1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
22 #include "xfs_attr_sf.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
45 kmem_zone_t
*xfs_inode_zone
;
48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
49 * freed from a file in a single transaction.
51 #define XFS_ITRUNC_MAX_EXTENTS 2
53 STATIC
int xfs_iflush_int(struct xfs_inode
*, struct xfs_buf
*);
54 STATIC
int xfs_iunlink(struct xfs_trans
*, struct xfs_inode
*);
55 STATIC
int xfs_iunlink_remove(struct xfs_trans
*, struct xfs_inode
*);
58 * helper function to extract extent size hint from inode
64 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
65 return ip
->i_d
.di_extsize
;
66 if (XFS_IS_REALTIME_INODE(ip
))
67 return ip
->i_mount
->m_sb
.sb_rextsize
;
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
78 xfs_get_cowextsz_hint(
84 if (ip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
85 a
= ip
->i_d
.di_cowextsize
;
86 b
= xfs_get_extsz_hint(ip
);
90 return XFS_DEFAULT_COWEXTSZ_HINT
;
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
110 xfs_ilock_data_map_shared(
111 struct xfs_inode
*ip
)
113 uint lock_mode
= XFS_ILOCK_SHARED
;
115 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
116 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
117 lock_mode
= XFS_ILOCK_EXCL
;
118 xfs_ilock(ip
, lock_mode
);
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode
*ip
)
126 uint lock_mode
= XFS_ILOCK_SHARED
;
128 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
129 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
130 lock_mode
= XFS_ILOCK_EXCL
;
131 xfs_ilock(ip
, lock_mode
);
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
143 * Basic locking order:
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 * mmap_sem locking order:
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
170 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
178 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
179 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
180 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
181 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
182 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
183 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
185 if (lock_flags
& XFS_IOLOCK_EXCL
) {
186 down_write_nested(&VFS_I(ip
)->i_rwsem
,
187 XFS_IOLOCK_DEP(lock_flags
));
188 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
189 down_read_nested(&VFS_I(ip
)->i_rwsem
,
190 XFS_IOLOCK_DEP(lock_flags
));
193 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
194 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
195 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
196 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
198 if (lock_flags
& XFS_ILOCK_EXCL
)
199 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
200 else if (lock_flags
& XFS_ILOCK_SHARED
)
201 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
221 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
229 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
230 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
231 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
232 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
233 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
234 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
236 if (lock_flags
& XFS_IOLOCK_EXCL
) {
237 if (!down_write_trylock(&VFS_I(ip
)->i_rwsem
))
239 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
240 if (!down_read_trylock(&VFS_I(ip
)->i_rwsem
))
244 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
245 if (!mrtryupdate(&ip
->i_mmaplock
))
246 goto out_undo_iolock
;
247 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
248 if (!mrtryaccess(&ip
->i_mmaplock
))
249 goto out_undo_iolock
;
252 if (lock_flags
& XFS_ILOCK_EXCL
) {
253 if (!mrtryupdate(&ip
->i_lock
))
254 goto out_undo_mmaplock
;
255 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
256 if (!mrtryaccess(&ip
->i_lock
))
257 goto out_undo_mmaplock
;
262 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
263 mrunlock_excl(&ip
->i_mmaplock
);
264 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
265 mrunlock_shared(&ip
->i_mmaplock
);
267 if (lock_flags
& XFS_IOLOCK_EXCL
)
268 up_write(&VFS_I(ip
)->i_rwsem
);
269 else if (lock_flags
& XFS_IOLOCK_SHARED
)
270 up_read(&VFS_I(ip
)->i_rwsem
);
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
298 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
299 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
300 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
301 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
302 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
303 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
304 ASSERT(lock_flags
!= 0);
306 if (lock_flags
& XFS_IOLOCK_EXCL
)
307 up_write(&VFS_I(ip
)->i_rwsem
);
308 else if (lock_flags
& XFS_IOLOCK_SHARED
)
309 up_read(&VFS_I(ip
)->i_rwsem
);
311 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
312 mrunlock_excl(&ip
->i_mmaplock
);
313 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
314 mrunlock_shared(&ip
->i_mmaplock
);
316 if (lock_flags
& XFS_ILOCK_EXCL
)
317 mrunlock_excl(&ip
->i_lock
);
318 else if (lock_flags
& XFS_ILOCK_SHARED
)
319 mrunlock_shared(&ip
->i_lock
);
321 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
333 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
335 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
337 if (lock_flags
& XFS_ILOCK_EXCL
)
338 mrdemote(&ip
->i_lock
);
339 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
340 mrdemote(&ip
->i_mmaplock
);
341 if (lock_flags
& XFS_IOLOCK_EXCL
)
342 downgrade_write(&VFS_I(ip
)->i_rwsem
);
344 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
347 #if defined(DEBUG) || defined(XFS_WARN)
353 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
354 if (!(lock_flags
& XFS_ILOCK_SHARED
))
355 return !!ip
->i_lock
.mr_writer
;
356 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
359 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
360 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
361 return !!ip
->i_mmaplock
.mr_writer
;
362 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
365 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
366 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
367 return !debug_locks
||
368 lockdep_is_held_type(&VFS_I(ip
)->i_rwsem
, 0);
369 return rwsem_is_locked(&VFS_I(ip
)->i_rwsem
);
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 xfs_lockdep_subclass_ok(
388 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
391 #define xfs_lockdep_subclass_ok(subclass) (true)
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
401 xfs_lock_inumorder(int lock_mode
, int subclass
)
405 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
407 ASSERT(xfs_lockdep_subclass_ok(subclass
));
409 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
410 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
411 class += subclass
<< XFS_IOLOCK_SHIFT
;
414 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
415 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
416 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
419 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
420 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
421 class += subclass
<< XFS_ILOCK_SHIFT
;
424 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
448 int attempts
= 0, i
, j
, try_lock
;
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
458 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
459 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
461 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
463 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
464 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
465 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
466 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
468 if (lock_mode
& XFS_IOLOCK_EXCL
) {
469 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
470 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
471 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
476 for (; i
< inodes
; i
++) {
479 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
487 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
488 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
489 if (lp
&& test_bit(XFS_LI_IN_AIL
, &lp
->li_flags
))
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
501 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
505 /* try_lock means we have an inode locked that is in the AIL. */
507 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
515 for (j
= i
- 1; j
>= 0; j
--) {
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
521 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
524 xfs_iunlock(ips
[j
], lock_mode
);
527 if ((attempts
% 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
546 struct xfs_inode
*ip0
,
548 struct xfs_inode
*ip1
,
551 struct xfs_inode
*temp
;
556 ASSERT(hweight32(ip0_mode
) == 1);
557 ASSERT(hweight32(ip1_mode
) == 1);
558 ASSERT(!(ip0_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)));
559 ASSERT(!(ip1_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)));
560 ASSERT(!(ip0_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
561 !(ip0_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
562 ASSERT(!(ip1_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
563 !(ip1_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
564 ASSERT(!(ip1_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
565 !(ip0_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
566 ASSERT(!(ip0_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) ||
567 !(ip1_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
569 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
571 if (ip0
->i_ino
> ip1
->i_ino
) {
575 mode_temp
= ip0_mode
;
577 ip1_mode
= mode_temp
;
581 xfs_ilock(ip0
, xfs_lock_inumorder(ip0_mode
, 0));
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
588 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
589 if (lp
&& test_bit(XFS_LI_IN_AIL
, &lp
->li_flags
)) {
590 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(ip1_mode
, 1))) {
591 xfs_iunlock(ip0
, ip0_mode
);
592 if ((++attempts
% 5) == 0)
593 delay(1); /* Don't just spin the CPU */
597 xfs_ilock(ip1
, xfs_lock_inumorder(ip1_mode
, 1));
603 struct xfs_inode
*ip
)
605 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
606 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
609 prepare_to_wait_exclusive(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
610 if (xfs_isiflocked(ip
))
612 } while (!xfs_iflock_nowait(ip
));
614 finish_wait(wq
, &wait
.wq_entry
);
625 if (di_flags
& XFS_DIFLAG_ANY
) {
626 if (di_flags
& XFS_DIFLAG_REALTIME
)
627 flags
|= FS_XFLAG_REALTIME
;
628 if (di_flags
& XFS_DIFLAG_PREALLOC
)
629 flags
|= FS_XFLAG_PREALLOC
;
630 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
631 flags
|= FS_XFLAG_IMMUTABLE
;
632 if (di_flags
& XFS_DIFLAG_APPEND
)
633 flags
|= FS_XFLAG_APPEND
;
634 if (di_flags
& XFS_DIFLAG_SYNC
)
635 flags
|= FS_XFLAG_SYNC
;
636 if (di_flags
& XFS_DIFLAG_NOATIME
)
637 flags
|= FS_XFLAG_NOATIME
;
638 if (di_flags
& XFS_DIFLAG_NODUMP
)
639 flags
|= FS_XFLAG_NODUMP
;
640 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
641 flags
|= FS_XFLAG_RTINHERIT
;
642 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
643 flags
|= FS_XFLAG_PROJINHERIT
;
644 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
645 flags
|= FS_XFLAG_NOSYMLINKS
;
646 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
647 flags
|= FS_XFLAG_EXTSIZE
;
648 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
649 flags
|= FS_XFLAG_EXTSZINHERIT
;
650 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
651 flags
|= FS_XFLAG_NODEFRAG
;
652 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
653 flags
|= FS_XFLAG_FILESTREAM
;
656 if (di_flags2
& XFS_DIFLAG2_ANY
) {
657 if (di_flags2
& XFS_DIFLAG2_DAX
)
658 flags
|= FS_XFLAG_DAX
;
659 if (di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
660 flags
|= FS_XFLAG_COWEXTSIZE
;
664 flags
|= FS_XFLAG_HASATTR
;
671 struct xfs_inode
*ip
)
673 struct xfs_icdinode
*dic
= &ip
->i_d
;
675 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
687 struct xfs_name
*name
,
689 struct xfs_name
*ci_name
)
694 trace_xfs_lookup(dp
, name
);
696 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
699 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
703 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
711 kmem_free(ci_name
->name
);
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
756 xfs_buf_t
**ialloc_context
,
759 struct xfs_mount
*mp
= tp
->t_mountp
;
764 struct timespec64 tv
;
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
771 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
,
772 ialloc_context
, &ino
);
775 if (*ialloc_context
|| ino
== NULLFSINO
) {
779 ASSERT(*ialloc_context
== NULL
);
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
788 if ((pip
&& ino
== pip
->i_ino
) || !xfs_verify_dir_ino(mp
, ino
)) {
789 xfs_alert(mp
, "Allocated a known in-use inode 0x%llx!", ino
);
790 return -EFSCORRUPTED
;
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
799 XFS_ILOCK_EXCL
, &ip
);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip
->i_d
.di_version
== 1)
811 ip
->i_d
.di_version
= 2;
813 inode
->i_mode
= mode
;
814 set_nlink(inode
, nlink
);
815 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
816 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
817 inode
->i_rdev
= rdev
;
818 xfs_set_projid(ip
, prid
);
820 if (pip
&& XFS_INHERIT_GID(pip
)) {
821 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
822 if ((VFS_I(pip
)->i_mode
& S_ISGID
) && S_ISDIR(mode
))
823 inode
->i_mode
|= S_ISGID
;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit
) &&
832 (inode
->i_mode
& S_ISGID
) &&
833 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
))))
834 inode
->i_mode
&= ~S_ISGID
;
837 ip
->i_d
.di_nextents
= 0;
838 ASSERT(ip
->i_d
.di_nblocks
== 0);
840 tv
= current_time(inode
);
845 ip
->i_d
.di_extsize
= 0;
846 ip
->i_d
.di_dmevmask
= 0;
847 ip
->i_d
.di_dmstate
= 0;
848 ip
->i_d
.di_flags
= 0;
850 if (ip
->i_d
.di_version
== 3) {
851 inode_set_iversion(inode
, 1);
852 ip
->i_d
.di_flags2
= 0;
853 ip
->i_d
.di_cowextsize
= 0;
854 ip
->i_d
.di_crtime
.t_sec
= (int32_t)tv
.tv_sec
;
855 ip
->i_d
.di_crtime
.t_nsec
= (int32_t)tv
.tv_nsec
;
859 flags
= XFS_ILOG_CORE
;
860 switch (mode
& S_IFMT
) {
865 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
866 ip
->i_df
.if_flags
= 0;
867 flags
|= XFS_ILOG_DEV
;
871 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
875 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
876 di_flags
|= XFS_DIFLAG_RTINHERIT
;
877 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
878 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
879 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
881 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
882 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
883 } else if (S_ISREG(mode
)) {
884 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
885 di_flags
|= XFS_DIFLAG_REALTIME
;
886 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
887 di_flags
|= XFS_DIFLAG_EXTSIZE
;
888 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
891 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
893 di_flags
|= XFS_DIFLAG_NOATIME
;
894 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
896 di_flags
|= XFS_DIFLAG_NODUMP
;
897 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
899 di_flags
|= XFS_DIFLAG_SYNC
;
900 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
901 xfs_inherit_nosymlinks
)
902 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
903 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
904 xfs_inherit_nodefrag
)
905 di_flags
|= XFS_DIFLAG_NODEFRAG
;
906 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
907 di_flags
|= XFS_DIFLAG_FILESTREAM
;
909 ip
->i_d
.di_flags
|= di_flags
;
912 (pip
->i_d
.di_flags2
& XFS_DIFLAG2_ANY
) &&
913 pip
->i_d
.di_version
== 3 &&
914 ip
->i_d
.di_version
== 3) {
915 uint64_t di_flags2
= 0;
917 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
) {
918 di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
919 ip
->i_d
.di_cowextsize
= pip
->i_d
.di_cowextsize
;
921 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
922 di_flags2
|= XFS_DIFLAG2_DAX
;
924 ip
->i_d
.di_flags2
|= di_flags2
;
928 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
929 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
930 ip
->i_df
.if_bytes
= 0;
931 ip
->i_df
.if_u1
.if_root
= NULL
;
937 * Attribute fork settings for new inode.
939 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
940 ip
->i_d
.di_anextents
= 0;
943 * Log the new values stuffed into the inode.
945 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
946 xfs_trans_log_inode(tp
, ip
, flags
);
948 /* now that we have an i_mode we can setup the inode structure */
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
961 * This routine is designed to be called from xfs_create and
967 xfs_trans_t
**tpp
, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t
*dp
, /* directory within whose allocate
974 prid_t prid
, /* project id */
975 xfs_inode_t
**ipp
) /* pointer to inode; it will be
980 xfs_buf_t
*ialloc_context
= NULL
;
986 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1003 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, &ialloc_context
,
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1015 if (!ialloc_context
&& !ip
) {
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1026 if (ialloc_context
) {
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1034 xfs_trans_bhold(tp
, ialloc_context
);
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1044 dqinfo
= (void *)tp
->t_dqinfo
;
1045 tp
->t_dqinfo
= NULL
;
1046 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1047 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1050 code
= xfs_trans_roll(&tp
);
1053 * Re-attach the quota info that we detached from prev trx.
1056 tp
->t_dqinfo
= dqinfo
;
1057 tp
->t_flags
|= tflags
;
1061 xfs_buf_relse(ialloc_context
);
1066 xfs_trans_bjoin(tp
, ialloc_context
);
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1073 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1074 &ialloc_context
, &ip
);
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1085 ASSERT(!ialloc_context
&& ip
);
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1100 static int /* error */
1105 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1107 drop_nlink(VFS_I(ip
));
1108 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1110 if (VFS_I(ip
)->i_nlink
)
1113 return xfs_iunlink(tp
, ip
);
1117 * Increment the link count on an inode & log the change.
1124 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1126 ASSERT(ip
->i_d
.di_version
> 1);
1127 inc_nlink(VFS_I(ip
));
1128 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1135 struct xfs_name
*name
,
1140 int is_dir
= S_ISDIR(mode
);
1141 struct xfs_mount
*mp
= dp
->i_mount
;
1142 struct xfs_inode
*ip
= NULL
;
1143 struct xfs_trans
*tp
= NULL
;
1145 bool unlock_dp_on_error
= false;
1147 struct xfs_dquot
*udqp
= NULL
;
1148 struct xfs_dquot
*gdqp
= NULL
;
1149 struct xfs_dquot
*pdqp
= NULL
;
1150 struct xfs_trans_res
*tres
;
1153 trace_xfs_create(dp
, name
);
1155 if (XFS_FORCED_SHUTDOWN(mp
))
1158 prid
= xfs_get_initial_prid(dp
);
1161 * Make sure that we have allocated dquot(s) on disk.
1163 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1164 xfs_kgid_to_gid(current_fsgid()), prid
,
1165 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1166 &udqp
, &gdqp
, &pdqp
);
1171 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1172 tres
= &M_RES(mp
)->tr_mkdir
;
1174 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1175 tres
= &M_RES(mp
)->tr_create
;
1179 * Initially assume that the file does not exist and
1180 * reserve the resources for that case. If that is not
1181 * the case we'll drop the one we have and get a more
1182 * appropriate transaction later.
1184 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1185 if (error
== -ENOSPC
) {
1186 /* flush outstanding delalloc blocks and retry */
1187 xfs_flush_inodes(mp
);
1188 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1191 goto out_release_inode
;
1193 xfs_ilock(dp
, XFS_ILOCK_EXCL
| XFS_ILOCK_PARENT
);
1194 unlock_dp_on_error
= true;
1197 * Reserve disk quota and the inode.
1199 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1200 pdqp
, resblks
, 1, 0);
1202 goto out_trans_cancel
;
1205 * A newly created regular or special file just has one directory
1206 * entry pointing to them, but a directory also the "." entry
1207 * pointing to itself.
1209 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
, prid
, &ip
);
1211 goto out_trans_cancel
;
1214 * Now we join the directory inode to the transaction. We do not do it
1215 * earlier because xfs_dir_ialloc might commit the previous transaction
1216 * (and release all the locks). An error from here on will result in
1217 * the transaction cancel unlocking dp so don't do it explicitly in the
1220 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
1221 unlock_dp_on_error
= false;
1223 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1225 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1227 ASSERT(error
!= -ENOSPC
);
1228 goto out_trans_cancel
;
1230 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1231 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1234 error
= xfs_dir_init(tp
, ip
, dp
);
1236 goto out_trans_cancel
;
1238 error
= xfs_bumplink(tp
, dp
);
1240 goto out_trans_cancel
;
1244 * If this is a synchronous mount, make sure that the
1245 * create transaction goes to disk before returning to
1248 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1249 xfs_trans_set_sync(tp
);
1252 * Attach the dquot(s) to the inodes and modify them incore.
1253 * These ids of the inode couldn't have changed since the new
1254 * inode has been locked ever since it was created.
1256 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1258 error
= xfs_trans_commit(tp
);
1260 goto out_release_inode
;
1262 xfs_qm_dqrele(udqp
);
1263 xfs_qm_dqrele(gdqp
);
1264 xfs_qm_dqrele(pdqp
);
1270 xfs_trans_cancel(tp
);
1273 * Wait until after the current transaction is aborted to finish the
1274 * setup of the inode and release the inode. This prevents recursive
1275 * transactions and deadlocks from xfs_inactive.
1278 xfs_finish_inode_setup(ip
);
1282 xfs_qm_dqrele(udqp
);
1283 xfs_qm_dqrele(gdqp
);
1284 xfs_qm_dqrele(pdqp
);
1286 if (unlock_dp_on_error
)
1287 xfs_iunlock(dp
, XFS_ILOCK_EXCL
);
1293 struct xfs_inode
*dp
,
1295 struct xfs_inode
**ipp
)
1297 struct xfs_mount
*mp
= dp
->i_mount
;
1298 struct xfs_inode
*ip
= NULL
;
1299 struct xfs_trans
*tp
= NULL
;
1302 struct xfs_dquot
*udqp
= NULL
;
1303 struct xfs_dquot
*gdqp
= NULL
;
1304 struct xfs_dquot
*pdqp
= NULL
;
1305 struct xfs_trans_res
*tres
;
1308 if (XFS_FORCED_SHUTDOWN(mp
))
1311 prid
= xfs_get_initial_prid(dp
);
1314 * Make sure that we have allocated dquot(s) on disk.
1316 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1317 xfs_kgid_to_gid(current_fsgid()), prid
,
1318 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1319 &udqp
, &gdqp
, &pdqp
);
1323 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1324 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1326 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1328 goto out_release_inode
;
1330 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1331 pdqp
, resblks
, 1, 0);
1333 goto out_trans_cancel
;
1335 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0, prid
, &ip
);
1337 goto out_trans_cancel
;
1339 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1340 xfs_trans_set_sync(tp
);
1343 * Attach the dquot(s) to the inodes and modify them incore.
1344 * These ids of the inode couldn't have changed since the new
1345 * inode has been locked ever since it was created.
1347 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1349 error
= xfs_iunlink(tp
, ip
);
1351 goto out_trans_cancel
;
1353 error
= xfs_trans_commit(tp
);
1355 goto out_release_inode
;
1357 xfs_qm_dqrele(udqp
);
1358 xfs_qm_dqrele(gdqp
);
1359 xfs_qm_dqrele(pdqp
);
1365 xfs_trans_cancel(tp
);
1368 * Wait until after the current transaction is aborted to finish the
1369 * setup of the inode and release the inode. This prevents recursive
1370 * transactions and deadlocks from xfs_inactive.
1373 xfs_finish_inode_setup(ip
);
1377 xfs_qm_dqrele(udqp
);
1378 xfs_qm_dqrele(gdqp
);
1379 xfs_qm_dqrele(pdqp
);
1388 struct xfs_name
*target_name
)
1390 xfs_mount_t
*mp
= tdp
->i_mount
;
1395 trace_xfs_link(tdp
, target_name
);
1397 ASSERT(!S_ISDIR(VFS_I(sip
)->i_mode
));
1399 if (XFS_FORCED_SHUTDOWN(mp
))
1402 error
= xfs_qm_dqattach(sip
);
1406 error
= xfs_qm_dqattach(tdp
);
1410 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1411 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, resblks
, 0, 0, &tp
);
1412 if (error
== -ENOSPC
) {
1414 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, 0, 0, 0, &tp
);
1419 xfs_lock_two_inodes(sip
, XFS_ILOCK_EXCL
, tdp
, XFS_ILOCK_EXCL
);
1421 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1422 xfs_trans_ijoin(tp
, tdp
, XFS_ILOCK_EXCL
);
1425 * If we are using project inheritance, we only allow hard link
1426 * creation in our tree when the project IDs are the same; else
1427 * the tree quota mechanism could be circumvented.
1429 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1430 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1436 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1442 * Handle initial link state of O_TMPFILE inode
1444 if (VFS_I(sip
)->i_nlink
== 0) {
1445 error
= xfs_iunlink_remove(tp
, sip
);
1450 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1454 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1455 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1457 error
= xfs_bumplink(tp
, sip
);
1462 * If this is a synchronous mount, make sure that the
1463 * link transaction goes to disk before returning to
1466 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1467 xfs_trans_set_sync(tp
);
1469 return xfs_trans_commit(tp
);
1472 xfs_trans_cancel(tp
);
1477 /* Clear the reflink flag and the cowblocks tag if possible. */
1479 xfs_itruncate_clear_reflink_flags(
1480 struct xfs_inode
*ip
)
1482 struct xfs_ifork
*dfork
;
1483 struct xfs_ifork
*cfork
;
1485 if (!xfs_is_reflink_inode(ip
))
1487 dfork
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
1488 cfork
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
1489 if (dfork
->if_bytes
== 0 && cfork
->if_bytes
== 0)
1490 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1491 if (cfork
->if_bytes
== 0)
1492 xfs_inode_clear_cowblocks_tag(ip
);
1496 * Free up the underlying blocks past new_size. The new size must be smaller
1497 * than the current size. This routine can be used both for the attribute and
1498 * data fork, and does not modify the inode size, which is left to the caller.
1500 * The transaction passed to this routine must have made a permanent log
1501 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1502 * given transaction and start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here. Some transaction will be
1504 * returned to the caller to be committed. The incoming transaction must
1505 * already include the inode, and both inode locks must be held exclusively.
1506 * The inode must also be "held" within the transaction. On return the inode
1507 * will be "held" within the returned transaction. This routine does NOT
1508 * require any disk space to be reserved for it within the transaction.
1510 * If we get an error, we must return with the inode locked and linked into the
1511 * current transaction. This keeps things simple for the higher level code,
1512 * because it always knows that the inode is locked and held in the transaction
1513 * that returns to it whether errors occur or not. We don't mark the inode
1514 * dirty on error so that transactions can be easily aborted if possible.
1517 xfs_itruncate_extents_flags(
1518 struct xfs_trans
**tpp
,
1519 struct xfs_inode
*ip
,
1521 xfs_fsize_t new_size
,
1524 struct xfs_mount
*mp
= ip
->i_mount
;
1525 struct xfs_trans
*tp
= *tpp
;
1526 xfs_fileoff_t first_unmap_block
;
1527 xfs_fileoff_t last_block
;
1528 xfs_filblks_t unmap_len
;
1532 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1533 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1534 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1535 ASSERT(new_size
<= XFS_ISIZE(ip
));
1536 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1537 ASSERT(ip
->i_itemp
!= NULL
);
1538 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1539 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1541 trace_xfs_itruncate_extents_start(ip
, new_size
);
1543 flags
|= xfs_bmapi_aflag(whichfork
);
1546 * Since it is possible for space to become allocated beyond
1547 * the end of the file (in a crash where the space is allocated
1548 * but the inode size is not yet updated), simply remove any
1549 * blocks which show up between the new EOF and the maximum
1550 * possible file size. If the first block to be removed is
1551 * beyond the maximum file size (ie it is the same as last_block),
1552 * then there is nothing to do.
1554 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1555 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1556 if (first_unmap_block
== last_block
)
1559 ASSERT(first_unmap_block
< last_block
);
1560 unmap_len
= last_block
- first_unmap_block
+ 1;
1562 ASSERT(tp
->t_firstblock
== NULLFSBLOCK
);
1563 error
= xfs_bunmapi(tp
, ip
, first_unmap_block
, unmap_len
, flags
,
1564 XFS_ITRUNC_MAX_EXTENTS
, &done
);
1569 * Duplicate the transaction that has the permanent
1570 * reservation and commit the old transaction.
1572 error
= xfs_defer_finish(&tp
);
1576 error
= xfs_trans_roll_inode(&tp
, ip
);
1581 if (whichfork
== XFS_DATA_FORK
) {
1582 /* Remove all pending CoW reservations. */
1583 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
,
1584 first_unmap_block
, last_block
, true);
1588 xfs_itruncate_clear_reflink_flags(ip
);
1592 * Always re-log the inode so that our permanent transaction can keep
1593 * on rolling it forward in the log.
1595 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1597 trace_xfs_itruncate_extents_end(ip
, new_size
);
1608 xfs_mount_t
*mp
= ip
->i_mount
;
1611 if (!S_ISREG(VFS_I(ip
)->i_mode
) || (VFS_I(ip
)->i_mode
== 0))
1614 /* If this is a read-only mount, don't do this (would generate I/O) */
1615 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1618 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1622 * If we previously truncated this file and removed old data
1623 * in the process, we want to initiate "early" writeout on
1624 * the last close. This is an attempt to combat the notorious
1625 * NULL files problem which is particularly noticeable from a
1626 * truncate down, buffered (re-)write (delalloc), followed by
1627 * a crash. What we are effectively doing here is
1628 * significantly reducing the time window where we'd otherwise
1629 * be exposed to that problem.
1631 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1633 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1634 if (ip
->i_delayed_blks
> 0) {
1635 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1642 if (VFS_I(ip
)->i_nlink
== 0)
1645 if (xfs_can_free_eofblocks(ip
, false)) {
1648 * Check if the inode is being opened, written and closed
1649 * frequently and we have delayed allocation blocks outstanding
1650 * (e.g. streaming writes from the NFS server), truncating the
1651 * blocks past EOF will cause fragmentation to occur.
1653 * In this case don't do the truncation, but we have to be
1654 * careful how we detect this case. Blocks beyond EOF show up as
1655 * i_delayed_blks even when the inode is clean, so we need to
1656 * truncate them away first before checking for a dirty release.
1657 * Hence on the first dirty close we will still remove the
1658 * speculative allocation, but after that we will leave it in
1661 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1664 * If we can't get the iolock just skip truncating the blocks
1665 * past EOF because we could deadlock with the mmap_sem
1666 * otherwise. We'll get another chance to drop them once the
1667 * last reference to the inode is dropped, so we'll never leak
1668 * blocks permanently.
1670 if (xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1671 error
= xfs_free_eofblocks(ip
);
1672 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1677 /* delalloc blocks after truncation means it really is dirty */
1678 if (ip
->i_delayed_blks
)
1679 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1685 * xfs_inactive_truncate
1687 * Called to perform a truncate when an inode becomes unlinked.
1690 xfs_inactive_truncate(
1691 struct xfs_inode
*ip
)
1693 struct xfs_mount
*mp
= ip
->i_mount
;
1694 struct xfs_trans
*tp
;
1697 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
1699 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1702 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1703 xfs_trans_ijoin(tp
, ip
, 0);
1706 * Log the inode size first to prevent stale data exposure in the event
1707 * of a system crash before the truncate completes. See the related
1708 * comment in xfs_vn_setattr_size() for details.
1710 ip
->i_d
.di_size
= 0;
1711 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1713 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1715 goto error_trans_cancel
;
1717 ASSERT(ip
->i_d
.di_nextents
== 0);
1719 error
= xfs_trans_commit(tp
);
1723 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1727 xfs_trans_cancel(tp
);
1729 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1734 * xfs_inactive_ifree()
1736 * Perform the inode free when an inode is unlinked.
1740 struct xfs_inode
*ip
)
1742 struct xfs_mount
*mp
= ip
->i_mount
;
1743 struct xfs_trans
*tp
;
1747 * We try to use a per-AG reservation for any block needed by the finobt
1748 * tree, but as the finobt feature predates the per-AG reservation
1749 * support a degraded file system might not have enough space for the
1750 * reservation at mount time. In that case try to dip into the reserved
1753 * Send a warning if the reservation does happen to fail, as the inode
1754 * now remains allocated and sits on the unlinked list until the fs is
1757 if (unlikely(mp
->m_inotbt_nores
)) {
1758 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
,
1759 XFS_IFREE_SPACE_RES(mp
), 0, XFS_TRANS_RESERVE
,
1762 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
, 0, 0, 0, &tp
);
1765 if (error
== -ENOSPC
) {
1766 xfs_warn_ratelimited(mp
,
1767 "Failed to remove inode(s) from unlinked list. "
1768 "Please free space, unmount and run xfs_repair.");
1770 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1775 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1776 xfs_trans_ijoin(tp
, ip
, 0);
1778 error
= xfs_ifree(tp
, ip
);
1781 * If we fail to free the inode, shut down. The cancel
1782 * might do that, we need to make sure. Otherwise the
1783 * inode might be lost for a long time or forever.
1785 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1786 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1788 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1790 xfs_trans_cancel(tp
);
1791 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1796 * Credit the quota account(s). The inode is gone.
1798 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1801 * Just ignore errors at this point. There is nothing we can do except
1802 * to try to keep going. Make sure it's not a silent error.
1804 error
= xfs_trans_commit(tp
);
1806 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1809 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1816 * This is called when the vnode reference count for the vnode
1817 * goes to zero. If the file has been unlinked, then it must
1818 * now be truncated. Also, we clear all of the read-ahead state
1819 * kept for the inode here since the file is now closed.
1825 struct xfs_mount
*mp
;
1830 * If the inode is already free, then there can be nothing
1833 if (VFS_I(ip
)->i_mode
== 0) {
1834 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1839 ASSERT(!xfs_iflags_test(ip
, XFS_IRECOVERY
));
1841 /* If this is a read-only mount, don't do this (would generate I/O) */
1842 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1845 /* Try to clean out the cow blocks if there are any. */
1846 if (xfs_inode_has_cow_data(ip
))
1847 xfs_reflink_cancel_cow_range(ip
, 0, NULLFILEOFF
, true);
1849 if (VFS_I(ip
)->i_nlink
!= 0) {
1851 * force is true because we are evicting an inode from the
1852 * cache. Post-eof blocks must be freed, lest we end up with
1853 * broken free space accounting.
1855 * Note: don't bother with iolock here since lockdep complains
1856 * about acquiring it in reclaim context. We have the only
1857 * reference to the inode at this point anyways.
1859 if (xfs_can_free_eofblocks(ip
, true))
1860 xfs_free_eofblocks(ip
);
1865 if (S_ISREG(VFS_I(ip
)->i_mode
) &&
1866 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1867 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1870 error
= xfs_qm_dqattach(ip
);
1874 if (S_ISLNK(VFS_I(ip
)->i_mode
))
1875 error
= xfs_inactive_symlink(ip
);
1877 error
= xfs_inactive_truncate(ip
);
1882 * If there are attributes associated with the file then blow them away
1883 * now. The code calls a routine that recursively deconstructs the
1884 * attribute fork. If also blows away the in-core attribute fork.
1886 if (XFS_IFORK_Q(ip
)) {
1887 error
= xfs_attr_inactive(ip
);
1893 ASSERT(ip
->i_d
.di_anextents
== 0);
1894 ASSERT(ip
->i_d
.di_forkoff
== 0);
1899 error
= xfs_inactive_ifree(ip
);
1904 * Release the dquots held by inode, if any.
1906 xfs_qm_dqdetach(ip
);
1910 * This is called when the inode's link count goes to 0 or we are creating a
1911 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1912 * set to true as the link count is dropped to zero by the VFS after we've
1913 * created the file successfully, so we have to add it to the unlinked list
1914 * while the link count is non-zero.
1916 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1917 * list when the inode is freed.
1921 struct xfs_trans
*tp
,
1922 struct xfs_inode
*ip
)
1924 xfs_mount_t
*mp
= tp
->t_mountp
;
1934 ASSERT(VFS_I(ip
)->i_mode
!= 0);
1937 * Get the agi buffer first. It ensures lock ordering
1940 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1943 agi
= XFS_BUF_TO_AGI(agibp
);
1946 * Get the index into the agi hash table for the
1947 * list this inode will go on.
1949 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1951 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1952 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1953 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1955 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
1957 * There is already another inode in the bucket we need
1958 * to add ourselves to. Add us at the front of the list.
1959 * Here we put the head pointer into our next pointer,
1960 * and then we fall through to point the head at us.
1962 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
1967 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
1968 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1969 offset
= ip
->i_imap
.im_boffset
+
1970 offsetof(xfs_dinode_t
, di_next_unlinked
);
1972 /* need to recalc the inode CRC if appropriate */
1973 xfs_dinode_calc_crc(mp
, dip
);
1975 xfs_trans_inode_buf(tp
, ibp
);
1976 xfs_trans_log_buf(tp
, ibp
, offset
,
1977 (offset
+ sizeof(xfs_agino_t
) - 1));
1978 xfs_inobp_check(mp
, ibp
);
1982 * Point the bucket head pointer at the inode being inserted.
1985 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1986 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1987 (sizeof(xfs_agino_t
) * bucket_index
);
1988 xfs_trans_log_buf(tp
, agibp
, offset
,
1989 (offset
+ sizeof(xfs_agino_t
) - 1));
1994 * Pull the on-disk inode from the AGI unlinked list.
2007 xfs_agnumber_t agno
;
2009 xfs_agino_t next_agino
;
2010 xfs_buf_t
*last_ibp
;
2011 xfs_dinode_t
*last_dip
= NULL
;
2013 int offset
, last_offset
= 0;
2017 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2020 * Get the agi buffer first. It ensures lock ordering
2023 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2027 agi
= XFS_BUF_TO_AGI(agibp
);
2030 * Get the index into the agi hash table for the
2031 * list this inode will go on.
2033 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2034 if (!xfs_verify_agino(mp
, agno
, agino
))
2035 return -EFSCORRUPTED
;
2036 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2037 if (!xfs_verify_agino(mp
, agno
,
2038 be32_to_cpu(agi
->agi_unlinked
[bucket_index
]))) {
2039 XFS_CORRUPTION_ERROR(__func__
, XFS_ERRLEVEL_LOW
, mp
,
2041 return -EFSCORRUPTED
;
2044 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2046 * We're at the head of the list. Get the inode's on-disk
2047 * buffer to see if there is anyone after us on the list.
2048 * Only modify our next pointer if it is not already NULLAGINO.
2049 * This saves us the overhead of dealing with the buffer when
2050 * there is no need to change it.
2052 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2055 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2059 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2060 ASSERT(next_agino
!= 0);
2061 if (next_agino
!= NULLAGINO
) {
2062 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2063 offset
= ip
->i_imap
.im_boffset
+
2064 offsetof(xfs_dinode_t
, di_next_unlinked
);
2066 /* need to recalc the inode CRC if appropriate */
2067 xfs_dinode_calc_crc(mp
, dip
);
2069 xfs_trans_inode_buf(tp
, ibp
);
2070 xfs_trans_log_buf(tp
, ibp
, offset
,
2071 (offset
+ sizeof(xfs_agino_t
) - 1));
2072 xfs_inobp_check(mp
, ibp
);
2074 xfs_trans_brelse(tp
, ibp
);
2077 * Point the bucket head pointer at the next inode.
2079 ASSERT(next_agino
!= 0);
2080 ASSERT(next_agino
!= agino
);
2081 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2082 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2083 (sizeof(xfs_agino_t
) * bucket_index
);
2084 xfs_trans_log_buf(tp
, agibp
, offset
,
2085 (offset
+ sizeof(xfs_agino_t
) - 1));
2088 * We need to search the list for the inode being freed.
2090 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2092 while (next_agino
!= agino
) {
2093 struct xfs_imap imap
;
2096 xfs_trans_brelse(tp
, last_ibp
);
2099 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2101 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2104 "%s: xfs_imap returned error %d.",
2109 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2113 "%s: xfs_imap_to_bp returned error %d.",
2118 last_offset
= imap
.im_boffset
;
2119 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2120 if (!xfs_verify_agino(mp
, agno
, next_agino
)) {
2121 XFS_CORRUPTION_ERROR(__func__
,
2122 XFS_ERRLEVEL_LOW
, mp
,
2123 last_dip
, sizeof(*last_dip
));
2124 return -EFSCORRUPTED
;
2129 * Now last_ibp points to the buffer previous to us on the
2130 * unlinked list. Pull us from the list.
2132 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2135 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2139 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2140 ASSERT(next_agino
!= 0);
2141 ASSERT(next_agino
!= agino
);
2142 if (next_agino
!= NULLAGINO
) {
2143 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2144 offset
= ip
->i_imap
.im_boffset
+
2145 offsetof(xfs_dinode_t
, di_next_unlinked
);
2147 /* need to recalc the inode CRC if appropriate */
2148 xfs_dinode_calc_crc(mp
, dip
);
2150 xfs_trans_inode_buf(tp
, ibp
);
2151 xfs_trans_log_buf(tp
, ibp
, offset
,
2152 (offset
+ sizeof(xfs_agino_t
) - 1));
2153 xfs_inobp_check(mp
, ibp
);
2155 xfs_trans_brelse(tp
, ibp
);
2158 * Point the previous inode on the list to the next inode.
2160 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2161 ASSERT(next_agino
!= 0);
2162 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2164 /* need to recalc the inode CRC if appropriate */
2165 xfs_dinode_calc_crc(mp
, last_dip
);
2167 xfs_trans_inode_buf(tp
, last_ibp
);
2168 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2169 (offset
+ sizeof(xfs_agino_t
) - 1));
2170 xfs_inobp_check(mp
, last_ibp
);
2176 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2177 * inodes that are in memory - they all must be marked stale and attached to
2178 * the cluster buffer.
2182 xfs_inode_t
*free_ip
,
2184 struct xfs_icluster
*xic
)
2186 xfs_mount_t
*mp
= free_ip
->i_mount
;
2187 int blks_per_cluster
;
2188 int inodes_per_cluster
;
2195 xfs_inode_log_item_t
*iip
;
2196 struct xfs_log_item
*lip
;
2197 struct xfs_perag
*pag
;
2200 inum
= xic
->first_ino
;
2201 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2202 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2203 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2204 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2206 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2208 * The allocation bitmap tells us which inodes of the chunk were
2209 * physically allocated. Skip the cluster if an inode falls into
2212 ioffset
= inum
- xic
->first_ino
;
2213 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2214 ASSERT(ioffset
% inodes_per_cluster
== 0);
2218 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2219 XFS_INO_TO_AGBNO(mp
, inum
));
2222 * We obtain and lock the backing buffer first in the process
2223 * here, as we have to ensure that any dirty inode that we
2224 * can't get the flush lock on is attached to the buffer.
2225 * If we scan the in-memory inodes first, then buffer IO can
2226 * complete before we get a lock on it, and hence we may fail
2227 * to mark all the active inodes on the buffer stale.
2229 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2230 mp
->m_bsize
* blks_per_cluster
,
2237 * This buffer may not have been correctly initialised as we
2238 * didn't read it from disk. That's not important because we are
2239 * only using to mark the buffer as stale in the log, and to
2240 * attach stale cached inodes on it. That means it will never be
2241 * dispatched for IO. If it is, we want to know about it, and we
2242 * want it to fail. We can acheive this by adding a write
2243 * verifier to the buffer.
2245 bp
->b_ops
= &xfs_inode_buf_ops
;
2248 * Walk the inodes already attached to the buffer and mark them
2249 * stale. These will all have the flush locks held, so an
2250 * in-memory inode walk can't lock them. By marking them all
2251 * stale first, we will not attempt to lock them in the loop
2252 * below as the XFS_ISTALE flag will be set.
2254 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
) {
2255 if (lip
->li_type
== XFS_LI_INODE
) {
2256 iip
= (xfs_inode_log_item_t
*)lip
;
2257 ASSERT(iip
->ili_logged
== 1);
2258 lip
->li_cb
= xfs_istale_done
;
2259 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2260 &iip
->ili_flush_lsn
,
2261 &iip
->ili_item
.li_lsn
);
2262 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2268 * For each inode in memory attempt to add it to the inode
2269 * buffer and set it up for being staled on buffer IO
2270 * completion. This is safe as we've locked out tail pushing
2271 * and flushing by locking the buffer.
2273 * We have already marked every inode that was part of a
2274 * transaction stale above, which means there is no point in
2275 * even trying to lock them.
2277 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2280 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2281 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2283 /* Inode not in memory, nothing to do */
2290 * because this is an RCU protected lookup, we could
2291 * find a recently freed or even reallocated inode
2292 * during the lookup. We need to check under the
2293 * i_flags_lock for a valid inode here. Skip it if it
2294 * is not valid, the wrong inode or stale.
2296 spin_lock(&ip
->i_flags_lock
);
2297 if (ip
->i_ino
!= inum
+ i
||
2298 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2299 spin_unlock(&ip
->i_flags_lock
);
2303 spin_unlock(&ip
->i_flags_lock
);
2306 * Don't try to lock/unlock the current inode, but we
2307 * _cannot_ skip the other inodes that we did not find
2308 * in the list attached to the buffer and are not
2309 * already marked stale. If we can't lock it, back off
2312 if (ip
!= free_ip
) {
2313 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2320 * Check the inode number again in case we're
2321 * racing with freeing in xfs_reclaim_inode().
2322 * See the comments in that function for more
2323 * information as to why the initial check is
2326 if (ip
->i_ino
!= inum
+ i
) {
2327 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2335 xfs_iflags_set(ip
, XFS_ISTALE
);
2338 * we don't need to attach clean inodes or those only
2339 * with unlogged changes (which we throw away, anyway).
2342 if (!iip
|| xfs_inode_clean(ip
)) {
2343 ASSERT(ip
!= free_ip
);
2345 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2349 iip
->ili_last_fields
= iip
->ili_fields
;
2350 iip
->ili_fields
= 0;
2351 iip
->ili_fsync_fields
= 0;
2352 iip
->ili_logged
= 1;
2353 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2354 &iip
->ili_item
.li_lsn
);
2356 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2360 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2363 xfs_trans_stale_inode_buf(tp
, bp
);
2364 xfs_trans_binval(tp
, bp
);
2372 * Free any local-format buffers sitting around before we reset to
2376 xfs_ifree_local_data(
2377 struct xfs_inode
*ip
,
2380 struct xfs_ifork
*ifp
;
2382 if (XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_LOCAL
)
2385 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2386 xfs_idata_realloc(ip
, -ifp
->if_bytes
, whichfork
);
2390 * This is called to return an inode to the inode free list.
2391 * The inode should already be truncated to 0 length and have
2392 * no pages associated with it. This routine also assumes that
2393 * the inode is already a part of the transaction.
2395 * The on-disk copy of the inode will have been added to the list
2396 * of unlinked inodes in the AGI. We need to remove the inode from
2397 * that list atomically with respect to freeing it here.
2401 struct xfs_trans
*tp
,
2402 struct xfs_inode
*ip
)
2405 struct xfs_icluster xic
= { 0 };
2407 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2408 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2409 ASSERT(ip
->i_d
.di_nextents
== 0);
2410 ASSERT(ip
->i_d
.di_anextents
== 0);
2411 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(VFS_I(ip
)->i_mode
));
2412 ASSERT(ip
->i_d
.di_nblocks
== 0);
2415 * Pull the on-disk inode from the AGI unlinked list.
2417 error
= xfs_iunlink_remove(tp
, ip
);
2421 error
= xfs_difree(tp
, ip
->i_ino
, &xic
);
2425 xfs_ifree_local_data(ip
, XFS_DATA_FORK
);
2426 xfs_ifree_local_data(ip
, XFS_ATTR_FORK
);
2428 VFS_I(ip
)->i_mode
= 0; /* mark incore inode as free */
2429 ip
->i_d
.di_flags
= 0;
2430 ip
->i_d
.di_flags2
= 0;
2431 ip
->i_d
.di_dmevmask
= 0;
2432 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2433 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2434 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2436 /* Don't attempt to replay owner changes for a deleted inode */
2437 ip
->i_itemp
->ili_fields
&= ~(XFS_ILOG_AOWNER
|XFS_ILOG_DOWNER
);
2440 * Bump the generation count so no one will be confused
2441 * by reincarnations of this inode.
2443 VFS_I(ip
)->i_generation
++;
2444 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2447 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2453 * This is called to unpin an inode. The caller must have the inode locked
2454 * in at least shared mode so that the buffer cannot be subsequently pinned
2455 * once someone is waiting for it to be unpinned.
2459 struct xfs_inode
*ip
)
2461 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2463 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2465 /* Give the log a push to start the unpinning I/O */
2466 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0, NULL
);
2472 struct xfs_inode
*ip
)
2474 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2475 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2480 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2481 if (xfs_ipincount(ip
))
2483 } while (xfs_ipincount(ip
));
2484 finish_wait(wq
, &wait
.wq_entry
);
2489 struct xfs_inode
*ip
)
2491 if (xfs_ipincount(ip
))
2492 __xfs_iunpin_wait(ip
);
2496 * Removing an inode from the namespace involves removing the directory entry
2497 * and dropping the link count on the inode. Removing the directory entry can
2498 * result in locking an AGF (directory blocks were freed) and removing a link
2499 * count can result in placing the inode on an unlinked list which results in
2502 * The big problem here is that we have an ordering constraint on AGF and AGI
2503 * locking - inode allocation locks the AGI, then can allocate a new extent for
2504 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2505 * removes the inode from the unlinked list, requiring that we lock the AGI
2506 * first, and then freeing the inode can result in an inode chunk being freed
2507 * and hence freeing disk space requiring that we lock an AGF.
2509 * Hence the ordering that is imposed by other parts of the code is AGI before
2510 * AGF. This means we cannot remove the directory entry before we drop the inode
2511 * reference count and put it on the unlinked list as this results in a lock
2512 * order of AGF then AGI, and this can deadlock against inode allocation and
2513 * freeing. Therefore we must drop the link counts before we remove the
2516 * This is still safe from a transactional point of view - it is not until we
2517 * get to xfs_defer_finish() that we have the possibility of multiple
2518 * transactions in this operation. Hence as long as we remove the directory
2519 * entry and drop the link count in the first transaction of the remove
2520 * operation, there are no transactional constraints on the ordering here.
2525 struct xfs_name
*name
,
2528 xfs_mount_t
*mp
= dp
->i_mount
;
2529 xfs_trans_t
*tp
= NULL
;
2530 int is_dir
= S_ISDIR(VFS_I(ip
)->i_mode
);
2534 trace_xfs_remove(dp
, name
);
2536 if (XFS_FORCED_SHUTDOWN(mp
))
2539 error
= xfs_qm_dqattach(dp
);
2543 error
= xfs_qm_dqattach(ip
);
2548 * We try to get the real space reservation first,
2549 * allowing for directory btree deletion(s) implying
2550 * possible bmap insert(s). If we can't get the space
2551 * reservation then we use 0 instead, and avoid the bmap
2552 * btree insert(s) in the directory code by, if the bmap
2553 * insert tries to happen, instead trimming the LAST
2554 * block from the directory.
2556 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2557 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, resblks
, 0, 0, &tp
);
2558 if (error
== -ENOSPC
) {
2560 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, 0, 0, 0,
2564 ASSERT(error
!= -ENOSPC
);
2568 xfs_lock_two_inodes(dp
, XFS_ILOCK_EXCL
, ip
, XFS_ILOCK_EXCL
);
2570 xfs_trans_ijoin(tp
, dp
, XFS_ILOCK_EXCL
);
2571 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2574 * If we're removing a directory perform some additional validation.
2577 ASSERT(VFS_I(ip
)->i_nlink
>= 2);
2578 if (VFS_I(ip
)->i_nlink
!= 2) {
2580 goto out_trans_cancel
;
2582 if (!xfs_dir_isempty(ip
)) {
2584 goto out_trans_cancel
;
2587 /* Drop the link from ip's "..". */
2588 error
= xfs_droplink(tp
, dp
);
2590 goto out_trans_cancel
;
2592 /* Drop the "." link from ip to self. */
2593 error
= xfs_droplink(tp
, ip
);
2595 goto out_trans_cancel
;
2598 * When removing a non-directory we need to log the parent
2599 * inode here. For a directory this is done implicitly
2600 * by the xfs_droplink call for the ".." entry.
2602 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2604 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2606 /* Drop the link from dp to ip. */
2607 error
= xfs_droplink(tp
, ip
);
2609 goto out_trans_cancel
;
2611 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
, resblks
);
2613 ASSERT(error
!= -ENOENT
);
2614 goto out_trans_cancel
;
2618 * If this is a synchronous mount, make sure that the
2619 * remove transaction goes to disk before returning to
2622 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2623 xfs_trans_set_sync(tp
);
2625 error
= xfs_trans_commit(tp
);
2629 if (is_dir
&& xfs_inode_is_filestream(ip
))
2630 xfs_filestream_deassociate(ip
);
2635 xfs_trans_cancel(tp
);
2641 * Enter all inodes for a rename transaction into a sorted array.
2643 #define __XFS_SORT_INODES 5
2645 xfs_sort_for_rename(
2646 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2647 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2648 struct xfs_inode
*ip1
, /* in: inode of old entry */
2649 struct xfs_inode
*ip2
, /* in: inode of new entry */
2650 struct xfs_inode
*wip
, /* in: whiteout inode */
2651 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2652 int *num_inodes
) /* in/out: inodes in array */
2656 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2657 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2660 * i_tab contains a list of pointers to inodes. We initialize
2661 * the table here & we'll sort it. We will then use it to
2662 * order the acquisition of the inode locks.
2664 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2677 * Sort the elements via bubble sort. (Remember, there are at
2678 * most 5 elements to sort, so this is adequate.)
2680 for (i
= 0; i
< *num_inodes
; i
++) {
2681 for (j
= 1; j
< *num_inodes
; j
++) {
2682 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2683 struct xfs_inode
*temp
= i_tab
[j
];
2684 i_tab
[j
] = i_tab
[j
-1];
2693 struct xfs_trans
*tp
)
2696 * If this is a synchronous mount, make sure that the rename transaction
2697 * goes to disk before returning to the user.
2699 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2700 xfs_trans_set_sync(tp
);
2702 return xfs_trans_commit(tp
);
2706 * xfs_cross_rename()
2708 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2712 struct xfs_trans
*tp
,
2713 struct xfs_inode
*dp1
,
2714 struct xfs_name
*name1
,
2715 struct xfs_inode
*ip1
,
2716 struct xfs_inode
*dp2
,
2717 struct xfs_name
*name2
,
2718 struct xfs_inode
*ip2
,
2726 /* Swap inode number for dirent in first parent */
2727 error
= xfs_dir_replace(tp
, dp1
, name1
, ip2
->i_ino
, spaceres
);
2729 goto out_trans_abort
;
2731 /* Swap inode number for dirent in second parent */
2732 error
= xfs_dir_replace(tp
, dp2
, name2
, ip1
->i_ino
, spaceres
);
2734 goto out_trans_abort
;
2737 * If we're renaming one or more directories across different parents,
2738 * update the respective ".." entries (and link counts) to match the new
2742 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2744 if (S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2745 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2746 dp1
->i_ino
, spaceres
);
2748 goto out_trans_abort
;
2750 /* transfer ip2 ".." reference to dp1 */
2751 if (!S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2752 error
= xfs_droplink(tp
, dp2
);
2754 goto out_trans_abort
;
2755 error
= xfs_bumplink(tp
, dp1
);
2757 goto out_trans_abort
;
2761 * Although ip1 isn't changed here, userspace needs
2762 * to be warned about the change, so that applications
2763 * relying on it (like backup ones), will properly
2766 ip1_flags
|= XFS_ICHGTIME_CHG
;
2767 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2770 if (S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2771 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2772 dp2
->i_ino
, spaceres
);
2774 goto out_trans_abort
;
2776 /* transfer ip1 ".." reference to dp2 */
2777 if (!S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2778 error
= xfs_droplink(tp
, dp1
);
2780 goto out_trans_abort
;
2781 error
= xfs_bumplink(tp
, dp2
);
2783 goto out_trans_abort
;
2787 * Although ip2 isn't changed here, userspace needs
2788 * to be warned about the change, so that applications
2789 * relying on it (like backup ones), will properly
2792 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2793 ip2_flags
|= XFS_ICHGTIME_CHG
;
2798 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2799 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2802 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2803 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2806 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2807 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2809 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2810 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2811 return xfs_finish_rename(tp
);
2814 xfs_trans_cancel(tp
);
2819 * xfs_rename_alloc_whiteout()
2821 * Return a referenced, unlinked, unlocked inode that that can be used as a
2822 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2823 * crash between allocating the inode and linking it into the rename transaction
2824 * recovery will free the inode and we won't leak it.
2827 xfs_rename_alloc_whiteout(
2828 struct xfs_inode
*dp
,
2829 struct xfs_inode
**wip
)
2831 struct xfs_inode
*tmpfile
;
2834 error
= xfs_create_tmpfile(dp
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2839 * Prepare the tmpfile inode as if it were created through the VFS.
2840 * Otherwise, the link increment paths will complain about nlink 0->1.
2841 * Drop the link count as done by d_tmpfile(), complete the inode setup
2842 * and flag it as linkable.
2844 drop_nlink(VFS_I(tmpfile
));
2845 xfs_setup_iops(tmpfile
);
2846 xfs_finish_inode_setup(tmpfile
);
2847 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2858 struct xfs_inode
*src_dp
,
2859 struct xfs_name
*src_name
,
2860 struct xfs_inode
*src_ip
,
2861 struct xfs_inode
*target_dp
,
2862 struct xfs_name
*target_name
,
2863 struct xfs_inode
*target_ip
,
2866 struct xfs_mount
*mp
= src_dp
->i_mount
;
2867 struct xfs_trans
*tp
;
2868 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2869 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2870 int num_inodes
= __XFS_SORT_INODES
;
2871 bool new_parent
= (src_dp
!= target_dp
);
2872 bool src_is_directory
= S_ISDIR(VFS_I(src_ip
)->i_mode
);
2876 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2878 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2882 * If we are doing a whiteout operation, allocate the whiteout inode
2883 * we will be placing at the target and ensure the type is set
2886 if (flags
& RENAME_WHITEOUT
) {
2887 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2888 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2892 /* setup target dirent info as whiteout */
2893 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2896 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2897 inodes
, &num_inodes
);
2899 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2900 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, spaceres
, 0, 0, &tp
);
2901 if (error
== -ENOSPC
) {
2903 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, 0, 0, 0,
2907 goto out_release_wip
;
2910 * Attach the dquots to the inodes
2912 error
= xfs_qm_vop_rename_dqattach(inodes
);
2914 goto out_trans_cancel
;
2917 * Lock all the participating inodes. Depending upon whether
2918 * the target_name exists in the target directory, and
2919 * whether the target directory is the same as the source
2920 * directory, we can lock from 2 to 4 inodes.
2922 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2925 * Join all the inodes to the transaction. From this point on,
2926 * we can rely on either trans_commit or trans_cancel to unlock
2929 xfs_trans_ijoin(tp
, src_dp
, XFS_ILOCK_EXCL
);
2931 xfs_trans_ijoin(tp
, target_dp
, XFS_ILOCK_EXCL
);
2932 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2934 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2936 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
2939 * If we are using project inheritance, we only allow renames
2940 * into our tree when the project IDs are the same; else the
2941 * tree quota mechanism would be circumvented.
2943 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
2944 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
2946 goto out_trans_cancel
;
2949 /* RENAME_EXCHANGE is unique from here on. */
2950 if (flags
& RENAME_EXCHANGE
)
2951 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
2952 target_dp
, target_name
, target_ip
,
2956 * Set up the target.
2958 if (target_ip
== NULL
) {
2960 * If there's no space reservation, check the entry will
2961 * fit before actually inserting it.
2964 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
2966 goto out_trans_cancel
;
2969 * If target does not exist and the rename crosses
2970 * directories, adjust the target directory link count
2971 * to account for the ".." reference from the new entry.
2973 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
2974 src_ip
->i_ino
, spaceres
);
2976 goto out_trans_cancel
;
2978 xfs_trans_ichgtime(tp
, target_dp
,
2979 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2981 if (new_parent
&& src_is_directory
) {
2982 error
= xfs_bumplink(tp
, target_dp
);
2984 goto out_trans_cancel
;
2986 } else { /* target_ip != NULL */
2988 * If target exists and it's a directory, check that both
2989 * target and source are directories and that target can be
2990 * destroyed, or that neither is a directory.
2992 if (S_ISDIR(VFS_I(target_ip
)->i_mode
)) {
2994 * Make sure target dir is empty.
2996 if (!(xfs_dir_isempty(target_ip
)) ||
2997 (VFS_I(target_ip
)->i_nlink
> 2)) {
2999 goto out_trans_cancel
;
3004 * Link the source inode under the target name.
3005 * If the source inode is a directory and we are moving
3006 * it across directories, its ".." entry will be
3007 * inconsistent until we replace that down below.
3009 * In case there is already an entry with the same
3010 * name at the destination directory, remove it first.
3012 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3013 src_ip
->i_ino
, spaceres
);
3015 goto out_trans_cancel
;
3017 xfs_trans_ichgtime(tp
, target_dp
,
3018 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3021 * Decrement the link count on the target since the target
3022 * dir no longer points to it.
3024 error
= xfs_droplink(tp
, target_ip
);
3026 goto out_trans_cancel
;
3028 if (src_is_directory
) {
3030 * Drop the link from the old "." entry.
3032 error
= xfs_droplink(tp
, target_ip
);
3034 goto out_trans_cancel
;
3036 } /* target_ip != NULL */
3039 * Remove the source.
3041 if (new_parent
&& src_is_directory
) {
3043 * Rewrite the ".." entry to point to the new
3046 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3047 target_dp
->i_ino
, spaceres
);
3048 ASSERT(error
!= -EEXIST
);
3050 goto out_trans_cancel
;
3054 * We always want to hit the ctime on the source inode.
3056 * This isn't strictly required by the standards since the source
3057 * inode isn't really being changed, but old unix file systems did
3058 * it and some incremental backup programs won't work without it.
3060 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3061 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3064 * Adjust the link count on src_dp. This is necessary when
3065 * renaming a directory, either within one parent when
3066 * the target existed, or across two parent directories.
3068 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3071 * Decrement link count on src_directory since the
3072 * entry that's moved no longer points to it.
3074 error
= xfs_droplink(tp
, src_dp
);
3076 goto out_trans_cancel
;
3080 * For whiteouts, we only need to update the source dirent with the
3081 * inode number of the whiteout inode rather than removing it
3085 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3088 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3091 goto out_trans_cancel
;
3094 * For whiteouts, we need to bump the link count on the whiteout inode.
3095 * This means that failures all the way up to this point leave the inode
3096 * on the unlinked list and so cleanup is a simple matter of dropping
3097 * the remaining reference to it. If we fail here after bumping the link
3098 * count, we're shutting down the filesystem so we'll never see the
3099 * intermediate state on disk.
3102 ASSERT(VFS_I(wip
)->i_nlink
== 0);
3103 error
= xfs_bumplink(tp
, wip
);
3105 goto out_trans_cancel
;
3106 error
= xfs_iunlink_remove(tp
, wip
);
3108 goto out_trans_cancel
;
3109 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3112 * Now we have a real link, clear the "I'm a tmpfile" state
3113 * flag from the inode so it doesn't accidentally get misused in
3116 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3119 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3120 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3122 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3124 error
= xfs_finish_rename(tp
);
3130 xfs_trans_cancel(tp
);
3139 struct xfs_inode
*ip
,
3142 struct xfs_mount
*mp
= ip
->i_mount
;
3143 struct xfs_perag
*pag
;
3144 unsigned long first_index
, mask
;
3145 unsigned long inodes_per_cluster
;
3147 struct xfs_inode
**cilist
;
3148 struct xfs_inode
*cip
;
3153 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3155 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3156 cilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3157 cilist
= kmem_alloc(cilist_size
, KM_MAYFAIL
|KM_NOFS
);
3161 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3162 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3164 /* really need a gang lookup range call here */
3165 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)cilist
,
3166 first_index
, inodes_per_cluster
);
3170 for (i
= 0; i
< nr_found
; i
++) {
3176 * because this is an RCU protected lookup, we could find a
3177 * recently freed or even reallocated inode during the lookup.
3178 * We need to check under the i_flags_lock for a valid inode
3179 * here. Skip it if it is not valid or the wrong inode.
3181 spin_lock(&cip
->i_flags_lock
);
3183 __xfs_iflags_test(cip
, XFS_ISTALE
)) {
3184 spin_unlock(&cip
->i_flags_lock
);
3189 * Once we fall off the end of the cluster, no point checking
3190 * any more inodes in the list because they will also all be
3191 * outside the cluster.
3193 if ((XFS_INO_TO_AGINO(mp
, cip
->i_ino
) & mask
) != first_index
) {
3194 spin_unlock(&cip
->i_flags_lock
);
3197 spin_unlock(&cip
->i_flags_lock
);
3200 * Do an un-protected check to see if the inode is dirty and
3201 * is a candidate for flushing. These checks will be repeated
3202 * later after the appropriate locks are acquired.
3204 if (xfs_inode_clean(cip
) && xfs_ipincount(cip
) == 0)
3208 * Try to get locks. If any are unavailable or it is pinned,
3209 * then this inode cannot be flushed and is skipped.
3212 if (!xfs_ilock_nowait(cip
, XFS_ILOCK_SHARED
))
3214 if (!xfs_iflock_nowait(cip
)) {
3215 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3218 if (xfs_ipincount(cip
)) {
3220 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3226 * Check the inode number again, just to be certain we are not
3227 * racing with freeing in xfs_reclaim_inode(). See the comments
3228 * in that function for more information as to why the initial
3229 * check is not sufficient.
3233 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3238 * arriving here means that this inode can be flushed. First
3239 * re-check that it's dirty before flushing.
3241 if (!xfs_inode_clean(cip
)) {
3243 error
= xfs_iflush_int(cip
, bp
);
3245 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3246 goto cluster_corrupt_out
;
3252 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3256 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3257 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3268 cluster_corrupt_out
:
3270 * Corruption detected in the clustering loop. Invalidate the
3271 * inode buffer and shut down the filesystem.
3274 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3277 * We'll always have an inode attached to the buffer for completion
3278 * process by the time we are called from xfs_iflush(). Hence we have
3279 * always need to do IO completion processing to abort the inodes
3280 * attached to the buffer. handle them just like the shutdown case in
3283 ASSERT(bp
->b_iodone
);
3284 bp
->b_flags
&= ~XBF_DONE
;
3286 xfs_buf_ioerror(bp
, -EIO
);
3289 /* abort the corrupt inode, as it was not attached to the buffer */
3290 xfs_iflush_abort(cip
, false);
3293 return -EFSCORRUPTED
;
3297 * Flush dirty inode metadata into the backing buffer.
3299 * The caller must have the inode lock and the inode flush lock held. The
3300 * inode lock will still be held upon return to the caller, and the inode
3301 * flush lock will be released after the inode has reached the disk.
3303 * The caller must write out the buffer returned in *bpp and release it.
3307 struct xfs_inode
*ip
,
3308 struct xfs_buf
**bpp
)
3310 struct xfs_mount
*mp
= ip
->i_mount
;
3311 struct xfs_buf
*bp
= NULL
;
3312 struct xfs_dinode
*dip
;
3315 XFS_STATS_INC(mp
, xs_iflush_count
);
3317 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3318 ASSERT(xfs_isiflocked(ip
));
3319 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3320 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3324 xfs_iunpin_wait(ip
);
3327 * For stale inodes we cannot rely on the backing buffer remaining
3328 * stale in cache for the remaining life of the stale inode and so
3329 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3330 * inodes below. We have to check this after ensuring the inode is
3331 * unpinned so that it is safe to reclaim the stale inode after the
3334 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3340 * This may have been unpinned because the filesystem is shutting
3341 * down forcibly. If that's the case we must not write this inode
3342 * to disk, because the log record didn't make it to disk.
3344 * We also have to remove the log item from the AIL in this case,
3345 * as we wait for an empty AIL as part of the unmount process.
3347 if (XFS_FORCED_SHUTDOWN(mp
)) {
3353 * Get the buffer containing the on-disk inode. We are doing a try-lock
3354 * operation here, so we may get an EAGAIN error. In that case, we
3355 * simply want to return with the inode still dirty.
3357 * If we get any other error, we effectively have a corruption situation
3358 * and we cannot flush the inode, so we treat it the same as failing
3361 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3363 if (error
== -EAGAIN
) {
3371 * First flush out the inode that xfs_iflush was called with.
3373 error
= xfs_iflush_int(ip
, bp
);
3378 * If the buffer is pinned then push on the log now so we won't
3379 * get stuck waiting in the write for too long.
3381 if (xfs_buf_ispinned(bp
))
3382 xfs_log_force(mp
, 0);
3385 * inode clustering: try to gather other inodes into this write
3387 * Note: Any error during clustering will result in the filesystem
3388 * being shut down and completion callbacks run on the cluster buffer.
3389 * As we have already flushed and attached this inode to the buffer,
3390 * it has already been aborted and released by xfs_iflush_cluster() and
3391 * so we have no further error handling to do here.
3393 error
= xfs_iflush_cluster(ip
, bp
);
3403 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3405 /* abort the corrupt inode, as it was not attached to the buffer */
3406 xfs_iflush_abort(ip
, false);
3411 * If there are inline format data / attr forks attached to this inode,
3412 * make sure they're not corrupt.
3415 xfs_inode_verify_forks(
3416 struct xfs_inode
*ip
)
3418 struct xfs_ifork
*ifp
;
3421 fa
= xfs_ifork_verify_data(ip
, &xfs_default_ifork_ops
);
3423 ifp
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
3424 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, "data fork",
3425 ifp
->if_u1
.if_data
, ifp
->if_bytes
, fa
);
3429 fa
= xfs_ifork_verify_attr(ip
, &xfs_default_ifork_ops
);
3431 ifp
= XFS_IFORK_PTR(ip
, XFS_ATTR_FORK
);
3432 xfs_inode_verifier_error(ip
, -EFSCORRUPTED
, "attr fork",
3433 ifp
? ifp
->if_u1
.if_data
: NULL
,
3434 ifp
? ifp
->if_bytes
: 0, fa
);
3442 struct xfs_inode
*ip
,
3445 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3446 struct xfs_dinode
*dip
;
3447 struct xfs_mount
*mp
= ip
->i_mount
;
3449 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3450 ASSERT(xfs_isiflocked(ip
));
3451 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3452 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3453 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3454 ASSERT(ip
->i_d
.di_version
> 1);
3456 /* set *dip = inode's place in the buffer */
3457 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3459 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3460 mp
, XFS_ERRTAG_IFLUSH_1
)) {
3461 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3462 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT
,
3463 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3466 if (S_ISREG(VFS_I(ip
)->i_mode
)) {
3468 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3469 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3470 mp
, XFS_ERRTAG_IFLUSH_3
)) {
3471 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3472 "%s: Bad regular inode %Lu, ptr "PTR_FMT
,
3473 __func__
, ip
->i_ino
, ip
);
3476 } else if (S_ISDIR(VFS_I(ip
)->i_mode
)) {
3478 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3479 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3480 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3481 mp
, XFS_ERRTAG_IFLUSH_4
)) {
3482 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3483 "%s: Bad directory inode %Lu, ptr "PTR_FMT
,
3484 __func__
, ip
->i_ino
, ip
);
3488 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3489 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
)) {
3490 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3491 "%s: detected corrupt incore inode %Lu, "
3492 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT
,
3493 __func__
, ip
->i_ino
,
3494 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3495 ip
->i_d
.di_nblocks
, ip
);
3498 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3499 mp
, XFS_ERRTAG_IFLUSH_6
)) {
3500 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3501 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT
,
3502 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3507 * Inode item log recovery for v2 inodes are dependent on the
3508 * di_flushiter count for correct sequencing. We bump the flush
3509 * iteration count so we can detect flushes which postdate a log record
3510 * during recovery. This is redundant as we now log every change and
3511 * hence this can't happen but we need to still do it to ensure
3512 * backwards compatibility with old kernels that predate logging all
3515 if (ip
->i_d
.di_version
< 3)
3516 ip
->i_d
.di_flushiter
++;
3518 /* Check the inline fork data before we write out. */
3519 if (!xfs_inode_verify_forks(ip
))
3523 * Copy the dirty parts of the inode into the on-disk inode. We always
3524 * copy out the core of the inode, because if the inode is dirty at all
3527 xfs_inode_to_disk(ip
, dip
, iip
->ili_item
.li_lsn
);
3529 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3530 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3531 ip
->i_d
.di_flushiter
= 0;
3533 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3534 if (XFS_IFORK_Q(ip
))
3535 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3536 xfs_inobp_check(mp
, bp
);
3539 * We've recorded everything logged in the inode, so we'd like to clear
3540 * the ili_fields bits so we don't log and flush things unnecessarily.
3541 * However, we can't stop logging all this information until the data
3542 * we've copied into the disk buffer is written to disk. If we did we
3543 * might overwrite the copy of the inode in the log with all the data
3544 * after re-logging only part of it, and in the face of a crash we
3545 * wouldn't have all the data we need to recover.
3547 * What we do is move the bits to the ili_last_fields field. When
3548 * logging the inode, these bits are moved back to the ili_fields field.
3549 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3550 * know that the information those bits represent is permanently on
3551 * disk. As long as the flush completes before the inode is logged
3552 * again, then both ili_fields and ili_last_fields will be cleared.
3554 * We can play with the ili_fields bits here, because the inode lock
3555 * must be held exclusively in order to set bits there and the flush
3556 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3557 * done routine can tell whether or not to look in the AIL. Also, store
3558 * the current LSN of the inode so that we can tell whether the item has
3559 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3560 * need the AIL lock, because it is a 64 bit value that cannot be read
3563 iip
->ili_last_fields
= iip
->ili_fields
;
3564 iip
->ili_fields
= 0;
3565 iip
->ili_fsync_fields
= 0;
3566 iip
->ili_logged
= 1;
3568 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3569 &iip
->ili_item
.li_lsn
);
3572 * Attach the function xfs_iflush_done to the inode's
3573 * buffer. This will remove the inode from the AIL
3574 * and unlock the inode's flush lock when the inode is
3575 * completely written to disk.
3577 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3579 /* generate the checksum. */
3580 xfs_dinode_calc_crc(mp
, dip
);
3582 ASSERT(!list_empty(&bp
->b_li_list
));
3583 ASSERT(bp
->b_iodone
!= NULL
);
3587 return -EFSCORRUPTED
;
3590 /* Release an inode. */
3593 struct xfs_inode
*ip
)
3595 trace_xfs_irele(ip
, _RET_IP_
);