmem_cache
*page_ptl_cachep
;
4836 void __init
ptlock_cache_init(void)
4838 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4842 bool ptlock_alloc(struct page
*page
)
4846 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4853 void ptlock_free(struct page
*page
)
4855 kmem_cache_free(page_ptl_cachep
, page
->ptl
);