ALSA: usb-audio: fix sign unintended sign extension on left shifts
[linux/fpc-iii.git] / fs / nfs / dir.c
blob8bfaa658b2c190ddfa61f8a52acb4895b9f63b1d
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
46 #include "nfstrace.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
86 return ERR_PTR(-ENOMEM);
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
99 * Open file
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
120 filp->private_data = ctx;
121 out:
122 put_rpccred(cred);
123 return res;
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
133 struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
140 struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163 } nfs_readdir_descriptor_t;
166 * we are freeing strings created by nfs_add_to_readdir_array()
168 static
169 void nfs_readdir_clear_array(struct page *page)
171 struct nfs_cache_array *array;
172 int i;
174 array = kmap_atomic(page);
175 for (i = 0; i < array->size; i++)
176 kfree(array->array[i].string.name);
177 kunmap_atomic(array);
181 * the caller is responsible for freeing qstr.name
182 * when called by nfs_readdir_add_to_array, the strings will be freed in
183 * nfs_clear_readdir_array()
185 static
186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
188 string->len = len;
189 string->name = kmemdup(name, len, GFP_KERNEL);
190 if (string->name == NULL)
191 return -ENOMEM;
193 * Avoid a kmemleak false positive. The pointer to the name is stored
194 * in a page cache page which kmemleak does not scan.
196 kmemleak_not_leak(string->name);
197 string->hash = full_name_hash(NULL, name, len);
198 return 0;
201 static
202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
204 struct nfs_cache_array *array = kmap(page);
205 struct nfs_cache_array_entry *cache_entry;
206 int ret;
208 cache_entry = &array->array[array->size];
210 /* Check that this entry lies within the page bounds */
211 ret = -ENOSPC;
212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 goto out;
215 cache_entry->cookie = entry->prev_cookie;
216 cache_entry->ino = entry->ino;
217 cache_entry->d_type = entry->d_type;
218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 if (ret)
220 goto out;
221 array->last_cookie = entry->cookie;
222 array->size++;
223 if (entry->eof != 0)
224 array->eof_index = array->size;
225 out:
226 kunmap(page);
227 return ret;
230 static
231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
233 loff_t diff = desc->ctx->pos - desc->current_index;
234 unsigned int index;
236 if (diff < 0)
237 goto out_eof;
238 if (diff >= array->size) {
239 if (array->eof_index >= 0)
240 goto out_eof;
241 return -EAGAIN;
244 index = (unsigned int)diff;
245 *desc->dir_cookie = array->array[index].cookie;
246 desc->cache_entry_index = index;
247 return 0;
248 out_eof:
249 desc->eof = true;
250 return -EBADCOOKIE;
253 static bool
254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 return false;
258 smp_rmb();
259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
262 static
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
265 int i;
266 loff_t new_pos;
267 int status = -EAGAIN;
269 for (i = 0; i < array->size; i++) {
270 if (array->array[i].cookie == *desc->dir_cookie) {
271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 struct nfs_open_dir_context *ctx = desc->file->private_data;
274 new_pos = desc->current_index + i;
275 if (ctx->attr_gencount != nfsi->attr_gencount ||
276 !nfs_readdir_inode_mapping_valid(nfsi)) {
277 ctx->duped = 0;
278 ctx->attr_gencount = nfsi->attr_gencount;
279 } else if (new_pos < desc->ctx->pos) {
280 if (ctx->duped > 0
281 && ctx->dup_cookie == *desc->dir_cookie) {
282 if (printk_ratelimit()) {
283 pr_notice("NFS: directory %pD2 contains a readdir loop."
284 "Please contact your server vendor. "
285 "The file: %.*s has duplicate cookie %llu\n",
286 desc->file, array->array[i].string.len,
287 array->array[i].string.name, *desc->dir_cookie);
289 status = -ELOOP;
290 goto out;
292 ctx->dup_cookie = *desc->dir_cookie;
293 ctx->duped = -1;
295 desc->ctx->pos = new_pos;
296 desc->cache_entry_index = i;
297 return 0;
300 if (array->eof_index >= 0) {
301 status = -EBADCOOKIE;
302 if (*desc->dir_cookie == array->last_cookie)
303 desc->eof = true;
305 out:
306 return status;
309 static
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
312 struct nfs_cache_array *array;
313 int status;
315 array = kmap(desc->page);
317 if (*desc->dir_cookie == 0)
318 status = nfs_readdir_search_for_pos(array, desc);
319 else
320 status = nfs_readdir_search_for_cookie(array, desc);
322 if (status == -EAGAIN) {
323 desc->last_cookie = array->last_cookie;
324 desc->current_index += array->size;
325 desc->page_index++;
327 kunmap(desc->page);
328 return status;
331 /* Fill a page with xdr information before transferring to the cache page */
332 static
333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 struct nfs_entry *entry, struct file *file, struct inode *inode)
336 struct nfs_open_dir_context *ctx = file->private_data;
337 struct rpc_cred *cred = ctx->cred;
338 unsigned long timestamp, gencount;
339 int error;
341 again:
342 timestamp = jiffies;
343 gencount = nfs_inc_attr_generation_counter();
344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 NFS_SERVER(inode)->dtsize, desc->plus);
346 if (error < 0) {
347 /* We requested READDIRPLUS, but the server doesn't grok it */
348 if (error == -ENOTSUPP && desc->plus) {
349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 desc->plus = false;
352 goto again;
354 goto error;
356 desc->timestamp = timestamp;
357 desc->gencount = gencount;
358 error:
359 return error;
362 static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 struct nfs_entry *entry, struct xdr_stream *xdr)
365 int error;
367 error = desc->decode(xdr, entry, desc->plus);
368 if (error)
369 return error;
370 entry->fattr->time_start = desc->timestamp;
371 entry->fattr->gencount = desc->gencount;
372 return 0;
375 /* Match file and dirent using either filehandle or fileid
376 * Note: caller is responsible for checking the fsid
378 static
379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
381 struct inode *inode;
382 struct nfs_inode *nfsi;
384 if (d_really_is_negative(dentry))
385 return 0;
387 inode = d_inode(dentry);
388 if (is_bad_inode(inode) || NFS_STALE(inode))
389 return 0;
391 nfsi = NFS_I(inode);
392 if (entry->fattr->fileid != nfsi->fileid)
393 return 0;
394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 return 0;
396 return 1;
399 static
400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 return false;
404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 return true;
406 if (ctx->pos == 0)
407 return true;
408 return false;
412 * This function is called by the lookup and getattr code to request the
413 * use of readdirplus to accelerate any future lookups in the same
414 * directory.
416 void nfs_advise_use_readdirplus(struct inode *dir)
418 struct nfs_inode *nfsi = NFS_I(dir);
420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 !list_empty(&nfsi->open_files))
422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
426 * This function is mainly for use by nfs_getattr().
428 * If this is an 'ls -l', we want to force use of readdirplus.
429 * Do this by checking if there is an active file descriptor
430 * and calling nfs_advise_use_readdirplus, then forcing a
431 * cache flush.
433 void nfs_force_use_readdirplus(struct inode *dir)
435 struct nfs_inode *nfsi = NFS_I(dir);
437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 !list_empty(&nfsi->open_files)) {
439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 invalidate_mapping_pages(dir->i_mapping, 0, -1);
444 static
445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
447 struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 struct dentry *dentry;
450 struct dentry *alias;
451 struct inode *dir = d_inode(parent);
452 struct inode *inode;
453 int status;
455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 return;
457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 return;
459 if (filename.len == 0)
460 return;
461 /* Validate that the name doesn't contain any illegal '\0' */
462 if (strnlen(filename.name, filename.len) != filename.len)
463 return;
464 /* ...or '/' */
465 if (strnchr(filename.name, filename.len, '/'))
466 return;
467 if (filename.name[0] == '.') {
468 if (filename.len == 1)
469 return;
470 if (filename.len == 2 && filename.name[1] == '.')
471 return;
473 filename.hash = full_name_hash(parent, filename.name, filename.len);
475 dentry = d_lookup(parent, &filename);
476 again:
477 if (!dentry) {
478 dentry = d_alloc_parallel(parent, &filename, &wq);
479 if (IS_ERR(dentry))
480 return;
482 if (!d_in_lookup(dentry)) {
483 /* Is there a mountpoint here? If so, just exit */
484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 &entry->fattr->fsid))
486 goto out;
487 if (nfs_same_file(dentry, entry)) {
488 if (!entry->fh->size)
489 goto out;
490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 if (!status)
493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 goto out;
495 } else {
496 d_invalidate(dentry);
497 dput(dentry);
498 dentry = NULL;
499 goto again;
502 if (!entry->fh->size) {
503 d_lookup_done(dentry);
504 goto out;
507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 alias = d_splice_alias(inode, dentry);
509 d_lookup_done(dentry);
510 if (alias) {
511 if (IS_ERR(alias))
512 goto out;
513 dput(dentry);
514 dentry = alias;
516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517 out:
518 dput(dentry);
521 /* Perform conversion from xdr to cache array */
522 static
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 struct page **xdr_pages, struct page *page, unsigned int buflen)
526 struct xdr_stream stream;
527 struct xdr_buf buf;
528 struct page *scratch;
529 struct nfs_cache_array *array;
530 unsigned int count = 0;
531 int status;
533 scratch = alloc_page(GFP_KERNEL);
534 if (scratch == NULL)
535 return -ENOMEM;
537 if (buflen == 0)
538 goto out_nopages;
540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
543 do {
544 status = xdr_decode(desc, entry, &stream);
545 if (status != 0) {
546 if (status == -EAGAIN)
547 status = 0;
548 break;
551 count++;
553 if (desc->plus)
554 nfs_prime_dcache(file_dentry(desc->file), entry);
556 status = nfs_readdir_add_to_array(entry, page);
557 if (status != 0)
558 break;
559 } while (!entry->eof);
561 out_nopages:
562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 array = kmap(page);
564 array->eof_index = array->size;
565 status = 0;
566 kunmap(page);
569 put_page(scratch);
570 return status;
573 static
574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
576 unsigned int i;
577 for (i = 0; i < npages; i++)
578 put_page(pages[i]);
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_pagearray
585 static
586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
588 unsigned int i;
590 for (i = 0; i < npages; i++) {
591 struct page *page = alloc_page(GFP_KERNEL);
592 if (page == NULL)
593 goto out_freepages;
594 pages[i] = page;
596 return 0;
598 out_freepages:
599 nfs_readdir_free_pages(pages, i);
600 return -ENOMEM;
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
606 struct page *pages[NFS_MAX_READDIR_PAGES];
607 struct nfs_entry entry;
608 struct file *file = desc->file;
609 struct nfs_cache_array *array;
610 int status = -ENOMEM;
611 unsigned int array_size = ARRAY_SIZE(pages);
613 entry.prev_cookie = 0;
614 entry.cookie = desc->last_cookie;
615 entry.eof = 0;
616 entry.fh = nfs_alloc_fhandle();
617 entry.fattr = nfs_alloc_fattr();
618 entry.server = NFS_SERVER(inode);
619 if (entry.fh == NULL || entry.fattr == NULL)
620 goto out;
622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 if (IS_ERR(entry.label)) {
624 status = PTR_ERR(entry.label);
625 goto out;
628 array = kmap(page);
629 memset(array, 0, sizeof(struct nfs_cache_array));
630 array->eof_index = -1;
632 status = nfs_readdir_alloc_pages(pages, array_size);
633 if (status < 0)
634 goto out_release_array;
635 do {
636 unsigned int pglen;
637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
639 if (status < 0)
640 break;
641 pglen = status;
642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 if (status < 0) {
644 if (status == -ENOSPC)
645 status = 0;
646 break;
648 } while (array->eof_index < 0);
650 nfs_readdir_free_pages(pages, array_size);
651 out_release_array:
652 kunmap(page);
653 nfs4_label_free(entry.label);
654 out:
655 nfs_free_fattr(entry.fattr);
656 nfs_free_fhandle(entry.fh);
657 return status;
661 * Now we cache directories properly, by converting xdr information
662 * to an array that can be used for lookups later. This results in
663 * fewer cache pages, since we can store more information on each page.
664 * We only need to convert from xdr once so future lookups are much simpler
666 static
667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
669 struct inode *inode = file_inode(desc->file);
670 int ret;
672 ret = nfs_readdir_xdr_to_array(desc, page, inode);
673 if (ret < 0)
674 goto error;
675 SetPageUptodate(page);
677 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
678 /* Should never happen */
679 nfs_zap_mapping(inode, inode->i_mapping);
681 unlock_page(page);
682 return 0;
683 error:
684 unlock_page(page);
685 return ret;
688 static
689 void cache_page_release(nfs_readdir_descriptor_t *desc)
691 if (!desc->page->mapping)
692 nfs_readdir_clear_array(desc->page);
693 put_page(desc->page);
694 desc->page = NULL;
697 static
698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
700 return read_cache_page(desc->file->f_mapping,
701 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
705 * Returns 0 if desc->dir_cookie was found on page desc->page_index
707 static
708 int find_cache_page(nfs_readdir_descriptor_t *desc)
710 int res;
712 desc->page = get_cache_page(desc);
713 if (IS_ERR(desc->page))
714 return PTR_ERR(desc->page);
716 res = nfs_readdir_search_array(desc);
717 if (res != 0)
718 cache_page_release(desc);
719 return res;
722 /* Search for desc->dir_cookie from the beginning of the page cache */
723 static inline
724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
726 int res;
728 if (desc->page_index == 0) {
729 desc->current_index = 0;
730 desc->last_cookie = 0;
732 do {
733 res = find_cache_page(desc);
734 } while (res == -EAGAIN);
735 return res;
739 * Once we've found the start of the dirent within a page: fill 'er up...
741 static
742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
744 struct file *file = desc->file;
745 int i = 0;
746 int res = 0;
747 struct nfs_cache_array *array = NULL;
748 struct nfs_open_dir_context *ctx = file->private_data;
750 array = kmap(desc->page);
751 for (i = desc->cache_entry_index; i < array->size; i++) {
752 struct nfs_cache_array_entry *ent;
754 ent = &array->array[i];
755 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
756 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
757 desc->eof = true;
758 break;
760 desc->ctx->pos++;
761 if (i < (array->size-1))
762 *desc->dir_cookie = array->array[i+1].cookie;
763 else
764 *desc->dir_cookie = array->last_cookie;
765 if (ctx->duped != 0)
766 ctx->duped = 1;
768 if (array->eof_index >= 0)
769 desc->eof = true;
771 kunmap(desc->page);
772 cache_page_release(desc);
773 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 (unsigned long long)*desc->dir_cookie, res);
775 return res;
779 * If we cannot find a cookie in our cache, we suspect that this is
780 * because it points to a deleted file, so we ask the server to return
781 * whatever it thinks is the next entry. We then feed this to filldir.
782 * If all goes well, we should then be able to find our way round the
783 * cache on the next call to readdir_search_pagecache();
785 * NOTE: we cannot add the anonymous page to the pagecache because
786 * the data it contains might not be page aligned. Besides,
787 * we should already have a complete representation of the
788 * directory in the page cache by the time we get here.
790 static inline
791 int uncached_readdir(nfs_readdir_descriptor_t *desc)
793 struct page *page = NULL;
794 int status;
795 struct inode *inode = file_inode(desc->file);
796 struct nfs_open_dir_context *ctx = desc->file->private_data;
798 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 (unsigned long long)*desc->dir_cookie);
801 page = alloc_page(GFP_HIGHUSER);
802 if (!page) {
803 status = -ENOMEM;
804 goto out;
807 desc->page_index = 0;
808 desc->last_cookie = *desc->dir_cookie;
809 desc->page = page;
810 ctx->duped = 0;
812 status = nfs_readdir_xdr_to_array(desc, page, inode);
813 if (status < 0)
814 goto out_release;
816 status = nfs_do_filldir(desc);
818 out:
819 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
820 __func__, status);
821 return status;
822 out_release:
823 cache_page_release(desc);
824 goto out;
827 /* The file offset position represents the dirent entry number. A
828 last cookie cache takes care of the common case of reading the
829 whole directory.
831 static int nfs_readdir(struct file *file, struct dir_context *ctx)
833 struct dentry *dentry = file_dentry(file);
834 struct inode *inode = d_inode(dentry);
835 nfs_readdir_descriptor_t my_desc,
836 *desc = &my_desc;
837 struct nfs_open_dir_context *dir_ctx = file->private_data;
838 int res = 0;
840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 file, (long long)ctx->pos);
842 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
845 * ctx->pos points to the dirent entry number.
846 * *desc->dir_cookie has the cookie for the next entry. We have
847 * to either find the entry with the appropriate number or
848 * revalidate the cookie.
850 memset(desc, 0, sizeof(*desc));
852 desc->file = file;
853 desc->ctx = ctx;
854 desc->dir_cookie = &dir_ctx->dir_cookie;
855 desc->decode = NFS_PROTO(inode)->decode_dirent;
856 desc->plus = nfs_use_readdirplus(inode, ctx);
858 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
859 res = nfs_revalidate_mapping(inode, file->f_mapping);
860 if (res < 0)
861 goto out;
863 do {
864 res = readdir_search_pagecache(desc);
866 if (res == -EBADCOOKIE) {
867 res = 0;
868 /* This means either end of directory */
869 if (*desc->dir_cookie && !desc->eof) {
870 /* Or that the server has 'lost' a cookie */
871 res = uncached_readdir(desc);
872 if (res == 0)
873 continue;
875 break;
877 if (res == -ETOOSMALL && desc->plus) {
878 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
879 nfs_zap_caches(inode);
880 desc->page_index = 0;
881 desc->plus = false;
882 desc->eof = false;
883 continue;
885 if (res < 0)
886 break;
888 res = nfs_do_filldir(desc);
889 if (res < 0)
890 break;
891 } while (!desc->eof);
892 out:
893 if (res > 0)
894 res = 0;
895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
896 return res;
899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
901 struct inode *inode = file_inode(filp);
902 struct nfs_open_dir_context *dir_ctx = filp->private_data;
904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 filp, offset, whence);
907 switch (whence) {
908 default:
909 return -EINVAL;
910 case SEEK_SET:
911 if (offset < 0)
912 return -EINVAL;
913 inode_lock(inode);
914 break;
915 case SEEK_CUR:
916 if (offset == 0)
917 return filp->f_pos;
918 inode_lock(inode);
919 offset += filp->f_pos;
920 if (offset < 0) {
921 inode_unlock(inode);
922 return -EINVAL;
925 if (offset != filp->f_pos) {
926 filp->f_pos = offset;
927 dir_ctx->dir_cookie = 0;
928 dir_ctx->duped = 0;
930 inode_unlock(inode);
931 return offset;
935 * All directory operations under NFS are synchronous, so fsync()
936 * is a dummy operation.
938 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
939 int datasync)
941 struct inode *inode = file_inode(filp);
943 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
945 inode_lock(inode);
946 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
947 inode_unlock(inode);
948 return 0;
952 * nfs_force_lookup_revalidate - Mark the directory as having changed
953 * @dir - pointer to directory inode
955 * This forces the revalidation code in nfs_lookup_revalidate() to do a
956 * full lookup on all child dentries of 'dir' whenever a change occurs
957 * on the server that might have invalidated our dcache.
959 * The caller should be holding dir->i_lock
961 void nfs_force_lookup_revalidate(struct inode *dir)
963 NFS_I(dir)->cache_change_attribute++;
965 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
968 * A check for whether or not the parent directory has changed.
969 * In the case it has, we assume that the dentries are untrustworthy
970 * and may need to be looked up again.
971 * If rcu_walk prevents us from performing a full check, return 0.
973 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
974 int rcu_walk)
976 if (IS_ROOT(dentry))
977 return 1;
978 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
979 return 0;
980 if (!nfs_verify_change_attribute(dir, dentry->d_time))
981 return 0;
982 /* Revalidate nfsi->cache_change_attribute before we declare a match */
983 if (nfs_mapping_need_revalidate_inode(dir)) {
984 if (rcu_walk)
985 return 0;
986 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
987 return 0;
989 if (!nfs_verify_change_attribute(dir, dentry->d_time))
990 return 0;
991 return 1;
995 * Use intent information to check whether or not we're going to do
996 * an O_EXCL create using this path component.
998 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000 if (NFS_PROTO(dir)->version == 2)
1001 return 0;
1002 return flags & LOOKUP_EXCL;
1006 * Inode and filehandle revalidation for lookups.
1008 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1009 * or if the intent information indicates that we're about to open this
1010 * particular file and the "nocto" mount flag is not set.
1013 static
1014 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016 struct nfs_server *server = NFS_SERVER(inode);
1017 int ret;
1019 if (IS_AUTOMOUNT(inode))
1020 return 0;
1022 if (flags & LOOKUP_OPEN) {
1023 switch (inode->i_mode & S_IFMT) {
1024 case S_IFREG:
1025 /* A NFSv4 OPEN will revalidate later */
1026 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1027 goto out;
1028 /* Fallthrough */
1029 case S_IFDIR:
1030 if (server->flags & NFS_MOUNT_NOCTO)
1031 break;
1032 /* NFS close-to-open cache consistency validation */
1033 goto out_force;
1037 /* VFS wants an on-the-wire revalidation */
1038 if (flags & LOOKUP_REVAL)
1039 goto out_force;
1040 out:
1041 return (inode->i_nlink == 0) ? -ESTALE : 0;
1042 out_force:
1043 if (flags & LOOKUP_RCU)
1044 return -ECHILD;
1045 ret = __nfs_revalidate_inode(server, inode);
1046 if (ret != 0)
1047 return ret;
1048 goto out;
1052 * We judge how long we want to trust negative
1053 * dentries by looking at the parent inode mtime.
1055 * If parent mtime has changed, we revalidate, else we wait for a
1056 * period corresponding to the parent's attribute cache timeout value.
1058 * If LOOKUP_RCU prevents us from performing a full check, return 1
1059 * suggesting a reval is needed.
1061 * Note that when creating a new file, or looking up a rename target,
1062 * then it shouldn't be necessary to revalidate a negative dentry.
1064 static inline
1065 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1066 unsigned int flags)
1068 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1069 return 0;
1070 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1071 return 1;
1072 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1076 * This is called every time the dcache has a lookup hit,
1077 * and we should check whether we can really trust that
1078 * lookup.
1080 * NOTE! The hit can be a negative hit too, don't assume
1081 * we have an inode!
1083 * If the parent directory is seen to have changed, we throw out the
1084 * cached dentry and do a new lookup.
1086 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1088 struct inode *dir;
1089 struct inode *inode;
1090 struct dentry *parent;
1091 struct nfs_fh *fhandle = NULL;
1092 struct nfs_fattr *fattr = NULL;
1093 struct nfs4_label *label = NULL;
1094 int error;
1096 if (flags & LOOKUP_RCU) {
1097 parent = READ_ONCE(dentry->d_parent);
1098 dir = d_inode_rcu(parent);
1099 if (!dir)
1100 return -ECHILD;
1101 } else {
1102 parent = dget_parent(dentry);
1103 dir = d_inode(parent);
1105 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1106 inode = d_inode(dentry);
1108 if (!inode) {
1109 if (nfs_neg_need_reval(dir, dentry, flags)) {
1110 if (flags & LOOKUP_RCU)
1111 return -ECHILD;
1112 goto out_bad;
1114 goto out_valid;
1117 if (is_bad_inode(inode)) {
1118 if (flags & LOOKUP_RCU)
1119 return -ECHILD;
1120 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1121 __func__, dentry);
1122 goto out_bad;
1125 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1126 goto out_set_verifier;
1128 /* Force a full look up iff the parent directory has changed */
1129 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1130 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1131 error = nfs_lookup_verify_inode(inode, flags);
1132 if (error) {
1133 if (flags & LOOKUP_RCU)
1134 return -ECHILD;
1135 if (error == -ESTALE)
1136 goto out_zap_parent;
1137 goto out_error;
1139 nfs_advise_use_readdirplus(dir);
1140 goto out_valid;
1143 if (flags & LOOKUP_RCU)
1144 return -ECHILD;
1146 if (NFS_STALE(inode))
1147 goto out_bad;
1149 error = -ENOMEM;
1150 fhandle = nfs_alloc_fhandle();
1151 fattr = nfs_alloc_fattr();
1152 if (fhandle == NULL || fattr == NULL)
1153 goto out_error;
1155 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1156 if (IS_ERR(label))
1157 goto out_error;
1159 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1160 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1161 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1162 if (error == -ESTALE || error == -ENOENT)
1163 goto out_bad;
1164 if (error)
1165 goto out_error;
1166 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1167 goto out_bad;
1168 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1169 goto out_bad;
1171 nfs_setsecurity(inode, fattr, label);
1173 nfs_free_fattr(fattr);
1174 nfs_free_fhandle(fhandle);
1175 nfs4_label_free(label);
1177 /* set a readdirplus hint that we had a cache miss */
1178 nfs_force_use_readdirplus(dir);
1180 out_set_verifier:
1181 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1182 out_valid:
1183 if (flags & LOOKUP_RCU) {
1184 if (parent != READ_ONCE(dentry->d_parent))
1185 return -ECHILD;
1186 } else
1187 dput(parent);
1188 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1189 __func__, dentry);
1190 return 1;
1191 out_zap_parent:
1192 nfs_zap_caches(dir);
1193 out_bad:
1194 WARN_ON(flags & LOOKUP_RCU);
1195 nfs_free_fattr(fattr);
1196 nfs_free_fhandle(fhandle);
1197 nfs4_label_free(label);
1198 nfs_mark_for_revalidate(dir);
1199 if (inode && S_ISDIR(inode->i_mode)) {
1200 /* Purge readdir caches. */
1201 nfs_zap_caches(inode);
1203 * We can't d_drop the root of a disconnected tree:
1204 * its d_hash is on the s_anon list and d_drop() would hide
1205 * it from shrink_dcache_for_unmount(), leading to busy
1206 * inodes on unmount and further oopses.
1208 if (IS_ROOT(dentry))
1209 goto out_valid;
1211 dput(parent);
1212 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1213 __func__, dentry);
1214 return 0;
1215 out_error:
1216 WARN_ON(flags & LOOKUP_RCU);
1217 nfs_free_fattr(fattr);
1218 nfs_free_fhandle(fhandle);
1219 nfs4_label_free(label);
1220 dput(parent);
1221 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1222 __func__, dentry, error);
1223 return error;
1227 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1228 * when we don't really care about the dentry name. This is called when a
1229 * pathwalk ends on a dentry that was not found via a normal lookup in the
1230 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1232 * In this situation, we just want to verify that the inode itself is OK
1233 * since the dentry might have changed on the server.
1235 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1237 struct inode *inode = d_inode(dentry);
1238 int error = 0;
1241 * I believe we can only get a negative dentry here in the case of a
1242 * procfs-style symlink. Just assume it's correct for now, but we may
1243 * eventually need to do something more here.
1245 if (!inode) {
1246 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1247 __func__, dentry);
1248 return 1;
1251 if (is_bad_inode(inode)) {
1252 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1253 __func__, dentry);
1254 return 0;
1257 error = nfs_lookup_verify_inode(inode, flags);
1258 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1259 __func__, inode->i_ino, error ? "invalid" : "valid");
1260 return !error;
1264 * This is called from dput() when d_count is going to 0.
1266 static int nfs_dentry_delete(const struct dentry *dentry)
1268 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1269 dentry, dentry->d_flags);
1271 /* Unhash any dentry with a stale inode */
1272 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1273 return 1;
1275 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1276 /* Unhash it, so that ->d_iput() would be called */
1277 return 1;
1279 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1280 /* Unhash it, so that ancestors of killed async unlink
1281 * files will be cleaned up during umount */
1282 return 1;
1284 return 0;
1288 /* Ensure that we revalidate inode->i_nlink */
1289 static void nfs_drop_nlink(struct inode *inode)
1291 spin_lock(&inode->i_lock);
1292 /* drop the inode if we're reasonably sure this is the last link */
1293 if (inode->i_nlink > 0)
1294 drop_nlink(inode);
1295 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1296 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1297 | NFS_INO_INVALID_CTIME
1298 | NFS_INO_INVALID_OTHER
1299 | NFS_INO_REVAL_FORCED;
1300 spin_unlock(&inode->i_lock);
1304 * Called when the dentry loses inode.
1305 * We use it to clean up silly-renamed files.
1307 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1309 if (S_ISDIR(inode->i_mode))
1310 /* drop any readdir cache as it could easily be old */
1311 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1313 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1314 nfs_complete_unlink(dentry, inode);
1315 nfs_drop_nlink(inode);
1317 iput(inode);
1320 static void nfs_d_release(struct dentry *dentry)
1322 /* free cached devname value, if it survived that far */
1323 if (unlikely(dentry->d_fsdata)) {
1324 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1325 WARN_ON(1);
1326 else
1327 kfree(dentry->d_fsdata);
1331 const struct dentry_operations nfs_dentry_operations = {
1332 .d_revalidate = nfs_lookup_revalidate,
1333 .d_weak_revalidate = nfs_weak_revalidate,
1334 .d_delete = nfs_dentry_delete,
1335 .d_iput = nfs_dentry_iput,
1336 .d_automount = nfs_d_automount,
1337 .d_release = nfs_d_release,
1339 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1341 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1343 struct dentry *res;
1344 struct inode *inode = NULL;
1345 struct nfs_fh *fhandle = NULL;
1346 struct nfs_fattr *fattr = NULL;
1347 struct nfs4_label *label = NULL;
1348 int error;
1350 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1351 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1353 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1354 return ERR_PTR(-ENAMETOOLONG);
1357 * If we're doing an exclusive create, optimize away the lookup
1358 * but don't hash the dentry.
1360 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1361 return NULL;
1363 res = ERR_PTR(-ENOMEM);
1364 fhandle = nfs_alloc_fhandle();
1365 fattr = nfs_alloc_fattr();
1366 if (fhandle == NULL || fattr == NULL)
1367 goto out;
1369 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1370 if (IS_ERR(label))
1371 goto out;
1373 trace_nfs_lookup_enter(dir, dentry, flags);
1374 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1375 if (error == -ENOENT)
1376 goto no_entry;
1377 if (error < 0) {
1378 res = ERR_PTR(error);
1379 goto out_label;
1381 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1382 res = ERR_CAST(inode);
1383 if (IS_ERR(res))
1384 goto out_label;
1386 /* Notify readdir to use READDIRPLUS */
1387 nfs_force_use_readdirplus(dir);
1389 no_entry:
1390 res = d_splice_alias(inode, dentry);
1391 if (res != NULL) {
1392 if (IS_ERR(res))
1393 goto out_label;
1394 dentry = res;
1396 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1397 out_label:
1398 trace_nfs_lookup_exit(dir, dentry, flags, error);
1399 nfs4_label_free(label);
1400 out:
1401 nfs_free_fattr(fattr);
1402 nfs_free_fhandle(fhandle);
1403 return res;
1405 EXPORT_SYMBOL_GPL(nfs_lookup);
1407 #if IS_ENABLED(CONFIG_NFS_V4)
1408 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1410 const struct dentry_operations nfs4_dentry_operations = {
1411 .d_revalidate = nfs4_lookup_revalidate,
1412 .d_weak_revalidate = nfs_weak_revalidate,
1413 .d_delete = nfs_dentry_delete,
1414 .d_iput = nfs_dentry_iput,
1415 .d_automount = nfs_d_automount,
1416 .d_release = nfs_d_release,
1418 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1420 static fmode_t flags_to_mode(int flags)
1422 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1423 if ((flags & O_ACCMODE) != O_WRONLY)
1424 res |= FMODE_READ;
1425 if ((flags & O_ACCMODE) != O_RDONLY)
1426 res |= FMODE_WRITE;
1427 return res;
1430 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1432 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1435 static int do_open(struct inode *inode, struct file *filp)
1437 nfs_fscache_open_file(inode, filp);
1438 return 0;
1441 static int nfs_finish_open(struct nfs_open_context *ctx,
1442 struct dentry *dentry,
1443 struct file *file, unsigned open_flags)
1445 int err;
1447 err = finish_open(file, dentry, do_open);
1448 if (err)
1449 goto out;
1450 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1451 nfs_file_set_open_context(file, ctx);
1452 else
1453 err = -ESTALE;
1454 out:
1455 return err;
1458 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1459 struct file *file, unsigned open_flags,
1460 umode_t mode)
1462 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1463 struct nfs_open_context *ctx;
1464 struct dentry *res;
1465 struct iattr attr = { .ia_valid = ATTR_OPEN };
1466 struct inode *inode;
1467 unsigned int lookup_flags = 0;
1468 bool switched = false;
1469 int created = 0;
1470 int err;
1472 /* Expect a negative dentry */
1473 BUG_ON(d_inode(dentry));
1475 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1476 dir->i_sb->s_id, dir->i_ino, dentry);
1478 err = nfs_check_flags(open_flags);
1479 if (err)
1480 return err;
1482 /* NFS only supports OPEN on regular files */
1483 if ((open_flags & O_DIRECTORY)) {
1484 if (!d_in_lookup(dentry)) {
1486 * Hashed negative dentry with O_DIRECTORY: dentry was
1487 * revalidated and is fine, no need to perform lookup
1488 * again
1490 return -ENOENT;
1492 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1493 goto no_open;
1496 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1497 return -ENAMETOOLONG;
1499 if (open_flags & O_CREAT) {
1500 struct nfs_server *server = NFS_SERVER(dir);
1502 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1503 mode &= ~current_umask();
1505 attr.ia_valid |= ATTR_MODE;
1506 attr.ia_mode = mode;
1508 if (open_flags & O_TRUNC) {
1509 attr.ia_valid |= ATTR_SIZE;
1510 attr.ia_size = 0;
1513 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1514 d_drop(dentry);
1515 switched = true;
1516 dentry = d_alloc_parallel(dentry->d_parent,
1517 &dentry->d_name, &wq);
1518 if (IS_ERR(dentry))
1519 return PTR_ERR(dentry);
1520 if (unlikely(!d_in_lookup(dentry)))
1521 return finish_no_open(file, dentry);
1524 ctx = create_nfs_open_context(dentry, open_flags, file);
1525 err = PTR_ERR(ctx);
1526 if (IS_ERR(ctx))
1527 goto out;
1529 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1530 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1531 if (created)
1532 file->f_mode |= FMODE_CREATED;
1533 if (IS_ERR(inode)) {
1534 err = PTR_ERR(inode);
1535 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1536 put_nfs_open_context(ctx);
1537 d_drop(dentry);
1538 switch (err) {
1539 case -ENOENT:
1540 d_splice_alias(NULL, dentry);
1541 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1542 break;
1543 case -EISDIR:
1544 case -ENOTDIR:
1545 goto no_open;
1546 case -ELOOP:
1547 if (!(open_flags & O_NOFOLLOW))
1548 goto no_open;
1549 break;
1550 /* case -EINVAL: */
1551 default:
1552 break;
1554 goto out;
1557 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1558 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1559 put_nfs_open_context(ctx);
1560 out:
1561 if (unlikely(switched)) {
1562 d_lookup_done(dentry);
1563 dput(dentry);
1565 return err;
1567 no_open:
1568 res = nfs_lookup(dir, dentry, lookup_flags);
1569 if (switched) {
1570 d_lookup_done(dentry);
1571 if (!res)
1572 res = dentry;
1573 else
1574 dput(dentry);
1576 if (IS_ERR(res))
1577 return PTR_ERR(res);
1578 return finish_no_open(file, res);
1580 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1582 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1584 struct inode *inode;
1585 int ret = 0;
1587 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1588 goto no_open;
1589 if (d_mountpoint(dentry))
1590 goto no_open;
1591 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1592 goto no_open;
1594 inode = d_inode(dentry);
1596 /* We can't create new files in nfs_open_revalidate(), so we
1597 * optimize away revalidation of negative dentries.
1599 if (inode == NULL) {
1600 struct dentry *parent;
1601 struct inode *dir;
1603 if (flags & LOOKUP_RCU) {
1604 parent = READ_ONCE(dentry->d_parent);
1605 dir = d_inode_rcu(parent);
1606 if (!dir)
1607 return -ECHILD;
1608 } else {
1609 parent = dget_parent(dentry);
1610 dir = d_inode(parent);
1612 if (!nfs_neg_need_reval(dir, dentry, flags))
1613 ret = 1;
1614 else if (flags & LOOKUP_RCU)
1615 ret = -ECHILD;
1616 if (!(flags & LOOKUP_RCU))
1617 dput(parent);
1618 else if (parent != READ_ONCE(dentry->d_parent))
1619 return -ECHILD;
1620 goto out;
1623 /* NFS only supports OPEN on regular files */
1624 if (!S_ISREG(inode->i_mode))
1625 goto no_open;
1626 /* We cannot do exclusive creation on a positive dentry */
1627 if (flags & LOOKUP_EXCL)
1628 goto no_open;
1630 /* Let f_op->open() actually open (and revalidate) the file */
1631 ret = 1;
1633 out:
1634 return ret;
1636 no_open:
1637 return nfs_lookup_revalidate(dentry, flags);
1640 #endif /* CONFIG_NFSV4 */
1643 * Code common to create, mkdir, and mknod.
1645 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1646 struct nfs_fattr *fattr,
1647 struct nfs4_label *label)
1649 struct dentry *parent = dget_parent(dentry);
1650 struct inode *dir = d_inode(parent);
1651 struct inode *inode;
1652 struct dentry *d;
1653 int error = -EACCES;
1655 d_drop(dentry);
1657 /* We may have been initialized further down */
1658 if (d_really_is_positive(dentry))
1659 goto out;
1660 if (fhandle->size == 0) {
1661 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1662 if (error)
1663 goto out_error;
1665 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1666 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1667 struct nfs_server *server = NFS_SB(dentry->d_sb);
1668 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1669 fattr, NULL, NULL);
1670 if (error < 0)
1671 goto out_error;
1673 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1674 d = d_splice_alias(inode, dentry);
1675 if (IS_ERR(d)) {
1676 error = PTR_ERR(d);
1677 goto out_error;
1679 dput(d);
1680 out:
1681 dput(parent);
1682 return 0;
1683 out_error:
1684 nfs_mark_for_revalidate(dir);
1685 dput(parent);
1686 return error;
1688 EXPORT_SYMBOL_GPL(nfs_instantiate);
1691 * Following a failed create operation, we drop the dentry rather
1692 * than retain a negative dentry. This avoids a problem in the event
1693 * that the operation succeeded on the server, but an error in the
1694 * reply path made it appear to have failed.
1696 int nfs_create(struct inode *dir, struct dentry *dentry,
1697 umode_t mode, bool excl)
1699 struct iattr attr;
1700 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1701 int error;
1703 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1704 dir->i_sb->s_id, dir->i_ino, dentry);
1706 attr.ia_mode = mode;
1707 attr.ia_valid = ATTR_MODE;
1709 trace_nfs_create_enter(dir, dentry, open_flags);
1710 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1711 trace_nfs_create_exit(dir, dentry, open_flags, error);
1712 if (error != 0)
1713 goto out_err;
1714 return 0;
1715 out_err:
1716 d_drop(dentry);
1717 return error;
1719 EXPORT_SYMBOL_GPL(nfs_create);
1722 * See comments for nfs_proc_create regarding failed operations.
1725 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1727 struct iattr attr;
1728 int status;
1730 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1731 dir->i_sb->s_id, dir->i_ino, dentry);
1733 attr.ia_mode = mode;
1734 attr.ia_valid = ATTR_MODE;
1736 trace_nfs_mknod_enter(dir, dentry);
1737 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1738 trace_nfs_mknod_exit(dir, dentry, status);
1739 if (status != 0)
1740 goto out_err;
1741 return 0;
1742 out_err:
1743 d_drop(dentry);
1744 return status;
1746 EXPORT_SYMBOL_GPL(nfs_mknod);
1749 * See comments for nfs_proc_create regarding failed operations.
1751 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1753 struct iattr attr;
1754 int error;
1756 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1757 dir->i_sb->s_id, dir->i_ino, dentry);
1759 attr.ia_valid = ATTR_MODE;
1760 attr.ia_mode = mode | S_IFDIR;
1762 trace_nfs_mkdir_enter(dir, dentry);
1763 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1764 trace_nfs_mkdir_exit(dir, dentry, error);
1765 if (error != 0)
1766 goto out_err;
1767 return 0;
1768 out_err:
1769 d_drop(dentry);
1770 return error;
1772 EXPORT_SYMBOL_GPL(nfs_mkdir);
1774 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1776 if (simple_positive(dentry))
1777 d_delete(dentry);
1780 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1782 int error;
1784 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1785 dir->i_sb->s_id, dir->i_ino, dentry);
1787 trace_nfs_rmdir_enter(dir, dentry);
1788 if (d_really_is_positive(dentry)) {
1789 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1790 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1791 /* Ensure the VFS deletes this inode */
1792 switch (error) {
1793 case 0:
1794 clear_nlink(d_inode(dentry));
1795 break;
1796 case -ENOENT:
1797 nfs_dentry_handle_enoent(dentry);
1799 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1800 } else
1801 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1802 trace_nfs_rmdir_exit(dir, dentry, error);
1804 return error;
1806 EXPORT_SYMBOL_GPL(nfs_rmdir);
1809 * Remove a file after making sure there are no pending writes,
1810 * and after checking that the file has only one user.
1812 * We invalidate the attribute cache and free the inode prior to the operation
1813 * to avoid possible races if the server reuses the inode.
1815 static int nfs_safe_remove(struct dentry *dentry)
1817 struct inode *dir = d_inode(dentry->d_parent);
1818 struct inode *inode = d_inode(dentry);
1819 int error = -EBUSY;
1821 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1823 /* If the dentry was sillyrenamed, we simply call d_delete() */
1824 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1825 error = 0;
1826 goto out;
1829 trace_nfs_remove_enter(dir, dentry);
1830 if (inode != NULL) {
1831 error = NFS_PROTO(dir)->remove(dir, dentry);
1832 if (error == 0)
1833 nfs_drop_nlink(inode);
1834 } else
1835 error = NFS_PROTO(dir)->remove(dir, dentry);
1836 if (error == -ENOENT)
1837 nfs_dentry_handle_enoent(dentry);
1838 trace_nfs_remove_exit(dir, dentry, error);
1839 out:
1840 return error;
1843 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1844 * belongs to an active ".nfs..." file and we return -EBUSY.
1846 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1848 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1850 int error;
1851 int need_rehash = 0;
1853 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1854 dir->i_ino, dentry);
1856 trace_nfs_unlink_enter(dir, dentry);
1857 spin_lock(&dentry->d_lock);
1858 if (d_count(dentry) > 1) {
1859 spin_unlock(&dentry->d_lock);
1860 /* Start asynchronous writeout of the inode */
1861 write_inode_now(d_inode(dentry), 0);
1862 error = nfs_sillyrename(dir, dentry);
1863 goto out;
1865 if (!d_unhashed(dentry)) {
1866 __d_drop(dentry);
1867 need_rehash = 1;
1869 spin_unlock(&dentry->d_lock);
1870 error = nfs_safe_remove(dentry);
1871 if (!error || error == -ENOENT) {
1872 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1873 } else if (need_rehash)
1874 d_rehash(dentry);
1875 out:
1876 trace_nfs_unlink_exit(dir, dentry, error);
1877 return error;
1879 EXPORT_SYMBOL_GPL(nfs_unlink);
1882 * To create a symbolic link, most file systems instantiate a new inode,
1883 * add a page to it containing the path, then write it out to the disk
1884 * using prepare_write/commit_write.
1886 * Unfortunately the NFS client can't create the in-core inode first
1887 * because it needs a file handle to create an in-core inode (see
1888 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1889 * symlink request has completed on the server.
1891 * So instead we allocate a raw page, copy the symname into it, then do
1892 * the SYMLINK request with the page as the buffer. If it succeeds, we
1893 * now have a new file handle and can instantiate an in-core NFS inode
1894 * and move the raw page into its mapping.
1896 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1898 struct page *page;
1899 char *kaddr;
1900 struct iattr attr;
1901 unsigned int pathlen = strlen(symname);
1902 int error;
1904 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1905 dir->i_ino, dentry, symname);
1907 if (pathlen > PAGE_SIZE)
1908 return -ENAMETOOLONG;
1910 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1911 attr.ia_valid = ATTR_MODE;
1913 page = alloc_page(GFP_USER);
1914 if (!page)
1915 return -ENOMEM;
1917 kaddr = page_address(page);
1918 memcpy(kaddr, symname, pathlen);
1919 if (pathlen < PAGE_SIZE)
1920 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1922 trace_nfs_symlink_enter(dir, dentry);
1923 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1924 trace_nfs_symlink_exit(dir, dentry, error);
1925 if (error != 0) {
1926 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1927 dir->i_sb->s_id, dir->i_ino,
1928 dentry, symname, error);
1929 d_drop(dentry);
1930 __free_page(page);
1931 return error;
1935 * No big deal if we can't add this page to the page cache here.
1936 * READLINK will get the missing page from the server if needed.
1938 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1939 GFP_KERNEL)) {
1940 SetPageUptodate(page);
1941 unlock_page(page);
1943 * add_to_page_cache_lru() grabs an extra page refcount.
1944 * Drop it here to avoid leaking this page later.
1946 put_page(page);
1947 } else
1948 __free_page(page);
1950 return 0;
1952 EXPORT_SYMBOL_GPL(nfs_symlink);
1955 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1957 struct inode *inode = d_inode(old_dentry);
1958 int error;
1960 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1961 old_dentry, dentry);
1963 trace_nfs_link_enter(inode, dir, dentry);
1964 d_drop(dentry);
1965 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1966 if (error == 0) {
1967 ihold(inode);
1968 d_add(dentry, inode);
1970 trace_nfs_link_exit(inode, dir, dentry, error);
1971 return error;
1973 EXPORT_SYMBOL_GPL(nfs_link);
1976 * RENAME
1977 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1978 * different file handle for the same inode after a rename (e.g. when
1979 * moving to a different directory). A fail-safe method to do so would
1980 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1981 * rename the old file using the sillyrename stuff. This way, the original
1982 * file in old_dir will go away when the last process iput()s the inode.
1984 * FIXED.
1986 * It actually works quite well. One needs to have the possibility for
1987 * at least one ".nfs..." file in each directory the file ever gets
1988 * moved or linked to which happens automagically with the new
1989 * implementation that only depends on the dcache stuff instead of
1990 * using the inode layer
1992 * Unfortunately, things are a little more complicated than indicated
1993 * above. For a cross-directory move, we want to make sure we can get
1994 * rid of the old inode after the operation. This means there must be
1995 * no pending writes (if it's a file), and the use count must be 1.
1996 * If these conditions are met, we can drop the dentries before doing
1997 * the rename.
1999 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2000 struct inode *new_dir, struct dentry *new_dentry,
2001 unsigned int flags)
2003 struct inode *old_inode = d_inode(old_dentry);
2004 struct inode *new_inode = d_inode(new_dentry);
2005 struct dentry *dentry = NULL, *rehash = NULL;
2006 struct rpc_task *task;
2007 int error = -EBUSY;
2009 if (flags)
2010 return -EINVAL;
2012 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2013 old_dentry, new_dentry,
2014 d_count(new_dentry));
2016 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2018 * For non-directories, check whether the target is busy and if so,
2019 * make a copy of the dentry and then do a silly-rename. If the
2020 * silly-rename succeeds, the copied dentry is hashed and becomes
2021 * the new target.
2023 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2025 * To prevent any new references to the target during the
2026 * rename, we unhash the dentry in advance.
2028 if (!d_unhashed(new_dentry)) {
2029 d_drop(new_dentry);
2030 rehash = new_dentry;
2033 if (d_count(new_dentry) > 2) {
2034 int err;
2036 /* copy the target dentry's name */
2037 dentry = d_alloc(new_dentry->d_parent,
2038 &new_dentry->d_name);
2039 if (!dentry)
2040 goto out;
2042 /* silly-rename the existing target ... */
2043 err = nfs_sillyrename(new_dir, new_dentry);
2044 if (err)
2045 goto out;
2047 new_dentry = dentry;
2048 rehash = NULL;
2049 new_inode = NULL;
2053 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2054 if (IS_ERR(task)) {
2055 error = PTR_ERR(task);
2056 goto out;
2059 error = rpc_wait_for_completion_task(task);
2060 if (error != 0) {
2061 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2062 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2063 smp_wmb();
2064 } else
2065 error = task->tk_status;
2066 rpc_put_task(task);
2067 /* Ensure the inode attributes are revalidated */
2068 if (error == 0) {
2069 spin_lock(&old_inode->i_lock);
2070 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2071 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2072 | NFS_INO_INVALID_CTIME
2073 | NFS_INO_REVAL_FORCED;
2074 spin_unlock(&old_inode->i_lock);
2076 out:
2077 if (rehash)
2078 d_rehash(rehash);
2079 trace_nfs_rename_exit(old_dir, old_dentry,
2080 new_dir, new_dentry, error);
2081 if (!error) {
2082 if (new_inode != NULL)
2083 nfs_drop_nlink(new_inode);
2085 * The d_move() should be here instead of in an async RPC completion
2086 * handler because we need the proper locks to move the dentry. If
2087 * we're interrupted by a signal, the async RPC completion handler
2088 * should mark the directories for revalidation.
2090 d_move(old_dentry, new_dentry);
2091 nfs_set_verifier(old_dentry,
2092 nfs_save_change_attribute(new_dir));
2093 } else if (error == -ENOENT)
2094 nfs_dentry_handle_enoent(old_dentry);
2096 /* new dentry created? */
2097 if (dentry)
2098 dput(dentry);
2099 return error;
2101 EXPORT_SYMBOL_GPL(nfs_rename);
2103 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2104 static LIST_HEAD(nfs_access_lru_list);
2105 static atomic_long_t nfs_access_nr_entries;
2107 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2108 module_param(nfs_access_max_cachesize, ulong, 0644);
2109 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2111 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2113 put_rpccred(entry->cred);
2114 kfree_rcu(entry, rcu_head);
2115 smp_mb__before_atomic();
2116 atomic_long_dec(&nfs_access_nr_entries);
2117 smp_mb__after_atomic();
2120 static void nfs_access_free_list(struct list_head *head)
2122 struct nfs_access_entry *cache;
2124 while (!list_empty(head)) {
2125 cache = list_entry(head->next, struct nfs_access_entry, lru);
2126 list_del(&cache->lru);
2127 nfs_access_free_entry(cache);
2131 static unsigned long
2132 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2134 LIST_HEAD(head);
2135 struct nfs_inode *nfsi, *next;
2136 struct nfs_access_entry *cache;
2137 long freed = 0;
2139 spin_lock(&nfs_access_lru_lock);
2140 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2141 struct inode *inode;
2143 if (nr_to_scan-- == 0)
2144 break;
2145 inode = &nfsi->vfs_inode;
2146 spin_lock(&inode->i_lock);
2147 if (list_empty(&nfsi->access_cache_entry_lru))
2148 goto remove_lru_entry;
2149 cache = list_entry(nfsi->access_cache_entry_lru.next,
2150 struct nfs_access_entry, lru);
2151 list_move(&cache->lru, &head);
2152 rb_erase(&cache->rb_node, &nfsi->access_cache);
2153 freed++;
2154 if (!list_empty(&nfsi->access_cache_entry_lru))
2155 list_move_tail(&nfsi->access_cache_inode_lru,
2156 &nfs_access_lru_list);
2157 else {
2158 remove_lru_entry:
2159 list_del_init(&nfsi->access_cache_inode_lru);
2160 smp_mb__before_atomic();
2161 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2162 smp_mb__after_atomic();
2164 spin_unlock(&inode->i_lock);
2166 spin_unlock(&nfs_access_lru_lock);
2167 nfs_access_free_list(&head);
2168 return freed;
2171 unsigned long
2172 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2174 int nr_to_scan = sc->nr_to_scan;
2175 gfp_t gfp_mask = sc->gfp_mask;
2177 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2178 return SHRINK_STOP;
2179 return nfs_do_access_cache_scan(nr_to_scan);
2183 unsigned long
2184 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2186 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2189 static void
2190 nfs_access_cache_enforce_limit(void)
2192 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2193 unsigned long diff;
2194 unsigned int nr_to_scan;
2196 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2197 return;
2198 nr_to_scan = 100;
2199 diff = nr_entries - nfs_access_max_cachesize;
2200 if (diff < nr_to_scan)
2201 nr_to_scan = diff;
2202 nfs_do_access_cache_scan(nr_to_scan);
2205 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2207 struct rb_root *root_node = &nfsi->access_cache;
2208 struct rb_node *n;
2209 struct nfs_access_entry *entry;
2211 /* Unhook entries from the cache */
2212 while ((n = rb_first(root_node)) != NULL) {
2213 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2214 rb_erase(n, root_node);
2215 list_move(&entry->lru, head);
2217 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2220 void nfs_access_zap_cache(struct inode *inode)
2222 LIST_HEAD(head);
2224 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2225 return;
2226 /* Remove from global LRU init */
2227 spin_lock(&nfs_access_lru_lock);
2228 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2229 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2231 spin_lock(&inode->i_lock);
2232 __nfs_access_zap_cache(NFS_I(inode), &head);
2233 spin_unlock(&inode->i_lock);
2234 spin_unlock(&nfs_access_lru_lock);
2235 nfs_access_free_list(&head);
2237 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2239 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2241 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2242 struct nfs_access_entry *entry;
2244 while (n != NULL) {
2245 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2247 if (cred < entry->cred)
2248 n = n->rb_left;
2249 else if (cred > entry->cred)
2250 n = n->rb_right;
2251 else
2252 return entry;
2254 return NULL;
2257 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2259 struct nfs_inode *nfsi = NFS_I(inode);
2260 struct nfs_access_entry *cache;
2261 bool retry = true;
2262 int err;
2264 spin_lock(&inode->i_lock);
2265 for(;;) {
2266 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2267 goto out_zap;
2268 cache = nfs_access_search_rbtree(inode, cred);
2269 err = -ENOENT;
2270 if (cache == NULL)
2271 goto out;
2272 /* Found an entry, is our attribute cache valid? */
2273 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2274 break;
2275 err = -ECHILD;
2276 if (!may_block)
2277 goto out;
2278 if (!retry)
2279 goto out_zap;
2280 spin_unlock(&inode->i_lock);
2281 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2282 if (err)
2283 return err;
2284 spin_lock(&inode->i_lock);
2285 retry = false;
2287 res->cred = cache->cred;
2288 res->mask = cache->mask;
2289 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2290 err = 0;
2291 out:
2292 spin_unlock(&inode->i_lock);
2293 return err;
2294 out_zap:
2295 spin_unlock(&inode->i_lock);
2296 nfs_access_zap_cache(inode);
2297 return -ENOENT;
2300 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2302 /* Only check the most recently returned cache entry,
2303 * but do it without locking.
2305 struct nfs_inode *nfsi = NFS_I(inode);
2306 struct nfs_access_entry *cache;
2307 int err = -ECHILD;
2308 struct list_head *lh;
2310 rcu_read_lock();
2311 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2312 goto out;
2313 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2314 cache = list_entry(lh, struct nfs_access_entry, lru);
2315 if (lh == &nfsi->access_cache_entry_lru ||
2316 cred != cache->cred)
2317 cache = NULL;
2318 if (cache == NULL)
2319 goto out;
2320 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2321 goto out;
2322 res->cred = cache->cred;
2323 res->mask = cache->mask;
2324 err = 0;
2325 out:
2326 rcu_read_unlock();
2327 return err;
2330 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2332 struct nfs_inode *nfsi = NFS_I(inode);
2333 struct rb_root *root_node = &nfsi->access_cache;
2334 struct rb_node **p = &root_node->rb_node;
2335 struct rb_node *parent = NULL;
2336 struct nfs_access_entry *entry;
2338 spin_lock(&inode->i_lock);
2339 while (*p != NULL) {
2340 parent = *p;
2341 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2343 if (set->cred < entry->cred)
2344 p = &parent->rb_left;
2345 else if (set->cred > entry->cred)
2346 p = &parent->rb_right;
2347 else
2348 goto found;
2350 rb_link_node(&set->rb_node, parent, p);
2351 rb_insert_color(&set->rb_node, root_node);
2352 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2353 spin_unlock(&inode->i_lock);
2354 return;
2355 found:
2356 rb_replace_node(parent, &set->rb_node, root_node);
2357 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2358 list_del(&entry->lru);
2359 spin_unlock(&inode->i_lock);
2360 nfs_access_free_entry(entry);
2363 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2365 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2366 if (cache == NULL)
2367 return;
2368 RB_CLEAR_NODE(&cache->rb_node);
2369 cache->cred = get_rpccred(set->cred);
2370 cache->mask = set->mask;
2372 /* The above field assignments must be visible
2373 * before this item appears on the lru. We cannot easily
2374 * use rcu_assign_pointer, so just force the memory barrier.
2376 smp_wmb();
2377 nfs_access_add_rbtree(inode, cache);
2379 /* Update accounting */
2380 smp_mb__before_atomic();
2381 atomic_long_inc(&nfs_access_nr_entries);
2382 smp_mb__after_atomic();
2384 /* Add inode to global LRU list */
2385 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2386 spin_lock(&nfs_access_lru_lock);
2387 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2388 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2389 &nfs_access_lru_list);
2390 spin_unlock(&nfs_access_lru_lock);
2392 nfs_access_cache_enforce_limit();
2394 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2396 #define NFS_MAY_READ (NFS_ACCESS_READ)
2397 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2398 NFS_ACCESS_EXTEND | \
2399 NFS_ACCESS_DELETE)
2400 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2401 NFS_ACCESS_EXTEND)
2402 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2403 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2404 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2405 static int
2406 nfs_access_calc_mask(u32 access_result, umode_t umode)
2408 int mask = 0;
2410 if (access_result & NFS_MAY_READ)
2411 mask |= MAY_READ;
2412 if (S_ISDIR(umode)) {
2413 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2414 mask |= MAY_WRITE;
2415 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2416 mask |= MAY_EXEC;
2417 } else if (S_ISREG(umode)) {
2418 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2419 mask |= MAY_WRITE;
2420 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2421 mask |= MAY_EXEC;
2422 } else if (access_result & NFS_MAY_WRITE)
2423 mask |= MAY_WRITE;
2424 return mask;
2427 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2429 entry->mask = access_result;
2431 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2433 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2435 struct nfs_access_entry cache;
2436 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2437 int cache_mask;
2438 int status;
2440 trace_nfs_access_enter(inode);
2442 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2443 if (status != 0)
2444 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2445 if (status == 0)
2446 goto out_cached;
2448 status = -ECHILD;
2449 if (!may_block)
2450 goto out;
2453 * Determine which access bits we want to ask for...
2455 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2456 if (S_ISDIR(inode->i_mode))
2457 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2458 else
2459 cache.mask |= NFS_ACCESS_EXECUTE;
2460 cache.cred = cred;
2461 status = NFS_PROTO(inode)->access(inode, &cache);
2462 if (status != 0) {
2463 if (status == -ESTALE) {
2464 nfs_zap_caches(inode);
2465 if (!S_ISDIR(inode->i_mode))
2466 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2468 goto out;
2470 nfs_access_add_cache(inode, &cache);
2471 out_cached:
2472 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2473 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2474 status = -EACCES;
2475 out:
2476 trace_nfs_access_exit(inode, status);
2477 return status;
2480 static int nfs_open_permission_mask(int openflags)
2482 int mask = 0;
2484 if (openflags & __FMODE_EXEC) {
2485 /* ONLY check exec rights */
2486 mask = MAY_EXEC;
2487 } else {
2488 if ((openflags & O_ACCMODE) != O_WRONLY)
2489 mask |= MAY_READ;
2490 if ((openflags & O_ACCMODE) != O_RDONLY)
2491 mask |= MAY_WRITE;
2494 return mask;
2497 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2499 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2501 EXPORT_SYMBOL_GPL(nfs_may_open);
2503 static int nfs_execute_ok(struct inode *inode, int mask)
2505 struct nfs_server *server = NFS_SERVER(inode);
2506 int ret = 0;
2508 if (S_ISDIR(inode->i_mode))
2509 return 0;
2510 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2511 if (mask & MAY_NOT_BLOCK)
2512 return -ECHILD;
2513 ret = __nfs_revalidate_inode(server, inode);
2515 if (ret == 0 && !execute_ok(inode))
2516 ret = -EACCES;
2517 return ret;
2520 int nfs_permission(struct inode *inode, int mask)
2522 struct rpc_cred *cred;
2523 int res = 0;
2525 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2527 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2528 goto out;
2529 /* Is this sys_access() ? */
2530 if (mask & (MAY_ACCESS | MAY_CHDIR))
2531 goto force_lookup;
2533 switch (inode->i_mode & S_IFMT) {
2534 case S_IFLNK:
2535 goto out;
2536 case S_IFREG:
2537 if ((mask & MAY_OPEN) &&
2538 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2539 return 0;
2540 break;
2541 case S_IFDIR:
2543 * Optimize away all write operations, since the server
2544 * will check permissions when we perform the op.
2546 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2547 goto out;
2550 force_lookup:
2551 if (!NFS_PROTO(inode)->access)
2552 goto out_notsup;
2554 /* Always try fast lookups first */
2555 rcu_read_lock();
2556 cred = rpc_lookup_cred_nonblock();
2557 if (!IS_ERR(cred))
2558 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2559 else
2560 res = PTR_ERR(cred);
2561 rcu_read_unlock();
2562 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2563 /* Fast lookup failed, try the slow way */
2564 cred = rpc_lookup_cred();
2565 if (!IS_ERR(cred)) {
2566 res = nfs_do_access(inode, cred, mask);
2567 put_rpccred(cred);
2568 } else
2569 res = PTR_ERR(cred);
2571 out:
2572 if (!res && (mask & MAY_EXEC))
2573 res = nfs_execute_ok(inode, mask);
2575 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2576 inode->i_sb->s_id, inode->i_ino, mask, res);
2577 return res;
2578 out_notsup:
2579 if (mask & MAY_NOT_BLOCK)
2580 return -ECHILD;
2582 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2583 if (res == 0)
2584 res = generic_permission(inode, mask);
2585 goto out;
2587 EXPORT_SYMBOL_GPL(nfs_permission);
2590 * Local variables:
2591 * version-control: t
2592 * kept-new-versions: 5
2593 * End: