4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
40 static struct kmem_cache
*f2fs_inode_cachep
;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *f2fs_fault_name
[FAULT_MAX
] = {
45 [FAULT_KMALLOC
] = "kmalloc",
46 [FAULT_KVMALLOC
] = "kvmalloc",
47 [FAULT_PAGE_ALLOC
] = "page alloc",
48 [FAULT_PAGE_GET
] = "page get",
49 [FAULT_ALLOC_BIO
] = "alloc bio",
50 [FAULT_ALLOC_NID
] = "alloc nid",
51 [FAULT_ORPHAN
] = "orphan",
52 [FAULT_BLOCK
] = "no more block",
53 [FAULT_DIR_DEPTH
] = "too big dir depth",
54 [FAULT_EVICT_INODE
] = "evict_inode fail",
55 [FAULT_TRUNCATE
] = "truncate fail",
56 [FAULT_IO
] = "IO error",
57 [FAULT_CHECKPOINT
] = "checkpoint error",
58 [FAULT_DISCARD
] = "discard error",
61 void f2fs_build_fault_attr(struct f2fs_sb_info
*sbi
, unsigned int rate
,
64 struct f2fs_fault_info
*ffi
= &F2FS_OPTION(sbi
).fault_info
;
67 atomic_set(&ffi
->inject_ops
, 0);
68 ffi
->inject_rate
= rate
;
72 ffi
->inject_type
= type
;
75 memset(ffi
, 0, sizeof(struct f2fs_fault_info
));
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info
= {
81 .scan_objects
= f2fs_shrink_scan
,
82 .count_objects
= f2fs_shrink_count
,
83 .seeks
= DEFAULT_SEEKS
,
88 Opt_disable_roll_forward
,
99 Opt_disable_ext_identify
,
102 Opt_inline_xattr_size
,
140 Opt_test_dummy_encryption
,
144 static match_table_t f2fs_tokens
= {
145 {Opt_gc_background
, "background_gc=%s"},
146 {Opt_disable_roll_forward
, "disable_roll_forward"},
147 {Opt_norecovery
, "norecovery"},
148 {Opt_discard
, "discard"},
149 {Opt_nodiscard
, "nodiscard"},
150 {Opt_noheap
, "no_heap"},
152 {Opt_user_xattr
, "user_xattr"},
153 {Opt_nouser_xattr
, "nouser_xattr"},
155 {Opt_noacl
, "noacl"},
156 {Opt_active_logs
, "active_logs=%u"},
157 {Opt_disable_ext_identify
, "disable_ext_identify"},
158 {Opt_inline_xattr
, "inline_xattr"},
159 {Opt_noinline_xattr
, "noinline_xattr"},
160 {Opt_inline_xattr_size
, "inline_xattr_size=%u"},
161 {Opt_inline_data
, "inline_data"},
162 {Opt_inline_dentry
, "inline_dentry"},
163 {Opt_noinline_dentry
, "noinline_dentry"},
164 {Opt_flush_merge
, "flush_merge"},
165 {Opt_noflush_merge
, "noflush_merge"},
166 {Opt_nobarrier
, "nobarrier"},
167 {Opt_fastboot
, "fastboot"},
168 {Opt_extent_cache
, "extent_cache"},
169 {Opt_noextent_cache
, "noextent_cache"},
170 {Opt_noinline_data
, "noinline_data"},
171 {Opt_data_flush
, "data_flush"},
172 {Opt_reserve_root
, "reserve_root=%u"},
173 {Opt_resgid
, "resgid=%u"},
174 {Opt_resuid
, "resuid=%u"},
175 {Opt_mode
, "mode=%s"},
176 {Opt_io_size_bits
, "io_bits=%u"},
177 {Opt_fault_injection
, "fault_injection=%u"},
178 {Opt_fault_type
, "fault_type=%u"},
179 {Opt_lazytime
, "lazytime"},
180 {Opt_nolazytime
, "nolazytime"},
181 {Opt_quota
, "quota"},
182 {Opt_noquota
, "noquota"},
183 {Opt_usrquota
, "usrquota"},
184 {Opt_grpquota
, "grpquota"},
185 {Opt_prjquota
, "prjquota"},
186 {Opt_usrjquota
, "usrjquota=%s"},
187 {Opt_grpjquota
, "grpjquota=%s"},
188 {Opt_prjjquota
, "prjjquota=%s"},
189 {Opt_offusrjquota
, "usrjquota="},
190 {Opt_offgrpjquota
, "grpjquota="},
191 {Opt_offprjjquota
, "prjjquota="},
192 {Opt_jqfmt_vfsold
, "jqfmt=vfsold"},
193 {Opt_jqfmt_vfsv0
, "jqfmt=vfsv0"},
194 {Opt_jqfmt_vfsv1
, "jqfmt=vfsv1"},
195 {Opt_whint
, "whint_mode=%s"},
196 {Opt_alloc
, "alloc_mode=%s"},
197 {Opt_fsync
, "fsync_mode=%s"},
198 {Opt_test_dummy_encryption
, "test_dummy_encryption"},
202 void f2fs_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
204 struct va_format vaf
;
210 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level
, sb
->s_id
, &vaf
);
214 static inline void limit_reserve_root(struct f2fs_sb_info
*sbi
)
216 block_t limit
= (sbi
->user_block_count
<< 1) / 1000;
219 if (test_opt(sbi
, RESERVE_ROOT
) &&
220 F2FS_OPTION(sbi
).root_reserved_blocks
> limit
) {
221 F2FS_OPTION(sbi
).root_reserved_blocks
= limit
;
222 f2fs_msg(sbi
->sb
, KERN_INFO
,
223 "Reduce reserved blocks for root = %u",
224 F2FS_OPTION(sbi
).root_reserved_blocks
);
226 if (!test_opt(sbi
, RESERVE_ROOT
) &&
227 (!uid_eq(F2FS_OPTION(sbi
).s_resuid
,
228 make_kuid(&init_user_ns
, F2FS_DEF_RESUID
)) ||
229 !gid_eq(F2FS_OPTION(sbi
).s_resgid
,
230 make_kgid(&init_user_ns
, F2FS_DEF_RESGID
))))
231 f2fs_msg(sbi
->sb
, KERN_INFO
,
232 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233 from_kuid_munged(&init_user_ns
,
234 F2FS_OPTION(sbi
).s_resuid
),
235 from_kgid_munged(&init_user_ns
,
236 F2FS_OPTION(sbi
).s_resgid
));
239 static void init_once(void *foo
)
241 struct f2fs_inode_info
*fi
= (struct f2fs_inode_info
*) foo
;
243 inode_init_once(&fi
->vfs_inode
);
247 static const char * const quotatypes
[] = INITQFNAMES
;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block
*sb
, int qtype
,
252 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
256 if (sb_any_quota_loaded(sb
) && !F2FS_OPTION(sbi
).s_qf_names
[qtype
]) {
257 f2fs_msg(sb
, KERN_ERR
,
258 "Cannot change journaled "
259 "quota options when quota turned on");
262 if (f2fs_sb_has_quota_ino(sb
)) {
263 f2fs_msg(sb
, KERN_INFO
,
264 "QUOTA feature is enabled, so ignore qf_name");
268 qname
= match_strdup(args
);
270 f2fs_msg(sb
, KERN_ERR
,
271 "Not enough memory for storing quotafile name");
274 if (F2FS_OPTION(sbi
).s_qf_names
[qtype
]) {
275 if (strcmp(F2FS_OPTION(sbi
).s_qf_names
[qtype
], qname
) == 0)
278 f2fs_msg(sb
, KERN_ERR
,
279 "%s quota file already specified",
283 if (strchr(qname
, '/')) {
284 f2fs_msg(sb
, KERN_ERR
,
285 "quotafile must be on filesystem root");
288 F2FS_OPTION(sbi
).s_qf_names
[qtype
] = qname
;
296 static int f2fs_clear_qf_name(struct super_block
*sb
, int qtype
)
298 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
300 if (sb_any_quota_loaded(sb
) && F2FS_OPTION(sbi
).s_qf_names
[qtype
]) {
301 f2fs_msg(sb
, KERN_ERR
, "Cannot change journaled quota options"
302 " when quota turned on");
305 kfree(F2FS_OPTION(sbi
).s_qf_names
[qtype
]);
306 F2FS_OPTION(sbi
).s_qf_names
[qtype
] = NULL
;
310 static int f2fs_check_quota_options(struct f2fs_sb_info
*sbi
)
313 * We do the test below only for project quotas. 'usrquota' and
314 * 'grpquota' mount options are allowed even without quota feature
315 * to support legacy quotas in quota files.
317 if (test_opt(sbi
, PRJQUOTA
) && !f2fs_sb_has_project_quota(sbi
->sb
)) {
318 f2fs_msg(sbi
->sb
, KERN_ERR
, "Project quota feature not enabled. "
319 "Cannot enable project quota enforcement.");
322 if (F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
] ||
323 F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
] ||
324 F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
]) {
325 if (test_opt(sbi
, USRQUOTA
) &&
326 F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
])
327 clear_opt(sbi
, USRQUOTA
);
329 if (test_opt(sbi
, GRPQUOTA
) &&
330 F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
])
331 clear_opt(sbi
, GRPQUOTA
);
333 if (test_opt(sbi
, PRJQUOTA
) &&
334 F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
])
335 clear_opt(sbi
, PRJQUOTA
);
337 if (test_opt(sbi
, GRPQUOTA
) || test_opt(sbi
, USRQUOTA
) ||
338 test_opt(sbi
, PRJQUOTA
)) {
339 f2fs_msg(sbi
->sb
, KERN_ERR
, "old and new quota "
344 if (!F2FS_OPTION(sbi
).s_jquota_fmt
) {
345 f2fs_msg(sbi
->sb
, KERN_ERR
, "journaled quota format "
351 if (f2fs_sb_has_quota_ino(sbi
->sb
) && F2FS_OPTION(sbi
).s_jquota_fmt
) {
352 f2fs_msg(sbi
->sb
, KERN_INFO
,
353 "QUOTA feature is enabled, so ignore jquota_fmt");
354 F2FS_OPTION(sbi
).s_jquota_fmt
= 0;
360 static int parse_options(struct super_block
*sb
, char *options
)
362 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
363 substring_t args
[MAX_OPT_ARGS
];
375 while ((p
= strsep(&options
, ",")) != NULL
) {
380 * Initialize args struct so we know whether arg was
381 * found; some options take optional arguments.
383 args
[0].to
= args
[0].from
= NULL
;
384 token
= match_token(p
, f2fs_tokens
, args
);
387 case Opt_gc_background
:
388 name
= match_strdup(&args
[0]);
392 if (strlen(name
) == 2 && !strncmp(name
, "on", 2)) {
394 clear_opt(sbi
, FORCE_FG_GC
);
395 } else if (strlen(name
) == 3 && !strncmp(name
, "off", 3)) {
396 clear_opt(sbi
, BG_GC
);
397 clear_opt(sbi
, FORCE_FG_GC
);
398 } else if (strlen(name
) == 4 && !strncmp(name
, "sync", 4)) {
400 set_opt(sbi
, FORCE_FG_GC
);
407 case Opt_disable_roll_forward
:
408 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
411 /* this option mounts f2fs with ro */
412 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
413 if (!f2fs_readonly(sb
))
417 set_opt(sbi
, DISCARD
);
420 if (f2fs_sb_has_blkzoned(sb
)) {
421 f2fs_msg(sb
, KERN_WARNING
,
422 "discard is required for zoned block devices");
425 clear_opt(sbi
, DISCARD
);
428 set_opt(sbi
, NOHEAP
);
431 clear_opt(sbi
, NOHEAP
);
433 #ifdef CONFIG_F2FS_FS_XATTR
435 set_opt(sbi
, XATTR_USER
);
437 case Opt_nouser_xattr
:
438 clear_opt(sbi
, XATTR_USER
);
440 case Opt_inline_xattr
:
441 set_opt(sbi
, INLINE_XATTR
);
443 case Opt_noinline_xattr
:
444 clear_opt(sbi
, INLINE_XATTR
);
446 case Opt_inline_xattr_size
:
447 if (args
->from
&& match_int(args
, &arg
))
449 set_opt(sbi
, INLINE_XATTR_SIZE
);
450 F2FS_OPTION(sbi
).inline_xattr_size
= arg
;
454 f2fs_msg(sb
, KERN_INFO
,
455 "user_xattr options not supported");
457 case Opt_nouser_xattr
:
458 f2fs_msg(sb
, KERN_INFO
,
459 "nouser_xattr options not supported");
461 case Opt_inline_xattr
:
462 f2fs_msg(sb
, KERN_INFO
,
463 "inline_xattr options not supported");
465 case Opt_noinline_xattr
:
466 f2fs_msg(sb
, KERN_INFO
,
467 "noinline_xattr options not supported");
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
472 set_opt(sbi
, POSIX_ACL
);
475 clear_opt(sbi
, POSIX_ACL
);
479 f2fs_msg(sb
, KERN_INFO
, "acl options not supported");
482 f2fs_msg(sb
, KERN_INFO
, "noacl options not supported");
485 case Opt_active_logs
:
486 if (args
->from
&& match_int(args
, &arg
))
488 if (arg
!= 2 && arg
!= 4 && arg
!= NR_CURSEG_TYPE
)
490 F2FS_OPTION(sbi
).active_logs
= arg
;
492 case Opt_disable_ext_identify
:
493 set_opt(sbi
, DISABLE_EXT_IDENTIFY
);
495 case Opt_inline_data
:
496 set_opt(sbi
, INLINE_DATA
);
498 case Opt_inline_dentry
:
499 set_opt(sbi
, INLINE_DENTRY
);
501 case Opt_noinline_dentry
:
502 clear_opt(sbi
, INLINE_DENTRY
);
504 case Opt_flush_merge
:
505 set_opt(sbi
, FLUSH_MERGE
);
507 case Opt_noflush_merge
:
508 clear_opt(sbi
, FLUSH_MERGE
);
511 set_opt(sbi
, NOBARRIER
);
514 set_opt(sbi
, FASTBOOT
);
516 case Opt_extent_cache
:
517 set_opt(sbi
, EXTENT_CACHE
);
519 case Opt_noextent_cache
:
520 clear_opt(sbi
, EXTENT_CACHE
);
522 case Opt_noinline_data
:
523 clear_opt(sbi
, INLINE_DATA
);
526 set_opt(sbi
, DATA_FLUSH
);
528 case Opt_reserve_root
:
529 if (args
->from
&& match_int(args
, &arg
))
531 if (test_opt(sbi
, RESERVE_ROOT
)) {
532 f2fs_msg(sb
, KERN_INFO
,
533 "Preserve previous reserve_root=%u",
534 F2FS_OPTION(sbi
).root_reserved_blocks
);
536 F2FS_OPTION(sbi
).root_reserved_blocks
= arg
;
537 set_opt(sbi
, RESERVE_ROOT
);
541 if (args
->from
&& match_int(args
, &arg
))
543 uid
= make_kuid(current_user_ns(), arg
);
544 if (!uid_valid(uid
)) {
545 f2fs_msg(sb
, KERN_ERR
,
546 "Invalid uid value %d", arg
);
549 F2FS_OPTION(sbi
).s_resuid
= uid
;
552 if (args
->from
&& match_int(args
, &arg
))
554 gid
= make_kgid(current_user_ns(), arg
);
555 if (!gid_valid(gid
)) {
556 f2fs_msg(sb
, KERN_ERR
,
557 "Invalid gid value %d", arg
);
560 F2FS_OPTION(sbi
).s_resgid
= gid
;
563 name
= match_strdup(&args
[0]);
567 if (strlen(name
) == 8 &&
568 !strncmp(name
, "adaptive", 8)) {
569 if (f2fs_sb_has_blkzoned(sb
)) {
570 f2fs_msg(sb
, KERN_WARNING
,
571 "adaptive mode is not allowed with "
572 "zoned block device feature");
576 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
577 } else if (strlen(name
) == 3 &&
578 !strncmp(name
, "lfs", 3)) {
579 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
586 case Opt_io_size_bits
:
587 if (args
->from
&& match_int(args
, &arg
))
589 if (arg
> __ilog2_u32(BIO_MAX_PAGES
)) {
590 f2fs_msg(sb
, KERN_WARNING
,
591 "Not support %d, larger than %d",
592 1 << arg
, BIO_MAX_PAGES
);
595 F2FS_OPTION(sbi
).write_io_size_bits
= arg
;
597 case Opt_fault_injection
:
598 if (args
->from
&& match_int(args
, &arg
))
600 #ifdef CONFIG_F2FS_FAULT_INJECTION
601 f2fs_build_fault_attr(sbi
, arg
, F2FS_ALL_FAULT_TYPE
);
602 set_opt(sbi
, FAULT_INJECTION
);
604 f2fs_msg(sb
, KERN_INFO
,
605 "FAULT_INJECTION was not selected");
609 if (args
->from
&& match_int(args
, &arg
))
611 #ifdef CONFIG_F2FS_FAULT_INJECTION
612 f2fs_build_fault_attr(sbi
, 0, arg
);
613 set_opt(sbi
, FAULT_INJECTION
);
615 f2fs_msg(sb
, KERN_INFO
,
616 "FAULT_INJECTION was not selected");
620 sb
->s_flags
|= SB_LAZYTIME
;
623 sb
->s_flags
&= ~SB_LAZYTIME
;
628 set_opt(sbi
, USRQUOTA
);
631 set_opt(sbi
, GRPQUOTA
);
634 set_opt(sbi
, PRJQUOTA
);
637 ret
= f2fs_set_qf_name(sb
, USRQUOTA
, &args
[0]);
642 ret
= f2fs_set_qf_name(sb
, GRPQUOTA
, &args
[0]);
647 ret
= f2fs_set_qf_name(sb
, PRJQUOTA
, &args
[0]);
651 case Opt_offusrjquota
:
652 ret
= f2fs_clear_qf_name(sb
, USRQUOTA
);
656 case Opt_offgrpjquota
:
657 ret
= f2fs_clear_qf_name(sb
, GRPQUOTA
);
661 case Opt_offprjjquota
:
662 ret
= f2fs_clear_qf_name(sb
, PRJQUOTA
);
666 case Opt_jqfmt_vfsold
:
667 F2FS_OPTION(sbi
).s_jquota_fmt
= QFMT_VFS_OLD
;
669 case Opt_jqfmt_vfsv0
:
670 F2FS_OPTION(sbi
).s_jquota_fmt
= QFMT_VFS_V0
;
672 case Opt_jqfmt_vfsv1
:
673 F2FS_OPTION(sbi
).s_jquota_fmt
= QFMT_VFS_V1
;
676 clear_opt(sbi
, QUOTA
);
677 clear_opt(sbi
, USRQUOTA
);
678 clear_opt(sbi
, GRPQUOTA
);
679 clear_opt(sbi
, PRJQUOTA
);
689 case Opt_offusrjquota
:
690 case Opt_offgrpjquota
:
691 case Opt_offprjjquota
:
692 case Opt_jqfmt_vfsold
:
693 case Opt_jqfmt_vfsv0
:
694 case Opt_jqfmt_vfsv1
:
696 f2fs_msg(sb
, KERN_INFO
,
697 "quota operations not supported");
701 name
= match_strdup(&args
[0]);
704 if (strlen(name
) == 10 &&
705 !strncmp(name
, "user-based", 10)) {
706 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_USER
;
707 } else if (strlen(name
) == 3 &&
708 !strncmp(name
, "off", 3)) {
709 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_OFF
;
710 } else if (strlen(name
) == 8 &&
711 !strncmp(name
, "fs-based", 8)) {
712 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_FS
;
720 name
= match_strdup(&args
[0]);
724 if (strlen(name
) == 7 &&
725 !strncmp(name
, "default", 7)) {
726 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_DEFAULT
;
727 } else if (strlen(name
) == 5 &&
728 !strncmp(name
, "reuse", 5)) {
729 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_REUSE
;
737 name
= match_strdup(&args
[0]);
740 if (strlen(name
) == 5 &&
741 !strncmp(name
, "posix", 5)) {
742 F2FS_OPTION(sbi
).fsync_mode
= FSYNC_MODE_POSIX
;
743 } else if (strlen(name
) == 6 &&
744 !strncmp(name
, "strict", 6)) {
745 F2FS_OPTION(sbi
).fsync_mode
= FSYNC_MODE_STRICT
;
746 } else if (strlen(name
) == 9 &&
747 !strncmp(name
, "nobarrier", 9)) {
748 F2FS_OPTION(sbi
).fsync_mode
=
749 FSYNC_MODE_NOBARRIER
;
756 case Opt_test_dummy_encryption
:
757 #ifdef CONFIG_F2FS_FS_ENCRYPTION
758 if (!f2fs_sb_has_encrypt(sb
)) {
759 f2fs_msg(sb
, KERN_ERR
, "Encrypt feature is off");
763 F2FS_OPTION(sbi
).test_dummy_encryption
= true;
764 f2fs_msg(sb
, KERN_INFO
,
765 "Test dummy encryption mode enabled");
767 f2fs_msg(sb
, KERN_INFO
,
768 "Test dummy encryption mount option ignored");
772 f2fs_msg(sb
, KERN_ERR
,
773 "Unrecognized mount option \"%s\" or missing value",
779 if (f2fs_check_quota_options(sbi
))
782 if (f2fs_sb_has_quota_ino(sbi
->sb
) && !f2fs_readonly(sbi
->sb
)) {
783 f2fs_msg(sbi
->sb
, KERN_INFO
,
784 "Filesystem with quota feature cannot be mounted RDWR "
785 "without CONFIG_QUOTA");
788 if (f2fs_sb_has_project_quota(sbi
->sb
) && !f2fs_readonly(sbi
->sb
)) {
789 f2fs_msg(sb
, KERN_ERR
,
790 "Filesystem with project quota feature cannot be "
791 "mounted RDWR without CONFIG_QUOTA");
796 if (F2FS_IO_SIZE_BITS(sbi
) && !test_opt(sbi
, LFS
)) {
797 f2fs_msg(sb
, KERN_ERR
,
798 "Should set mode=lfs with %uKB-sized IO",
799 F2FS_IO_SIZE_KB(sbi
));
803 if (test_opt(sbi
, INLINE_XATTR_SIZE
)) {
804 if (!f2fs_sb_has_extra_attr(sb
) ||
805 !f2fs_sb_has_flexible_inline_xattr(sb
)) {
806 f2fs_msg(sb
, KERN_ERR
,
807 "extra_attr or flexible_inline_xattr "
811 if (!test_opt(sbi
, INLINE_XATTR
)) {
812 f2fs_msg(sb
, KERN_ERR
,
813 "inline_xattr_size option should be "
814 "set with inline_xattr option");
817 if (F2FS_OPTION(sbi
).inline_xattr_size
<
818 sizeof(struct f2fs_xattr_header
) / sizeof(__le32
) ||
819 F2FS_OPTION(sbi
).inline_xattr_size
>
820 DEF_ADDRS_PER_INODE
-
821 F2FS_TOTAL_EXTRA_ATTR_SIZE
/ sizeof(__le32
) -
822 DEF_INLINE_RESERVED_SIZE
-
823 MIN_INLINE_DENTRY_SIZE
/ sizeof(__le32
)) {
824 f2fs_msg(sb
, KERN_ERR
,
825 "inline xattr size is out of range");
830 /* Not pass down write hints if the number of active logs is lesser
831 * than NR_CURSEG_TYPE.
833 if (F2FS_OPTION(sbi
).active_logs
!= NR_CURSEG_TYPE
)
834 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_OFF
;
838 static struct inode
*f2fs_alloc_inode(struct super_block
*sb
)
840 struct f2fs_inode_info
*fi
;
842 fi
= kmem_cache_alloc(f2fs_inode_cachep
, GFP_F2FS_ZERO
);
846 init_once((void *) fi
);
848 /* Initialize f2fs-specific inode info */
849 atomic_set(&fi
->dirty_pages
, 0);
850 init_rwsem(&fi
->i_sem
);
851 INIT_LIST_HEAD(&fi
->dirty_list
);
852 INIT_LIST_HEAD(&fi
->gdirty_list
);
853 INIT_LIST_HEAD(&fi
->inmem_ilist
);
854 INIT_LIST_HEAD(&fi
->inmem_pages
);
855 mutex_init(&fi
->inmem_lock
);
856 init_rwsem(&fi
->i_gc_rwsem
[READ
]);
857 init_rwsem(&fi
->i_gc_rwsem
[WRITE
]);
858 init_rwsem(&fi
->i_mmap_sem
);
859 init_rwsem(&fi
->i_xattr_sem
);
861 /* Will be used by directory only */
862 fi
->i_dir_level
= F2FS_SB(sb
)->dir_level
;
864 return &fi
->vfs_inode
;
867 static int f2fs_drop_inode(struct inode
*inode
)
871 * This is to avoid a deadlock condition like below.
872 * writeback_single_inode(inode)
873 * - f2fs_write_data_page
874 * - f2fs_gc -> iput -> evict
875 * - inode_wait_for_writeback(inode)
877 if ((!inode_unhashed(inode
) && inode
->i_state
& I_SYNC
)) {
878 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
879 /* to avoid evict_inode call simultaneously */
880 atomic_inc(&inode
->i_count
);
881 spin_unlock(&inode
->i_lock
);
883 /* some remained atomic pages should discarded */
884 if (f2fs_is_atomic_file(inode
))
885 f2fs_drop_inmem_pages(inode
);
887 /* should remain fi->extent_tree for writepage */
888 f2fs_destroy_extent_node(inode
);
890 sb_start_intwrite(inode
->i_sb
);
891 f2fs_i_size_write(inode
, 0);
893 if (F2FS_HAS_BLOCKS(inode
))
894 f2fs_truncate(inode
);
896 sb_end_intwrite(inode
->i_sb
);
898 spin_lock(&inode
->i_lock
);
899 atomic_dec(&inode
->i_count
);
901 trace_f2fs_drop_inode(inode
, 0);
904 ret
= generic_drop_inode(inode
);
905 trace_f2fs_drop_inode(inode
, ret
);
909 int f2fs_inode_dirtied(struct inode
*inode
, bool sync
)
911 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
914 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
915 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
918 set_inode_flag(inode
, FI_DIRTY_INODE
);
919 stat_inc_dirty_inode(sbi
, DIRTY_META
);
921 if (sync
&& list_empty(&F2FS_I(inode
)->gdirty_list
)) {
922 list_add_tail(&F2FS_I(inode
)->gdirty_list
,
923 &sbi
->inode_list
[DIRTY_META
]);
924 inc_page_count(sbi
, F2FS_DIRTY_IMETA
);
926 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
930 void f2fs_inode_synced(struct inode
*inode
)
932 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
934 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
935 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
936 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
939 if (!list_empty(&F2FS_I(inode
)->gdirty_list
)) {
940 list_del_init(&F2FS_I(inode
)->gdirty_list
);
941 dec_page_count(sbi
, F2FS_DIRTY_IMETA
);
943 clear_inode_flag(inode
, FI_DIRTY_INODE
);
944 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
945 stat_dec_dirty_inode(F2FS_I_SB(inode
), DIRTY_META
);
946 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
950 * f2fs_dirty_inode() is called from __mark_inode_dirty()
952 * We should call set_dirty_inode to write the dirty inode through write_inode.
954 static void f2fs_dirty_inode(struct inode
*inode
, int flags
)
956 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
958 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
959 inode
->i_ino
== F2FS_META_INO(sbi
))
962 if (flags
== I_DIRTY_TIME
)
965 if (is_inode_flag_set(inode
, FI_AUTO_RECOVER
))
966 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
968 f2fs_inode_dirtied(inode
, false);
971 static void f2fs_i_callback(struct rcu_head
*head
)
973 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
974 kmem_cache_free(f2fs_inode_cachep
, F2FS_I(inode
));
977 static void f2fs_destroy_inode(struct inode
*inode
)
979 call_rcu(&inode
->i_rcu
, f2fs_i_callback
);
982 static void destroy_percpu_info(struct f2fs_sb_info
*sbi
)
984 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
985 percpu_counter_destroy(&sbi
->total_valid_inode_count
);
988 static void destroy_device_list(struct f2fs_sb_info
*sbi
)
992 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
993 blkdev_put(FDEV(i
).bdev
, FMODE_EXCL
);
994 #ifdef CONFIG_BLK_DEV_ZONED
995 kfree(FDEV(i
).blkz_type
);
1001 static void f2fs_put_super(struct super_block
*sb
)
1003 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1007 f2fs_quota_off_umount(sb
);
1009 /* prevent remaining shrinker jobs */
1010 mutex_lock(&sbi
->umount_mutex
);
1013 * We don't need to do checkpoint when superblock is clean.
1014 * But, the previous checkpoint was not done by umount, it needs to do
1015 * clean checkpoint again.
1017 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
1018 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
1019 struct cp_control cpc
= {
1020 .reason
= CP_UMOUNT
,
1022 f2fs_write_checkpoint(sbi
, &cpc
);
1025 /* be sure to wait for any on-going discard commands */
1026 dropped
= f2fs_wait_discard_bios(sbi
);
1028 if ((f2fs_hw_support_discard(sbi
) || f2fs_hw_should_discard(sbi
)) &&
1029 !sbi
->discard_blks
&& !dropped
) {
1030 struct cp_control cpc
= {
1031 .reason
= CP_UMOUNT
| CP_TRIMMED
,
1033 f2fs_write_checkpoint(sbi
, &cpc
);
1037 * normally superblock is clean, so we need to release this.
1038 * In addition, EIO will skip do checkpoint, we need this as well.
1040 f2fs_release_ino_entry(sbi
, true);
1042 f2fs_leave_shrinker(sbi
);
1043 mutex_unlock(&sbi
->umount_mutex
);
1045 /* our cp_error case, we can wait for any writeback page */
1046 f2fs_flush_merged_writes(sbi
);
1048 f2fs_wait_on_all_pages_writeback(sbi
);
1050 f2fs_bug_on(sbi
, sbi
->fsync_node_num
);
1052 iput(sbi
->node_inode
);
1053 iput(sbi
->meta_inode
);
1056 * iput() can update stat information, if f2fs_write_checkpoint()
1057 * above failed with error.
1059 f2fs_destroy_stats(sbi
);
1061 /* destroy f2fs internal modules */
1062 f2fs_destroy_node_manager(sbi
);
1063 f2fs_destroy_segment_manager(sbi
);
1067 f2fs_unregister_sysfs(sbi
);
1069 sb
->s_fs_info
= NULL
;
1070 if (sbi
->s_chksum_driver
)
1071 crypto_free_shash(sbi
->s_chksum_driver
);
1072 kfree(sbi
->raw_super
);
1074 destroy_device_list(sbi
);
1075 mempool_destroy(sbi
->write_io_dummy
);
1077 for (i
= 0; i
< MAXQUOTAS
; i
++)
1078 kfree(F2FS_OPTION(sbi
).s_qf_names
[i
]);
1080 destroy_percpu_info(sbi
);
1081 for (i
= 0; i
< NR_PAGE_TYPE
; i
++)
1082 kfree(sbi
->write_io
[i
]);
1086 int f2fs_sync_fs(struct super_block
*sb
, int sync
)
1088 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1091 if (unlikely(f2fs_cp_error(sbi
)))
1094 trace_f2fs_sync_fs(sb
, sync
);
1096 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1100 struct cp_control cpc
;
1102 cpc
.reason
= __get_cp_reason(sbi
);
1104 mutex_lock(&sbi
->gc_mutex
);
1105 err
= f2fs_write_checkpoint(sbi
, &cpc
);
1106 mutex_unlock(&sbi
->gc_mutex
);
1108 f2fs_trace_ios(NULL
, 1);
1113 static int f2fs_freeze(struct super_block
*sb
)
1115 if (f2fs_readonly(sb
))
1118 /* IO error happened before */
1119 if (unlikely(f2fs_cp_error(F2FS_SB(sb
))))
1122 /* must be clean, since sync_filesystem() was already called */
1123 if (is_sbi_flag_set(F2FS_SB(sb
), SBI_IS_DIRTY
))
1128 static int f2fs_unfreeze(struct super_block
*sb
)
1134 static int f2fs_statfs_project(struct super_block
*sb
,
1135 kprojid_t projid
, struct kstatfs
*buf
)
1138 struct dquot
*dquot
;
1142 qid
= make_kqid_projid(projid
);
1143 dquot
= dqget(sb
, qid
);
1145 return PTR_ERR(dquot
);
1146 spin_lock(&dquot
->dq_dqb_lock
);
1148 limit
= (dquot
->dq_dqb
.dqb_bsoftlimit
?
1149 dquot
->dq_dqb
.dqb_bsoftlimit
:
1150 dquot
->dq_dqb
.dqb_bhardlimit
) >> sb
->s_blocksize_bits
;
1151 if (limit
&& buf
->f_blocks
> limit
) {
1152 curblock
= dquot
->dq_dqb
.dqb_curspace
>> sb
->s_blocksize_bits
;
1153 buf
->f_blocks
= limit
;
1154 buf
->f_bfree
= buf
->f_bavail
=
1155 (buf
->f_blocks
> curblock
) ?
1156 (buf
->f_blocks
- curblock
) : 0;
1159 limit
= dquot
->dq_dqb
.dqb_isoftlimit
?
1160 dquot
->dq_dqb
.dqb_isoftlimit
:
1161 dquot
->dq_dqb
.dqb_ihardlimit
;
1162 if (limit
&& buf
->f_files
> limit
) {
1163 buf
->f_files
= limit
;
1165 (buf
->f_files
> dquot
->dq_dqb
.dqb_curinodes
) ?
1166 (buf
->f_files
- dquot
->dq_dqb
.dqb_curinodes
) : 0;
1169 spin_unlock(&dquot
->dq_dqb_lock
);
1175 static int f2fs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1177 struct super_block
*sb
= dentry
->d_sb
;
1178 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1179 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
1180 block_t total_count
, user_block_count
, start_count
;
1181 u64 avail_node_count
;
1183 total_count
= le64_to_cpu(sbi
->raw_super
->block_count
);
1184 user_block_count
= sbi
->user_block_count
;
1185 start_count
= le32_to_cpu(sbi
->raw_super
->segment0_blkaddr
);
1186 buf
->f_type
= F2FS_SUPER_MAGIC
;
1187 buf
->f_bsize
= sbi
->blocksize
;
1189 buf
->f_blocks
= total_count
- start_count
;
1190 buf
->f_bfree
= user_block_count
- valid_user_blocks(sbi
) -
1191 sbi
->current_reserved_blocks
;
1192 if (buf
->f_bfree
> F2FS_OPTION(sbi
).root_reserved_blocks
)
1193 buf
->f_bavail
= buf
->f_bfree
-
1194 F2FS_OPTION(sbi
).root_reserved_blocks
;
1198 avail_node_count
= sbi
->total_node_count
- sbi
->nquota_files
-
1199 F2FS_RESERVED_NODE_NUM
;
1201 if (avail_node_count
> user_block_count
) {
1202 buf
->f_files
= user_block_count
;
1203 buf
->f_ffree
= buf
->f_bavail
;
1205 buf
->f_files
= avail_node_count
;
1206 buf
->f_ffree
= min(avail_node_count
- valid_node_count(sbi
),
1210 buf
->f_namelen
= F2FS_NAME_LEN
;
1211 buf
->f_fsid
.val
[0] = (u32
)id
;
1212 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
1215 if (is_inode_flag_set(dentry
->d_inode
, FI_PROJ_INHERIT
) &&
1216 sb_has_quota_limits_enabled(sb
, PRJQUOTA
)) {
1217 f2fs_statfs_project(sb
, F2FS_I(dentry
->d_inode
)->i_projid
, buf
);
1223 static inline void f2fs_show_quota_options(struct seq_file
*seq
,
1224 struct super_block
*sb
)
1227 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1229 if (F2FS_OPTION(sbi
).s_jquota_fmt
) {
1232 switch (F2FS_OPTION(sbi
).s_jquota_fmt
) {
1243 seq_printf(seq
, ",jqfmt=%s", fmtname
);
1246 if (F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
])
1247 seq_show_option(seq
, "usrjquota",
1248 F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
]);
1250 if (F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
])
1251 seq_show_option(seq
, "grpjquota",
1252 F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
]);
1254 if (F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
])
1255 seq_show_option(seq
, "prjjquota",
1256 F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
]);
1260 static int f2fs_show_options(struct seq_file
*seq
, struct dentry
*root
)
1262 struct f2fs_sb_info
*sbi
= F2FS_SB(root
->d_sb
);
1264 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, BG_GC
)) {
1265 if (test_opt(sbi
, FORCE_FG_GC
))
1266 seq_printf(seq
, ",background_gc=%s", "sync");
1268 seq_printf(seq
, ",background_gc=%s", "on");
1270 seq_printf(seq
, ",background_gc=%s", "off");
1272 if (test_opt(sbi
, DISABLE_ROLL_FORWARD
))
1273 seq_puts(seq
, ",disable_roll_forward");
1274 if (test_opt(sbi
, DISCARD
))
1275 seq_puts(seq
, ",discard");
1276 if (test_opt(sbi
, NOHEAP
))
1277 seq_puts(seq
, ",no_heap");
1279 seq_puts(seq
, ",heap");
1280 #ifdef CONFIG_F2FS_FS_XATTR
1281 if (test_opt(sbi
, XATTR_USER
))
1282 seq_puts(seq
, ",user_xattr");
1284 seq_puts(seq
, ",nouser_xattr");
1285 if (test_opt(sbi
, INLINE_XATTR
))
1286 seq_puts(seq
, ",inline_xattr");
1288 seq_puts(seq
, ",noinline_xattr");
1289 if (test_opt(sbi
, INLINE_XATTR_SIZE
))
1290 seq_printf(seq
, ",inline_xattr_size=%u",
1291 F2FS_OPTION(sbi
).inline_xattr_size
);
1293 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1294 if (test_opt(sbi
, POSIX_ACL
))
1295 seq_puts(seq
, ",acl");
1297 seq_puts(seq
, ",noacl");
1299 if (test_opt(sbi
, DISABLE_EXT_IDENTIFY
))
1300 seq_puts(seq
, ",disable_ext_identify");
1301 if (test_opt(sbi
, INLINE_DATA
))
1302 seq_puts(seq
, ",inline_data");
1304 seq_puts(seq
, ",noinline_data");
1305 if (test_opt(sbi
, INLINE_DENTRY
))
1306 seq_puts(seq
, ",inline_dentry");
1308 seq_puts(seq
, ",noinline_dentry");
1309 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, FLUSH_MERGE
))
1310 seq_puts(seq
, ",flush_merge");
1311 if (test_opt(sbi
, NOBARRIER
))
1312 seq_puts(seq
, ",nobarrier");
1313 if (test_opt(sbi
, FASTBOOT
))
1314 seq_puts(seq
, ",fastboot");
1315 if (test_opt(sbi
, EXTENT_CACHE
))
1316 seq_puts(seq
, ",extent_cache");
1318 seq_puts(seq
, ",noextent_cache");
1319 if (test_opt(sbi
, DATA_FLUSH
))
1320 seq_puts(seq
, ",data_flush");
1322 seq_puts(seq
, ",mode=");
1323 if (test_opt(sbi
, ADAPTIVE
))
1324 seq_puts(seq
, "adaptive");
1325 else if (test_opt(sbi
, LFS
))
1326 seq_puts(seq
, "lfs");
1327 seq_printf(seq
, ",active_logs=%u", F2FS_OPTION(sbi
).active_logs
);
1328 if (test_opt(sbi
, RESERVE_ROOT
))
1329 seq_printf(seq
, ",reserve_root=%u,resuid=%u,resgid=%u",
1330 F2FS_OPTION(sbi
).root_reserved_blocks
,
1331 from_kuid_munged(&init_user_ns
,
1332 F2FS_OPTION(sbi
).s_resuid
),
1333 from_kgid_munged(&init_user_ns
,
1334 F2FS_OPTION(sbi
).s_resgid
));
1335 if (F2FS_IO_SIZE_BITS(sbi
))
1336 seq_printf(seq
, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi
));
1337 #ifdef CONFIG_F2FS_FAULT_INJECTION
1338 if (test_opt(sbi
, FAULT_INJECTION
)) {
1339 seq_printf(seq
, ",fault_injection=%u",
1340 F2FS_OPTION(sbi
).fault_info
.inject_rate
);
1341 seq_printf(seq
, ",fault_type=%u",
1342 F2FS_OPTION(sbi
).fault_info
.inject_type
);
1346 if (test_opt(sbi
, QUOTA
))
1347 seq_puts(seq
, ",quota");
1348 if (test_opt(sbi
, USRQUOTA
))
1349 seq_puts(seq
, ",usrquota");
1350 if (test_opt(sbi
, GRPQUOTA
))
1351 seq_puts(seq
, ",grpquota");
1352 if (test_opt(sbi
, PRJQUOTA
))
1353 seq_puts(seq
, ",prjquota");
1355 f2fs_show_quota_options(seq
, sbi
->sb
);
1356 if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_USER
)
1357 seq_printf(seq
, ",whint_mode=%s", "user-based");
1358 else if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_FS
)
1359 seq_printf(seq
, ",whint_mode=%s", "fs-based");
1360 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1361 if (F2FS_OPTION(sbi
).test_dummy_encryption
)
1362 seq_puts(seq
, ",test_dummy_encryption");
1365 if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_DEFAULT
)
1366 seq_printf(seq
, ",alloc_mode=%s", "default");
1367 else if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_REUSE
)
1368 seq_printf(seq
, ",alloc_mode=%s", "reuse");
1370 if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_POSIX
)
1371 seq_printf(seq
, ",fsync_mode=%s", "posix");
1372 else if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_STRICT
)
1373 seq_printf(seq
, ",fsync_mode=%s", "strict");
1374 else if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_NOBARRIER
)
1375 seq_printf(seq
, ",fsync_mode=%s", "nobarrier");
1379 static void default_options(struct f2fs_sb_info
*sbi
)
1381 /* init some FS parameters */
1382 F2FS_OPTION(sbi
).active_logs
= NR_CURSEG_TYPE
;
1383 F2FS_OPTION(sbi
).inline_xattr_size
= DEFAULT_INLINE_XATTR_ADDRS
;
1384 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_OFF
;
1385 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_DEFAULT
;
1386 F2FS_OPTION(sbi
).fsync_mode
= FSYNC_MODE_POSIX
;
1387 F2FS_OPTION(sbi
).test_dummy_encryption
= false;
1388 F2FS_OPTION(sbi
).s_resuid
= make_kuid(&init_user_ns
, F2FS_DEF_RESUID
);
1389 F2FS_OPTION(sbi
).s_resgid
= make_kgid(&init_user_ns
, F2FS_DEF_RESGID
);
1391 set_opt(sbi
, BG_GC
);
1392 set_opt(sbi
, INLINE_XATTR
);
1393 set_opt(sbi
, INLINE_DATA
);
1394 set_opt(sbi
, INLINE_DENTRY
);
1395 set_opt(sbi
, EXTENT_CACHE
);
1396 set_opt(sbi
, NOHEAP
);
1397 sbi
->sb
->s_flags
|= SB_LAZYTIME
;
1398 set_opt(sbi
, FLUSH_MERGE
);
1399 set_opt(sbi
, DISCARD
);
1400 if (f2fs_sb_has_blkzoned(sbi
->sb
))
1401 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
1403 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
1405 #ifdef CONFIG_F2FS_FS_XATTR
1406 set_opt(sbi
, XATTR_USER
);
1408 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1409 set_opt(sbi
, POSIX_ACL
);
1412 f2fs_build_fault_attr(sbi
, 0, 0);
1416 static int f2fs_enable_quotas(struct super_block
*sb
);
1418 static int f2fs_remount(struct super_block
*sb
, int *flags
, char *data
)
1420 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1421 struct f2fs_mount_info org_mount_opt
;
1422 unsigned long old_sb_flags
;
1424 bool need_restart_gc
= false;
1425 bool need_stop_gc
= false;
1426 bool no_extent_cache
= !test_opt(sbi
, EXTENT_CACHE
);
1432 * Save the old mount options in case we
1433 * need to restore them.
1435 org_mount_opt
= sbi
->mount_opt
;
1436 old_sb_flags
= sb
->s_flags
;
1439 org_mount_opt
.s_jquota_fmt
= F2FS_OPTION(sbi
).s_jquota_fmt
;
1440 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1441 if (F2FS_OPTION(sbi
).s_qf_names
[i
]) {
1442 org_mount_opt
.s_qf_names
[i
] =
1443 kstrdup(F2FS_OPTION(sbi
).s_qf_names
[i
],
1445 if (!org_mount_opt
.s_qf_names
[i
]) {
1446 for (j
= 0; j
< i
; j
++)
1447 kfree(org_mount_opt
.s_qf_names
[j
]);
1451 org_mount_opt
.s_qf_names
[i
] = NULL
;
1456 /* recover superblocks we couldn't write due to previous RO mount */
1457 if (!(*flags
& SB_RDONLY
) && is_sbi_flag_set(sbi
, SBI_NEED_SB_WRITE
)) {
1458 err
= f2fs_commit_super(sbi
, false);
1459 f2fs_msg(sb
, KERN_INFO
,
1460 "Try to recover all the superblocks, ret: %d", err
);
1462 clear_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1465 default_options(sbi
);
1467 /* parse mount options */
1468 err
= parse_options(sb
, data
);
1473 * Previous and new state of filesystem is RO,
1474 * so skip checking GC and FLUSH_MERGE conditions.
1476 if (f2fs_readonly(sb
) && (*flags
& SB_RDONLY
))
1480 if (!f2fs_readonly(sb
) && (*flags
& SB_RDONLY
)) {
1481 err
= dquot_suspend(sb
, -1);
1484 } else if (f2fs_readonly(sb
) && !(*flags
& MS_RDONLY
)) {
1485 /* dquot_resume needs RW */
1486 sb
->s_flags
&= ~SB_RDONLY
;
1487 if (sb_any_quota_suspended(sb
)) {
1488 dquot_resume(sb
, -1);
1489 } else if (f2fs_sb_has_quota_ino(sb
)) {
1490 err
= f2fs_enable_quotas(sb
);
1496 /* disallow enable/disable extent_cache dynamically */
1497 if (no_extent_cache
== !!test_opt(sbi
, EXTENT_CACHE
)) {
1499 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1500 "switch extent_cache option is not allowed");
1505 * We stop the GC thread if FS is mounted as RO
1506 * or if background_gc = off is passed in mount
1507 * option. Also sync the filesystem.
1509 if ((*flags
& SB_RDONLY
) || !test_opt(sbi
, BG_GC
)) {
1510 if (sbi
->gc_thread
) {
1511 f2fs_stop_gc_thread(sbi
);
1512 need_restart_gc
= true;
1514 } else if (!sbi
->gc_thread
) {
1515 err
= f2fs_start_gc_thread(sbi
);
1518 need_stop_gc
= true;
1521 if (*flags
& SB_RDONLY
||
1522 F2FS_OPTION(sbi
).whint_mode
!= org_mount_opt
.whint_mode
) {
1523 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
1526 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1527 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
1528 f2fs_sync_fs(sb
, 1);
1529 clear_sbi_flag(sbi
, SBI_IS_CLOSE
);
1533 * We stop issue flush thread if FS is mounted as RO
1534 * or if flush_merge is not passed in mount option.
1536 if ((*flags
& SB_RDONLY
) || !test_opt(sbi
, FLUSH_MERGE
)) {
1537 clear_opt(sbi
, FLUSH_MERGE
);
1538 f2fs_destroy_flush_cmd_control(sbi
, false);
1540 err
= f2fs_create_flush_cmd_control(sbi
);
1546 /* Release old quota file names */
1547 for (i
= 0; i
< MAXQUOTAS
; i
++)
1548 kfree(org_mount_opt
.s_qf_names
[i
]);
1550 /* Update the POSIXACL Flag */
1551 sb
->s_flags
= (sb
->s_flags
& ~SB_POSIXACL
) |
1552 (test_opt(sbi
, POSIX_ACL
) ? SB_POSIXACL
: 0);
1554 limit_reserve_root(sbi
);
1557 if (need_restart_gc
) {
1558 if (f2fs_start_gc_thread(sbi
))
1559 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1560 "background gc thread has stopped");
1561 } else if (need_stop_gc
) {
1562 f2fs_stop_gc_thread(sbi
);
1566 F2FS_OPTION(sbi
).s_jquota_fmt
= org_mount_opt
.s_jquota_fmt
;
1567 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1568 kfree(F2FS_OPTION(sbi
).s_qf_names
[i
]);
1569 F2FS_OPTION(sbi
).s_qf_names
[i
] = org_mount_opt
.s_qf_names
[i
];
1572 sbi
->mount_opt
= org_mount_opt
;
1573 sb
->s_flags
= old_sb_flags
;
1578 /* Read data from quotafile */
1579 static ssize_t
f2fs_quota_read(struct super_block
*sb
, int type
, char *data
,
1580 size_t len
, loff_t off
)
1582 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1583 struct address_space
*mapping
= inode
->i_mapping
;
1584 block_t blkidx
= F2FS_BYTES_TO_BLK(off
);
1585 int offset
= off
& (sb
->s_blocksize
- 1);
1588 loff_t i_size
= i_size_read(inode
);
1595 if (off
+ len
> i_size
)
1598 while (toread
> 0) {
1599 tocopy
= min_t(unsigned long, sb
->s_blocksize
- offset
, toread
);
1601 page
= read_cache_page_gfp(mapping
, blkidx
, GFP_NOFS
);
1603 if (PTR_ERR(page
) == -ENOMEM
) {
1604 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1607 return PTR_ERR(page
);
1612 if (unlikely(page
->mapping
!= mapping
)) {
1613 f2fs_put_page(page
, 1);
1616 if (unlikely(!PageUptodate(page
))) {
1617 f2fs_put_page(page
, 1);
1621 kaddr
= kmap_atomic(page
);
1622 memcpy(data
, kaddr
+ offset
, tocopy
);
1623 kunmap_atomic(kaddr
);
1624 f2fs_put_page(page
, 1);
1634 /* Write to quotafile */
1635 static ssize_t
f2fs_quota_write(struct super_block
*sb
, int type
,
1636 const char *data
, size_t len
, loff_t off
)
1638 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1639 struct address_space
*mapping
= inode
->i_mapping
;
1640 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
1641 int offset
= off
& (sb
->s_blocksize
- 1);
1642 size_t towrite
= len
;
1648 while (towrite
> 0) {
1649 tocopy
= min_t(unsigned long, sb
->s_blocksize
- offset
,
1652 err
= a_ops
->write_begin(NULL
, mapping
, off
, tocopy
, 0,
1654 if (unlikely(err
)) {
1655 if (err
== -ENOMEM
) {
1656 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1662 kaddr
= kmap_atomic(page
);
1663 memcpy(kaddr
+ offset
, data
, tocopy
);
1664 kunmap_atomic(kaddr
);
1665 flush_dcache_page(page
);
1667 a_ops
->write_end(NULL
, mapping
, off
, tocopy
, tocopy
,
1678 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1679 f2fs_mark_inode_dirty_sync(inode
, false);
1680 return len
- towrite
;
1683 static struct dquot
**f2fs_get_dquots(struct inode
*inode
)
1685 return F2FS_I(inode
)->i_dquot
;
1688 static qsize_t
*f2fs_get_reserved_space(struct inode
*inode
)
1690 return &F2FS_I(inode
)->i_reserved_quota
;
1693 static int f2fs_quota_on_mount(struct f2fs_sb_info
*sbi
, int type
)
1695 return dquot_quota_on_mount(sbi
->sb
, F2FS_OPTION(sbi
).s_qf_names
[type
],
1696 F2FS_OPTION(sbi
).s_jquota_fmt
, type
);
1699 int f2fs_enable_quota_files(struct f2fs_sb_info
*sbi
, bool rdonly
)
1704 if (f2fs_sb_has_quota_ino(sbi
->sb
) && rdonly
) {
1705 err
= f2fs_enable_quotas(sbi
->sb
);
1707 f2fs_msg(sbi
->sb
, KERN_ERR
,
1708 "Cannot turn on quota_ino: %d", err
);
1714 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1715 if (F2FS_OPTION(sbi
).s_qf_names
[i
]) {
1716 err
= f2fs_quota_on_mount(sbi
, i
);
1721 f2fs_msg(sbi
->sb
, KERN_ERR
,
1722 "Cannot turn on quotas: %d on %d", err
, i
);
1728 static int f2fs_quota_enable(struct super_block
*sb
, int type
, int format_id
,
1731 struct inode
*qf_inode
;
1732 unsigned long qf_inum
;
1735 BUG_ON(!f2fs_sb_has_quota_ino(sb
));
1737 qf_inum
= f2fs_qf_ino(sb
, type
);
1741 qf_inode
= f2fs_iget(sb
, qf_inum
);
1742 if (IS_ERR(qf_inode
)) {
1743 f2fs_msg(sb
, KERN_ERR
,
1744 "Bad quota inode %u:%lu", type
, qf_inum
);
1745 return PTR_ERR(qf_inode
);
1748 /* Don't account quota for quota files to avoid recursion */
1749 qf_inode
->i_flags
|= S_NOQUOTA
;
1750 err
= dquot_enable(qf_inode
, type
, format_id
, flags
);
1755 static int f2fs_enable_quotas(struct super_block
*sb
)
1758 unsigned long qf_inum
;
1759 bool quota_mopt
[MAXQUOTAS
] = {
1760 test_opt(F2FS_SB(sb
), USRQUOTA
),
1761 test_opt(F2FS_SB(sb
), GRPQUOTA
),
1762 test_opt(F2FS_SB(sb
), PRJQUOTA
),
1765 sb_dqopt(sb
)->flags
|= DQUOT_QUOTA_SYS_FILE
| DQUOT_NOLIST_DIRTY
;
1766 for (type
= 0; type
< MAXQUOTAS
; type
++) {
1767 qf_inum
= f2fs_qf_ino(sb
, type
);
1769 err
= f2fs_quota_enable(sb
, type
, QFMT_VFS_V1
,
1770 DQUOT_USAGE_ENABLED
|
1771 (quota_mopt
[type
] ? DQUOT_LIMITS_ENABLED
: 0));
1773 f2fs_msg(sb
, KERN_ERR
,
1774 "Failed to enable quota tracking "
1775 "(type=%d, err=%d). Please run "
1776 "fsck to fix.", type
, err
);
1777 for (type
--; type
>= 0; type
--)
1778 dquot_quota_off(sb
, type
);
1786 static int f2fs_quota_sync(struct super_block
*sb
, int type
)
1788 struct quota_info
*dqopt
= sb_dqopt(sb
);
1792 ret
= dquot_writeback_dquots(sb
, type
);
1797 * Now when everything is written we can discard the pagecache so
1798 * that userspace sees the changes.
1800 for (cnt
= 0; cnt
< MAXQUOTAS
; cnt
++) {
1801 if (type
!= -1 && cnt
!= type
)
1803 if (!sb_has_quota_active(sb
, cnt
))
1806 ret
= filemap_write_and_wait(dqopt
->files
[cnt
]->i_mapping
);
1810 inode_lock(dqopt
->files
[cnt
]);
1811 truncate_inode_pages(&dqopt
->files
[cnt
]->i_data
, 0);
1812 inode_unlock(dqopt
->files
[cnt
]);
1817 static int f2fs_quota_on(struct super_block
*sb
, int type
, int format_id
,
1818 const struct path
*path
)
1820 struct inode
*inode
;
1823 err
= f2fs_quota_sync(sb
, type
);
1827 err
= dquot_quota_on(sb
, type
, format_id
, path
);
1831 inode
= d_inode(path
->dentry
);
1834 F2FS_I(inode
)->i_flags
|= F2FS_NOATIME_FL
| F2FS_IMMUTABLE_FL
;
1835 inode_set_flags(inode
, S_NOATIME
| S_IMMUTABLE
,
1836 S_NOATIME
| S_IMMUTABLE
);
1837 inode_unlock(inode
);
1838 f2fs_mark_inode_dirty_sync(inode
, false);
1843 static int f2fs_quota_off(struct super_block
*sb
, int type
)
1845 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1848 if (!inode
|| !igrab(inode
))
1849 return dquot_quota_off(sb
, type
);
1851 err
= f2fs_quota_sync(sb
, type
);
1855 err
= dquot_quota_off(sb
, type
);
1856 if (err
|| f2fs_sb_has_quota_ino(sb
))
1860 F2FS_I(inode
)->i_flags
&= ~(F2FS_NOATIME_FL
| F2FS_IMMUTABLE_FL
);
1861 inode_set_flags(inode
, 0, S_NOATIME
| S_IMMUTABLE
);
1862 inode_unlock(inode
);
1863 f2fs_mark_inode_dirty_sync(inode
, false);
1869 void f2fs_quota_off_umount(struct super_block
*sb
)
1874 for (type
= 0; type
< MAXQUOTAS
; type
++) {
1875 err
= f2fs_quota_off(sb
, type
);
1877 int ret
= dquot_quota_off(sb
, type
);
1879 f2fs_msg(sb
, KERN_ERR
,
1880 "Fail to turn off disk quota "
1881 "(type: %d, err: %d, ret:%d), Please "
1882 "run fsck to fix it.", type
, err
, ret
);
1883 set_sbi_flag(F2FS_SB(sb
), SBI_NEED_FSCK
);
1888 static void f2fs_truncate_quota_inode_pages(struct super_block
*sb
)
1890 struct quota_info
*dqopt
= sb_dqopt(sb
);
1893 for (type
= 0; type
< MAXQUOTAS
; type
++) {
1894 if (!dqopt
->files
[type
])
1896 f2fs_inode_synced(dqopt
->files
[type
]);
1901 static int f2fs_get_projid(struct inode
*inode
, kprojid_t
*projid
)
1903 *projid
= F2FS_I(inode
)->i_projid
;
1907 static const struct dquot_operations f2fs_quota_operations
= {
1908 .get_reserved_space
= f2fs_get_reserved_space
,
1909 .write_dquot
= dquot_commit
,
1910 .acquire_dquot
= dquot_acquire
,
1911 .release_dquot
= dquot_release
,
1912 .mark_dirty
= dquot_mark_dquot_dirty
,
1913 .write_info
= dquot_commit_info
,
1914 .alloc_dquot
= dquot_alloc
,
1915 .destroy_dquot
= dquot_destroy
,
1916 .get_projid
= f2fs_get_projid
,
1917 .get_next_id
= dquot_get_next_id
,
1920 static const struct quotactl_ops f2fs_quotactl_ops
= {
1921 .quota_on
= f2fs_quota_on
,
1922 .quota_off
= f2fs_quota_off
,
1923 .quota_sync
= f2fs_quota_sync
,
1924 .get_state
= dquot_get_state
,
1925 .set_info
= dquot_set_dqinfo
,
1926 .get_dqblk
= dquot_get_dqblk
,
1927 .set_dqblk
= dquot_set_dqblk
,
1928 .get_nextdqblk
= dquot_get_next_dqblk
,
1931 void f2fs_quota_off_umount(struct super_block
*sb
)
1936 static const struct super_operations f2fs_sops
= {
1937 .alloc_inode
= f2fs_alloc_inode
,
1938 .drop_inode
= f2fs_drop_inode
,
1939 .destroy_inode
= f2fs_destroy_inode
,
1940 .write_inode
= f2fs_write_inode
,
1941 .dirty_inode
= f2fs_dirty_inode
,
1942 .show_options
= f2fs_show_options
,
1944 .quota_read
= f2fs_quota_read
,
1945 .quota_write
= f2fs_quota_write
,
1946 .get_dquots
= f2fs_get_dquots
,
1948 .evict_inode
= f2fs_evict_inode
,
1949 .put_super
= f2fs_put_super
,
1950 .sync_fs
= f2fs_sync_fs
,
1951 .freeze_fs
= f2fs_freeze
,
1952 .unfreeze_fs
= f2fs_unfreeze
,
1953 .statfs
= f2fs_statfs
,
1954 .remount_fs
= f2fs_remount
,
1957 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1958 static int f2fs_get_context(struct inode
*inode
, void *ctx
, size_t len
)
1960 return f2fs_getxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1961 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1965 static int f2fs_set_context(struct inode
*inode
, const void *ctx
, size_t len
,
1968 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1971 * Encrypting the root directory is not allowed because fsck
1972 * expects lost+found directory to exist and remain unencrypted
1973 * if LOST_FOUND feature is enabled.
1976 if (f2fs_sb_has_lost_found(sbi
->sb
) &&
1977 inode
->i_ino
== F2FS_ROOT_INO(sbi
))
1980 return f2fs_setxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1981 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1982 ctx
, len
, fs_data
, XATTR_CREATE
);
1985 static bool f2fs_dummy_context(struct inode
*inode
)
1987 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode
));
1990 static const struct fscrypt_operations f2fs_cryptops
= {
1991 .key_prefix
= "f2fs:",
1992 .get_context
= f2fs_get_context
,
1993 .set_context
= f2fs_set_context
,
1994 .dummy_context
= f2fs_dummy_context
,
1995 .empty_dir
= f2fs_empty_dir
,
1996 .max_namelen
= F2FS_NAME_LEN
,
2000 static struct inode
*f2fs_nfs_get_inode(struct super_block
*sb
,
2001 u64 ino
, u32 generation
)
2003 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
2004 struct inode
*inode
;
2006 if (f2fs_check_nid_range(sbi
, ino
))
2007 return ERR_PTR(-ESTALE
);
2010 * f2fs_iget isn't quite right if the inode is currently unallocated!
2011 * However f2fs_iget currently does appropriate checks to handle stale
2012 * inodes so everything is OK.
2014 inode
= f2fs_iget(sb
, ino
);
2016 return ERR_CAST(inode
);
2017 if (unlikely(generation
&& inode
->i_generation
!= generation
)) {
2018 /* we didn't find the right inode.. */
2020 return ERR_PTR(-ESTALE
);
2025 static struct dentry
*f2fs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
2026 int fh_len
, int fh_type
)
2028 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
2029 f2fs_nfs_get_inode
);
2032 static struct dentry
*f2fs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
2033 int fh_len
, int fh_type
)
2035 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
2036 f2fs_nfs_get_inode
);
2039 static const struct export_operations f2fs_export_ops
= {
2040 .fh_to_dentry
= f2fs_fh_to_dentry
,
2041 .fh_to_parent
= f2fs_fh_to_parent
,
2042 .get_parent
= f2fs_get_parent
,
2045 static loff_t
max_file_blocks(void)
2048 loff_t leaf_count
= ADDRS_PER_BLOCK
;
2051 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2052 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2053 * space in inode.i_addr, it will be more safe to reassign
2057 /* two direct node blocks */
2058 result
+= (leaf_count
* 2);
2060 /* two indirect node blocks */
2061 leaf_count
*= NIDS_PER_BLOCK
;
2062 result
+= (leaf_count
* 2);
2064 /* one double indirect node block */
2065 leaf_count
*= NIDS_PER_BLOCK
;
2066 result
+= leaf_count
;
2071 static int __f2fs_commit_super(struct buffer_head
*bh
,
2072 struct f2fs_super_block
*super
)
2076 memcpy(bh
->b_data
+ F2FS_SUPER_OFFSET
, super
, sizeof(*super
));
2077 set_buffer_dirty(bh
);
2080 /* it's rare case, we can do fua all the time */
2081 return __sync_dirty_buffer(bh
, REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
2084 static inline bool sanity_check_area_boundary(struct f2fs_sb_info
*sbi
,
2085 struct buffer_head
*bh
)
2087 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
2088 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
2089 struct super_block
*sb
= sbi
->sb
;
2090 u32 segment0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2091 u32 cp_blkaddr
= le32_to_cpu(raw_super
->cp_blkaddr
);
2092 u32 sit_blkaddr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2093 u32 nat_blkaddr
= le32_to_cpu(raw_super
->nat_blkaddr
);
2094 u32 ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2095 u32 main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2096 u32 segment_count_ckpt
= le32_to_cpu(raw_super
->segment_count_ckpt
);
2097 u32 segment_count_sit
= le32_to_cpu(raw_super
->segment_count_sit
);
2098 u32 segment_count_nat
= le32_to_cpu(raw_super
->segment_count_nat
);
2099 u32 segment_count_ssa
= le32_to_cpu(raw_super
->segment_count_ssa
);
2100 u32 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
2101 u32 segment_count
= le32_to_cpu(raw_super
->segment_count
);
2102 u32 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
2103 u64 main_end_blkaddr
= main_blkaddr
+
2104 (segment_count_main
<< log_blocks_per_seg
);
2105 u64 seg_end_blkaddr
= segment0_blkaddr
+
2106 (segment_count
<< log_blocks_per_seg
);
2108 if (segment0_blkaddr
!= cp_blkaddr
) {
2109 f2fs_msg(sb
, KERN_INFO
,
2110 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2111 segment0_blkaddr
, cp_blkaddr
);
2115 if (cp_blkaddr
+ (segment_count_ckpt
<< log_blocks_per_seg
) !=
2117 f2fs_msg(sb
, KERN_INFO
,
2118 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2119 cp_blkaddr
, sit_blkaddr
,
2120 segment_count_ckpt
<< log_blocks_per_seg
);
2124 if (sit_blkaddr
+ (segment_count_sit
<< log_blocks_per_seg
) !=
2126 f2fs_msg(sb
, KERN_INFO
,
2127 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2128 sit_blkaddr
, nat_blkaddr
,
2129 segment_count_sit
<< log_blocks_per_seg
);
2133 if (nat_blkaddr
+ (segment_count_nat
<< log_blocks_per_seg
) !=
2135 f2fs_msg(sb
, KERN_INFO
,
2136 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2137 nat_blkaddr
, ssa_blkaddr
,
2138 segment_count_nat
<< log_blocks_per_seg
);
2142 if (ssa_blkaddr
+ (segment_count_ssa
<< log_blocks_per_seg
) !=
2144 f2fs_msg(sb
, KERN_INFO
,
2145 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2146 ssa_blkaddr
, main_blkaddr
,
2147 segment_count_ssa
<< log_blocks_per_seg
);
2151 if (main_end_blkaddr
> seg_end_blkaddr
) {
2152 f2fs_msg(sb
, KERN_INFO
,
2153 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2156 (segment_count
<< log_blocks_per_seg
),
2157 segment_count_main
<< log_blocks_per_seg
);
2159 } else if (main_end_blkaddr
< seg_end_blkaddr
) {
2163 /* fix in-memory information all the time */
2164 raw_super
->segment_count
= cpu_to_le32((main_end_blkaddr
-
2165 segment0_blkaddr
) >> log_blocks_per_seg
);
2167 if (f2fs_readonly(sb
) || bdev_read_only(sb
->s_bdev
)) {
2168 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
2171 err
= __f2fs_commit_super(bh
, NULL
);
2172 res
= err
? "failed" : "done";
2174 f2fs_msg(sb
, KERN_INFO
,
2175 "Fix alignment : %s, start(%u) end(%u) block(%u)",
2178 (segment_count
<< log_blocks_per_seg
),
2179 segment_count_main
<< log_blocks_per_seg
);
2186 static int sanity_check_raw_super(struct f2fs_sb_info
*sbi
,
2187 struct buffer_head
*bh
)
2189 block_t segment_count
, segs_per_sec
, secs_per_zone
;
2190 block_t total_sections
, blocks_per_seg
;
2191 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
2192 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
2193 struct super_block
*sb
= sbi
->sb
;
2194 unsigned int blocksize
;
2196 if (F2FS_SUPER_MAGIC
!= le32_to_cpu(raw_super
->magic
)) {
2197 f2fs_msg(sb
, KERN_INFO
,
2198 "Magic Mismatch, valid(0x%x) - read(0x%x)",
2199 F2FS_SUPER_MAGIC
, le32_to_cpu(raw_super
->magic
));
2203 /* Currently, support only 4KB page cache size */
2204 if (F2FS_BLKSIZE
!= PAGE_SIZE
) {
2205 f2fs_msg(sb
, KERN_INFO
,
2206 "Invalid page_cache_size (%lu), supports only 4KB\n",
2211 /* Currently, support only 4KB block size */
2212 blocksize
= 1 << le32_to_cpu(raw_super
->log_blocksize
);
2213 if (blocksize
!= F2FS_BLKSIZE
) {
2214 f2fs_msg(sb
, KERN_INFO
,
2215 "Invalid blocksize (%u), supports only 4KB\n",
2220 /* check log blocks per segment */
2221 if (le32_to_cpu(raw_super
->log_blocks_per_seg
) != 9) {
2222 f2fs_msg(sb
, KERN_INFO
,
2223 "Invalid log blocks per segment (%u)\n",
2224 le32_to_cpu(raw_super
->log_blocks_per_seg
));
2228 /* Currently, support 512/1024/2048/4096 bytes sector size */
2229 if (le32_to_cpu(raw_super
->log_sectorsize
) >
2230 F2FS_MAX_LOG_SECTOR_SIZE
||
2231 le32_to_cpu(raw_super
->log_sectorsize
) <
2232 F2FS_MIN_LOG_SECTOR_SIZE
) {
2233 f2fs_msg(sb
, KERN_INFO
, "Invalid log sectorsize (%u)",
2234 le32_to_cpu(raw_super
->log_sectorsize
));
2237 if (le32_to_cpu(raw_super
->log_sectors_per_block
) +
2238 le32_to_cpu(raw_super
->log_sectorsize
) !=
2239 F2FS_MAX_LOG_SECTOR_SIZE
) {
2240 f2fs_msg(sb
, KERN_INFO
,
2241 "Invalid log sectors per block(%u) log sectorsize(%u)",
2242 le32_to_cpu(raw_super
->log_sectors_per_block
),
2243 le32_to_cpu(raw_super
->log_sectorsize
));
2247 segment_count
= le32_to_cpu(raw_super
->segment_count
);
2248 segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
2249 secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
2250 total_sections
= le32_to_cpu(raw_super
->section_count
);
2252 /* blocks_per_seg should be 512, given the above check */
2253 blocks_per_seg
= 1 << le32_to_cpu(raw_super
->log_blocks_per_seg
);
2255 if (segment_count
> F2FS_MAX_SEGMENT
||
2256 segment_count
< F2FS_MIN_SEGMENTS
) {
2257 f2fs_msg(sb
, KERN_INFO
,
2258 "Invalid segment count (%u)",
2263 if (total_sections
> segment_count
||
2264 total_sections
< F2FS_MIN_SEGMENTS
||
2265 segs_per_sec
> segment_count
|| !segs_per_sec
) {
2266 f2fs_msg(sb
, KERN_INFO
,
2267 "Invalid segment/section count (%u, %u x %u)",
2268 segment_count
, total_sections
, segs_per_sec
);
2272 if ((segment_count
/ segs_per_sec
) < total_sections
) {
2273 f2fs_msg(sb
, KERN_INFO
,
2274 "Small segment_count (%u < %u * %u)",
2275 segment_count
, segs_per_sec
, total_sections
);
2279 if (segment_count
> (le64_to_cpu(raw_super
->block_count
) >> 9)) {
2280 f2fs_msg(sb
, KERN_INFO
,
2281 "Wrong segment_count / block_count (%u > %llu)",
2282 segment_count
, le64_to_cpu(raw_super
->block_count
));
2286 if (secs_per_zone
> total_sections
|| !secs_per_zone
) {
2287 f2fs_msg(sb
, KERN_INFO
,
2288 "Wrong secs_per_zone / total_sections (%u, %u)",
2289 secs_per_zone
, total_sections
);
2292 if (le32_to_cpu(raw_super
->extension_count
) > F2FS_MAX_EXTENSION
||
2293 raw_super
->hot_ext_count
> F2FS_MAX_EXTENSION
||
2294 (le32_to_cpu(raw_super
->extension_count
) +
2295 raw_super
->hot_ext_count
) > F2FS_MAX_EXTENSION
) {
2296 f2fs_msg(sb
, KERN_INFO
,
2297 "Corrupted extension count (%u + %u > %u)",
2298 le32_to_cpu(raw_super
->extension_count
),
2299 raw_super
->hot_ext_count
,
2300 F2FS_MAX_EXTENSION
);
2304 if (le32_to_cpu(raw_super
->cp_payload
) >
2305 (blocks_per_seg
- F2FS_CP_PACKS
)) {
2306 f2fs_msg(sb
, KERN_INFO
,
2307 "Insane cp_payload (%u > %u)",
2308 le32_to_cpu(raw_super
->cp_payload
),
2309 blocks_per_seg
- F2FS_CP_PACKS
);
2313 /* check reserved ino info */
2314 if (le32_to_cpu(raw_super
->node_ino
) != 1 ||
2315 le32_to_cpu(raw_super
->meta_ino
) != 2 ||
2316 le32_to_cpu(raw_super
->root_ino
) != 3) {
2317 f2fs_msg(sb
, KERN_INFO
,
2318 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2319 le32_to_cpu(raw_super
->node_ino
),
2320 le32_to_cpu(raw_super
->meta_ino
),
2321 le32_to_cpu(raw_super
->root_ino
));
2325 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2326 if (sanity_check_area_boundary(sbi
, bh
))
2332 int f2fs_sanity_check_ckpt(struct f2fs_sb_info
*sbi
)
2334 unsigned int total
, fsmeta
;
2335 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2336 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2337 unsigned int ovp_segments
, reserved_segments
;
2338 unsigned int main_segs
, blocks_per_seg
;
2339 unsigned int sit_segs
, nat_segs
;
2340 unsigned int sit_bitmap_size
, nat_bitmap_size
;
2341 unsigned int log_blocks_per_seg
;
2342 unsigned int segment_count_main
;
2343 unsigned int cp_pack_start_sum
, cp_payload
;
2344 block_t user_block_count
;
2347 total
= le32_to_cpu(raw_super
->segment_count
);
2348 fsmeta
= le32_to_cpu(raw_super
->segment_count_ckpt
);
2349 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
);
2351 nat_segs
= le32_to_cpu(raw_super
->segment_count_nat
);
2353 fsmeta
+= le32_to_cpu(ckpt
->rsvd_segment_count
);
2354 fsmeta
+= le32_to_cpu(raw_super
->segment_count_ssa
);
2356 if (unlikely(fsmeta
>= total
))
2359 ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2360 reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2362 if (unlikely(fsmeta
< F2FS_MIN_SEGMENTS
||
2363 ovp_segments
== 0 || reserved_segments
== 0)) {
2364 f2fs_msg(sbi
->sb
, KERN_ERR
,
2365 "Wrong layout: check mkfs.f2fs version");
2369 user_block_count
= le64_to_cpu(ckpt
->user_block_count
);
2370 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
2371 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
2372 if (!user_block_count
|| user_block_count
>=
2373 segment_count_main
<< log_blocks_per_seg
) {
2374 f2fs_msg(sbi
->sb
, KERN_ERR
,
2375 "Wrong user_block_count: %u", user_block_count
);
2379 main_segs
= le32_to_cpu(raw_super
->segment_count_main
);
2380 blocks_per_seg
= sbi
->blocks_per_seg
;
2382 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
2383 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) >= main_segs
||
2384 le16_to_cpu(ckpt
->cur_node_blkoff
[i
]) >= blocks_per_seg
)
2386 for (j
= i
+ 1; j
< NR_CURSEG_NODE_TYPE
; j
++) {
2387 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) ==
2388 le32_to_cpu(ckpt
->cur_node_segno
[j
])) {
2389 f2fs_msg(sbi
->sb
, KERN_ERR
,
2390 "Node segment (%u, %u) has the same "
2392 le32_to_cpu(ckpt
->cur_node_segno
[i
]));
2397 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
2398 if (le32_to_cpu(ckpt
->cur_data_segno
[i
]) >= main_segs
||
2399 le16_to_cpu(ckpt
->cur_data_blkoff
[i
]) >= blocks_per_seg
)
2401 for (j
= i
+ 1; j
< NR_CURSEG_DATA_TYPE
; j
++) {
2402 if (le32_to_cpu(ckpt
->cur_data_segno
[i
]) ==
2403 le32_to_cpu(ckpt
->cur_data_segno
[j
])) {
2404 f2fs_msg(sbi
->sb
, KERN_ERR
,
2405 "Data segment (%u, %u) has the same "
2407 le32_to_cpu(ckpt
->cur_data_segno
[i
]));
2412 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
2413 for (j
= i
; j
< NR_CURSEG_DATA_TYPE
; j
++) {
2414 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) ==
2415 le32_to_cpu(ckpt
->cur_data_segno
[j
])) {
2416 f2fs_msg(sbi
->sb
, KERN_ERR
,
2417 "Data segment (%u) and Data segment (%u)"
2418 " has the same segno: %u", i
, j
,
2419 le32_to_cpu(ckpt
->cur_node_segno
[i
]));
2425 sit_bitmap_size
= le32_to_cpu(ckpt
->sit_ver_bitmap_bytesize
);
2426 nat_bitmap_size
= le32_to_cpu(ckpt
->nat_ver_bitmap_bytesize
);
2428 if (sit_bitmap_size
!= ((sit_segs
/ 2) << log_blocks_per_seg
) / 8 ||
2429 nat_bitmap_size
!= ((nat_segs
/ 2) << log_blocks_per_seg
) / 8) {
2430 f2fs_msg(sbi
->sb
, KERN_ERR
,
2431 "Wrong bitmap size: sit: %u, nat:%u",
2432 sit_bitmap_size
, nat_bitmap_size
);
2436 cp_pack_start_sum
= __start_sum_addr(sbi
);
2437 cp_payload
= __cp_payload(sbi
);
2438 if (cp_pack_start_sum
< cp_payload
+ 1 ||
2439 cp_pack_start_sum
> blocks_per_seg
- 1 -
2441 f2fs_msg(sbi
->sb
, KERN_ERR
,
2442 "Wrong cp_pack_start_sum: %u",
2447 if (unlikely(f2fs_cp_error(sbi
))) {
2448 f2fs_msg(sbi
->sb
, KERN_ERR
, "A bug case: need to run fsck");
2454 static void init_sb_info(struct f2fs_sb_info
*sbi
)
2456 struct f2fs_super_block
*raw_super
= sbi
->raw_super
;
2459 sbi
->log_sectors_per_block
=
2460 le32_to_cpu(raw_super
->log_sectors_per_block
);
2461 sbi
->log_blocksize
= le32_to_cpu(raw_super
->log_blocksize
);
2462 sbi
->blocksize
= 1 << sbi
->log_blocksize
;
2463 sbi
->log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
2464 sbi
->blocks_per_seg
= 1 << sbi
->log_blocks_per_seg
;
2465 sbi
->segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
2466 sbi
->secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
2467 sbi
->total_sections
= le32_to_cpu(raw_super
->section_count
);
2468 sbi
->total_node_count
=
2469 (le32_to_cpu(raw_super
->segment_count_nat
) / 2)
2470 * sbi
->blocks_per_seg
* NAT_ENTRY_PER_BLOCK
;
2471 sbi
->root_ino_num
= le32_to_cpu(raw_super
->root_ino
);
2472 sbi
->node_ino_num
= le32_to_cpu(raw_super
->node_ino
);
2473 sbi
->meta_ino_num
= le32_to_cpu(raw_super
->meta_ino
);
2474 sbi
->cur_victim_sec
= NULL_SECNO
;
2475 sbi
->max_victim_search
= DEF_MAX_VICTIM_SEARCH
;
2477 sbi
->dir_level
= DEF_DIR_LEVEL
;
2478 sbi
->interval_time
[CP_TIME
] = DEF_CP_INTERVAL
;
2479 sbi
->interval_time
[REQ_TIME
] = DEF_IDLE_INTERVAL
;
2480 clear_sbi_flag(sbi
, SBI_NEED_FSCK
);
2482 for (i
= 0; i
< NR_COUNT_TYPE
; i
++)
2483 atomic_set(&sbi
->nr_pages
[i
], 0);
2485 for (i
= 0; i
< META
; i
++)
2486 atomic_set(&sbi
->wb_sync_req
[i
], 0);
2488 INIT_LIST_HEAD(&sbi
->s_list
);
2489 mutex_init(&sbi
->umount_mutex
);
2490 for (i
= 0; i
< NR_PAGE_TYPE
- 1; i
++)
2491 for (j
= HOT
; j
< NR_TEMP_TYPE
; j
++)
2492 mutex_init(&sbi
->wio_mutex
[i
][j
]);
2493 init_rwsem(&sbi
->io_order_lock
);
2494 spin_lock_init(&sbi
->cp_lock
);
2496 sbi
->dirty_device
= 0;
2497 spin_lock_init(&sbi
->dev_lock
);
2499 init_rwsem(&sbi
->sb_lock
);
2502 static int init_percpu_info(struct f2fs_sb_info
*sbi
)
2506 err
= percpu_counter_init(&sbi
->alloc_valid_block_count
, 0, GFP_KERNEL
);
2510 return percpu_counter_init(&sbi
->total_valid_inode_count
, 0,
2514 #ifdef CONFIG_BLK_DEV_ZONED
2515 static int init_blkz_info(struct f2fs_sb_info
*sbi
, int devi
)
2517 struct block_device
*bdev
= FDEV(devi
).bdev
;
2518 sector_t nr_sectors
= bdev
->bd_part
->nr_sects
;
2519 sector_t sector
= 0;
2520 struct blk_zone
*zones
;
2521 unsigned int i
, nr_zones
;
2525 if (!f2fs_sb_has_blkzoned(sbi
->sb
))
2528 if (sbi
->blocks_per_blkz
&& sbi
->blocks_per_blkz
!=
2529 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev
)))
2531 sbi
->blocks_per_blkz
= SECTOR_TO_BLOCK(bdev_zone_sectors(bdev
));
2532 if (sbi
->log_blocks_per_blkz
&& sbi
->log_blocks_per_blkz
!=
2533 __ilog2_u32(sbi
->blocks_per_blkz
))
2535 sbi
->log_blocks_per_blkz
= __ilog2_u32(sbi
->blocks_per_blkz
);
2536 FDEV(devi
).nr_blkz
= SECTOR_TO_BLOCK(nr_sectors
) >>
2537 sbi
->log_blocks_per_blkz
;
2538 if (nr_sectors
& (bdev_zone_sectors(bdev
) - 1))
2539 FDEV(devi
).nr_blkz
++;
2541 FDEV(devi
).blkz_type
= f2fs_kmalloc(sbi
, FDEV(devi
).nr_blkz
,
2543 if (!FDEV(devi
).blkz_type
)
2546 #define F2FS_REPORT_NR_ZONES 4096
2548 zones
= f2fs_kzalloc(sbi
,
2549 array_size(F2FS_REPORT_NR_ZONES
,
2550 sizeof(struct blk_zone
)),
2555 /* Get block zones type */
2556 while (zones
&& sector
< nr_sectors
) {
2558 nr_zones
= F2FS_REPORT_NR_ZONES
;
2559 err
= blkdev_report_zones(bdev
, sector
,
2569 for (i
= 0; i
< nr_zones
; i
++) {
2570 FDEV(devi
).blkz_type
[n
] = zones
[i
].type
;
2571 sector
+= zones
[i
].len
;
2583 * Read f2fs raw super block.
2584 * Because we have two copies of super block, so read both of them
2585 * to get the first valid one. If any one of them is broken, we pass
2586 * them recovery flag back to the caller.
2588 static int read_raw_super_block(struct f2fs_sb_info
*sbi
,
2589 struct f2fs_super_block
**raw_super
,
2590 int *valid_super_block
, int *recovery
)
2592 struct super_block
*sb
= sbi
->sb
;
2594 struct buffer_head
*bh
;
2595 struct f2fs_super_block
*super
;
2598 super
= kzalloc(sizeof(struct f2fs_super_block
), GFP_KERNEL
);
2602 for (block
= 0; block
< 2; block
++) {
2603 bh
= sb_bread(sb
, block
);
2605 f2fs_msg(sb
, KERN_ERR
, "Unable to read %dth superblock",
2611 /* sanity checking of raw super */
2612 if (sanity_check_raw_super(sbi
, bh
)) {
2613 f2fs_msg(sb
, KERN_ERR
,
2614 "Can't find valid F2FS filesystem in %dth superblock",
2622 memcpy(super
, bh
->b_data
+ F2FS_SUPER_OFFSET
,
2624 *valid_super_block
= block
;
2630 /* Fail to read any one of the superblocks*/
2634 /* No valid superblock */
2643 int f2fs_commit_super(struct f2fs_sb_info
*sbi
, bool recover
)
2645 struct buffer_head
*bh
;
2648 if ((recover
&& f2fs_readonly(sbi
->sb
)) ||
2649 bdev_read_only(sbi
->sb
->s_bdev
)) {
2650 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
2654 /* write back-up superblock first */
2655 bh
= sb_bread(sbi
->sb
, sbi
->valid_super_block
? 0 : 1);
2658 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
2661 /* if we are in recovery path, skip writing valid superblock */
2665 /* write current valid superblock */
2666 bh
= sb_bread(sbi
->sb
, sbi
->valid_super_block
);
2669 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
2674 static int f2fs_scan_devices(struct f2fs_sb_info
*sbi
)
2676 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2677 unsigned int max_devices
= MAX_DEVICES
;
2680 /* Initialize single device information */
2681 if (!RDEV(0).path
[0]) {
2682 if (!bdev_is_zoned(sbi
->sb
->s_bdev
))
2688 * Initialize multiple devices information, or single
2689 * zoned block device information.
2691 sbi
->devs
= f2fs_kzalloc(sbi
,
2692 array_size(max_devices
,
2693 sizeof(struct f2fs_dev_info
)),
2698 for (i
= 0; i
< max_devices
; i
++) {
2700 if (i
> 0 && !RDEV(i
).path
[0])
2703 if (max_devices
== 1) {
2704 /* Single zoned block device mount */
2706 blkdev_get_by_dev(sbi
->sb
->s_bdev
->bd_dev
,
2707 sbi
->sb
->s_mode
, sbi
->sb
->s_type
);
2709 /* Multi-device mount */
2710 memcpy(FDEV(i
).path
, RDEV(i
).path
, MAX_PATH_LEN
);
2711 FDEV(i
).total_segments
=
2712 le32_to_cpu(RDEV(i
).total_segments
);
2714 FDEV(i
).start_blk
= 0;
2715 FDEV(i
).end_blk
= FDEV(i
).start_blk
+
2716 (FDEV(i
).total_segments
<<
2717 sbi
->log_blocks_per_seg
) - 1 +
2718 le32_to_cpu(raw_super
->segment0_blkaddr
);
2720 FDEV(i
).start_blk
= FDEV(i
- 1).end_blk
+ 1;
2721 FDEV(i
).end_blk
= FDEV(i
).start_blk
+
2722 (FDEV(i
).total_segments
<<
2723 sbi
->log_blocks_per_seg
) - 1;
2725 FDEV(i
).bdev
= blkdev_get_by_path(FDEV(i
).path
,
2726 sbi
->sb
->s_mode
, sbi
->sb
->s_type
);
2728 if (IS_ERR(FDEV(i
).bdev
))
2729 return PTR_ERR(FDEV(i
).bdev
);
2731 /* to release errored devices */
2732 sbi
->s_ndevs
= i
+ 1;
2734 #ifdef CONFIG_BLK_DEV_ZONED
2735 if (bdev_zoned_model(FDEV(i
).bdev
) == BLK_ZONED_HM
&&
2736 !f2fs_sb_has_blkzoned(sbi
->sb
)) {
2737 f2fs_msg(sbi
->sb
, KERN_ERR
,
2738 "Zoned block device feature not enabled\n");
2741 if (bdev_zoned_model(FDEV(i
).bdev
) != BLK_ZONED_NONE
) {
2742 if (init_blkz_info(sbi
, i
)) {
2743 f2fs_msg(sbi
->sb
, KERN_ERR
,
2744 "Failed to initialize F2FS blkzone information");
2747 if (max_devices
== 1)
2749 f2fs_msg(sbi
->sb
, KERN_INFO
,
2750 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2752 FDEV(i
).total_segments
,
2753 FDEV(i
).start_blk
, FDEV(i
).end_blk
,
2754 bdev_zoned_model(FDEV(i
).bdev
) == BLK_ZONED_HA
?
2755 "Host-aware" : "Host-managed");
2759 f2fs_msg(sbi
->sb
, KERN_INFO
,
2760 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2762 FDEV(i
).total_segments
,
2763 FDEV(i
).start_blk
, FDEV(i
).end_blk
);
2765 f2fs_msg(sbi
->sb
, KERN_INFO
,
2766 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi
));
2770 static void f2fs_tuning_parameters(struct f2fs_sb_info
*sbi
)
2772 struct f2fs_sm_info
*sm_i
= SM_I(sbi
);
2774 /* adjust parameters according to the volume size */
2775 if (sm_i
->main_segments
<= SMALL_VOLUME_SEGMENTS
) {
2776 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_REUSE
;
2777 sm_i
->dcc_info
->discard_granularity
= 1;
2778 sm_i
->ipu_policy
= 1 << F2FS_IPU_FORCE
;
2781 sbi
->readdir_ra
= 1;
2784 static int f2fs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2786 struct f2fs_sb_info
*sbi
;
2787 struct f2fs_super_block
*raw_super
;
2790 bool retry
= true, need_fsck
= false;
2791 char *options
= NULL
;
2792 int recovery
, i
, valid_super_block
;
2793 struct curseg_info
*seg_i
;
2798 valid_super_block
= -1;
2801 /* allocate memory for f2fs-specific super block info */
2802 sbi
= kzalloc(sizeof(struct f2fs_sb_info
), GFP_KERNEL
);
2808 /* Load the checksum driver */
2809 sbi
->s_chksum_driver
= crypto_alloc_shash("crc32", 0, 0);
2810 if (IS_ERR(sbi
->s_chksum_driver
)) {
2811 f2fs_msg(sb
, KERN_ERR
, "Cannot load crc32 driver.");
2812 err
= PTR_ERR(sbi
->s_chksum_driver
);
2813 sbi
->s_chksum_driver
= NULL
;
2817 /* set a block size */
2818 if (unlikely(!sb_set_blocksize(sb
, F2FS_BLKSIZE
))) {
2819 f2fs_msg(sb
, KERN_ERR
, "unable to set blocksize");
2823 err
= read_raw_super_block(sbi
, &raw_super
, &valid_super_block
,
2828 sb
->s_fs_info
= sbi
;
2829 sbi
->raw_super
= raw_super
;
2831 /* precompute checksum seed for metadata */
2832 if (f2fs_sb_has_inode_chksum(sb
))
2833 sbi
->s_chksum_seed
= f2fs_chksum(sbi
, ~0, raw_super
->uuid
,
2834 sizeof(raw_super
->uuid
));
2837 * The BLKZONED feature indicates that the drive was formatted with
2838 * zone alignment optimization. This is optional for host-aware
2839 * devices, but mandatory for host-managed zoned block devices.
2841 #ifndef CONFIG_BLK_DEV_ZONED
2842 if (f2fs_sb_has_blkzoned(sb
)) {
2843 f2fs_msg(sb
, KERN_ERR
,
2844 "Zoned block device support is not enabled\n");
2849 default_options(sbi
);
2850 /* parse mount options */
2851 options
= kstrdup((const char *)data
, GFP_KERNEL
);
2852 if (data
&& !options
) {
2857 err
= parse_options(sb
, options
);
2861 sbi
->max_file_blocks
= max_file_blocks();
2862 sb
->s_maxbytes
= sbi
->max_file_blocks
<<
2863 le32_to_cpu(raw_super
->log_blocksize
);
2864 sb
->s_max_links
= F2FS_LINK_MAX
;
2865 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
2868 sb
->dq_op
= &f2fs_quota_operations
;
2869 if (f2fs_sb_has_quota_ino(sb
))
2870 sb
->s_qcop
= &dquot_quotactl_sysfile_ops
;
2872 sb
->s_qcop
= &f2fs_quotactl_ops
;
2873 sb
->s_quota_types
= QTYPE_MASK_USR
| QTYPE_MASK_GRP
| QTYPE_MASK_PRJ
;
2875 if (f2fs_sb_has_quota_ino(sbi
->sb
)) {
2876 for (i
= 0; i
< MAXQUOTAS
; i
++) {
2877 if (f2fs_qf_ino(sbi
->sb
, i
))
2878 sbi
->nquota_files
++;
2883 sb
->s_op
= &f2fs_sops
;
2884 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2885 sb
->s_cop
= &f2fs_cryptops
;
2887 sb
->s_xattr
= f2fs_xattr_handlers
;
2888 sb
->s_export_op
= &f2fs_export_ops
;
2889 sb
->s_magic
= F2FS_SUPER_MAGIC
;
2890 sb
->s_time_gran
= 1;
2891 sb
->s_flags
= (sb
->s_flags
& ~SB_POSIXACL
) |
2892 (test_opt(sbi
, POSIX_ACL
) ? SB_POSIXACL
: 0);
2893 memcpy(&sb
->s_uuid
, raw_super
->uuid
, sizeof(raw_super
->uuid
));
2894 sb
->s_iflags
|= SB_I_CGROUPWB
;
2896 /* init f2fs-specific super block info */
2897 sbi
->valid_super_block
= valid_super_block
;
2898 mutex_init(&sbi
->gc_mutex
);
2899 mutex_init(&sbi
->writepages
);
2900 mutex_init(&sbi
->cp_mutex
);
2901 init_rwsem(&sbi
->node_write
);
2902 init_rwsem(&sbi
->node_change
);
2904 /* disallow all the data/node/meta page writes */
2905 set_sbi_flag(sbi
, SBI_POR_DOING
);
2906 spin_lock_init(&sbi
->stat_lock
);
2908 /* init iostat info */
2909 spin_lock_init(&sbi
->iostat_lock
);
2910 sbi
->iostat_enable
= false;
2912 for (i
= 0; i
< NR_PAGE_TYPE
; i
++) {
2913 int n
= (i
== META
) ? 1: NR_TEMP_TYPE
;
2919 sizeof(struct f2fs_bio_info
)),
2921 if (!sbi
->write_io
[i
]) {
2926 for (j
= HOT
; j
< n
; j
++) {
2927 init_rwsem(&sbi
->write_io
[i
][j
].io_rwsem
);
2928 sbi
->write_io
[i
][j
].sbi
= sbi
;
2929 sbi
->write_io
[i
][j
].bio
= NULL
;
2930 spin_lock_init(&sbi
->write_io
[i
][j
].io_lock
);
2931 INIT_LIST_HEAD(&sbi
->write_io
[i
][j
].io_list
);
2935 init_rwsem(&sbi
->cp_rwsem
);
2936 init_waitqueue_head(&sbi
->cp_wait
);
2939 err
= init_percpu_info(sbi
);
2943 if (F2FS_IO_SIZE(sbi
) > 1) {
2944 sbi
->write_io_dummy
=
2945 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi
) - 1), 0);
2946 if (!sbi
->write_io_dummy
) {
2952 /* get an inode for meta space */
2953 sbi
->meta_inode
= f2fs_iget(sb
, F2FS_META_INO(sbi
));
2954 if (IS_ERR(sbi
->meta_inode
)) {
2955 f2fs_msg(sb
, KERN_ERR
, "Failed to read F2FS meta data inode");
2956 err
= PTR_ERR(sbi
->meta_inode
);
2960 err
= f2fs_get_valid_checkpoint(sbi
);
2962 f2fs_msg(sb
, KERN_ERR
, "Failed to get valid F2FS checkpoint");
2963 goto free_meta_inode
;
2966 /* Initialize device list */
2967 err
= f2fs_scan_devices(sbi
);
2969 f2fs_msg(sb
, KERN_ERR
, "Failed to find devices");
2973 sbi
->total_valid_node_count
=
2974 le32_to_cpu(sbi
->ckpt
->valid_node_count
);
2975 percpu_counter_set(&sbi
->total_valid_inode_count
,
2976 le32_to_cpu(sbi
->ckpt
->valid_inode_count
));
2977 sbi
->user_block_count
= le64_to_cpu(sbi
->ckpt
->user_block_count
);
2978 sbi
->total_valid_block_count
=
2979 le64_to_cpu(sbi
->ckpt
->valid_block_count
);
2980 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
2981 sbi
->reserved_blocks
= 0;
2982 sbi
->current_reserved_blocks
= 0;
2983 limit_reserve_root(sbi
);
2985 for (i
= 0; i
< NR_INODE_TYPE
; i
++) {
2986 INIT_LIST_HEAD(&sbi
->inode_list
[i
]);
2987 spin_lock_init(&sbi
->inode_lock
[i
]);
2990 f2fs_init_extent_cache_info(sbi
);
2992 f2fs_init_ino_entry_info(sbi
);
2994 f2fs_init_fsync_node_info(sbi
);
2996 /* setup f2fs internal modules */
2997 err
= f2fs_build_segment_manager(sbi
);
2999 f2fs_msg(sb
, KERN_ERR
,
3000 "Failed to initialize F2FS segment manager");
3003 err
= f2fs_build_node_manager(sbi
);
3005 f2fs_msg(sb
, KERN_ERR
,
3006 "Failed to initialize F2FS node manager");
3010 /* For write statistics */
3011 if (sb
->s_bdev
->bd_part
)
3012 sbi
->sectors_written_start
=
3013 (u64
)part_stat_read(sb
->s_bdev
->bd_part
,
3014 sectors
[STAT_WRITE
]);
3016 /* Read accumulated write IO statistics if exists */
3017 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
3018 if (__exist_node_summaries(sbi
))
3019 sbi
->kbytes_written
=
3020 le64_to_cpu(seg_i
->journal
->info
.kbytes_written
);
3022 f2fs_build_gc_manager(sbi
);
3024 err
= f2fs_build_stats(sbi
);
3028 /* get an inode for node space */
3029 sbi
->node_inode
= f2fs_iget(sb
, F2FS_NODE_INO(sbi
));
3030 if (IS_ERR(sbi
->node_inode
)) {
3031 f2fs_msg(sb
, KERN_ERR
, "Failed to read node inode");
3032 err
= PTR_ERR(sbi
->node_inode
);
3036 /* read root inode and dentry */
3037 root
= f2fs_iget(sb
, F2FS_ROOT_INO(sbi
));
3039 f2fs_msg(sb
, KERN_ERR
, "Failed to read root inode");
3040 err
= PTR_ERR(root
);
3041 goto free_node_inode
;
3043 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
||
3044 !root
->i_size
|| !root
->i_nlink
) {
3047 goto free_node_inode
;
3050 sb
->s_root
= d_make_root(root
); /* allocate root dentry */
3053 goto free_root_inode
;
3056 err
= f2fs_register_sysfs(sbi
);
3058 goto free_root_inode
;
3061 /* Enable quota usage during mount */
3062 if (f2fs_sb_has_quota_ino(sb
) && !f2fs_readonly(sb
)) {
3063 err
= f2fs_enable_quotas(sb
);
3065 f2fs_msg(sb
, KERN_ERR
,
3066 "Cannot turn on quotas: error %d", err
);
3071 /* if there are nt orphan nodes free them */
3072 err
= f2fs_recover_orphan_inodes(sbi
);
3076 /* recover fsynced data */
3077 if (!test_opt(sbi
, DISABLE_ROLL_FORWARD
)) {
3079 * mount should be failed, when device has readonly mode, and
3080 * previous checkpoint was not done by clean system shutdown.
3082 if (bdev_read_only(sb
->s_bdev
) &&
3083 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
3089 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
3094 err
= f2fs_recover_fsync_data(sbi
, false);
3097 f2fs_msg(sb
, KERN_ERR
,
3098 "Cannot recover all fsync data errno=%d", err
);
3102 err
= f2fs_recover_fsync_data(sbi
, true);
3104 if (!f2fs_readonly(sb
) && err
> 0) {
3106 f2fs_msg(sb
, KERN_ERR
,
3107 "Need to recover fsync data");
3112 /* f2fs_recover_fsync_data() cleared this already */
3113 clear_sbi_flag(sbi
, SBI_POR_DOING
);
3116 * If filesystem is not mounted as read-only then
3117 * do start the gc_thread.
3119 if (test_opt(sbi
, BG_GC
) && !f2fs_readonly(sb
)) {
3120 /* After POR, we can run background GC thread.*/
3121 err
= f2fs_start_gc_thread(sbi
);
3127 /* recover broken superblock */
3129 err
= f2fs_commit_super(sbi
, true);
3130 f2fs_msg(sb
, KERN_INFO
,
3131 "Try to recover %dth superblock, ret: %d",
3132 sbi
->valid_super_block
? 1 : 2, err
);
3135 f2fs_join_shrinker(sbi
);
3137 f2fs_tuning_parameters(sbi
);
3139 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Mounted with checkpoint version = %llx",
3140 cur_cp_version(F2FS_CKPT(sbi
)));
3141 f2fs_update_time(sbi
, CP_TIME
);
3142 f2fs_update_time(sbi
, REQ_TIME
);
3147 f2fs_truncate_quota_inode_pages(sb
);
3148 if (f2fs_sb_has_quota_ino(sb
) && !f2fs_readonly(sb
))
3149 f2fs_quota_off_umount(sbi
->sb
);
3152 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3153 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3154 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3155 * falls into an infinite loop in f2fs_sync_meta_pages().
3157 truncate_inode_pages_final(META_MAPPING(sbi
));
3161 f2fs_unregister_sysfs(sbi
);
3166 f2fs_release_ino_entry(sbi
, true);
3167 truncate_inode_pages_final(NODE_MAPPING(sbi
));
3168 iput(sbi
->node_inode
);
3170 f2fs_destroy_stats(sbi
);
3172 f2fs_destroy_node_manager(sbi
);
3174 f2fs_destroy_segment_manager(sbi
);
3176 destroy_device_list(sbi
);
3179 make_bad_inode(sbi
->meta_inode
);
3180 iput(sbi
->meta_inode
);
3182 mempool_destroy(sbi
->write_io_dummy
);
3184 destroy_percpu_info(sbi
);
3186 for (i
= 0; i
< NR_PAGE_TYPE
; i
++)
3187 kfree(sbi
->write_io
[i
]);
3190 for (i
= 0; i
< MAXQUOTAS
; i
++)
3191 kfree(F2FS_OPTION(sbi
).s_qf_names
[i
]);
3197 if (sbi
->s_chksum_driver
)
3198 crypto_free_shash(sbi
->s_chksum_driver
);
3201 /* give only one another chance */
3204 shrink_dcache_sb(sb
);
3210 static struct dentry
*f2fs_mount(struct file_system_type
*fs_type
, int flags
,
3211 const char *dev_name
, void *data
)
3213 return mount_bdev(fs_type
, flags
, dev_name
, data
, f2fs_fill_super
);
3216 static void kill_f2fs_super(struct super_block
*sb
)
3219 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
3221 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
3222 f2fs_stop_gc_thread(sbi
);
3223 f2fs_stop_discard_thread(sbi
);
3225 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
3226 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
3227 struct cp_control cpc
= {
3228 .reason
= CP_UMOUNT
,
3230 f2fs_write_checkpoint(sbi
, &cpc
);
3233 if (is_sbi_flag_set(sbi
, SBI_IS_RECOVERED
) && f2fs_readonly(sb
))
3234 sb
->s_flags
&= ~SB_RDONLY
;
3236 kill_block_super(sb
);
3239 static struct file_system_type f2fs_fs_type
= {
3240 .owner
= THIS_MODULE
,
3242 .mount
= f2fs_mount
,
3243 .kill_sb
= kill_f2fs_super
,
3244 .fs_flags
= FS_REQUIRES_DEV
,
3246 MODULE_ALIAS_FS("f2fs");
3248 static int __init
init_inodecache(void)
3250 f2fs_inode_cachep
= kmem_cache_create("f2fs_inode_cache",
3251 sizeof(struct f2fs_inode_info
), 0,
3252 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
, NULL
);
3253 if (!f2fs_inode_cachep
)
3258 static void destroy_inodecache(void)
3261 * Make sure all delayed rcu free inodes are flushed before we
3265 kmem_cache_destroy(f2fs_inode_cachep
);
3268 static int __init
init_f2fs_fs(void)
3272 if (PAGE_SIZE
!= F2FS_BLKSIZE
) {
3273 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3274 PAGE_SIZE
, F2FS_BLKSIZE
);
3278 f2fs_build_trace_ios();
3280 err
= init_inodecache();
3283 err
= f2fs_create_node_manager_caches();
3285 goto free_inodecache
;
3286 err
= f2fs_create_segment_manager_caches();
3288 goto free_node_manager_caches
;
3289 err
= f2fs_create_checkpoint_caches();
3291 goto free_segment_manager_caches
;
3292 err
= f2fs_create_extent_cache();
3294 goto free_checkpoint_caches
;
3295 err
= f2fs_init_sysfs();
3297 goto free_extent_cache
;
3298 err
= register_shrinker(&f2fs_shrinker_info
);
3301 err
= register_filesystem(&f2fs_fs_type
);
3304 err
= f2fs_create_root_stats();
3306 goto free_filesystem
;
3307 err
= f2fs_init_post_read_processing();
3309 goto free_root_stats
;
3313 f2fs_destroy_root_stats();
3315 unregister_filesystem(&f2fs_fs_type
);
3317 unregister_shrinker(&f2fs_shrinker_info
);
3321 f2fs_destroy_extent_cache();
3322 free_checkpoint_caches
:
3323 f2fs_destroy_checkpoint_caches();
3324 free_segment_manager_caches
:
3325 f2fs_destroy_segment_manager_caches();
3326 free_node_manager_caches
:
3327 f2fs_destroy_node_manager_caches();
3329 destroy_inodecache();
3334 static void __exit
exit_f2fs_fs(void)
3336 f2fs_destroy_post_read_processing();
3337 f2fs_destroy_root_stats();
3338 unregister_filesystem(&f2fs_fs_type
);
3339 unregister_shrinker(&f2fs_shrinker_info
);
3341 f2fs_destroy_extent_cache();
3342 f2fs_destroy_checkpoint_caches();
3343 f2fs_destroy_segment_manager_caches();
3344 f2fs_destroy_node_manager_caches();
3345 destroy_inodecache();
3346 f2fs_destroy_trace_ios();
3349 module_init(init_f2fs_fs
)
3350 module_exit(exit_f2fs_fs
)
3352 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3353 MODULE_DESCRIPTION("Flash Friendly File System");
3354 MODULE_LICENSE("GPL");