1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
49 #include <trace/events/ext4.h>
51 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
52 struct ext4_inode_info
*ei
)
54 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
57 int offset
= offsetof(struct ext4_inode
, i_checksum_lo
);
58 unsigned int csum_size
= sizeof(dummy_csum
);
60 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
, offset
);
61 csum
= ext4_chksum(sbi
, csum
, (__u8
*)&dummy_csum
, csum_size
);
63 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+ offset
,
64 EXT4_GOOD_OLD_INODE_SIZE
- offset
);
66 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
67 offset
= offsetof(struct ext4_inode
, i_checksum_hi
);
68 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+
69 EXT4_GOOD_OLD_INODE_SIZE
,
70 offset
- EXT4_GOOD_OLD_INODE_SIZE
);
71 if (EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
72 csum
= ext4_chksum(sbi
, csum
, (__u8
*)&dummy_csum
,
76 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+ offset
,
77 EXT4_INODE_SIZE(inode
->i_sb
) - offset
);
83 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
84 struct ext4_inode_info
*ei
)
86 __u32 provided
, calculated
;
88 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
89 cpu_to_le32(EXT4_OS_LINUX
) ||
90 !ext4_has_metadata_csum(inode
->i_sb
))
93 provided
= le16_to_cpu(raw
->i_checksum_lo
);
94 calculated
= ext4_inode_csum(inode
, raw
, ei
);
95 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
96 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
97 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
101 return provided
== calculated
;
104 void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
105 struct ext4_inode_info
*ei
)
109 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
110 cpu_to_le32(EXT4_OS_LINUX
) ||
111 !ext4_has_metadata_csum(inode
->i_sb
))
114 csum
= ext4_inode_csum(inode
, raw
, ei
);
115 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
116 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
117 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
118 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
121 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
124 trace_ext4_begin_ordered_truncate(inode
, new_size
);
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
131 if (!EXT4_I(inode
)->jinode
)
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
134 EXT4_I(inode
)->jinode
,
138 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
139 unsigned int length
);
140 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
141 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
142 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 int ext4_inode_is_fast_symlink(struct inode
*inode
)
151 if (!(EXT4_I(inode
)->i_flags
& EXT4_EA_INODE_FL
)) {
152 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
153 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
155 if (ext4_has_inline_data(inode
))
158 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
160 return S_ISLNK(inode
->i_mode
) && inode
->i_size
&&
161 (inode
->i_size
< EXT4_N_BLOCKS
* 4);
165 * Called at the last iput() if i_nlink is zero.
167 void ext4_evict_inode(struct inode
*inode
)
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 int extra_credits
= 6;
177 struct ext4_xattr_inode_array
*ea_inode_array
= NULL
;
178 bool freeze_protected
= false;
180 trace_ext4_evict_inode(inode
);
182 if (inode
->i_nlink
) {
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
198 * Note that directories do not have this problem because they
199 * don't use page cache.
201 if (inode
->i_ino
!= EXT4_JOURNAL_INO
&&
202 ext4_should_journal_data(inode
) &&
203 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
204 inode
->i_data
.nrpages
) {
205 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
206 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
208 jbd2_complete_transaction(journal
, commit_tid
);
209 filemap_write_and_wait(&inode
->i_data
);
211 truncate_inode_pages_final(&inode
->i_data
);
216 if (is_bad_inode(inode
))
218 dquot_initialize(inode
);
220 if (ext4_should_order_data(inode
))
221 ext4_begin_ordered_truncate(inode
, 0);
222 truncate_inode_pages_final(&inode
->i_data
);
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
229 if (!list_empty_careful(&inode
->i_io_list
)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode
));
231 inode_io_list_del(inode
);
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode
->i_sb
);
242 freeze_protected
= true;
245 if (!IS_NOQUOTA(inode
))
246 extra_credits
+= EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
);
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
253 ext4_blocks_for_truncate(inode
) + extra_credits
- 3);
254 if (IS_ERR(handle
)) {
255 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
261 ext4_orphan_del(NULL
, inode
);
262 if (freeze_protected
)
263 sb_end_intwrite(inode
->i_sb
);
268 ext4_handle_sync(handle
);
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
277 if (ext4_inode_is_fast_symlink(inode
))
278 memset(EXT4_I(inode
)->i_data
, 0, sizeof(EXT4_I(inode
)->i_data
));
280 err
= ext4_mark_inode_dirty(handle
, inode
);
282 ext4_warning(inode
->i_sb
,
283 "couldn't mark inode dirty (err %d)", err
);
286 if (inode
->i_blocks
) {
287 err
= ext4_truncate(inode
);
289 ext4_error_err(inode
->i_sb
, -err
,
290 "couldn't truncate inode %lu (err %d)",
296 /* Remove xattr references. */
297 err
= ext4_xattr_delete_inode(handle
, inode
, &ea_inode_array
,
300 ext4_warning(inode
->i_sb
, "xattr delete (err %d)", err
);
302 ext4_journal_stop(handle
);
303 ext4_orphan_del(NULL
, inode
);
304 if (freeze_protected
)
305 sb_end_intwrite(inode
->i_sb
);
306 ext4_xattr_inode_array_free(ea_inode_array
);
311 * Kill off the orphan record which ext4_truncate created.
312 * AKPM: I think this can be inside the above `if'.
313 * Note that ext4_orphan_del() has to be able to cope with the
314 * deletion of a non-existent orphan - this is because we don't
315 * know if ext4_truncate() actually created an orphan record.
316 * (Well, we could do this if we need to, but heck - it works)
318 ext4_orphan_del(handle
, inode
);
319 EXT4_I(inode
)->i_dtime
= (__u32
)ktime_get_real_seconds();
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
328 if (ext4_mark_inode_dirty(handle
, inode
))
329 /* If that failed, just do the required in-core inode clear. */
330 ext4_clear_inode(inode
);
332 ext4_free_inode(handle
, inode
);
333 ext4_journal_stop(handle
);
334 if (freeze_protected
)
335 sb_end_intwrite(inode
->i_sb
);
336 ext4_xattr_inode_array_free(ea_inode_array
);
339 if (!list_empty(&EXT4_I(inode
)->i_fc_list
))
340 ext4_fc_mark_ineligible(inode
->i_sb
, EXT4_FC_REASON_NOMEM
);
341 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
345 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
347 return &EXT4_I(inode
)->i_reserved_quota
;
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
355 void ext4_da_update_reserve_space(struct inode
*inode
,
356 int used
, int quota_claim
)
358 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
359 struct ext4_inode_info
*ei
= EXT4_I(inode
);
361 spin_lock(&ei
->i_block_reservation_lock
);
362 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
363 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
364 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
365 "with only %d reserved data blocks",
366 __func__
, inode
->i_ino
, used
,
367 ei
->i_reserved_data_blocks
);
369 used
= ei
->i_reserved_data_blocks
;
372 /* Update per-inode reservations */
373 ei
->i_reserved_data_blocks
-= used
;
374 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
376 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
378 /* Update quota subsystem for data blocks */
380 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
385 * not re-claim the quota for fallocated blocks.
387 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
395 if ((ei
->i_reserved_data_blocks
== 0) &&
396 !inode_is_open_for_write(inode
))
397 ext4_discard_preallocations(inode
, 0);
400 static int __check_block_validity(struct inode
*inode
, const char *func
,
402 struct ext4_map_blocks
*map
)
404 if (ext4_has_feature_journal(inode
->i_sb
) &&
406 le32_to_cpu(EXT4_SB(inode
->i_sb
)->s_es
->s_journal_inum
)))
408 if (!ext4_inode_block_valid(inode
, map
->m_pblk
, map
->m_len
)) {
409 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
410 "lblock %lu mapped to illegal pblock %llu "
411 "(length %d)", (unsigned long) map
->m_lblk
,
412 map
->m_pblk
, map
->m_len
);
413 return -EFSCORRUPTED
;
418 int ext4_issue_zeroout(struct inode
*inode
, ext4_lblk_t lblk
, ext4_fsblk_t pblk
,
423 if (IS_ENCRYPTED(inode
) && S_ISREG(inode
->i_mode
))
424 return fscrypt_zeroout_range(inode
, lblk
, pblk
, len
);
426 ret
= sb_issue_zeroout(inode
->i_sb
, pblk
, len
, GFP_NOFS
);
433 #define check_block_validity(inode, map) \
434 __check_block_validity((inode), __func__, __LINE__, (map))
436 #ifdef ES_AGGRESSIVE_TEST
437 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
439 struct ext4_map_blocks
*es_map
,
440 struct ext4_map_blocks
*map
,
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
453 down_read(&EXT4_I(inode
)->i_data_sem
);
454 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
455 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
457 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
459 up_read((&EXT4_I(inode
)->i_data_sem
));
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
465 if (es_map
->m_lblk
!= map
->m_lblk
||
466 es_map
->m_flags
!= map
->m_flags
||
467 es_map
->m_pblk
!= map
->m_pblk
) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
472 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
473 map
->m_len
, map
->m_pblk
, map
->m_flags
,
477 #endif /* ES_AGGRESSIVE_TEST */
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
499 * It returns the error in case of allocation failure.
501 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
502 struct ext4_map_blocks
*map
, int flags
)
504 struct extent_status es
;
507 #ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map
;
510 memcpy(&orig_map
, map
, sizeof(*map
));
514 ext_debug(inode
, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags
, map
->m_len
, (unsigned long) map
->m_lblk
);
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 if (unlikely(map
->m_len
> INT_MAX
))
521 map
->m_len
= INT_MAX
;
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
525 return -EFSCORRUPTED
;
527 /* Lookup extent status tree firstly */
528 if (!(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_FC_REPLAY
) &&
529 ext4_es_lookup_extent(inode
, map
->m_lblk
, NULL
, &es
)) {
530 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
531 map
->m_pblk
= ext4_es_pblock(&es
) +
532 map
->m_lblk
- es
.es_lblk
;
533 map
->m_flags
|= ext4_es_is_written(&es
) ?
534 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
535 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
536 if (retval
> map
->m_len
)
539 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
541 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
542 if (retval
> map
->m_len
)
549 #ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle
, inode
, map
,
557 * Try to see if we can get the block without requesting a new
560 down_read(&EXT4_I(inode
)->i_data_sem
);
561 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
562 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
564 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
569 if (unlikely(retval
!= map
->m_len
)) {
570 ext4_warning(inode
->i_sb
,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode
->i_ino
, retval
, map
->m_len
);
577 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
578 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
579 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
580 !(status
& EXTENT_STATUS_WRITTEN
) &&
581 ext4_es_scan_range(inode
, &ext4_es_is_delayed
, map
->m_lblk
,
582 map
->m_lblk
+ map
->m_len
- 1))
583 status
|= EXTENT_STATUS_DELAYED
;
584 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
585 map
->m_len
, map
->m_pblk
, status
);
589 up_read((&EXT4_I(inode
)->i_data_sem
));
592 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
593 ret
= check_block_validity(inode
, map
);
598 /* If it is only a block(s) look up */
599 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
603 * Returns if the blocks have already allocated
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
609 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
615 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
622 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
625 * New blocks allocate and/or writing to unwritten extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_block()
628 * with create == 1 flag.
630 down_write(&EXT4_I(inode
)->i_data_sem
);
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
636 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
637 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
639 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
641 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
647 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
657 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
658 ext4_da_update_reserve_space(inode
, retval
, 1);
664 if (unlikely(retval
!= map
->m_len
)) {
665 ext4_warning(inode
->i_sb
,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode
->i_ino
, retval
, map
->m_len
);
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
679 if (flags
& EXT4_GET_BLOCKS_ZERO
&&
680 map
->m_flags
& EXT4_MAP_MAPPED
&&
681 map
->m_flags
& EXT4_MAP_NEW
) {
682 ret
= ext4_issue_zeroout(inode
, map
->m_lblk
,
683 map
->m_pblk
, map
->m_len
);
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
694 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
695 ext4_es_lookup_extent(inode
, map
->m_lblk
, NULL
, &es
)) {
696 if (ext4_es_is_written(&es
))
699 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
700 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
701 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
702 !(status
& EXTENT_STATUS_WRITTEN
) &&
703 ext4_es_scan_range(inode
, &ext4_es_is_delayed
, map
->m_lblk
,
704 map
->m_lblk
+ map
->m_len
- 1))
705 status
|= EXTENT_STATUS_DELAYED
;
706 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
707 map
->m_pblk
, status
);
715 up_write((&EXT4_I(inode
)->i_data_sem
));
716 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
717 ret
= check_block_validity(inode
, map
);
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
726 if (map
->m_flags
& EXT4_MAP_NEW
&&
727 !(map
->m_flags
& EXT4_MAP_UNWRITTEN
) &&
728 !(flags
& EXT4_GET_BLOCKS_ZERO
) &&
729 !ext4_is_quota_file(inode
) &&
730 ext4_should_order_data(inode
)) {
732 (loff_t
)map
->m_lblk
<< inode
->i_blkbits
;
733 loff_t length
= (loff_t
)map
->m_len
<< inode
->i_blkbits
;
735 if (flags
& EXT4_GET_BLOCKS_IO_SUBMIT
)
736 ret
= ext4_jbd2_inode_add_wait(handle
, inode
,
739 ret
= ext4_jbd2_inode_add_write(handle
, inode
,
744 ext4_fc_track_range(handle
, inode
, map
->m_lblk
,
745 map
->m_lblk
+ map
->m_len
- 1);
749 ext_debug(inode
, "failed with err %d\n", retval
);
754 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
755 * we have to be careful as someone else may be manipulating b_state as well.
757 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
759 unsigned long old_state
;
760 unsigned long new_state
;
762 flags
&= EXT4_MAP_FLAGS
;
764 /* Dummy buffer_head? Set non-atomically. */
766 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
770 * Someone else may be modifying b_state. Be careful! This is ugly but
771 * once we get rid of using bh as a container for mapping information
772 * to pass to / from get_block functions, this can go away.
775 old_state
= READ_ONCE(bh
->b_state
);
776 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
778 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
781 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
782 struct buffer_head
*bh
, int flags
)
784 struct ext4_map_blocks map
;
787 if (ext4_has_inline_data(inode
))
791 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
793 ret
= ext4_map_blocks(ext4_journal_current_handle(), inode
, &map
,
796 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
797 ext4_update_bh_state(bh
, map
.m_flags
);
798 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
800 } else if (ret
== 0) {
801 /* hole case, need to fill in bh->b_size */
802 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
807 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
808 struct buffer_head
*bh
, int create
)
810 return _ext4_get_block(inode
, iblock
, bh
,
811 create
? EXT4_GET_BLOCKS_CREATE
: 0);
815 * Get block function used when preparing for buffered write if we require
816 * creating an unwritten extent if blocks haven't been allocated. The extent
817 * will be converted to written after the IO is complete.
819 int ext4_get_block_unwritten(struct inode
*inode
, sector_t iblock
,
820 struct buffer_head
*bh_result
, int create
)
822 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
823 inode
->i_ino
, create
);
824 return _ext4_get_block(inode
, iblock
, bh_result
,
825 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
828 /* Maximum number of blocks we map for direct IO at once. */
829 #define DIO_MAX_BLOCKS 4096
832 * `handle' can be NULL if create is zero
834 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
835 ext4_lblk_t block
, int map_flags
)
837 struct ext4_map_blocks map
;
838 struct buffer_head
*bh
;
839 int create
= map_flags
& EXT4_GET_BLOCKS_CREATE
;
842 ASSERT((EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_FC_REPLAY
)
843 || handle
!= NULL
|| create
== 0);
847 err
= ext4_map_blocks(handle
, inode
, &map
, map_flags
);
850 return create
? ERR_PTR(-ENOSPC
) : NULL
;
854 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
856 return ERR_PTR(-ENOMEM
);
857 if (map
.m_flags
& EXT4_MAP_NEW
) {
859 ASSERT((EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_FC_REPLAY
)
860 || (handle
!= NULL
));
863 * Now that we do not always journal data, we should
864 * keep in mind whether this should always journal the
865 * new buffer as metadata. For now, regular file
866 * writes use ext4_get_block instead, so it's not a
870 BUFFER_TRACE(bh
, "call get_create_access");
871 err
= ext4_journal_get_create_access(handle
, bh
);
876 if (!buffer_uptodate(bh
)) {
877 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
878 set_buffer_uptodate(bh
);
881 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
882 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
886 BUFFER_TRACE(bh
, "not a new buffer");
893 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
894 ext4_lblk_t block
, int map_flags
)
896 struct buffer_head
*bh
;
899 bh
= ext4_getblk(handle
, inode
, block
, map_flags
);
902 if (!bh
|| ext4_buffer_uptodate(bh
))
905 ret
= ext4_read_bh_lock(bh
, REQ_META
| REQ_PRIO
, true);
913 /* Read a contiguous batch of blocks. */
914 int ext4_bread_batch(struct inode
*inode
, ext4_lblk_t block
, int bh_count
,
915 bool wait
, struct buffer_head
**bhs
)
919 for (i
= 0; i
< bh_count
; i
++) {
920 bhs
[i
] = ext4_getblk(NULL
, inode
, block
+ i
, 0 /* map_flags */);
921 if (IS_ERR(bhs
[i
])) {
922 err
= PTR_ERR(bhs
[i
]);
928 for (i
= 0; i
< bh_count
; i
++)
929 /* Note that NULL bhs[i] is valid because of holes. */
930 if (bhs
[i
] && !ext4_buffer_uptodate(bhs
[i
]))
931 ext4_read_bh_lock(bhs
[i
], REQ_META
| REQ_PRIO
, false);
936 for (i
= 0; i
< bh_count
; i
++)
938 wait_on_buffer(bhs
[i
]);
940 for (i
= 0; i
< bh_count
; i
++) {
941 if (bhs
[i
] && !buffer_uptodate(bhs
[i
])) {
949 for (i
= 0; i
< bh_count
; i
++) {
956 int ext4_walk_page_buffers(handle_t
*handle
,
957 struct buffer_head
*head
,
961 int (*fn
)(handle_t
*handle
,
962 struct buffer_head
*bh
))
964 struct buffer_head
*bh
;
965 unsigned block_start
, block_end
;
966 unsigned blocksize
= head
->b_size
;
968 struct buffer_head
*next
;
970 for (bh
= head
, block_start
= 0;
971 ret
== 0 && (bh
!= head
|| !block_start
);
972 block_start
= block_end
, bh
= next
) {
973 next
= bh
->b_this_page
;
974 block_end
= block_start
+ blocksize
;
975 if (block_end
<= from
|| block_start
>= to
) {
976 if (partial
&& !buffer_uptodate(bh
))
980 err
= (*fn
)(handle
, bh
);
988 * To preserve ordering, it is essential that the hole instantiation and
989 * the data write be encapsulated in a single transaction. We cannot
990 * close off a transaction and start a new one between the ext4_get_block()
991 * and the commit_write(). So doing the jbd2_journal_start at the start of
992 * prepare_write() is the right place.
994 * Also, this function can nest inside ext4_writepage(). In that case, we
995 * *know* that ext4_writepage() has generated enough buffer credits to do the
996 * whole page. So we won't block on the journal in that case, which is good,
997 * because the caller may be PF_MEMALLOC.
999 * By accident, ext4 can be reentered when a transaction is open via
1000 * quota file writes. If we were to commit the transaction while thus
1001 * reentered, there can be a deadlock - we would be holding a quota
1002 * lock, and the commit would never complete if another thread had a
1003 * transaction open and was blocking on the quota lock - a ranking
1006 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1007 * will _not_ run commit under these circumstances because handle->h_ref
1008 * is elevated. We'll still have enough credits for the tiny quotafile
1011 int do_journal_get_write_access(handle_t
*handle
,
1012 struct buffer_head
*bh
)
1014 int dirty
= buffer_dirty(bh
);
1017 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1020 * __block_write_begin() could have dirtied some buffers. Clean
1021 * the dirty bit as jbd2_journal_get_write_access() could complain
1022 * otherwise about fs integrity issues. Setting of the dirty bit
1023 * by __block_write_begin() isn't a real problem here as we clear
1024 * the bit before releasing a page lock and thus writeback cannot
1025 * ever write the buffer.
1028 clear_buffer_dirty(bh
);
1029 BUFFER_TRACE(bh
, "get write access");
1030 ret
= ext4_journal_get_write_access(handle
, bh
);
1032 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1036 #ifdef CONFIG_FS_ENCRYPTION
1037 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1038 get_block_t
*get_block
)
1040 unsigned from
= pos
& (PAGE_SIZE
- 1);
1041 unsigned to
= from
+ len
;
1042 struct inode
*inode
= page
->mapping
->host
;
1043 unsigned block_start
, block_end
;
1046 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
1048 struct buffer_head
*bh
, *head
, *wait
[2];
1052 BUG_ON(!PageLocked(page
));
1053 BUG_ON(from
> PAGE_SIZE
);
1054 BUG_ON(to
> PAGE_SIZE
);
1057 if (!page_has_buffers(page
))
1058 create_empty_buffers(page
, blocksize
, 0);
1059 head
= page_buffers(page
);
1060 bbits
= ilog2(blocksize
);
1061 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1063 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1064 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
1065 block_end
= block_start
+ blocksize
;
1066 if (block_end
<= from
|| block_start
>= to
) {
1067 if (PageUptodate(page
)) {
1068 if (!buffer_uptodate(bh
))
1069 set_buffer_uptodate(bh
);
1074 clear_buffer_new(bh
);
1075 if (!buffer_mapped(bh
)) {
1076 WARN_ON(bh
->b_size
!= blocksize
);
1077 err
= get_block(inode
, block
, bh
, 1);
1080 if (buffer_new(bh
)) {
1081 if (PageUptodate(page
)) {
1082 clear_buffer_new(bh
);
1083 set_buffer_uptodate(bh
);
1084 mark_buffer_dirty(bh
);
1087 if (block_end
> to
|| block_start
< from
)
1088 zero_user_segments(page
, to
, block_end
,
1093 if (PageUptodate(page
)) {
1094 if (!buffer_uptodate(bh
))
1095 set_buffer_uptodate(bh
);
1098 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1099 !buffer_unwritten(bh
) &&
1100 (block_start
< from
|| block_end
> to
)) {
1101 ext4_read_bh_lock(bh
, 0, false);
1102 wait
[nr_wait
++] = bh
;
1106 * If we issued read requests, let them complete.
1108 for (i
= 0; i
< nr_wait
; i
++) {
1109 wait_on_buffer(wait
[i
]);
1110 if (!buffer_uptodate(wait
[i
]))
1113 if (unlikely(err
)) {
1114 page_zero_new_buffers(page
, from
, to
);
1115 } else if (fscrypt_inode_uses_fs_layer_crypto(inode
)) {
1116 for (i
= 0; i
< nr_wait
; i
++) {
1119 err2
= fscrypt_decrypt_pagecache_blocks(page
, blocksize
,
1120 bh_offset(wait
[i
]));
1122 clear_buffer_uptodate(wait
[i
]);
1132 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1133 loff_t pos
, unsigned len
, unsigned flags
,
1134 struct page
**pagep
, void **fsdata
)
1136 struct inode
*inode
= mapping
->host
;
1137 int ret
, needed_blocks
;
1144 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
1147 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1149 * Reserve one block more for addition to orphan list in case
1150 * we allocate blocks but write fails for some reason
1152 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1153 index
= pos
>> PAGE_SHIFT
;
1154 from
= pos
& (PAGE_SIZE
- 1);
1157 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
1158 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1167 * grab_cache_page_write_begin() can take a long time if the
1168 * system is thrashing due to memory pressure, or if the page
1169 * is being written back. So grab it first before we start
1170 * the transaction handle. This also allows us to allocate
1171 * the page (if needed) without using GFP_NOFS.
1174 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1180 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1181 if (IS_ERR(handle
)) {
1183 return PTR_ERR(handle
);
1187 if (page
->mapping
!= mapping
) {
1188 /* The page got truncated from under us */
1191 ext4_journal_stop(handle
);
1194 /* In case writeback began while the page was unlocked */
1195 wait_for_stable_page(page
);
1197 #ifdef CONFIG_FS_ENCRYPTION
1198 if (ext4_should_dioread_nolock(inode
))
1199 ret
= ext4_block_write_begin(page
, pos
, len
,
1200 ext4_get_block_unwritten
);
1202 ret
= ext4_block_write_begin(page
, pos
, len
,
1205 if (ext4_should_dioread_nolock(inode
))
1206 ret
= __block_write_begin(page
, pos
, len
,
1207 ext4_get_block_unwritten
);
1209 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1211 if (!ret
&& ext4_should_journal_data(inode
)) {
1212 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1214 do_journal_get_write_access
);
1218 bool extended
= (pos
+ len
> inode
->i_size
) &&
1219 !ext4_verity_in_progress(inode
);
1223 * __block_write_begin may have instantiated a few blocks
1224 * outside i_size. Trim these off again. Don't need
1225 * i_size_read because we hold i_mutex.
1227 * Add inode to orphan list in case we crash before
1230 if (extended
&& ext4_can_truncate(inode
))
1231 ext4_orphan_add(handle
, inode
);
1233 ext4_journal_stop(handle
);
1235 ext4_truncate_failed_write(inode
);
1237 * If truncate failed early the inode might
1238 * still be on the orphan list; we need to
1239 * make sure the inode is removed from the
1240 * orphan list in that case.
1243 ext4_orphan_del(NULL
, inode
);
1246 if (ret
== -ENOSPC
&&
1247 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1256 /* For write_end() in data=journal mode */
1257 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1260 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1262 set_buffer_uptodate(bh
);
1263 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1264 clear_buffer_meta(bh
);
1265 clear_buffer_prio(bh
);
1270 * We need to pick up the new inode size which generic_commit_write gave us
1271 * `file' can be NULL - eg, when called from page_symlink().
1273 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1274 * buffers are managed internally.
1276 static int ext4_write_end(struct file
*file
,
1277 struct address_space
*mapping
,
1278 loff_t pos
, unsigned len
, unsigned copied
,
1279 struct page
*page
, void *fsdata
)
1281 handle_t
*handle
= ext4_journal_current_handle();
1282 struct inode
*inode
= mapping
->host
;
1283 loff_t old_size
= inode
->i_size
;
1285 int i_size_changed
= 0;
1286 int inline_data
= ext4_has_inline_data(inode
);
1287 bool verity
= ext4_verity_in_progress(inode
);
1289 trace_ext4_write_end(inode
, pos
, len
, copied
);
1291 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1300 copied
= block_write_end(file
, mapping
, pos
,
1301 len
, copied
, page
, fsdata
);
1303 * it's important to update i_size while still holding page lock:
1304 * page writeout could otherwise come in and zero beyond i_size.
1306 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1307 * blocks are being written past EOF, so skip the i_size update.
1310 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1314 if (old_size
< pos
&& !verity
)
1315 pagecache_isize_extended(inode
, old_size
, pos
);
1317 * Don't mark the inode dirty under page lock. First, it unnecessarily
1318 * makes the holding time of page lock longer. Second, it forces lock
1319 * ordering of page lock and transaction start for journaling
1322 if (i_size_changed
|| inline_data
)
1323 ret
= ext4_mark_inode_dirty(handle
, inode
);
1325 if (pos
+ len
> inode
->i_size
&& !verity
&& ext4_can_truncate(inode
))
1326 /* if we have allocated more blocks and copied
1327 * less. We will have blocks allocated outside
1328 * inode->i_size. So truncate them
1330 ext4_orphan_add(handle
, inode
);
1332 ret2
= ext4_journal_stop(handle
);
1336 if (pos
+ len
> inode
->i_size
&& !verity
) {
1337 ext4_truncate_failed_write(inode
);
1339 * If truncate failed early the inode might still be
1340 * on the orphan list; we need to make sure the inode
1341 * is removed from the orphan list in that case.
1344 ext4_orphan_del(NULL
, inode
);
1347 return ret
? ret
: copied
;
1351 * This is a private version of page_zero_new_buffers() which doesn't
1352 * set the buffer to be dirty, since in data=journalled mode we need
1353 * to call ext4_handle_dirty_metadata() instead.
1355 static void ext4_journalled_zero_new_buffers(handle_t
*handle
,
1357 unsigned from
, unsigned to
)
1359 unsigned int block_start
= 0, block_end
;
1360 struct buffer_head
*head
, *bh
;
1362 bh
= head
= page_buffers(page
);
1364 block_end
= block_start
+ bh
->b_size
;
1365 if (buffer_new(bh
)) {
1366 if (block_end
> from
&& block_start
< to
) {
1367 if (!PageUptodate(page
)) {
1368 unsigned start
, size
;
1370 start
= max(from
, block_start
);
1371 size
= min(to
, block_end
) - start
;
1373 zero_user(page
, start
, size
);
1374 write_end_fn(handle
, bh
);
1376 clear_buffer_new(bh
);
1379 block_start
= block_end
;
1380 bh
= bh
->b_this_page
;
1381 } while (bh
!= head
);
1384 static int ext4_journalled_write_end(struct file
*file
,
1385 struct address_space
*mapping
,
1386 loff_t pos
, unsigned len
, unsigned copied
,
1387 struct page
*page
, void *fsdata
)
1389 handle_t
*handle
= ext4_journal_current_handle();
1390 struct inode
*inode
= mapping
->host
;
1391 loff_t old_size
= inode
->i_size
;
1395 int size_changed
= 0;
1396 int inline_data
= ext4_has_inline_data(inode
);
1397 bool verity
= ext4_verity_in_progress(inode
);
1399 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1400 from
= pos
& (PAGE_SIZE
- 1);
1403 BUG_ON(!ext4_handle_valid(handle
));
1406 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1414 } else if (unlikely(copied
< len
) && !PageUptodate(page
)) {
1416 ext4_journalled_zero_new_buffers(handle
, page
, from
, to
);
1418 if (unlikely(copied
< len
))
1419 ext4_journalled_zero_new_buffers(handle
, page
,
1421 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1422 from
+ copied
, &partial
,
1425 SetPageUptodate(page
);
1428 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1429 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1430 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1434 if (old_size
< pos
&& !verity
)
1435 pagecache_isize_extended(inode
, old_size
, pos
);
1437 if (size_changed
|| inline_data
) {
1438 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1443 if (pos
+ len
> inode
->i_size
&& !verity
&& ext4_can_truncate(inode
))
1444 /* if we have allocated more blocks and copied
1445 * less. We will have blocks allocated outside
1446 * inode->i_size. So truncate them
1448 ext4_orphan_add(handle
, inode
);
1451 ret2
= ext4_journal_stop(handle
);
1454 if (pos
+ len
> inode
->i_size
&& !verity
) {
1455 ext4_truncate_failed_write(inode
);
1457 * If truncate failed early the inode might still be
1458 * on the orphan list; we need to make sure the inode
1459 * is removed from the orphan list in that case.
1462 ext4_orphan_del(NULL
, inode
);
1465 return ret
? ret
: copied
;
1469 * Reserve space for a single cluster
1471 static int ext4_da_reserve_space(struct inode
*inode
)
1473 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1474 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1478 * We will charge metadata quota at writeout time; this saves
1479 * us from metadata over-estimation, though we may go over by
1480 * a small amount in the end. Here we just reserve for data.
1482 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1486 spin_lock(&ei
->i_block_reservation_lock
);
1487 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1488 spin_unlock(&ei
->i_block_reservation_lock
);
1489 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1492 ei
->i_reserved_data_blocks
++;
1493 trace_ext4_da_reserve_space(inode
);
1494 spin_unlock(&ei
->i_block_reservation_lock
);
1496 return 0; /* success */
1499 void ext4_da_release_space(struct inode
*inode
, int to_free
)
1501 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1502 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1505 return; /* Nothing to release, exit */
1507 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1509 trace_ext4_da_release_space(inode
, to_free
);
1510 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1512 * if there aren't enough reserved blocks, then the
1513 * counter is messed up somewhere. Since this
1514 * function is called from invalidate page, it's
1515 * harmless to return without any action.
1517 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1518 "ino %lu, to_free %d with only %d reserved "
1519 "data blocks", inode
->i_ino
, to_free
,
1520 ei
->i_reserved_data_blocks
);
1522 to_free
= ei
->i_reserved_data_blocks
;
1524 ei
->i_reserved_data_blocks
-= to_free
;
1526 /* update fs dirty data blocks counter */
1527 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1529 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1531 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1535 * Delayed allocation stuff
1538 struct mpage_da_data
{
1539 struct inode
*inode
;
1540 struct writeback_control
*wbc
;
1542 pgoff_t first_page
; /* The first page to write */
1543 pgoff_t next_page
; /* Current page to examine */
1544 pgoff_t last_page
; /* Last page to examine */
1546 * Extent to map - this can be after first_page because that can be
1547 * fully mapped. We somewhat abuse m_flags to store whether the extent
1548 * is delalloc or unwritten.
1550 struct ext4_map_blocks map
;
1551 struct ext4_io_submit io_submit
; /* IO submission data */
1552 unsigned int do_map
:1;
1553 unsigned int scanned_until_end
:1;
1556 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1561 struct pagevec pvec
;
1562 struct inode
*inode
= mpd
->inode
;
1563 struct address_space
*mapping
= inode
->i_mapping
;
1565 /* This is necessary when next_page == 0. */
1566 if (mpd
->first_page
>= mpd
->next_page
)
1569 mpd
->scanned_until_end
= 0;
1570 index
= mpd
->first_page
;
1571 end
= mpd
->next_page
- 1;
1573 ext4_lblk_t start
, last
;
1574 start
= index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1575 last
= end
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1576 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1579 pagevec_init(&pvec
);
1580 while (index
<= end
) {
1581 nr_pages
= pagevec_lookup_range(&pvec
, mapping
, &index
, end
);
1584 for (i
= 0; i
< nr_pages
; i
++) {
1585 struct page
*page
= pvec
.pages
[i
];
1587 BUG_ON(!PageLocked(page
));
1588 BUG_ON(PageWriteback(page
));
1590 if (page_mapped(page
))
1591 clear_page_dirty_for_io(page
);
1592 block_invalidatepage(page
, 0, PAGE_SIZE
);
1593 ClearPageUptodate(page
);
1597 pagevec_release(&pvec
);
1601 static void ext4_print_free_blocks(struct inode
*inode
)
1603 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1604 struct super_block
*sb
= inode
->i_sb
;
1605 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1607 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1608 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1609 ext4_count_free_clusters(sb
)));
1610 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1611 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1612 (long long) EXT4_C2B(EXT4_SB(sb
),
1613 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1614 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1615 (long long) EXT4_C2B(EXT4_SB(sb
),
1616 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1617 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1618 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1619 ei
->i_reserved_data_blocks
);
1623 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1625 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1629 * ext4_insert_delayed_block - adds a delayed block to the extents status
1630 * tree, incrementing the reserved cluster/block
1631 * count or making a pending reservation
1634 * @inode - file containing the newly added block
1635 * @lblk - logical block to be added
1637 * Returns 0 on success, negative error code on failure.
1639 static int ext4_insert_delayed_block(struct inode
*inode
, ext4_lblk_t lblk
)
1641 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1643 bool allocated
= false;
1646 * If the cluster containing lblk is shared with a delayed,
1647 * written, or unwritten extent in a bigalloc file system, it's
1648 * already been accounted for and does not need to be reserved.
1649 * A pending reservation must be made for the cluster if it's
1650 * shared with a written or unwritten extent and doesn't already
1651 * have one. Written and unwritten extents can be purged from the
1652 * extents status tree if the system is under memory pressure, so
1653 * it's necessary to examine the extent tree if a search of the
1654 * extents status tree doesn't get a match.
1656 if (sbi
->s_cluster_ratio
== 1) {
1657 ret
= ext4_da_reserve_space(inode
);
1658 if (ret
!= 0) /* ENOSPC */
1660 } else { /* bigalloc */
1661 if (!ext4_es_scan_clu(inode
, &ext4_es_is_delonly
, lblk
)) {
1662 if (!ext4_es_scan_clu(inode
,
1663 &ext4_es_is_mapped
, lblk
)) {
1664 ret
= ext4_clu_mapped(inode
,
1665 EXT4_B2C(sbi
, lblk
));
1669 ret
= ext4_da_reserve_space(inode
);
1670 if (ret
!= 0) /* ENOSPC */
1681 ret
= ext4_es_insert_delayed_block(inode
, lblk
, allocated
);
1688 * This function is grabs code from the very beginning of
1689 * ext4_map_blocks, but assumes that the caller is from delayed write
1690 * time. This function looks up the requested blocks and sets the
1691 * buffer delay bit under the protection of i_data_sem.
1693 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1694 struct ext4_map_blocks
*map
,
1695 struct buffer_head
*bh
)
1697 struct extent_status es
;
1699 sector_t invalid_block
= ~((sector_t
) 0xffff);
1700 #ifdef ES_AGGRESSIVE_TEST
1701 struct ext4_map_blocks orig_map
;
1703 memcpy(&orig_map
, map
, sizeof(*map
));
1706 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1710 ext_debug(inode
, "max_blocks %u, logical block %lu\n", map
->m_len
,
1711 (unsigned long) map
->m_lblk
);
1713 /* Lookup extent status tree firstly */
1714 if (ext4_es_lookup_extent(inode
, iblock
, NULL
, &es
)) {
1715 if (ext4_es_is_hole(&es
)) {
1717 down_read(&EXT4_I(inode
)->i_data_sem
);
1722 * Delayed extent could be allocated by fallocate.
1723 * So we need to check it.
1725 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1726 map_bh(bh
, inode
->i_sb
, invalid_block
);
1728 set_buffer_delay(bh
);
1732 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1733 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1734 if (retval
> map
->m_len
)
1735 retval
= map
->m_len
;
1736 map
->m_len
= retval
;
1737 if (ext4_es_is_written(&es
))
1738 map
->m_flags
|= EXT4_MAP_MAPPED
;
1739 else if (ext4_es_is_unwritten(&es
))
1740 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1744 #ifdef ES_AGGRESSIVE_TEST
1745 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1751 * Try to see if we can get the block without requesting a new
1752 * file system block.
1754 down_read(&EXT4_I(inode
)->i_data_sem
);
1755 if (ext4_has_inline_data(inode
))
1757 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1758 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1760 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1767 * XXX: __block_prepare_write() unmaps passed block,
1771 ret
= ext4_insert_delayed_block(inode
, map
->m_lblk
);
1777 map_bh(bh
, inode
->i_sb
, invalid_block
);
1779 set_buffer_delay(bh
);
1780 } else if (retval
> 0) {
1782 unsigned int status
;
1784 if (unlikely(retval
!= map
->m_len
)) {
1785 ext4_warning(inode
->i_sb
,
1786 "ES len assertion failed for inode "
1787 "%lu: retval %d != map->m_len %d",
1788 inode
->i_ino
, retval
, map
->m_len
);
1792 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1793 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1794 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1795 map
->m_pblk
, status
);
1801 up_read((&EXT4_I(inode
)->i_data_sem
));
1807 * This is a special get_block_t callback which is used by
1808 * ext4_da_write_begin(). It will either return mapped block or
1809 * reserve space for a single block.
1811 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1812 * We also have b_blocknr = -1 and b_bdev initialized properly
1814 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1815 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1816 * initialized properly.
1818 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1819 struct buffer_head
*bh
, int create
)
1821 struct ext4_map_blocks map
;
1824 BUG_ON(create
== 0);
1825 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1827 map
.m_lblk
= iblock
;
1831 * first, we need to know whether the block is allocated already
1832 * preallocated blocks are unmapped but should treated
1833 * the same as allocated blocks.
1835 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1839 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1840 ext4_update_bh_state(bh
, map
.m_flags
);
1842 if (buffer_unwritten(bh
)) {
1843 /* A delayed write to unwritten bh should be marked
1844 * new and mapped. Mapped ensures that we don't do
1845 * get_block multiple times when we write to the same
1846 * offset and new ensures that we do proper zero out
1847 * for partial write.
1850 set_buffer_mapped(bh
);
1855 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1861 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1867 static int __ext4_journalled_writepage(struct page
*page
,
1870 struct address_space
*mapping
= page
->mapping
;
1871 struct inode
*inode
= mapping
->host
;
1872 struct buffer_head
*page_bufs
= NULL
;
1873 handle_t
*handle
= NULL
;
1874 int ret
= 0, err
= 0;
1875 int inline_data
= ext4_has_inline_data(inode
);
1876 struct buffer_head
*inode_bh
= NULL
;
1878 ClearPageChecked(page
);
1881 BUG_ON(page
->index
!= 0);
1882 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1883 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1884 if (inode_bh
== NULL
)
1887 page_bufs
= page_buffers(page
);
1892 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1896 * We need to release the page lock before we start the
1897 * journal, so grab a reference so the page won't disappear
1898 * out from under us.
1903 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1904 ext4_writepage_trans_blocks(inode
));
1905 if (IS_ERR(handle
)) {
1906 ret
= PTR_ERR(handle
);
1908 goto out_no_pagelock
;
1910 BUG_ON(!ext4_handle_valid(handle
));
1914 if (page
->mapping
!= mapping
) {
1915 /* The page got truncated from under us */
1916 ext4_journal_stop(handle
);
1922 ret
= ext4_mark_inode_dirty(handle
, inode
);
1924 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1925 do_journal_get_write_access
);
1927 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1932 err
= ext4_jbd2_inode_add_write(handle
, inode
, page_offset(page
), len
);
1935 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1936 err
= ext4_journal_stop(handle
);
1940 if (!ext4_has_inline_data(inode
))
1941 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1943 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1952 * Note that we don't need to start a transaction unless we're journaling data
1953 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1954 * need to file the inode to the transaction's list in ordered mode because if
1955 * we are writing back data added by write(), the inode is already there and if
1956 * we are writing back data modified via mmap(), no one guarantees in which
1957 * transaction the data will hit the disk. In case we are journaling data, we
1958 * cannot start transaction directly because transaction start ranks above page
1959 * lock so we have to do some magic.
1961 * This function can get called via...
1962 * - ext4_writepages after taking page lock (have journal handle)
1963 * - journal_submit_inode_data_buffers (no journal handle)
1964 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1965 * - grab_page_cache when doing write_begin (have journal handle)
1967 * We don't do any block allocation in this function. If we have page with
1968 * multiple blocks we need to write those buffer_heads that are mapped. This
1969 * is important for mmaped based write. So if we do with blocksize 1K
1970 * truncate(f, 1024);
1971 * a = mmap(f, 0, 4096);
1973 * truncate(f, 4096);
1974 * we have in the page first buffer_head mapped via page_mkwrite call back
1975 * but other buffer_heads would be unmapped but dirty (dirty done via the
1976 * do_wp_page). So writepage should write the first block. If we modify
1977 * the mmap area beyond 1024 we will again get a page_fault and the
1978 * page_mkwrite callback will do the block allocation and mark the
1979 * buffer_heads mapped.
1981 * We redirty the page if we have any buffer_heads that is either delay or
1982 * unwritten in the page.
1984 * We can get recursively called as show below.
1986 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1989 * But since we don't do any block allocation we should not deadlock.
1990 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1992 static int ext4_writepage(struct page
*page
,
1993 struct writeback_control
*wbc
)
1998 struct buffer_head
*page_bufs
= NULL
;
1999 struct inode
*inode
= page
->mapping
->host
;
2000 struct ext4_io_submit io_submit
;
2001 bool keep_towrite
= false;
2003 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
)))) {
2004 inode
->i_mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
2009 trace_ext4_writepage(page
);
2010 size
= i_size_read(inode
);
2011 if (page
->index
== size
>> PAGE_SHIFT
&&
2012 !ext4_verity_in_progress(inode
))
2013 len
= size
& ~PAGE_MASK
;
2017 page_bufs
= page_buffers(page
);
2019 * We cannot do block allocation or other extent handling in this
2020 * function. If there are buffers needing that, we have to redirty
2021 * the page. But we may reach here when we do a journal commit via
2022 * journal_submit_inode_data_buffers() and in that case we must write
2023 * allocated buffers to achieve data=ordered mode guarantees.
2025 * Also, if there is only one buffer per page (the fs block
2026 * size == the page size), if one buffer needs block
2027 * allocation or needs to modify the extent tree to clear the
2028 * unwritten flag, we know that the page can't be written at
2029 * all, so we might as well refuse the write immediately.
2030 * Unfortunately if the block size != page size, we can't as
2031 * easily detect this case using ext4_walk_page_buffers(), but
2032 * for the extremely common case, this is an optimization that
2033 * skips a useless round trip through ext4_bio_write_page().
2035 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2036 ext4_bh_delay_or_unwritten
)) {
2037 redirty_page_for_writepage(wbc
, page
);
2038 if ((current
->flags
& PF_MEMALLOC
) ||
2039 (inode
->i_sb
->s_blocksize
== PAGE_SIZE
)) {
2041 * For memory cleaning there's no point in writing only
2042 * some buffers. So just bail out. Warn if we came here
2043 * from direct reclaim.
2045 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
2050 keep_towrite
= true;
2053 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2055 * It's mmapped pagecache. Add buffers and journal it. There
2056 * doesn't seem much point in redirtying the page here.
2058 return __ext4_journalled_writepage(page
, len
);
2060 ext4_io_submit_init(&io_submit
, wbc
);
2061 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
2062 if (!io_submit
.io_end
) {
2063 redirty_page_for_writepage(wbc
, page
);
2067 ret
= ext4_bio_write_page(&io_submit
, page
, len
, keep_towrite
);
2068 ext4_io_submit(&io_submit
);
2069 /* Drop io_end reference we got from init */
2070 ext4_put_io_end_defer(io_submit
.io_end
);
2074 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
2080 BUG_ON(page
->index
!= mpd
->first_page
);
2081 clear_page_dirty_for_io(page
);
2083 * We have to be very careful here! Nothing protects writeback path
2084 * against i_size changes and the page can be writeably mapped into
2085 * page tables. So an application can be growing i_size and writing
2086 * data through mmap while writeback runs. clear_page_dirty_for_io()
2087 * write-protects our page in page tables and the page cannot get
2088 * written to again until we release page lock. So only after
2089 * clear_page_dirty_for_io() we are safe to sample i_size for
2090 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2091 * on the barrier provided by TestClearPageDirty in
2092 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2093 * after page tables are updated.
2095 size
= i_size_read(mpd
->inode
);
2096 if (page
->index
== size
>> PAGE_SHIFT
&&
2097 !ext4_verity_in_progress(mpd
->inode
))
2098 len
= size
& ~PAGE_MASK
;
2101 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, false);
2103 mpd
->wbc
->nr_to_write
--;
2109 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2112 * mballoc gives us at most this number of blocks...
2113 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2114 * The rest of mballoc seems to handle chunks up to full group size.
2116 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2119 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121 * @mpd - extent of blocks
2122 * @lblk - logical number of the block in the file
2123 * @bh - buffer head we want to add to the extent
2125 * The function is used to collect contig. blocks in the same state. If the
2126 * buffer doesn't require mapping for writeback and we haven't started the
2127 * extent of buffers to map yet, the function returns 'true' immediately - the
2128 * caller can write the buffer right away. Otherwise the function returns true
2129 * if the block has been added to the extent, false if the block couldn't be
2132 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
2133 struct buffer_head
*bh
)
2135 struct ext4_map_blocks
*map
= &mpd
->map
;
2137 /* Buffer that doesn't need mapping for writeback? */
2138 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
2139 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
2140 /* So far no extent to map => we write the buffer right away */
2141 if (map
->m_len
== 0)
2146 /* First block in the extent? */
2147 if (map
->m_len
== 0) {
2148 /* We cannot map unless handle is started... */
2153 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
2157 /* Don't go larger than mballoc is willing to allocate */
2158 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
2161 /* Can we merge the block to our big extent? */
2162 if (lblk
== map
->m_lblk
+ map
->m_len
&&
2163 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
2171 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173 * @mpd - extent of blocks for mapping
2174 * @head - the first buffer in the page
2175 * @bh - buffer we should start processing from
2176 * @lblk - logical number of the block in the file corresponding to @bh
2178 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2179 * the page for IO if all buffers in this page were mapped and there's no
2180 * accumulated extent of buffers to map or add buffers in the page to the
2181 * extent of buffers to map. The function returns 1 if the caller can continue
2182 * by processing the next page, 0 if it should stop adding buffers to the
2183 * extent to map because we cannot extend it anymore. It can also return value
2184 * < 0 in case of error during IO submission.
2186 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
2187 struct buffer_head
*head
,
2188 struct buffer_head
*bh
,
2191 struct inode
*inode
= mpd
->inode
;
2193 ext4_lblk_t blocks
= (i_size_read(inode
) + i_blocksize(inode
) - 1)
2194 >> inode
->i_blkbits
;
2196 if (ext4_verity_in_progress(inode
))
2197 blocks
= EXT_MAX_BLOCKS
;
2200 BUG_ON(buffer_locked(bh
));
2202 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2203 /* Found extent to map? */
2206 /* Buffer needs mapping and handle is not started? */
2209 /* Everything mapped so far and we hit EOF */
2212 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2213 /* So far everything mapped? Submit the page for IO. */
2214 if (mpd
->map
.m_len
== 0) {
2215 err
= mpage_submit_page(mpd
, head
->b_page
);
2219 if (lblk
>= blocks
) {
2220 mpd
->scanned_until_end
= 1;
2227 * mpage_process_page - update page buffers corresponding to changed extent and
2228 * may submit fully mapped page for IO
2230 * @mpd - description of extent to map, on return next extent to map
2231 * @m_lblk - logical block mapping.
2232 * @m_pblk - corresponding physical mapping.
2233 * @map_bh - determines on return whether this page requires any further
2235 * Scan given page buffers corresponding to changed extent and update buffer
2236 * state according to new extent state.
2237 * We map delalloc buffers to their physical location, clear unwritten bits.
2238 * If the given page is not fully mapped, we update @map to the next extent in
2239 * the given page that needs mapping & return @map_bh as true.
2241 static int mpage_process_page(struct mpage_da_data
*mpd
, struct page
*page
,
2242 ext4_lblk_t
*m_lblk
, ext4_fsblk_t
*m_pblk
,
2245 struct buffer_head
*head
, *bh
;
2246 ext4_io_end_t
*io_end
= mpd
->io_submit
.io_end
;
2247 ext4_lblk_t lblk
= *m_lblk
;
2248 ext4_fsblk_t pblock
= *m_pblk
;
2250 int blkbits
= mpd
->inode
->i_blkbits
;
2251 ssize_t io_end_size
= 0;
2252 struct ext4_io_end_vec
*io_end_vec
= ext4_last_io_end_vec(io_end
);
2254 bh
= head
= page_buffers(page
);
2256 if (lblk
< mpd
->map
.m_lblk
)
2258 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2260 * Buffer after end of mapped extent.
2261 * Find next buffer in the page to map.
2264 mpd
->map
.m_flags
= 0;
2265 io_end_vec
->size
+= io_end_size
;
2268 err
= mpage_process_page_bufs(mpd
, head
, bh
, lblk
);
2271 if (!err
&& mpd
->map
.m_len
&& mpd
->map
.m_lblk
> lblk
) {
2272 io_end_vec
= ext4_alloc_io_end_vec(io_end
);
2273 if (IS_ERR(io_end_vec
)) {
2274 err
= PTR_ERR(io_end_vec
);
2277 io_end_vec
->offset
= (loff_t
)mpd
->map
.m_lblk
<< blkbits
;
2282 if (buffer_delay(bh
)) {
2283 clear_buffer_delay(bh
);
2284 bh
->b_blocknr
= pblock
++;
2286 clear_buffer_unwritten(bh
);
2287 io_end_size
+= (1 << blkbits
);
2288 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2290 io_end_vec
->size
+= io_end_size
;
2300 * mpage_map_buffers - update buffers corresponding to changed extent and
2301 * submit fully mapped pages for IO
2303 * @mpd - description of extent to map, on return next extent to map
2305 * Scan buffers corresponding to changed extent (we expect corresponding pages
2306 * to be already locked) and update buffer state according to new extent state.
2307 * We map delalloc buffers to their physical location, clear unwritten bits,
2308 * and mark buffers as uninit when we perform writes to unwritten extents
2309 * and do extent conversion after IO is finished. If the last page is not fully
2310 * mapped, we update @map to the next extent in the last page that needs
2311 * mapping. Otherwise we submit the page for IO.
2313 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2315 struct pagevec pvec
;
2317 struct inode
*inode
= mpd
->inode
;
2318 int bpp_bits
= PAGE_SHIFT
- inode
->i_blkbits
;
2321 ext4_fsblk_t pblock
;
2323 bool map_bh
= false;
2325 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2326 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2327 lblk
= start
<< bpp_bits
;
2328 pblock
= mpd
->map
.m_pblk
;
2330 pagevec_init(&pvec
);
2331 while (start
<= end
) {
2332 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
,
2336 for (i
= 0; i
< nr_pages
; i
++) {
2337 struct page
*page
= pvec
.pages
[i
];
2339 err
= mpage_process_page(mpd
, page
, &lblk
, &pblock
,
2342 * If map_bh is true, means page may require further bh
2343 * mapping, or maybe the page was submitted for IO.
2344 * So we return to call further extent mapping.
2346 if (err
< 0 || map_bh
)
2348 /* Page fully mapped - let IO run! */
2349 err
= mpage_submit_page(mpd
, page
);
2353 pagevec_release(&pvec
);
2355 /* Extent fully mapped and matches with page boundary. We are done. */
2357 mpd
->map
.m_flags
= 0;
2360 pagevec_release(&pvec
);
2364 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2366 struct inode
*inode
= mpd
->inode
;
2367 struct ext4_map_blocks
*map
= &mpd
->map
;
2368 int get_blocks_flags
;
2369 int err
, dioread_nolock
;
2371 trace_ext4_da_write_pages_extent(inode
, map
);
2373 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2374 * to convert an unwritten extent to be initialized (in the case
2375 * where we have written into one or more preallocated blocks). It is
2376 * possible that we're going to need more metadata blocks than
2377 * previously reserved. However we must not fail because we're in
2378 * writeback and there is nothing we can do about it so it might result
2379 * in data loss. So use reserved blocks to allocate metadata if
2382 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2383 * the blocks in question are delalloc blocks. This indicates
2384 * that the blocks and quotas has already been checked when
2385 * the data was copied into the page cache.
2387 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2388 EXT4_GET_BLOCKS_METADATA_NOFAIL
|
2389 EXT4_GET_BLOCKS_IO_SUBMIT
;
2390 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2392 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2393 if (map
->m_flags
& BIT(BH_Delay
))
2394 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2396 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2399 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2400 if (!mpd
->io_submit
.io_end
->handle
&&
2401 ext4_handle_valid(handle
)) {
2402 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2403 handle
->h_rsv_handle
= NULL
;
2405 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2408 BUG_ON(map
->m_len
== 0);
2413 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2414 * mpd->len and submit pages underlying it for IO
2416 * @handle - handle for journal operations
2417 * @mpd - extent to map
2418 * @give_up_on_write - we set this to true iff there is a fatal error and there
2419 * is no hope of writing the data. The caller should discard
2420 * dirty pages to avoid infinite loops.
2422 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2423 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2424 * them to initialized or split the described range from larger unwritten
2425 * extent. Note that we need not map all the described range since allocation
2426 * can return less blocks or the range is covered by more unwritten extents. We
2427 * cannot map more because we are limited by reserved transaction credits. On
2428 * the other hand we always make sure that the last touched page is fully
2429 * mapped so that it can be written out (and thus forward progress is
2430 * guaranteed). After mapping we submit all mapped pages for IO.
2432 static int mpage_map_and_submit_extent(handle_t
*handle
,
2433 struct mpage_da_data
*mpd
,
2434 bool *give_up_on_write
)
2436 struct inode
*inode
= mpd
->inode
;
2437 struct ext4_map_blocks
*map
= &mpd
->map
;
2441 ext4_io_end_t
*io_end
= mpd
->io_submit
.io_end
;
2442 struct ext4_io_end_vec
*io_end_vec
;
2444 io_end_vec
= ext4_alloc_io_end_vec(io_end
);
2445 if (IS_ERR(io_end_vec
))
2446 return PTR_ERR(io_end_vec
);
2447 io_end_vec
->offset
= ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2449 err
= mpage_map_one_extent(handle
, mpd
);
2451 struct super_block
*sb
= inode
->i_sb
;
2453 if (ext4_forced_shutdown(EXT4_SB(sb
)) ||
2454 ext4_test_mount_flag(sb
, EXT4_MF_FS_ABORTED
))
2455 goto invalidate_dirty_pages
;
2457 * Let the uper layers retry transient errors.
2458 * In the case of ENOSPC, if ext4_count_free_blocks()
2459 * is non-zero, a commit should free up blocks.
2461 if ((err
== -ENOMEM
) ||
2462 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2464 goto update_disksize
;
2467 ext4_msg(sb
, KERN_CRIT
,
2468 "Delayed block allocation failed for "
2469 "inode %lu at logical offset %llu with"
2470 " max blocks %u with error %d",
2472 (unsigned long long)map
->m_lblk
,
2473 (unsigned)map
->m_len
, -err
);
2474 ext4_msg(sb
, KERN_CRIT
,
2475 "This should not happen!! Data will "
2478 ext4_print_free_blocks(inode
);
2479 invalidate_dirty_pages
:
2480 *give_up_on_write
= true;
2485 * Update buffer state, submit mapped pages, and get us new
2488 err
= mpage_map_and_submit_buffers(mpd
);
2490 goto update_disksize
;
2491 } while (map
->m_len
);
2495 * Update on-disk size after IO is submitted. Races with
2496 * truncate are avoided by checking i_size under i_data_sem.
2498 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_SHIFT
;
2499 if (disksize
> READ_ONCE(EXT4_I(inode
)->i_disksize
)) {
2503 down_write(&EXT4_I(inode
)->i_data_sem
);
2504 i_size
= i_size_read(inode
);
2505 if (disksize
> i_size
)
2507 if (disksize
> EXT4_I(inode
)->i_disksize
)
2508 EXT4_I(inode
)->i_disksize
= disksize
;
2509 up_write(&EXT4_I(inode
)->i_data_sem
);
2510 err2
= ext4_mark_inode_dirty(handle
, inode
);
2512 ext4_error_err(inode
->i_sb
, -err2
,
2513 "Failed to mark inode %lu dirty",
2523 * Calculate the total number of credits to reserve for one writepages
2524 * iteration. This is called from ext4_writepages(). We map an extent of
2525 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527 * bpp - 1 blocks in bpp different extents.
2529 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2531 int bpp
= ext4_journal_blocks_per_page(inode
);
2533 return ext4_meta_trans_blocks(inode
,
2534 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2538 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539 * and underlying extent to map
2541 * @mpd - where to look for pages
2543 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544 * IO immediately. When we find a page which isn't mapped we start accumulating
2545 * extent of buffers underlying these pages that needs mapping (formed by
2546 * either delayed or unwritten buffers). We also lock the pages containing
2547 * these buffers. The extent found is returned in @mpd structure (starting at
2548 * mpd->lblk with length mpd->len blocks).
2550 * Note that this function can attach bios to one io_end structure which are
2551 * neither logically nor physically contiguous. Although it may seem as an
2552 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553 * case as we need to track IO to all buffers underlying a page in one io_end.
2555 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2557 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2558 struct pagevec pvec
;
2559 unsigned int nr_pages
;
2560 long left
= mpd
->wbc
->nr_to_write
;
2561 pgoff_t index
= mpd
->first_page
;
2562 pgoff_t end
= mpd
->last_page
;
2565 int blkbits
= mpd
->inode
->i_blkbits
;
2567 struct buffer_head
*head
;
2569 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2570 tag
= PAGECACHE_TAG_TOWRITE
;
2572 tag
= PAGECACHE_TAG_DIRTY
;
2574 pagevec_init(&pvec
);
2576 mpd
->next_page
= index
;
2577 while (index
<= end
) {
2578 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
2583 for (i
= 0; i
< nr_pages
; i
++) {
2584 struct page
*page
= pvec
.pages
[i
];
2587 * Accumulated enough dirty pages? This doesn't apply
2588 * to WB_SYNC_ALL mode. For integrity sync we have to
2589 * keep going because someone may be concurrently
2590 * dirtying pages, and we might have synced a lot of
2591 * newly appeared dirty pages, but have not synced all
2592 * of the old dirty pages.
2594 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2597 /* If we can't merge this page, we are done. */
2598 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2603 * If the page is no longer dirty, or its mapping no
2604 * longer corresponds to inode we are writing (which
2605 * means it has been truncated or invalidated), or the
2606 * page is already under writeback and we are not doing
2607 * a data integrity writeback, skip the page
2609 if (!PageDirty(page
) ||
2610 (PageWriteback(page
) &&
2611 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2612 unlikely(page
->mapping
!= mapping
)) {
2617 wait_on_page_writeback(page
);
2618 BUG_ON(PageWriteback(page
));
2620 if (mpd
->map
.m_len
== 0)
2621 mpd
->first_page
= page
->index
;
2622 mpd
->next_page
= page
->index
+ 1;
2623 /* Add all dirty buffers to mpd */
2624 lblk
= ((ext4_lblk_t
)page
->index
) <<
2625 (PAGE_SHIFT
- blkbits
);
2626 head
= page_buffers(page
);
2627 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2633 pagevec_release(&pvec
);
2636 mpd
->scanned_until_end
= 1;
2639 pagevec_release(&pvec
);
2643 static int ext4_writepages(struct address_space
*mapping
,
2644 struct writeback_control
*wbc
)
2646 pgoff_t writeback_index
= 0;
2647 long nr_to_write
= wbc
->nr_to_write
;
2648 int range_whole
= 0;
2650 handle_t
*handle
= NULL
;
2651 struct mpage_da_data mpd
;
2652 struct inode
*inode
= mapping
->host
;
2653 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2654 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2655 struct blk_plug plug
;
2656 bool give_up_on_write
= false;
2658 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2661 percpu_down_read(&sbi
->s_writepages_rwsem
);
2662 trace_ext4_writepages(inode
, wbc
);
2665 * No pages to write? This is mainly a kludge to avoid starting
2666 * a transaction for special inodes like journal inode on last iput()
2667 * because that could violate lock ordering on umount
2669 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2670 goto out_writepages
;
2672 if (ext4_should_journal_data(inode
)) {
2673 ret
= generic_writepages(mapping
, wbc
);
2674 goto out_writepages
;
2678 * If the filesystem has aborted, it is read-only, so return
2679 * right away instead of dumping stack traces later on that
2680 * will obscure the real source of the problem. We test
2681 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2682 * the latter could be true if the filesystem is mounted
2683 * read-only, and in that case, ext4_writepages should
2684 * *never* be called, so if that ever happens, we would want
2687 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping
->host
->i_sb
)) ||
2688 ext4_test_mount_flag(inode
->i_sb
, EXT4_MF_FS_ABORTED
))) {
2690 goto out_writepages
;
2694 * If we have inline data and arrive here, it means that
2695 * we will soon create the block for the 1st page, so
2696 * we'd better clear the inline data here.
2698 if (ext4_has_inline_data(inode
)) {
2699 /* Just inode will be modified... */
2700 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2701 if (IS_ERR(handle
)) {
2702 ret
= PTR_ERR(handle
);
2703 goto out_writepages
;
2705 BUG_ON(ext4_test_inode_state(inode
,
2706 EXT4_STATE_MAY_INLINE_DATA
));
2707 ext4_destroy_inline_data(handle
, inode
);
2708 ext4_journal_stop(handle
);
2711 if (ext4_should_dioread_nolock(inode
)) {
2713 * We may need to convert up to one extent per block in
2714 * the page and we may dirty the inode.
2716 rsv_blocks
= 1 + ext4_chunk_trans_blocks(inode
,
2717 PAGE_SIZE
>> inode
->i_blkbits
);
2720 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2723 if (wbc
->range_cyclic
) {
2724 writeback_index
= mapping
->writeback_index
;
2725 if (writeback_index
)
2727 mpd
.first_page
= writeback_index
;
2730 mpd
.first_page
= wbc
->range_start
>> PAGE_SHIFT
;
2731 mpd
.last_page
= wbc
->range_end
>> PAGE_SHIFT
;
2736 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2738 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2739 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2740 blk_start_plug(&plug
);
2743 * First writeback pages that don't need mapping - we can avoid
2744 * starting a transaction unnecessarily and also avoid being blocked
2745 * in the block layer on device congestion while having transaction
2749 mpd
.scanned_until_end
= 0;
2750 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2751 if (!mpd
.io_submit
.io_end
) {
2755 ret
= mpage_prepare_extent_to_map(&mpd
);
2756 /* Unlock pages we didn't use */
2757 mpage_release_unused_pages(&mpd
, false);
2758 /* Submit prepared bio */
2759 ext4_io_submit(&mpd
.io_submit
);
2760 ext4_put_io_end_defer(mpd
.io_submit
.io_end
);
2761 mpd
.io_submit
.io_end
= NULL
;
2765 while (!mpd
.scanned_until_end
&& wbc
->nr_to_write
> 0) {
2766 /* For each extent of pages we use new io_end */
2767 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2768 if (!mpd
.io_submit
.io_end
) {
2774 * We have two constraints: We find one extent to map and we
2775 * must always write out whole page (makes a difference when
2776 * blocksize < pagesize) so that we don't block on IO when we
2777 * try to write out the rest of the page. Journalled mode is
2778 * not supported by delalloc.
2780 BUG_ON(ext4_should_journal_data(inode
));
2781 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2783 /* start a new transaction */
2784 handle
= ext4_journal_start_with_reserve(inode
,
2785 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2786 if (IS_ERR(handle
)) {
2787 ret
= PTR_ERR(handle
);
2788 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2789 "%ld pages, ino %lu; err %d", __func__
,
2790 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2791 /* Release allocated io_end */
2792 ext4_put_io_end(mpd
.io_submit
.io_end
);
2793 mpd
.io_submit
.io_end
= NULL
;
2798 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2799 ret
= mpage_prepare_extent_to_map(&mpd
);
2800 if (!ret
&& mpd
.map
.m_len
)
2801 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2804 * Caution: If the handle is synchronous,
2805 * ext4_journal_stop() can wait for transaction commit
2806 * to finish which may depend on writeback of pages to
2807 * complete or on page lock to be released. In that
2808 * case, we have to wait until after we have
2809 * submitted all the IO, released page locks we hold,
2810 * and dropped io_end reference (for extent conversion
2811 * to be able to complete) before stopping the handle.
2813 if (!ext4_handle_valid(handle
) || handle
->h_sync
== 0) {
2814 ext4_journal_stop(handle
);
2818 /* Unlock pages we didn't use */
2819 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2820 /* Submit prepared bio */
2821 ext4_io_submit(&mpd
.io_submit
);
2824 * Drop our io_end reference we got from init. We have
2825 * to be careful and use deferred io_end finishing if
2826 * we are still holding the transaction as we can
2827 * release the last reference to io_end which may end
2828 * up doing unwritten extent conversion.
2831 ext4_put_io_end_defer(mpd
.io_submit
.io_end
);
2832 ext4_journal_stop(handle
);
2834 ext4_put_io_end(mpd
.io_submit
.io_end
);
2835 mpd
.io_submit
.io_end
= NULL
;
2837 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2839 * Commit the transaction which would
2840 * free blocks released in the transaction
2843 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2847 /* Fatal error - ENOMEM, EIO... */
2852 blk_finish_plug(&plug
);
2853 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2855 mpd
.last_page
= writeback_index
- 1;
2861 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2863 * Set the writeback_index so that range_cyclic
2864 * mode will write it back later
2866 mapping
->writeback_index
= mpd
.first_page
;
2869 trace_ext4_writepages_result(inode
, wbc
, ret
,
2870 nr_to_write
- wbc
->nr_to_write
);
2871 percpu_up_read(&sbi
->s_writepages_rwsem
);
2875 static int ext4_dax_writepages(struct address_space
*mapping
,
2876 struct writeback_control
*wbc
)
2879 long nr_to_write
= wbc
->nr_to_write
;
2880 struct inode
*inode
= mapping
->host
;
2881 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2883 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2886 percpu_down_read(&sbi
->s_writepages_rwsem
);
2887 trace_ext4_writepages(inode
, wbc
);
2889 ret
= dax_writeback_mapping_range(mapping
, sbi
->s_daxdev
, wbc
);
2890 trace_ext4_writepages_result(inode
, wbc
, ret
,
2891 nr_to_write
- wbc
->nr_to_write
);
2892 percpu_up_read(&sbi
->s_writepages_rwsem
);
2896 static int ext4_nonda_switch(struct super_block
*sb
)
2898 s64 free_clusters
, dirty_clusters
;
2899 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2902 * switch to non delalloc mode if we are running low
2903 * on free block. The free block accounting via percpu
2904 * counters can get slightly wrong with percpu_counter_batch getting
2905 * accumulated on each CPU without updating global counters
2906 * Delalloc need an accurate free block accounting. So switch
2907 * to non delalloc when we are near to error range.
2910 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2912 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2914 * Start pushing delalloc when 1/2 of free blocks are dirty.
2916 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2917 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2919 if (2 * free_clusters
< 3 * dirty_clusters
||
2920 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2922 * free block count is less than 150% of dirty blocks
2923 * or free blocks is less than watermark
2930 /* We always reserve for an inode update; the superblock could be there too */
2931 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2933 if (likely(ext4_has_feature_large_file(inode
->i_sb
)))
2936 if (pos
+ len
<= 0x7fffffffULL
)
2939 /* We might need to update the superblock to set LARGE_FILE */
2943 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2944 loff_t pos
, unsigned len
, unsigned flags
,
2945 struct page
**pagep
, void **fsdata
)
2947 int ret
, retries
= 0;
2950 struct inode
*inode
= mapping
->host
;
2953 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2956 index
= pos
>> PAGE_SHIFT
;
2958 if (ext4_nonda_switch(inode
->i_sb
) || S_ISLNK(inode
->i_mode
) ||
2959 ext4_verity_in_progress(inode
)) {
2960 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2961 return ext4_write_begin(file
, mapping
, pos
,
2962 len
, flags
, pagep
, fsdata
);
2964 *fsdata
= (void *)0;
2965 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2967 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2968 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2978 * grab_cache_page_write_begin() can take a long time if the
2979 * system is thrashing due to memory pressure, or if the page
2980 * is being written back. So grab it first before we start
2981 * the transaction handle. This also allows us to allocate
2982 * the page (if needed) without using GFP_NOFS.
2985 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2991 * With delayed allocation, we don't log the i_disksize update
2992 * if there is delayed block allocation. But we still need
2993 * to journalling the i_disksize update if writes to the end
2994 * of file which has an already mapped buffer.
2997 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2998 ext4_da_write_credits(inode
, pos
, len
));
2999 if (IS_ERR(handle
)) {
3001 return PTR_ERR(handle
);
3005 if (page
->mapping
!= mapping
) {
3006 /* The page got truncated from under us */
3009 ext4_journal_stop(handle
);
3012 /* In case writeback began while the page was unlocked */
3013 wait_for_stable_page(page
);
3015 #ifdef CONFIG_FS_ENCRYPTION
3016 ret
= ext4_block_write_begin(page
, pos
, len
,
3017 ext4_da_get_block_prep
);
3019 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
3023 ext4_journal_stop(handle
);
3025 * block_write_begin may have instantiated a few blocks
3026 * outside i_size. Trim these off again. Don't need
3027 * i_size_read because we hold i_mutex.
3029 if (pos
+ len
> inode
->i_size
)
3030 ext4_truncate_failed_write(inode
);
3032 if (ret
== -ENOSPC
&&
3033 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3045 * Check if we should update i_disksize
3046 * when write to the end of file but not require block allocation
3048 static int ext4_da_should_update_i_disksize(struct page
*page
,
3049 unsigned long offset
)
3051 struct buffer_head
*bh
;
3052 struct inode
*inode
= page
->mapping
->host
;
3056 bh
= page_buffers(page
);
3057 idx
= offset
>> inode
->i_blkbits
;
3059 for (i
= 0; i
< idx
; i
++)
3060 bh
= bh
->b_this_page
;
3062 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3067 static int ext4_da_write_end(struct file
*file
,
3068 struct address_space
*mapping
,
3069 loff_t pos
, unsigned len
, unsigned copied
,
3070 struct page
*page
, void *fsdata
)
3072 struct inode
*inode
= mapping
->host
;
3074 handle_t
*handle
= ext4_journal_current_handle();
3076 unsigned long start
, end
;
3077 int write_mode
= (int)(unsigned long)fsdata
;
3079 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
3080 return ext4_write_end(file
, mapping
, pos
,
3081 len
, copied
, page
, fsdata
);
3083 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3084 start
= pos
& (PAGE_SIZE
- 1);
3085 end
= start
+ copied
- 1;
3088 * generic_write_end() will run mark_inode_dirty() if i_size
3089 * changes. So let's piggyback the i_disksize mark_inode_dirty
3092 new_i_size
= pos
+ copied
;
3093 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
3094 if (ext4_has_inline_data(inode
) ||
3095 ext4_da_should_update_i_disksize(page
, end
)) {
3096 ext4_update_i_disksize(inode
, new_i_size
);
3097 /* We need to mark inode dirty even if
3098 * new_i_size is less that inode->i_size
3099 * bu greater than i_disksize.(hint delalloc)
3101 ret
= ext4_mark_inode_dirty(handle
, inode
);
3105 if (write_mode
!= CONVERT_INLINE_DATA
&&
3106 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
3107 ext4_has_inline_data(inode
))
3108 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
3111 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3117 ret2
= ext4_journal_stop(handle
);
3118 if (unlikely(ret2
&& !ret
))
3121 return ret
? ret
: copied
;
3125 * Force all delayed allocation blocks to be allocated for a given inode.
3127 int ext4_alloc_da_blocks(struct inode
*inode
)
3129 trace_ext4_alloc_da_blocks(inode
);
3131 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
3135 * We do something simple for now. The filemap_flush() will
3136 * also start triggering a write of the data blocks, which is
3137 * not strictly speaking necessary (and for users of
3138 * laptop_mode, not even desirable). However, to do otherwise
3139 * would require replicating code paths in:
3141 * ext4_writepages() ->
3142 * write_cache_pages() ---> (via passed in callback function)
3143 * __mpage_da_writepage() -->
3144 * mpage_add_bh_to_extent()
3145 * mpage_da_map_blocks()
3147 * The problem is that write_cache_pages(), located in
3148 * mm/page-writeback.c, marks pages clean in preparation for
3149 * doing I/O, which is not desirable if we're not planning on
3152 * We could call write_cache_pages(), and then redirty all of
3153 * the pages by calling redirty_page_for_writepage() but that
3154 * would be ugly in the extreme. So instead we would need to
3155 * replicate parts of the code in the above functions,
3156 * simplifying them because we wouldn't actually intend to
3157 * write out the pages, but rather only collect contiguous
3158 * logical block extents, call the multi-block allocator, and
3159 * then update the buffer heads with the block allocations.
3161 * For now, though, we'll cheat by calling filemap_flush(),
3162 * which will map the blocks, and start the I/O, but not
3163 * actually wait for the I/O to complete.
3165 return filemap_flush(inode
->i_mapping
);
3169 * bmap() is special. It gets used by applications such as lilo and by
3170 * the swapper to find the on-disk block of a specific piece of data.
3172 * Naturally, this is dangerous if the block concerned is still in the
3173 * journal. If somebody makes a swapfile on an ext4 data-journaling
3174 * filesystem and enables swap, then they may get a nasty shock when the
3175 * data getting swapped to that swapfile suddenly gets overwritten by
3176 * the original zero's written out previously to the journal and
3177 * awaiting writeback in the kernel's buffer cache.
3179 * So, if we see any bmap calls here on a modified, data-journaled file,
3180 * take extra steps to flush any blocks which might be in the cache.
3182 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3184 struct inode
*inode
= mapping
->host
;
3189 * We can get here for an inline file via the FIBMAP ioctl
3191 if (ext4_has_inline_data(inode
))
3194 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3195 test_opt(inode
->i_sb
, DELALLOC
)) {
3197 * With delalloc we want to sync the file
3198 * so that we can make sure we allocate
3201 filemap_write_and_wait(mapping
);
3204 if (EXT4_JOURNAL(inode
) &&
3205 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3207 * This is a REALLY heavyweight approach, but the use of
3208 * bmap on dirty files is expected to be extremely rare:
3209 * only if we run lilo or swapon on a freshly made file
3210 * do we expect this to happen.
3212 * (bmap requires CAP_SYS_RAWIO so this does not
3213 * represent an unprivileged user DOS attack --- we'd be
3214 * in trouble if mortal users could trigger this path at
3217 * NB. EXT4_STATE_JDATA is not set on files other than
3218 * regular files. If somebody wants to bmap a directory
3219 * or symlink and gets confused because the buffer
3220 * hasn't yet been flushed to disk, they deserve
3221 * everything they get.
3224 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3225 journal
= EXT4_JOURNAL(inode
);
3226 jbd2_journal_lock_updates(journal
);
3227 err
= jbd2_journal_flush(journal
);
3228 jbd2_journal_unlock_updates(journal
);
3234 return iomap_bmap(mapping
, block
, &ext4_iomap_ops
);
3237 static int ext4_readpage(struct file
*file
, struct page
*page
)
3240 struct inode
*inode
= page
->mapping
->host
;
3242 trace_ext4_readpage(page
);
3244 if (ext4_has_inline_data(inode
))
3245 ret
= ext4_readpage_inline(inode
, page
);
3248 return ext4_mpage_readpages(inode
, NULL
, page
);
3253 static void ext4_readahead(struct readahead_control
*rac
)
3255 struct inode
*inode
= rac
->mapping
->host
;
3257 /* If the file has inline data, no need to do readahead. */
3258 if (ext4_has_inline_data(inode
))
3261 ext4_mpage_readpages(inode
, rac
, NULL
);
3264 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3265 unsigned int length
)
3267 trace_ext4_invalidatepage(page
, offset
, length
);
3269 /* No journalling happens on data buffers when this function is used */
3270 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3272 block_invalidatepage(page
, offset
, length
);
3275 static int __ext4_journalled_invalidatepage(struct page
*page
,
3276 unsigned int offset
,
3277 unsigned int length
)
3279 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3281 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3284 * If it's a full truncate we just forget about the pending dirtying
3286 if (offset
== 0 && length
== PAGE_SIZE
)
3287 ClearPageChecked(page
);
3289 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3292 /* Wrapper for aops... */
3293 static void ext4_journalled_invalidatepage(struct page
*page
,
3294 unsigned int offset
,
3295 unsigned int length
)
3297 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3300 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3302 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3304 trace_ext4_releasepage(page
);
3306 /* Page has dirty journalled data -> cannot release */
3307 if (PageChecked(page
))
3310 return jbd2_journal_try_to_free_buffers(journal
, page
);
3312 return try_to_free_buffers(page
);
3315 static bool ext4_inode_datasync_dirty(struct inode
*inode
)
3317 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
3320 if (jbd2_transaction_committed(journal
,
3321 EXT4_I(inode
)->i_datasync_tid
))
3323 if (test_opt2(inode
->i_sb
, JOURNAL_FAST_COMMIT
))
3324 return !list_empty(&EXT4_I(inode
)->i_fc_list
);
3328 /* Any metadata buffers to write? */
3329 if (!list_empty(&inode
->i_mapping
->private_list
))
3331 return inode
->i_state
& I_DIRTY_DATASYNC
;
3334 static void ext4_set_iomap(struct inode
*inode
, struct iomap
*iomap
,
3335 struct ext4_map_blocks
*map
, loff_t offset
,
3338 u8 blkbits
= inode
->i_blkbits
;
3341 * Writes that span EOF might trigger an I/O size update on completion,
3342 * so consider them to be dirty for the purpose of O_DSYNC, even if
3343 * there is no other metadata changes being made or are pending.
3346 if (ext4_inode_datasync_dirty(inode
) ||
3347 offset
+ length
> i_size_read(inode
))
3348 iomap
->flags
|= IOMAP_F_DIRTY
;
3350 if (map
->m_flags
& EXT4_MAP_NEW
)
3351 iomap
->flags
|= IOMAP_F_NEW
;
3353 iomap
->bdev
= inode
->i_sb
->s_bdev
;
3354 iomap
->dax_dev
= EXT4_SB(inode
->i_sb
)->s_daxdev
;
3355 iomap
->offset
= (u64
) map
->m_lblk
<< blkbits
;
3356 iomap
->length
= (u64
) map
->m_len
<< blkbits
;
3358 if ((map
->m_flags
& EXT4_MAP_MAPPED
) &&
3359 !ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3360 iomap
->flags
|= IOMAP_F_MERGED
;
3363 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3364 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3365 * set. In order for any allocated unwritten extents to be converted
3366 * into written extents correctly within the ->end_io() handler, we
3367 * need to ensure that the iomap->type is set appropriately. Hence, the
3368 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3371 if (map
->m_flags
& EXT4_MAP_UNWRITTEN
) {
3372 iomap
->type
= IOMAP_UNWRITTEN
;
3373 iomap
->addr
= (u64
) map
->m_pblk
<< blkbits
;
3374 } else if (map
->m_flags
& EXT4_MAP_MAPPED
) {
3375 iomap
->type
= IOMAP_MAPPED
;
3376 iomap
->addr
= (u64
) map
->m_pblk
<< blkbits
;
3378 iomap
->type
= IOMAP_HOLE
;
3379 iomap
->addr
= IOMAP_NULL_ADDR
;
3383 static int ext4_iomap_alloc(struct inode
*inode
, struct ext4_map_blocks
*map
,
3387 u8 blkbits
= inode
->i_blkbits
;
3388 int ret
, dio_credits
, m_flags
= 0, retries
= 0;
3391 * Trim the mapping request to the maximum value that we can map at
3392 * once for direct I/O.
3394 if (map
->m_len
> DIO_MAX_BLOCKS
)
3395 map
->m_len
= DIO_MAX_BLOCKS
;
3396 dio_credits
= ext4_chunk_trans_blocks(inode
, map
->m_len
);
3400 * Either we allocate blocks and then don't get an unwritten extent, so
3401 * in that case we have reserved enough credits. Or, the blocks are
3402 * already allocated and unwritten. In that case, the extent conversion
3403 * fits into the credits as well.
3405 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, dio_credits
);
3407 return PTR_ERR(handle
);
3410 * DAX and direct I/O are the only two operations that are currently
3411 * supported with IOMAP_WRITE.
3413 WARN_ON(!IS_DAX(inode
) && !(flags
& IOMAP_DIRECT
));
3415 m_flags
= EXT4_GET_BLOCKS_CREATE_ZERO
;
3417 * We use i_size instead of i_disksize here because delalloc writeback
3418 * can complete at any point during the I/O and subsequently push the
3419 * i_disksize out to i_size. This could be beyond where direct I/O is
3420 * happening and thus expose allocated blocks to direct I/O reads.
3422 else if ((map
->m_lblk
* (1 << blkbits
)) >= i_size_read(inode
))
3423 m_flags
= EXT4_GET_BLOCKS_CREATE
;
3424 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3425 m_flags
= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
3427 ret
= ext4_map_blocks(handle
, inode
, map
, m_flags
);
3430 * We cannot fill holes in indirect tree based inodes as that could
3431 * expose stale data in the case of a crash. Use the magic error code
3432 * to fallback to buffered I/O.
3434 if (!m_flags
&& !ret
)
3437 ext4_journal_stop(handle
);
3438 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3445 static int ext4_iomap_begin(struct inode
*inode
, loff_t offset
, loff_t length
,
3446 unsigned flags
, struct iomap
*iomap
, struct iomap
*srcmap
)
3449 struct ext4_map_blocks map
;
3450 u8 blkbits
= inode
->i_blkbits
;
3452 if ((offset
>> blkbits
) > EXT4_MAX_LOGICAL_BLOCK
)
3455 if (WARN_ON_ONCE(ext4_has_inline_data(inode
)))
3459 * Calculate the first and last logical blocks respectively.
3461 map
.m_lblk
= offset
>> blkbits
;
3462 map
.m_len
= min_t(loff_t
, (offset
+ length
- 1) >> blkbits
,
3463 EXT4_MAX_LOGICAL_BLOCK
) - map
.m_lblk
+ 1;
3465 if (flags
& IOMAP_WRITE
) {
3467 * We check here if the blocks are already allocated, then we
3468 * don't need to start a journal txn and we can directly return
3469 * the mapping information. This could boost performance
3470 * especially in multi-threaded overwrite requests.
3472 if (offset
+ length
<= i_size_read(inode
)) {
3473 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
3474 if (ret
> 0 && (map
.m_flags
& EXT4_MAP_MAPPED
))
3477 ret
= ext4_iomap_alloc(inode
, &map
, flags
);
3479 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
3485 ext4_set_iomap(inode
, iomap
, &map
, offset
, length
);
3490 static int ext4_iomap_overwrite_begin(struct inode
*inode
, loff_t offset
,
3491 loff_t length
, unsigned flags
, struct iomap
*iomap
,
3492 struct iomap
*srcmap
)
3497 * Even for writes we don't need to allocate blocks, so just pretend
3498 * we are reading to save overhead of starting a transaction.
3500 flags
&= ~IOMAP_WRITE
;
3501 ret
= ext4_iomap_begin(inode
, offset
, length
, flags
, iomap
, srcmap
);
3502 WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
);
3506 static int ext4_iomap_end(struct inode
*inode
, loff_t offset
, loff_t length
,
3507 ssize_t written
, unsigned flags
, struct iomap
*iomap
)
3510 * Check to see whether an error occurred while writing out the data to
3511 * the allocated blocks. If so, return the magic error code so that we
3512 * fallback to buffered I/O and attempt to complete the remainder of
3513 * the I/O. Any blocks that may have been allocated in preparation for
3514 * the direct I/O will be reused during buffered I/O.
3516 if (flags
& (IOMAP_WRITE
| IOMAP_DIRECT
) && written
== 0)
3522 const struct iomap_ops ext4_iomap_ops
= {
3523 .iomap_begin
= ext4_iomap_begin
,
3524 .iomap_end
= ext4_iomap_end
,
3527 const struct iomap_ops ext4_iomap_overwrite_ops
= {
3528 .iomap_begin
= ext4_iomap_overwrite_begin
,
3529 .iomap_end
= ext4_iomap_end
,
3532 static bool ext4_iomap_is_delalloc(struct inode
*inode
,
3533 struct ext4_map_blocks
*map
)
3535 struct extent_status es
;
3536 ext4_lblk_t offset
= 0, end
= map
->m_lblk
+ map
->m_len
- 1;
3538 ext4_es_find_extent_range(inode
, &ext4_es_is_delayed
,
3539 map
->m_lblk
, end
, &es
);
3541 if (!es
.es_len
|| es
.es_lblk
> end
)
3544 if (es
.es_lblk
> map
->m_lblk
) {
3545 map
->m_len
= es
.es_lblk
- map
->m_lblk
;
3549 offset
= map
->m_lblk
- es
.es_lblk
;
3550 map
->m_len
= es
.es_len
- offset
;
3555 static int ext4_iomap_begin_report(struct inode
*inode
, loff_t offset
,
3556 loff_t length
, unsigned int flags
,
3557 struct iomap
*iomap
, struct iomap
*srcmap
)
3560 bool delalloc
= false;
3561 struct ext4_map_blocks map
;
3562 u8 blkbits
= inode
->i_blkbits
;
3564 if ((offset
>> blkbits
) > EXT4_MAX_LOGICAL_BLOCK
)
3567 if (ext4_has_inline_data(inode
)) {
3568 ret
= ext4_inline_data_iomap(inode
, iomap
);
3569 if (ret
!= -EAGAIN
) {
3570 if (ret
== 0 && offset
>= iomap
->length
)
3577 * Calculate the first and last logical block respectively.
3579 map
.m_lblk
= offset
>> blkbits
;
3580 map
.m_len
= min_t(loff_t
, (offset
+ length
- 1) >> blkbits
,
3581 EXT4_MAX_LOGICAL_BLOCK
) - map
.m_lblk
+ 1;
3584 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3585 * So handle it here itself instead of querying ext4_map_blocks().
3586 * Since ext4_map_blocks() will warn about it and will return
3589 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
3590 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3592 if (offset
>= sbi
->s_bitmap_maxbytes
) {
3598 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
3602 delalloc
= ext4_iomap_is_delalloc(inode
, &map
);
3605 ext4_set_iomap(inode
, iomap
, &map
, offset
, length
);
3606 if (delalloc
&& iomap
->type
== IOMAP_HOLE
)
3607 iomap
->type
= IOMAP_DELALLOC
;
3612 const struct iomap_ops ext4_iomap_report_ops
= {
3613 .iomap_begin
= ext4_iomap_begin_report
,
3617 * Pages can be marked dirty completely asynchronously from ext4's journalling
3618 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3619 * much here because ->set_page_dirty is called under VFS locks. The page is
3620 * not necessarily locked.
3622 * We cannot just dirty the page and leave attached buffers clean, because the
3623 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3624 * or jbddirty because all the journalling code will explode.
3626 * So what we do is to mark the page "pending dirty" and next time writepage
3627 * is called, propagate that into the buffers appropriately.
3629 static int ext4_journalled_set_page_dirty(struct page
*page
)
3631 SetPageChecked(page
);
3632 return __set_page_dirty_nobuffers(page
);
3635 static int ext4_set_page_dirty(struct page
*page
)
3637 WARN_ON_ONCE(!PageLocked(page
) && !PageDirty(page
));
3638 WARN_ON_ONCE(!page_has_buffers(page
));
3639 return __set_page_dirty_buffers(page
);
3642 static int ext4_iomap_swap_activate(struct swap_info_struct
*sis
,
3643 struct file
*file
, sector_t
*span
)
3645 return iomap_swapfile_activate(sis
, file
, span
,
3646 &ext4_iomap_report_ops
);
3649 static const struct address_space_operations ext4_aops
= {
3650 .readpage
= ext4_readpage
,
3651 .readahead
= ext4_readahead
,
3652 .writepage
= ext4_writepage
,
3653 .writepages
= ext4_writepages
,
3654 .write_begin
= ext4_write_begin
,
3655 .write_end
= ext4_write_end
,
3656 .set_page_dirty
= ext4_set_page_dirty
,
3658 .invalidatepage
= ext4_invalidatepage
,
3659 .releasepage
= ext4_releasepage
,
3660 .direct_IO
= noop_direct_IO
,
3661 .migratepage
= buffer_migrate_page
,
3662 .is_partially_uptodate
= block_is_partially_uptodate
,
3663 .error_remove_page
= generic_error_remove_page
,
3664 .swap_activate
= ext4_iomap_swap_activate
,
3667 static const struct address_space_operations ext4_journalled_aops
= {
3668 .readpage
= ext4_readpage
,
3669 .readahead
= ext4_readahead
,
3670 .writepage
= ext4_writepage
,
3671 .writepages
= ext4_writepages
,
3672 .write_begin
= ext4_write_begin
,
3673 .write_end
= ext4_journalled_write_end
,
3674 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3676 .invalidatepage
= ext4_journalled_invalidatepage
,
3677 .releasepage
= ext4_releasepage
,
3678 .direct_IO
= noop_direct_IO
,
3679 .is_partially_uptodate
= block_is_partially_uptodate
,
3680 .error_remove_page
= generic_error_remove_page
,
3681 .swap_activate
= ext4_iomap_swap_activate
,
3684 static const struct address_space_operations ext4_da_aops
= {
3685 .readpage
= ext4_readpage
,
3686 .readahead
= ext4_readahead
,
3687 .writepage
= ext4_writepage
,
3688 .writepages
= ext4_writepages
,
3689 .write_begin
= ext4_da_write_begin
,
3690 .write_end
= ext4_da_write_end
,
3691 .set_page_dirty
= ext4_set_page_dirty
,
3693 .invalidatepage
= ext4_invalidatepage
,
3694 .releasepage
= ext4_releasepage
,
3695 .direct_IO
= noop_direct_IO
,
3696 .migratepage
= buffer_migrate_page
,
3697 .is_partially_uptodate
= block_is_partially_uptodate
,
3698 .error_remove_page
= generic_error_remove_page
,
3699 .swap_activate
= ext4_iomap_swap_activate
,
3702 static const struct address_space_operations ext4_dax_aops
= {
3703 .writepages
= ext4_dax_writepages
,
3704 .direct_IO
= noop_direct_IO
,
3705 .set_page_dirty
= noop_set_page_dirty
,
3707 .invalidatepage
= noop_invalidatepage
,
3708 .swap_activate
= ext4_iomap_swap_activate
,
3711 void ext4_set_aops(struct inode
*inode
)
3713 switch (ext4_inode_journal_mode(inode
)) {
3714 case EXT4_INODE_ORDERED_DATA_MODE
:
3715 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3717 case EXT4_INODE_JOURNAL_DATA_MODE
:
3718 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3724 inode
->i_mapping
->a_ops
= &ext4_dax_aops
;
3725 else if (test_opt(inode
->i_sb
, DELALLOC
))
3726 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3728 inode
->i_mapping
->a_ops
= &ext4_aops
;
3731 static int __ext4_block_zero_page_range(handle_t
*handle
,
3732 struct address_space
*mapping
, loff_t from
, loff_t length
)
3734 ext4_fsblk_t index
= from
>> PAGE_SHIFT
;
3735 unsigned offset
= from
& (PAGE_SIZE
-1);
3736 unsigned blocksize
, pos
;
3738 struct inode
*inode
= mapping
->host
;
3739 struct buffer_head
*bh
;
3743 page
= find_or_create_page(mapping
, from
>> PAGE_SHIFT
,
3744 mapping_gfp_constraint(mapping
, ~__GFP_FS
));
3748 blocksize
= inode
->i_sb
->s_blocksize
;
3750 iblock
= index
<< (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3752 if (!page_has_buffers(page
))
3753 create_empty_buffers(page
, blocksize
, 0);
3755 /* Find the buffer that contains "offset" */
3756 bh
= page_buffers(page
);
3758 while (offset
>= pos
) {
3759 bh
= bh
->b_this_page
;
3763 if (buffer_freed(bh
)) {
3764 BUFFER_TRACE(bh
, "freed: skip");
3767 if (!buffer_mapped(bh
)) {
3768 BUFFER_TRACE(bh
, "unmapped");
3769 ext4_get_block(inode
, iblock
, bh
, 0);
3770 /* unmapped? It's a hole - nothing to do */
3771 if (!buffer_mapped(bh
)) {
3772 BUFFER_TRACE(bh
, "still unmapped");
3777 /* Ok, it's mapped. Make sure it's up-to-date */
3778 if (PageUptodate(page
))
3779 set_buffer_uptodate(bh
);
3781 if (!buffer_uptodate(bh
)) {
3782 err
= ext4_read_bh_lock(bh
, 0, true);
3785 if (fscrypt_inode_uses_fs_layer_crypto(inode
)) {
3786 /* We expect the key to be set. */
3787 BUG_ON(!fscrypt_has_encryption_key(inode
));
3788 err
= fscrypt_decrypt_pagecache_blocks(page
, blocksize
,
3791 clear_buffer_uptodate(bh
);
3796 if (ext4_should_journal_data(inode
)) {
3797 BUFFER_TRACE(bh
, "get write access");
3798 err
= ext4_journal_get_write_access(handle
, bh
);
3802 zero_user(page
, offset
, length
);
3803 BUFFER_TRACE(bh
, "zeroed end of block");
3805 if (ext4_should_journal_data(inode
)) {
3806 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3809 mark_buffer_dirty(bh
);
3810 if (ext4_should_order_data(inode
))
3811 err
= ext4_jbd2_inode_add_write(handle
, inode
, from
,
3822 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3823 * starting from file offset 'from'. The range to be zero'd must
3824 * be contained with in one block. If the specified range exceeds
3825 * the end of the block it will be shortened to end of the block
3826 * that cooresponds to 'from'
3828 static int ext4_block_zero_page_range(handle_t
*handle
,
3829 struct address_space
*mapping
, loff_t from
, loff_t length
)
3831 struct inode
*inode
= mapping
->host
;
3832 unsigned offset
= from
& (PAGE_SIZE
-1);
3833 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3834 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3837 * correct length if it does not fall between
3838 * 'from' and the end of the block
3840 if (length
> max
|| length
< 0)
3843 if (IS_DAX(inode
)) {
3844 return iomap_zero_range(inode
, from
, length
, NULL
,
3847 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3851 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3852 * up to the end of the block which corresponds to `from'.
3853 * This required during truncate. We need to physically zero the tail end
3854 * of that block so it doesn't yield old data if the file is later grown.
3856 static int ext4_block_truncate_page(handle_t
*handle
,
3857 struct address_space
*mapping
, loff_t from
)
3859 unsigned offset
= from
& (PAGE_SIZE
-1);
3862 struct inode
*inode
= mapping
->host
;
3864 /* If we are processing an encrypted inode during orphan list handling */
3865 if (IS_ENCRYPTED(inode
) && !fscrypt_has_encryption_key(inode
))
3868 blocksize
= inode
->i_sb
->s_blocksize
;
3869 length
= blocksize
- (offset
& (blocksize
- 1));
3871 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3874 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3875 loff_t lstart
, loff_t length
)
3877 struct super_block
*sb
= inode
->i_sb
;
3878 struct address_space
*mapping
= inode
->i_mapping
;
3879 unsigned partial_start
, partial_end
;
3880 ext4_fsblk_t start
, end
;
3881 loff_t byte_end
= (lstart
+ length
- 1);
3884 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3885 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3887 start
= lstart
>> sb
->s_blocksize_bits
;
3888 end
= byte_end
>> sb
->s_blocksize_bits
;
3890 /* Handle partial zero within the single block */
3892 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3893 err
= ext4_block_zero_page_range(handle
, mapping
,
3897 /* Handle partial zero out on the start of the range */
3898 if (partial_start
) {
3899 err
= ext4_block_zero_page_range(handle
, mapping
,
3900 lstart
, sb
->s_blocksize
);
3904 /* Handle partial zero out on the end of the range */
3905 if (partial_end
!= sb
->s_blocksize
- 1)
3906 err
= ext4_block_zero_page_range(handle
, mapping
,
3907 byte_end
- partial_end
,
3912 int ext4_can_truncate(struct inode
*inode
)
3914 if (S_ISREG(inode
->i_mode
))
3916 if (S_ISDIR(inode
->i_mode
))
3918 if (S_ISLNK(inode
->i_mode
))
3919 return !ext4_inode_is_fast_symlink(inode
);
3924 * We have to make sure i_disksize gets properly updated before we truncate
3925 * page cache due to hole punching or zero range. Otherwise i_disksize update
3926 * can get lost as it may have been postponed to submission of writeback but
3927 * that will never happen after we truncate page cache.
3929 int ext4_update_disksize_before_punch(struct inode
*inode
, loff_t offset
,
3935 loff_t size
= i_size_read(inode
);
3937 WARN_ON(!inode_is_locked(inode
));
3938 if (offset
> size
|| offset
+ len
< size
)
3941 if (EXT4_I(inode
)->i_disksize
>= size
)
3944 handle
= ext4_journal_start(inode
, EXT4_HT_MISC
, 1);
3946 return PTR_ERR(handle
);
3947 ext4_update_i_disksize(inode
, size
);
3948 ret
= ext4_mark_inode_dirty(handle
, inode
);
3949 ext4_journal_stop(handle
);
3954 static void ext4_wait_dax_page(struct ext4_inode_info
*ei
)
3956 up_write(&ei
->i_mmap_sem
);
3958 down_write(&ei
->i_mmap_sem
);
3961 int ext4_break_layouts(struct inode
*inode
)
3963 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3967 if (WARN_ON_ONCE(!rwsem_is_locked(&ei
->i_mmap_sem
)))
3971 page
= dax_layout_busy_page(inode
->i_mapping
);
3975 error
= ___wait_var_event(&page
->_refcount
,
3976 atomic_read(&page
->_refcount
) == 1,
3977 TASK_INTERRUPTIBLE
, 0, 0,
3978 ext4_wait_dax_page(ei
));
3979 } while (error
== 0);
3985 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3986 * associated with the given offset and length
3988 * @inode: File inode
3989 * @offset: The offset where the hole will begin
3990 * @len: The length of the hole
3992 * Returns: 0 on success or negative on failure
3995 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3997 struct super_block
*sb
= inode
->i_sb
;
3998 ext4_lblk_t first_block
, stop_block
;
3999 struct address_space
*mapping
= inode
->i_mapping
;
4000 loff_t first_block_offset
, last_block_offset
;
4002 unsigned int credits
;
4003 int ret
= 0, ret2
= 0;
4005 trace_ext4_punch_hole(inode
, offset
, length
, 0);
4007 ext4_clear_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
);
4008 if (ext4_has_inline_data(inode
)) {
4009 down_write(&EXT4_I(inode
)->i_mmap_sem
);
4010 ret
= ext4_convert_inline_data(inode
);
4011 up_write(&EXT4_I(inode
)->i_mmap_sem
);
4017 * Write out all dirty pages to avoid race conditions
4018 * Then release them.
4020 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4021 ret
= filemap_write_and_wait_range(mapping
, offset
,
4022 offset
+ length
- 1);
4029 /* No need to punch hole beyond i_size */
4030 if (offset
>= inode
->i_size
)
4034 * If the hole extends beyond i_size, set the hole
4035 * to end after the page that contains i_size
4037 if (offset
+ length
> inode
->i_size
) {
4038 length
= inode
->i_size
+
4039 PAGE_SIZE
- (inode
->i_size
& (PAGE_SIZE
- 1)) -
4043 if (offset
& (sb
->s_blocksize
- 1) ||
4044 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
4046 * Attach jinode to inode for jbd2 if we do any zeroing of
4049 ret
= ext4_inode_attach_jinode(inode
);
4055 /* Wait all existing dio workers, newcomers will block on i_mutex */
4056 inode_dio_wait(inode
);
4059 * Prevent page faults from reinstantiating pages we have released from
4062 down_write(&EXT4_I(inode
)->i_mmap_sem
);
4064 ret
= ext4_break_layouts(inode
);
4068 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
4069 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
4071 /* Now release the pages and zero block aligned part of pages*/
4072 if (last_block_offset
> first_block_offset
) {
4073 ret
= ext4_update_disksize_before_punch(inode
, offset
, length
);
4076 truncate_pagecache_range(inode
, first_block_offset
,
4080 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4081 credits
= ext4_writepage_trans_blocks(inode
);
4083 credits
= ext4_blocks_for_truncate(inode
);
4084 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4085 if (IS_ERR(handle
)) {
4086 ret
= PTR_ERR(handle
);
4087 ext4_std_error(sb
, ret
);
4091 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
4096 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4097 EXT4_BLOCK_SIZE_BITS(sb
);
4098 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4100 /* If there are blocks to remove, do it */
4101 if (stop_block
> first_block
) {
4103 down_write(&EXT4_I(inode
)->i_data_sem
);
4104 ext4_discard_preallocations(inode
, 0);
4106 ret
= ext4_es_remove_extent(inode
, first_block
,
4107 stop_block
- first_block
);
4109 up_write(&EXT4_I(inode
)->i_data_sem
);
4113 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4114 ret
= ext4_ext_remove_space(inode
, first_block
,
4117 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
4120 up_write(&EXT4_I(inode
)->i_data_sem
);
4122 ext4_fc_track_range(handle
, inode
, first_block
, stop_block
);
4124 ext4_handle_sync(handle
);
4126 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
4127 ret2
= ext4_mark_inode_dirty(handle
, inode
);
4131 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4133 ext4_journal_stop(handle
);
4135 up_write(&EXT4_I(inode
)->i_mmap_sem
);
4137 inode_unlock(inode
);
4141 int ext4_inode_attach_jinode(struct inode
*inode
)
4143 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4144 struct jbd2_inode
*jinode
;
4146 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
4149 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
4150 spin_lock(&inode
->i_lock
);
4153 spin_unlock(&inode
->i_lock
);
4156 ei
->jinode
= jinode
;
4157 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
4160 spin_unlock(&inode
->i_lock
);
4161 if (unlikely(jinode
!= NULL
))
4162 jbd2_free_inode(jinode
);
4169 * We block out ext4_get_block() block instantiations across the entire
4170 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4171 * simultaneously on behalf of the same inode.
4173 * As we work through the truncate and commit bits of it to the journal there
4174 * is one core, guiding principle: the file's tree must always be consistent on
4175 * disk. We must be able to restart the truncate after a crash.
4177 * The file's tree may be transiently inconsistent in memory (although it
4178 * probably isn't), but whenever we close off and commit a journal transaction,
4179 * the contents of (the filesystem + the journal) must be consistent and
4180 * restartable. It's pretty simple, really: bottom up, right to left (although
4181 * left-to-right works OK too).
4183 * Note that at recovery time, journal replay occurs *before* the restart of
4184 * truncate against the orphan inode list.
4186 * The committed inode has the new, desired i_size (which is the same as
4187 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4188 * that this inode's truncate did not complete and it will again call
4189 * ext4_truncate() to have another go. So there will be instantiated blocks
4190 * to the right of the truncation point in a crashed ext4 filesystem. But
4191 * that's fine - as long as they are linked from the inode, the post-crash
4192 * ext4_truncate() run will find them and release them.
4194 int ext4_truncate(struct inode
*inode
)
4196 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4197 unsigned int credits
;
4200 struct address_space
*mapping
= inode
->i_mapping
;
4203 * There is a possibility that we're either freeing the inode
4204 * or it's a completely new inode. In those cases we might not
4205 * have i_mutex locked because it's not necessary.
4207 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
4208 WARN_ON(!inode_is_locked(inode
));
4209 trace_ext4_truncate_enter(inode
);
4211 if (!ext4_can_truncate(inode
))
4214 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4215 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4217 if (ext4_has_inline_data(inode
)) {
4220 err
= ext4_inline_data_truncate(inode
, &has_inline
);
4221 if (err
|| has_inline
)
4225 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4226 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
4227 if (ext4_inode_attach_jinode(inode
) < 0)
4231 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4232 credits
= ext4_writepage_trans_blocks(inode
);
4234 credits
= ext4_blocks_for_truncate(inode
);
4236 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4237 if (IS_ERR(handle
)) {
4238 err
= PTR_ERR(handle
);
4242 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
4243 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
4246 * We add the inode to the orphan list, so that if this
4247 * truncate spans multiple transactions, and we crash, we will
4248 * resume the truncate when the filesystem recovers. It also
4249 * marks the inode dirty, to catch the new size.
4251 * Implication: the file must always be in a sane, consistent
4252 * truncatable state while each transaction commits.
4254 err
= ext4_orphan_add(handle
, inode
);
4258 down_write(&EXT4_I(inode
)->i_data_sem
);
4260 ext4_discard_preallocations(inode
, 0);
4262 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4263 err
= ext4_ext_truncate(handle
, inode
);
4265 ext4_ind_truncate(handle
, inode
);
4267 up_write(&ei
->i_data_sem
);
4272 ext4_handle_sync(handle
);
4276 * If this was a simple ftruncate() and the file will remain alive,
4277 * then we need to clear up the orphan record which we created above.
4278 * However, if this was a real unlink then we were called by
4279 * ext4_evict_inode(), and we allow that function to clean up the
4280 * orphan info for us.
4283 ext4_orphan_del(handle
, inode
);
4285 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
4286 err2
= ext4_mark_inode_dirty(handle
, inode
);
4287 if (unlikely(err2
&& !err
))
4289 ext4_journal_stop(handle
);
4292 trace_ext4_truncate_exit(inode
);
4297 * ext4_get_inode_loc returns with an extra refcount against the inode's
4298 * underlying buffer_head on success. If 'in_mem' is true, we have all
4299 * data in memory that is needed to recreate the on-disk version of this
4302 static int __ext4_get_inode_loc(struct super_block
*sb
, unsigned long ino
,
4303 struct ext4_iloc
*iloc
, int in_mem
,
4304 ext4_fsblk_t
*ret_block
)
4306 struct ext4_group_desc
*gdp
;
4307 struct buffer_head
*bh
;
4309 struct blk_plug plug
;
4310 int inodes_per_block
, inode_offset
;
4313 if (ino
< EXT4_ROOT_INO
||
4314 ino
> le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
))
4315 return -EFSCORRUPTED
;
4317 iloc
->block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4318 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4323 * Figure out the offset within the block group inode table
4325 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4326 inode_offset
= ((ino
- 1) %
4327 EXT4_INODES_PER_GROUP(sb
));
4328 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4329 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4331 bh
= sb_getblk(sb
, block
);
4334 if (ext4_simulate_fail(sb
, EXT4_SIM_INODE_EIO
))
4336 if (!buffer_uptodate(bh
)) {
4339 if (ext4_buffer_uptodate(bh
)) {
4340 /* someone brought it uptodate while we waited */
4346 * If we have all information of the inode in memory and this
4347 * is the only valid inode in the block, we need not read the
4351 struct buffer_head
*bitmap_bh
;
4354 start
= inode_offset
& ~(inodes_per_block
- 1);
4356 /* Is the inode bitmap in cache? */
4357 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4358 if (unlikely(!bitmap_bh
))
4362 * If the inode bitmap isn't in cache then the
4363 * optimisation may end up performing two reads instead
4364 * of one, so skip it.
4366 if (!buffer_uptodate(bitmap_bh
)) {
4370 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4371 if (i
== inode_offset
)
4373 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4377 if (i
== start
+ inodes_per_block
) {
4378 /* all other inodes are free, so skip I/O */
4379 memset(bh
->b_data
, 0, bh
->b_size
);
4380 set_buffer_uptodate(bh
);
4388 * If we need to do any I/O, try to pre-readahead extra
4389 * blocks from the inode table.
4391 blk_start_plug(&plug
);
4392 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4393 ext4_fsblk_t b
, end
, table
;
4395 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4397 table
= ext4_inode_table(sb
, gdp
);
4398 /* s_inode_readahead_blks is always a power of 2 */
4399 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4403 num
= EXT4_INODES_PER_GROUP(sb
);
4404 if (ext4_has_group_desc_csum(sb
))
4405 num
-= ext4_itable_unused_count(sb
, gdp
);
4406 table
+= num
/ inodes_per_block
;
4410 ext4_sb_breadahead_unmovable(sb
, b
++);
4414 * There are other valid inodes in the buffer, this inode
4415 * has in-inode xattrs, or we don't have this inode in memory.
4416 * Read the block from disk.
4418 trace_ext4_load_inode(sb
, ino
);
4419 ext4_read_bh_nowait(bh
, REQ_META
| REQ_PRIO
, NULL
);
4420 blk_finish_plug(&plug
);
4422 if (!buffer_uptodate(bh
)) {
4435 static int __ext4_get_inode_loc_noinmem(struct inode
*inode
,
4436 struct ext4_iloc
*iloc
)
4438 ext4_fsblk_t err_blk
;
4441 ret
= __ext4_get_inode_loc(inode
->i_sb
, inode
->i_ino
, iloc
, 0,
4445 ext4_error_inode_block(inode
, err_blk
, EIO
,
4446 "unable to read itable block");
4451 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4453 ext4_fsblk_t err_blk
;
4456 /* We have all inode data except xattrs in memory here. */
4457 ret
= __ext4_get_inode_loc(inode
->i_sb
, inode
->i_ino
, iloc
,
4458 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
), &err_blk
);
4461 ext4_error_inode_block(inode
, err_blk
, EIO
,
4462 "unable to read itable block");
4468 int ext4_get_fc_inode_loc(struct super_block
*sb
, unsigned long ino
,
4469 struct ext4_iloc
*iloc
)
4471 return __ext4_get_inode_loc(sb
, ino
, iloc
, 0, NULL
);
4474 static bool ext4_should_enable_dax(struct inode
*inode
)
4476 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4478 if (test_opt2(inode
->i_sb
, DAX_NEVER
))
4480 if (!S_ISREG(inode
->i_mode
))
4482 if (ext4_should_journal_data(inode
))
4484 if (ext4_has_inline_data(inode
))
4486 if (ext4_test_inode_flag(inode
, EXT4_INODE_ENCRYPT
))
4488 if (ext4_test_inode_flag(inode
, EXT4_INODE_VERITY
))
4490 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX
, &sbi
->s_ext4_flags
))
4492 if (test_opt(inode
->i_sb
, DAX_ALWAYS
))
4495 return ext4_test_inode_flag(inode
, EXT4_INODE_DAX
);
4498 void ext4_set_inode_flags(struct inode
*inode
, bool init
)
4500 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4501 unsigned int new_fl
= 0;
4503 WARN_ON_ONCE(IS_DAX(inode
) && init
);
4505 if (flags
& EXT4_SYNC_FL
)
4507 if (flags
& EXT4_APPEND_FL
)
4509 if (flags
& EXT4_IMMUTABLE_FL
)
4510 new_fl
|= S_IMMUTABLE
;
4511 if (flags
& EXT4_NOATIME_FL
)
4512 new_fl
|= S_NOATIME
;
4513 if (flags
& EXT4_DIRSYNC_FL
)
4514 new_fl
|= S_DIRSYNC
;
4516 /* Because of the way inode_set_flags() works we must preserve S_DAX
4517 * here if already set. */
4518 new_fl
|= (inode
->i_flags
& S_DAX
);
4519 if (init
&& ext4_should_enable_dax(inode
))
4522 if (flags
& EXT4_ENCRYPT_FL
)
4523 new_fl
|= S_ENCRYPTED
;
4524 if (flags
& EXT4_CASEFOLD_FL
)
4525 new_fl
|= S_CASEFOLD
;
4526 if (flags
& EXT4_VERITY_FL
)
4528 inode_set_flags(inode
, new_fl
,
4529 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
|
4530 S_ENCRYPTED
|S_CASEFOLD
|S_VERITY
);
4533 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4534 struct ext4_inode_info
*ei
)
4537 struct inode
*inode
= &(ei
->vfs_inode
);
4538 struct super_block
*sb
= inode
->i_sb
;
4540 if (ext4_has_feature_huge_file(sb
)) {
4541 /* we are using combined 48 bit field */
4542 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4543 le32_to_cpu(raw_inode
->i_blocks_lo
);
4544 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4545 /* i_blocks represent file system block size */
4546 return i_blocks
<< (inode
->i_blkbits
- 9);
4551 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4555 static inline int ext4_iget_extra_inode(struct inode
*inode
,
4556 struct ext4_inode
*raw_inode
,
4557 struct ext4_inode_info
*ei
)
4559 __le32
*magic
= (void *)raw_inode
+
4560 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4562 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
+ sizeof(__le32
) <=
4563 EXT4_INODE_SIZE(inode
->i_sb
) &&
4564 *magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4565 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4566 return ext4_find_inline_data_nolock(inode
);
4568 EXT4_I(inode
)->i_inline_off
= 0;
4572 int ext4_get_projid(struct inode
*inode
, kprojid_t
*projid
)
4574 if (!ext4_has_feature_project(inode
->i_sb
))
4576 *projid
= EXT4_I(inode
)->i_projid
;
4581 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4582 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4585 static inline void ext4_inode_set_iversion_queried(struct inode
*inode
, u64 val
)
4587 if (unlikely(EXT4_I(inode
)->i_flags
& EXT4_EA_INODE_FL
))
4588 inode_set_iversion_raw(inode
, val
);
4590 inode_set_iversion_queried(inode
, val
);
4592 static inline u64
ext4_inode_peek_iversion(const struct inode
*inode
)
4594 if (unlikely(EXT4_I(inode
)->i_flags
& EXT4_EA_INODE_FL
))
4595 return inode_peek_iversion_raw(inode
);
4597 return inode_peek_iversion(inode
);
4600 struct inode
*__ext4_iget(struct super_block
*sb
, unsigned long ino
,
4601 ext4_iget_flags flags
, const char *function
,
4604 struct ext4_iloc iloc
;
4605 struct ext4_inode
*raw_inode
;
4606 struct ext4_inode_info
*ei
;
4607 struct inode
*inode
;
4608 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4616 if ((!(flags
& EXT4_IGET_SPECIAL
) &&
4617 (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)) ||
4618 (ino
< EXT4_ROOT_INO
) ||
4619 (ino
> le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
))) {
4620 if (flags
& EXT4_IGET_HANDLE
)
4621 return ERR_PTR(-ESTALE
);
4622 __ext4_error(sb
, function
, line
, false, EFSCORRUPTED
, 0,
4623 "inode #%lu: comm %s: iget: illegal inode #",
4624 ino
, current
->comm
);
4625 return ERR_PTR(-EFSCORRUPTED
);
4628 inode
= iget_locked(sb
, ino
);
4630 return ERR_PTR(-ENOMEM
);
4631 if (!(inode
->i_state
& I_NEW
))
4637 ret
= __ext4_get_inode_loc_noinmem(inode
, &iloc
);
4640 raw_inode
= ext4_raw_inode(&iloc
);
4642 if ((ino
== EXT4_ROOT_INO
) && (raw_inode
->i_links_count
== 0)) {
4643 ext4_error_inode(inode
, function
, line
, 0,
4644 "iget: root inode unallocated");
4645 ret
= -EFSCORRUPTED
;
4649 if ((flags
& EXT4_IGET_HANDLE
) &&
4650 (raw_inode
->i_links_count
== 0) && (raw_inode
->i_mode
== 0)) {
4655 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4656 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4657 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4658 EXT4_INODE_SIZE(inode
->i_sb
) ||
4659 (ei
->i_extra_isize
& 3)) {
4660 ext4_error_inode(inode
, function
, line
, 0,
4661 "iget: bad extra_isize %u "
4664 EXT4_INODE_SIZE(inode
->i_sb
));
4665 ret
= -EFSCORRUPTED
;
4669 ei
->i_extra_isize
= 0;
4671 /* Precompute checksum seed for inode metadata */
4672 if (ext4_has_metadata_csum(sb
)) {
4673 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4675 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4676 __le32 gen
= raw_inode
->i_generation
;
4677 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4679 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4683 if ((!ext4_inode_csum_verify(inode
, raw_inode
, ei
) ||
4684 ext4_simulate_fail(sb
, EXT4_SIM_INODE_CRC
)) &&
4685 (!(EXT4_SB(sb
)->s_mount_state
& EXT4_FC_REPLAY
))) {
4686 ext4_error_inode_err(inode
, function
, line
, 0,
4687 EFSBADCRC
, "iget: checksum invalid");
4692 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4693 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4694 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4695 if (ext4_has_feature_project(sb
) &&
4696 EXT4_INODE_SIZE(sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4697 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4698 i_projid
= (projid_t
)le32_to_cpu(raw_inode
->i_projid
);
4700 i_projid
= EXT4_DEF_PROJID
;
4702 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4703 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4704 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4706 i_uid_write(inode
, i_uid
);
4707 i_gid_write(inode
, i_gid
);
4708 ei
->i_projid
= make_kprojid(&init_user_ns
, i_projid
);
4709 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4711 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4712 ei
->i_inline_off
= 0;
4713 ei
->i_dir_start_lookup
= 0;
4714 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4715 /* We now have enough fields to check if the inode was active or not.
4716 * This is needed because nfsd might try to access dead inodes
4717 * the test is that same one that e2fsck uses
4718 * NeilBrown 1999oct15
4720 if (inode
->i_nlink
== 0) {
4721 if ((inode
->i_mode
== 0 ||
4722 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4723 ino
!= EXT4_BOOT_LOADER_INO
) {
4724 /* this inode is deleted */
4728 /* The only unlinked inodes we let through here have
4729 * valid i_mode and are being read by the orphan
4730 * recovery code: that's fine, we're about to complete
4731 * the process of deleting those.
4732 * OR it is the EXT4_BOOT_LOADER_INO which is
4733 * not initialized on a new filesystem. */
4735 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4736 ext4_set_inode_flags(inode
, true);
4737 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4738 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4739 if (ext4_has_feature_64bit(sb
))
4741 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4742 inode
->i_size
= ext4_isize(sb
, raw_inode
);
4743 if ((size
= i_size_read(inode
)) < 0) {
4744 ext4_error_inode(inode
, function
, line
, 0,
4745 "iget: bad i_size value: %lld", size
);
4746 ret
= -EFSCORRUPTED
;
4750 * If dir_index is not enabled but there's dir with INDEX flag set,
4751 * we'd normally treat htree data as empty space. But with metadata
4752 * checksumming that corrupts checksums so forbid that.
4754 if (!ext4_has_feature_dir_index(sb
) && ext4_has_metadata_csum(sb
) &&
4755 ext4_test_inode_flag(inode
, EXT4_INODE_INDEX
)) {
4756 ext4_error_inode(inode
, function
, line
, 0,
4757 "iget: Dir with htree data on filesystem without dir_index feature.");
4758 ret
= -EFSCORRUPTED
;
4761 ei
->i_disksize
= inode
->i_size
;
4763 ei
->i_reserved_quota
= 0;
4765 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4766 ei
->i_block_group
= iloc
.block_group
;
4767 ei
->i_last_alloc_group
= ~0;
4769 * NOTE! The in-memory inode i_data array is in little-endian order
4770 * even on big-endian machines: we do NOT byteswap the block numbers!
4772 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4773 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4774 INIT_LIST_HEAD(&ei
->i_orphan
);
4775 ext4_fc_init_inode(&ei
->vfs_inode
);
4778 * Set transaction id's of transactions that have to be committed
4779 * to finish f[data]sync. We set them to currently running transaction
4780 * as we cannot be sure that the inode or some of its metadata isn't
4781 * part of the transaction - the inode could have been reclaimed and
4782 * now it is reread from disk.
4785 transaction_t
*transaction
;
4788 read_lock(&journal
->j_state_lock
);
4789 if (journal
->j_running_transaction
)
4790 transaction
= journal
->j_running_transaction
;
4792 transaction
= journal
->j_committing_transaction
;
4794 tid
= transaction
->t_tid
;
4796 tid
= journal
->j_commit_sequence
;
4797 read_unlock(&journal
->j_state_lock
);
4798 ei
->i_sync_tid
= tid
;
4799 ei
->i_datasync_tid
= tid
;
4802 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4803 if (ei
->i_extra_isize
== 0) {
4804 /* The extra space is currently unused. Use it. */
4805 BUILD_BUG_ON(sizeof(struct ext4_inode
) & 3);
4806 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4807 EXT4_GOOD_OLD_INODE_SIZE
;
4809 ret
= ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4815 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4816 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4817 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4818 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4820 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4821 u64 ivers
= le32_to_cpu(raw_inode
->i_disk_version
);
4823 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4824 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4826 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4828 ext4_inode_set_iversion_queried(inode
, ivers
);
4832 if (ei
->i_file_acl
&&
4833 !ext4_inode_block_valid(inode
, ei
->i_file_acl
, 1)) {
4834 ext4_error_inode(inode
, function
, line
, 0,
4835 "iget: bad extended attribute block %llu",
4837 ret
= -EFSCORRUPTED
;
4839 } else if (!ext4_has_inline_data(inode
)) {
4840 /* validate the block references in the inode */
4841 if (!(EXT4_SB(sb
)->s_mount_state
& EXT4_FC_REPLAY
) &&
4842 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4843 (S_ISLNK(inode
->i_mode
) &&
4844 !ext4_inode_is_fast_symlink(inode
)))) {
4845 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4846 ret
= ext4_ext_check_inode(inode
);
4848 ret
= ext4_ind_check_inode(inode
);
4854 if (S_ISREG(inode
->i_mode
)) {
4855 inode
->i_op
= &ext4_file_inode_operations
;
4856 inode
->i_fop
= &ext4_file_operations
;
4857 ext4_set_aops(inode
);
4858 } else if (S_ISDIR(inode
->i_mode
)) {
4859 inode
->i_op
= &ext4_dir_inode_operations
;
4860 inode
->i_fop
= &ext4_dir_operations
;
4861 } else if (S_ISLNK(inode
->i_mode
)) {
4862 /* VFS does not allow setting these so must be corruption */
4863 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
4864 ext4_error_inode(inode
, function
, line
, 0,
4865 "iget: immutable or append flags "
4866 "not allowed on symlinks");
4867 ret
= -EFSCORRUPTED
;
4870 if (IS_ENCRYPTED(inode
)) {
4871 inode
->i_op
= &ext4_encrypted_symlink_inode_operations
;
4872 ext4_set_aops(inode
);
4873 } else if (ext4_inode_is_fast_symlink(inode
)) {
4874 inode
->i_link
= (char *)ei
->i_data
;
4875 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4876 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4877 sizeof(ei
->i_data
) - 1);
4879 inode
->i_op
= &ext4_symlink_inode_operations
;
4880 ext4_set_aops(inode
);
4882 inode_nohighmem(inode
);
4883 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4884 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4885 inode
->i_op
= &ext4_special_inode_operations
;
4886 if (raw_inode
->i_block
[0])
4887 init_special_inode(inode
, inode
->i_mode
,
4888 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4890 init_special_inode(inode
, inode
->i_mode
,
4891 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4892 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4893 make_bad_inode(inode
);
4895 ret
= -EFSCORRUPTED
;
4896 ext4_error_inode(inode
, function
, line
, 0,
4897 "iget: bogus i_mode (%o)", inode
->i_mode
);
4900 if (IS_CASEFOLDED(inode
) && !ext4_has_feature_casefold(inode
->i_sb
))
4901 ext4_error_inode(inode
, function
, line
, 0,
4902 "casefold flag without casefold feature");
4905 unlock_new_inode(inode
);
4911 return ERR_PTR(ret
);
4914 static int ext4_inode_blocks_set(handle_t
*handle
,
4915 struct ext4_inode
*raw_inode
,
4916 struct ext4_inode_info
*ei
)
4918 struct inode
*inode
= &(ei
->vfs_inode
);
4919 u64 i_blocks
= READ_ONCE(inode
->i_blocks
);
4920 struct super_block
*sb
= inode
->i_sb
;
4922 if (i_blocks
<= ~0U) {
4924 * i_blocks can be represented in a 32 bit variable
4925 * as multiple of 512 bytes
4927 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4928 raw_inode
->i_blocks_high
= 0;
4929 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4932 if (!ext4_has_feature_huge_file(sb
))
4935 if (i_blocks
<= 0xffffffffffffULL
) {
4937 * i_blocks can be represented in a 48 bit variable
4938 * as multiple of 512 bytes
4940 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4941 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4942 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4944 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4945 /* i_block is stored in file system block size */
4946 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4947 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4948 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4953 static void __ext4_update_other_inode_time(struct super_block
*sb
,
4954 unsigned long orig_ino
,
4956 struct ext4_inode
*raw_inode
)
4958 struct inode
*inode
;
4960 inode
= find_inode_by_ino_rcu(sb
, ino
);
4964 if ((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4966 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4969 spin_lock(&inode
->i_lock
);
4970 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4971 I_DIRTY_INODE
)) == 0) &&
4972 (inode
->i_state
& I_DIRTY_TIME
)) {
4973 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4975 inode
->i_state
&= ~I_DIRTY_TIME
;
4976 spin_unlock(&inode
->i_lock
);
4978 spin_lock(&ei
->i_raw_lock
);
4979 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4980 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4981 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4982 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4983 spin_unlock(&ei
->i_raw_lock
);
4984 trace_ext4_other_inode_update_time(inode
, orig_ino
);
4987 spin_unlock(&inode
->i_lock
);
4991 * Opportunistically update the other time fields for other inodes in
4992 * the same inode table block.
4994 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4995 unsigned long orig_ino
, char *buf
)
4998 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4999 int inode_size
= EXT4_INODE_SIZE(sb
);
5002 * Calculate the first inode in the inode table block. Inode
5003 * numbers are one-based. That is, the first inode in a block
5004 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5006 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
5008 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
5009 if (ino
== orig_ino
)
5011 __ext4_update_other_inode_time(sb
, orig_ino
, ino
,
5012 (struct ext4_inode
*)buf
);
5018 * Post the struct inode info into an on-disk inode location in the
5019 * buffer-cache. This gobbles the caller's reference to the
5020 * buffer_head in the inode location struct.
5022 * The caller must have write access to iloc->bh.
5024 static int ext4_do_update_inode(handle_t
*handle
,
5025 struct inode
*inode
,
5026 struct ext4_iloc
*iloc
)
5028 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5029 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5030 struct buffer_head
*bh
= iloc
->bh
;
5031 struct super_block
*sb
= inode
->i_sb
;
5032 int err
= 0, rc
, block
;
5033 int need_datasync
= 0, set_large_file
= 0;
5038 spin_lock(&ei
->i_raw_lock
);
5040 /* For fields not tracked in the in-memory inode,
5041 * initialise them to zero for new inodes. */
5042 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5043 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5045 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
5047 spin_unlock(&ei
->i_raw_lock
);
5051 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5052 i_uid
= i_uid_read(inode
);
5053 i_gid
= i_gid_read(inode
);
5054 i_projid
= from_kprojid(&init_user_ns
, ei
->i_projid
);
5055 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5056 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
5057 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
5059 * Fix up interoperability with old kernels. Otherwise, old inodes get
5060 * re-used with the upper 16 bits of the uid/gid intact
5062 if (ei
->i_dtime
&& list_empty(&ei
->i_orphan
)) {
5063 raw_inode
->i_uid_high
= 0;
5064 raw_inode
->i_gid_high
= 0;
5066 raw_inode
->i_uid_high
=
5067 cpu_to_le16(high_16_bits(i_uid
));
5068 raw_inode
->i_gid_high
=
5069 cpu_to_le16(high_16_bits(i_gid
));
5072 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
5073 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
5074 raw_inode
->i_uid_high
= 0;
5075 raw_inode
->i_gid_high
= 0;
5077 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5079 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5080 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5081 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5082 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5084 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5085 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
5086 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
5087 raw_inode
->i_file_acl_high
=
5088 cpu_to_le16(ei
->i_file_acl
>> 32);
5089 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5090 if (READ_ONCE(ei
->i_disksize
) != ext4_isize(inode
->i_sb
, raw_inode
)) {
5091 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5094 if (ei
->i_disksize
> 0x7fffffffULL
) {
5095 if (!ext4_has_feature_large_file(sb
) ||
5096 EXT4_SB(sb
)->s_es
->s_rev_level
==
5097 cpu_to_le32(EXT4_GOOD_OLD_REV
))
5100 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5101 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5102 if (old_valid_dev(inode
->i_rdev
)) {
5103 raw_inode
->i_block
[0] =
5104 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5105 raw_inode
->i_block
[1] = 0;
5107 raw_inode
->i_block
[0] = 0;
5108 raw_inode
->i_block
[1] =
5109 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5110 raw_inode
->i_block
[2] = 0;
5112 } else if (!ext4_has_inline_data(inode
)) {
5113 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5114 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5117 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
5118 u64 ivers
= ext4_inode_peek_iversion(inode
);
5120 raw_inode
->i_disk_version
= cpu_to_le32(ivers
);
5121 if (ei
->i_extra_isize
) {
5122 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5123 raw_inode
->i_version_hi
=
5124 cpu_to_le32(ivers
>> 32);
5125 raw_inode
->i_extra_isize
=
5126 cpu_to_le16(ei
->i_extra_isize
);
5130 BUG_ON(!ext4_has_feature_project(inode
->i_sb
) &&
5131 i_projid
!= EXT4_DEF_PROJID
);
5133 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
5134 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
5135 raw_inode
->i_projid
= cpu_to_le32(i_projid
);
5137 ext4_inode_csum_set(inode
, raw_inode
, ei
);
5138 spin_unlock(&ei
->i_raw_lock
);
5139 if (inode
->i_sb
->s_flags
& SB_LAZYTIME
)
5140 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
5143 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5144 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5147 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5148 if (set_large_file
) {
5149 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
5150 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
5153 ext4_set_feature_large_file(sb
);
5154 ext4_handle_sync(handle
);
5155 err
= ext4_handle_dirty_super(handle
, sb
);
5157 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
5160 ext4_std_error(inode
->i_sb
, err
);
5165 * ext4_write_inode()
5167 * We are called from a few places:
5169 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5170 * Here, there will be no transaction running. We wait for any running
5171 * transaction to commit.
5173 * - Within flush work (sys_sync(), kupdate and such).
5174 * We wait on commit, if told to.
5176 * - Within iput_final() -> write_inode_now()
5177 * We wait on commit, if told to.
5179 * In all cases it is actually safe for us to return without doing anything,
5180 * because the inode has been copied into a raw inode buffer in
5181 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5184 * Note that we are absolutely dependent upon all inode dirtiers doing the
5185 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5186 * which we are interested.
5188 * It would be a bug for them to not do this. The code:
5190 * mark_inode_dirty(inode)
5192 * inode->i_size = expr;
5194 * is in error because write_inode() could occur while `stuff()' is running,
5195 * and the new i_size will be lost. Plus the inode will no longer be on the
5196 * superblock's dirty inode list.
5198 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5202 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
) ||
5203 sb_rdonly(inode
->i_sb
))
5206 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5209 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5210 if (ext4_journal_current_handle()) {
5211 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5217 * No need to force transaction in WB_SYNC_NONE mode. Also
5218 * ext4_sync_fs() will force the commit after everything is
5221 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
5224 err
= ext4_fc_commit(EXT4_SB(inode
->i_sb
)->s_journal
,
5225 EXT4_I(inode
)->i_sync_tid
);
5227 struct ext4_iloc iloc
;
5229 err
= __ext4_get_inode_loc_noinmem(inode
, &iloc
);
5233 * sync(2) will flush the whole buffer cache. No need to do
5234 * it here separately for each inode.
5236 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
5237 sync_dirty_buffer(iloc
.bh
);
5238 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5239 ext4_error_inode_block(inode
, iloc
.bh
->b_blocknr
, EIO
,
5240 "IO error syncing inode");
5249 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5250 * buffers that are attached to a page stradding i_size and are undergoing
5251 * commit. In that case we have to wait for commit to finish and try again.
5253 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
5257 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
5258 tid_t commit_tid
= 0;
5261 offset
= inode
->i_size
& (PAGE_SIZE
- 1);
5263 * If the page is fully truncated, we don't need to wait for any commit
5264 * (and we even should not as __ext4_journalled_invalidatepage() may
5265 * strip all buffers from the page but keep the page dirty which can then
5266 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5267 * buffers). Also we don't need to wait for any commit if all buffers in
5268 * the page remain valid. This is most beneficial for the common case of
5269 * blocksize == PAGESIZE.
5271 if (!offset
|| offset
> (PAGE_SIZE
- i_blocksize(inode
)))
5274 page
= find_lock_page(inode
->i_mapping
,
5275 inode
->i_size
>> PAGE_SHIFT
);
5278 ret
= __ext4_journalled_invalidatepage(page
, offset
,
5279 PAGE_SIZE
- offset
);
5285 read_lock(&journal
->j_state_lock
);
5286 if (journal
->j_committing_transaction
)
5287 commit_tid
= journal
->j_committing_transaction
->t_tid
;
5288 read_unlock(&journal
->j_state_lock
);
5290 jbd2_log_wait_commit(journal
, commit_tid
);
5297 * Called from notify_change.
5299 * We want to trap VFS attempts to truncate the file as soon as
5300 * possible. In particular, we want to make sure that when the VFS
5301 * shrinks i_size, we put the inode on the orphan list and modify
5302 * i_disksize immediately, so that during the subsequent flushing of
5303 * dirty pages and freeing of disk blocks, we can guarantee that any
5304 * commit will leave the blocks being flushed in an unused state on
5305 * disk. (On recovery, the inode will get truncated and the blocks will
5306 * be freed, so we have a strong guarantee that no future commit will
5307 * leave these blocks visible to the user.)
5309 * Another thing we have to assure is that if we are in ordered mode
5310 * and inode is still attached to the committing transaction, we must
5311 * we start writeout of all the dirty pages which are being truncated.
5312 * This way we are sure that all the data written in the previous
5313 * transaction are already on disk (truncate waits for pages under
5316 * Called with inode->i_mutex down.
5318 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5320 struct inode
*inode
= d_inode(dentry
);
5323 const unsigned int ia_valid
= attr
->ia_valid
;
5325 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5328 if (unlikely(IS_IMMUTABLE(inode
)))
5331 if (unlikely(IS_APPEND(inode
) &&
5332 (ia_valid
& (ATTR_MODE
| ATTR_UID
|
5333 ATTR_GID
| ATTR_TIMES_SET
))))
5336 error
= setattr_prepare(dentry
, attr
);
5340 error
= fscrypt_prepare_setattr(dentry
, attr
);
5344 error
= fsverity_prepare_setattr(dentry
, attr
);
5348 if (is_quota_modification(inode
, attr
)) {
5349 error
= dquot_initialize(inode
);
5353 ext4_fc_start_update(inode
);
5354 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
5355 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
5358 /* (user+group)*(old+new) structure, inode write (sb,
5359 * inode block, ? - but truncate inode update has it) */
5360 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
5361 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
5362 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
5363 if (IS_ERR(handle
)) {
5364 error
= PTR_ERR(handle
);
5368 /* dquot_transfer() calls back ext4_get_inode_usage() which
5369 * counts xattr inode references.
5371 down_read(&EXT4_I(inode
)->xattr_sem
);
5372 error
= dquot_transfer(inode
, attr
);
5373 up_read(&EXT4_I(inode
)->xattr_sem
);
5376 ext4_journal_stop(handle
);
5377 ext4_fc_stop_update(inode
);
5380 /* Update corresponding info in inode so that everything is in
5381 * one transaction */
5382 if (attr
->ia_valid
& ATTR_UID
)
5383 inode
->i_uid
= attr
->ia_uid
;
5384 if (attr
->ia_valid
& ATTR_GID
)
5385 inode
->i_gid
= attr
->ia_gid
;
5386 error
= ext4_mark_inode_dirty(handle
, inode
);
5387 ext4_journal_stop(handle
);
5388 if (unlikely(error
))
5392 if (attr
->ia_valid
& ATTR_SIZE
) {
5394 loff_t oldsize
= inode
->i_size
;
5395 int shrink
= (attr
->ia_size
< inode
->i_size
);
5397 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5398 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5400 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5401 ext4_fc_stop_update(inode
);
5405 if (!S_ISREG(inode
->i_mode
)) {
5406 ext4_fc_stop_update(inode
);
5410 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
5411 inode_inc_iversion(inode
);
5414 if (ext4_should_order_data(inode
)) {
5415 error
= ext4_begin_ordered_truncate(inode
,
5421 * Blocks are going to be removed from the inode. Wait
5422 * for dio in flight.
5424 inode_dio_wait(inode
);
5427 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5429 rc
= ext4_break_layouts(inode
);
5431 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5435 if (attr
->ia_size
!= inode
->i_size
) {
5436 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
5437 if (IS_ERR(handle
)) {
5438 error
= PTR_ERR(handle
);
5441 if (ext4_handle_valid(handle
) && shrink
) {
5442 error
= ext4_orphan_add(handle
, inode
);
5446 * Update c/mtime on truncate up, ext4_truncate() will
5447 * update c/mtime in shrink case below
5450 inode
->i_mtime
= current_time(inode
);
5451 inode
->i_ctime
= inode
->i_mtime
;
5455 ext4_fc_track_range(handle
, inode
,
5456 (attr
->ia_size
> 0 ? attr
->ia_size
- 1 : 0) >>
5457 inode
->i_sb
->s_blocksize_bits
,
5458 (oldsize
> 0 ? oldsize
- 1 : 0) >>
5459 inode
->i_sb
->s_blocksize_bits
);
5461 ext4_fc_track_range(
5463 (oldsize
> 0 ? oldsize
- 1 : oldsize
) >>
5464 inode
->i_sb
->s_blocksize_bits
,
5465 (attr
->ia_size
> 0 ? attr
->ia_size
- 1 : 0) >>
5466 inode
->i_sb
->s_blocksize_bits
);
5468 down_write(&EXT4_I(inode
)->i_data_sem
);
5469 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5470 rc
= ext4_mark_inode_dirty(handle
, inode
);
5474 * We have to update i_size under i_data_sem together
5475 * with i_disksize to avoid races with writeback code
5476 * running ext4_wb_update_i_disksize().
5479 i_size_write(inode
, attr
->ia_size
);
5480 up_write(&EXT4_I(inode
)->i_data_sem
);
5481 ext4_journal_stop(handle
);
5485 pagecache_isize_extended(inode
, oldsize
,
5487 } else if (ext4_should_journal_data(inode
)) {
5488 ext4_wait_for_tail_page_commit(inode
);
5493 * Truncate pagecache after we've waited for commit
5494 * in data=journal mode to make pages freeable.
5496 truncate_pagecache(inode
, inode
->i_size
);
5498 * Call ext4_truncate() even if i_size didn't change to
5499 * truncate possible preallocated blocks.
5501 if (attr
->ia_size
<= oldsize
) {
5502 rc
= ext4_truncate(inode
);
5507 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5511 setattr_copy(inode
, attr
);
5512 mark_inode_dirty(inode
);
5516 * If the call to ext4_truncate failed to get a transaction handle at
5517 * all, we need to clean up the in-core orphan list manually.
5519 if (orphan
&& inode
->i_nlink
)
5520 ext4_orphan_del(NULL
, inode
);
5522 if (!error
&& (ia_valid
& ATTR_MODE
))
5523 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
5527 ext4_std_error(inode
->i_sb
, error
);
5530 ext4_fc_stop_update(inode
);
5534 int ext4_getattr(const struct path
*path
, struct kstat
*stat
,
5535 u32 request_mask
, unsigned int query_flags
)
5537 struct inode
*inode
= d_inode(path
->dentry
);
5538 struct ext4_inode
*raw_inode
;
5539 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5542 if ((request_mask
& STATX_BTIME
) &&
5543 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_crtime
)) {
5544 stat
->result_mask
|= STATX_BTIME
;
5545 stat
->btime
.tv_sec
= ei
->i_crtime
.tv_sec
;
5546 stat
->btime
.tv_nsec
= ei
->i_crtime
.tv_nsec
;
5549 flags
= ei
->i_flags
& EXT4_FL_USER_VISIBLE
;
5550 if (flags
& EXT4_APPEND_FL
)
5551 stat
->attributes
|= STATX_ATTR_APPEND
;
5552 if (flags
& EXT4_COMPR_FL
)
5553 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
5554 if (flags
& EXT4_ENCRYPT_FL
)
5555 stat
->attributes
|= STATX_ATTR_ENCRYPTED
;
5556 if (flags
& EXT4_IMMUTABLE_FL
)
5557 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
5558 if (flags
& EXT4_NODUMP_FL
)
5559 stat
->attributes
|= STATX_ATTR_NODUMP
;
5560 if (flags
& EXT4_VERITY_FL
)
5561 stat
->attributes
|= STATX_ATTR_VERITY
;
5563 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
5564 STATX_ATTR_COMPRESSED
|
5565 STATX_ATTR_ENCRYPTED
|
5566 STATX_ATTR_IMMUTABLE
|
5570 generic_fillattr(inode
, stat
);
5574 int ext4_file_getattr(const struct path
*path
, struct kstat
*stat
,
5575 u32 request_mask
, unsigned int query_flags
)
5577 struct inode
*inode
= d_inode(path
->dentry
);
5578 u64 delalloc_blocks
;
5580 ext4_getattr(path
, stat
, request_mask
, query_flags
);
5583 * If there is inline data in the inode, the inode will normally not
5584 * have data blocks allocated (it may have an external xattr block).
5585 * Report at least one sector for such files, so tools like tar, rsync,
5586 * others don't incorrectly think the file is completely sparse.
5588 if (unlikely(ext4_has_inline_data(inode
)))
5589 stat
->blocks
+= (stat
->size
+ 511) >> 9;
5592 * We can't update i_blocks if the block allocation is delayed
5593 * otherwise in the case of system crash before the real block
5594 * allocation is done, we will have i_blocks inconsistent with
5595 * on-disk file blocks.
5596 * We always keep i_blocks updated together with real
5597 * allocation. But to not confuse with user, stat
5598 * will return the blocks that include the delayed allocation
5599 * blocks for this file.
5601 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
5602 EXT4_I(inode
)->i_reserved_data_blocks
);
5603 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
5607 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
5610 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5611 return ext4_ind_trans_blocks(inode
, lblocks
);
5612 return ext4_ext_index_trans_blocks(inode
, pextents
);
5616 * Account for index blocks, block groups bitmaps and block group
5617 * descriptor blocks if modify datablocks and index blocks
5618 * worse case, the indexs blocks spread over different block groups
5620 * If datablocks are discontiguous, they are possible to spread over
5621 * different block groups too. If they are contiguous, with flexbg,
5622 * they could still across block group boundary.
5624 * Also account for superblock, inode, quota and xattr blocks
5626 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
5629 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5635 * How many index blocks need to touch to map @lblocks logical blocks
5636 * to @pextents physical extents?
5638 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
5643 * Now let's see how many group bitmaps and group descriptors need
5646 groups
= idxblocks
+ pextents
;
5648 if (groups
> ngroups
)
5650 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5651 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5653 /* bitmaps and block group descriptor blocks */
5654 ret
+= groups
+ gdpblocks
;
5656 /* Blocks for super block, inode, quota and xattr blocks */
5657 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5663 * Calculate the total number of credits to reserve to fit
5664 * the modification of a single pages into a single transaction,
5665 * which may include multiple chunks of block allocations.
5667 * This could be called via ext4_write_begin()
5669 * We need to consider the worse case, when
5670 * one new block per extent.
5672 int ext4_writepage_trans_blocks(struct inode
*inode
)
5674 int bpp
= ext4_journal_blocks_per_page(inode
);
5677 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
5679 /* Account for data blocks for journalled mode */
5680 if (ext4_should_journal_data(inode
))
5686 * Calculate the journal credits for a chunk of data modification.
5688 * This is called from DIO, fallocate or whoever calling
5689 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5691 * journal buffers for data blocks are not included here, as DIO
5692 * and fallocate do no need to journal data buffers.
5694 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5696 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5700 * The caller must have previously called ext4_reserve_inode_write().
5701 * Give this, we know that the caller already has write access to iloc->bh.
5703 int ext4_mark_iloc_dirty(handle_t
*handle
,
5704 struct inode
*inode
, struct ext4_iloc
*iloc
)
5708 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
)))) {
5712 ext4_fc_track_inode(handle
, inode
);
5714 if (IS_I_VERSION(inode
))
5715 inode_inc_iversion(inode
);
5717 /* the do_update_inode consumes one bh->b_count */
5720 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5721 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5727 * On success, We end up with an outstanding reference count against
5728 * iloc->bh. This _must_ be cleaned up later.
5732 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5733 struct ext4_iloc
*iloc
)
5737 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5740 err
= ext4_get_inode_loc(inode
, iloc
);
5742 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5743 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5749 ext4_std_error(inode
->i_sb
, err
);
5753 static int __ext4_expand_extra_isize(struct inode
*inode
,
5754 unsigned int new_extra_isize
,
5755 struct ext4_iloc
*iloc
,
5756 handle_t
*handle
, int *no_expand
)
5758 struct ext4_inode
*raw_inode
;
5759 struct ext4_xattr_ibody_header
*header
;
5760 unsigned int inode_size
= EXT4_INODE_SIZE(inode
->i_sb
);
5761 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5764 /* this was checked at iget time, but double check for good measure */
5765 if ((EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
> inode_size
) ||
5766 (ei
->i_extra_isize
& 3)) {
5767 EXT4_ERROR_INODE(inode
, "bad extra_isize %u (inode size %u)",
5769 EXT4_INODE_SIZE(inode
->i_sb
));
5770 return -EFSCORRUPTED
;
5772 if ((new_extra_isize
< ei
->i_extra_isize
) ||
5773 (new_extra_isize
< 4) ||
5774 (new_extra_isize
> inode_size
- EXT4_GOOD_OLD_INODE_SIZE
))
5775 return -EINVAL
; /* Should never happen */
5777 raw_inode
= ext4_raw_inode(iloc
);
5779 header
= IHDR(inode
, raw_inode
);
5781 /* No extended attributes present */
5782 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5783 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5784 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
+
5785 EXT4_I(inode
)->i_extra_isize
, 0,
5786 new_extra_isize
- EXT4_I(inode
)->i_extra_isize
);
5787 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5791 /* try to expand with EAs present */
5792 error
= ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5796 * Inode size expansion failed; don't try again
5805 * Expand an inode by new_extra_isize bytes.
5806 * Returns 0 on success or negative error number on failure.
5808 static int ext4_try_to_expand_extra_isize(struct inode
*inode
,
5809 unsigned int new_extra_isize
,
5810 struct ext4_iloc iloc
,
5816 if (ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
))
5820 * In nojournal mode, we can immediately attempt to expand
5821 * the inode. When journaled, we first need to obtain extra
5822 * buffer credits since we may write into the EA block
5823 * with this same handle. If journal_extend fails, then it will
5824 * only result in a minor loss of functionality for that inode.
5825 * If this is felt to be critical, then e2fsck should be run to
5826 * force a large enough s_min_extra_isize.
5828 if (ext4_journal_extend(handle
,
5829 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
), 0) != 0)
5832 if (ext4_write_trylock_xattr(inode
, &no_expand
) == 0)
5835 error
= __ext4_expand_extra_isize(inode
, new_extra_isize
, &iloc
,
5836 handle
, &no_expand
);
5837 ext4_write_unlock_xattr(inode
, &no_expand
);
5842 int ext4_expand_extra_isize(struct inode
*inode
,
5843 unsigned int new_extra_isize
,
5844 struct ext4_iloc
*iloc
)
5850 if (ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5855 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
,
5856 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
));
5857 if (IS_ERR(handle
)) {
5858 error
= PTR_ERR(handle
);
5863 ext4_write_lock_xattr(inode
, &no_expand
);
5865 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5866 error
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5872 error
= __ext4_expand_extra_isize(inode
, new_extra_isize
, iloc
,
5873 handle
, &no_expand
);
5875 rc
= ext4_mark_iloc_dirty(handle
, inode
, iloc
);
5880 ext4_write_unlock_xattr(inode
, &no_expand
);
5881 ext4_journal_stop(handle
);
5886 * What we do here is to mark the in-core inode as clean with respect to inode
5887 * dirtiness (it may still be data-dirty).
5888 * This means that the in-core inode may be reaped by prune_icache
5889 * without having to perform any I/O. This is a very good thing,
5890 * because *any* task may call prune_icache - even ones which
5891 * have a transaction open against a different journal.
5893 * Is this cheating? Not really. Sure, we haven't written the
5894 * inode out, but prune_icache isn't a user-visible syncing function.
5895 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5896 * we start and wait on commits.
5898 int __ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
,
5899 const char *func
, unsigned int line
)
5901 struct ext4_iloc iloc
;
5902 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5906 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5907 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5911 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
)
5912 ext4_try_to_expand_extra_isize(inode
, sbi
->s_want_extra_isize
,
5915 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5918 ext4_error_inode_err(inode
, func
, line
, 0, err
,
5919 "mark_inode_dirty error");
5924 * ext4_dirty_inode() is called from __mark_inode_dirty()
5926 * We're really interested in the case where a file is being extended.
5927 * i_size has been changed by generic_commit_write() and we thus need
5928 * to include the updated inode in the current transaction.
5930 * Also, dquot_alloc_block() will always dirty the inode when blocks
5931 * are allocated to the file.
5933 * If the inode is marked synchronous, we don't honour that here - doing
5934 * so would cause a commit on atime updates, which we don't bother doing.
5935 * We handle synchronous inodes at the highest possible level.
5937 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5938 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5939 * to copy into the on-disk inode structure are the timestamp files.
5941 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5945 if (flags
== I_DIRTY_TIME
)
5947 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5951 ext4_mark_inode_dirty(handle
, inode
);
5953 ext4_journal_stop(handle
);
5958 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5963 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5966 * We have to be very careful here: changing a data block's
5967 * journaling status dynamically is dangerous. If we write a
5968 * data block to the journal, change the status and then delete
5969 * that block, we risk forgetting to revoke the old log record
5970 * from the journal and so a subsequent replay can corrupt data.
5971 * So, first we make sure that the journal is empty and that
5972 * nobody is changing anything.
5975 journal
= EXT4_JOURNAL(inode
);
5978 if (is_journal_aborted(journal
))
5981 /* Wait for all existing dio workers */
5982 inode_dio_wait(inode
);
5985 * Before flushing the journal and switching inode's aops, we have
5986 * to flush all dirty data the inode has. There can be outstanding
5987 * delayed allocations, there can be unwritten extents created by
5988 * fallocate or buffered writes in dioread_nolock mode covered by
5989 * dirty data which can be converted only after flushing the dirty
5990 * data (and journalled aops don't know how to handle these cases).
5993 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5994 err
= filemap_write_and_wait(inode
->i_mapping
);
5996 up_write(&EXT4_I(inode
)->i_mmap_sem
);
6001 percpu_down_write(&sbi
->s_writepages_rwsem
);
6002 jbd2_journal_lock_updates(journal
);
6005 * OK, there are no updates running now, and all cached data is
6006 * synced to disk. We are now in a completely consistent state
6007 * which doesn't have anything in the journal, and we know that
6008 * no filesystem updates are running, so it is safe to modify
6009 * the inode's in-core data-journaling state flag now.
6013 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
6015 err
= jbd2_journal_flush(journal
);
6017 jbd2_journal_unlock_updates(journal
);
6018 percpu_up_write(&sbi
->s_writepages_rwsem
);
6021 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
6023 ext4_set_aops(inode
);
6025 jbd2_journal_unlock_updates(journal
);
6026 percpu_up_write(&sbi
->s_writepages_rwsem
);
6029 up_write(&EXT4_I(inode
)->i_mmap_sem
);
6031 /* Finally we can mark the inode as dirty. */
6033 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
6035 return PTR_ERR(handle
);
6037 ext4_fc_mark_ineligible(inode
->i_sb
,
6038 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE
);
6039 err
= ext4_mark_inode_dirty(handle
, inode
);
6040 ext4_handle_sync(handle
);
6041 ext4_journal_stop(handle
);
6042 ext4_std_error(inode
->i_sb
, err
);
6047 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
6049 return !buffer_mapped(bh
);
6052 vm_fault_t
ext4_page_mkwrite(struct vm_fault
*vmf
)
6054 struct vm_area_struct
*vma
= vmf
->vma
;
6055 struct page
*page
= vmf
->page
;
6060 struct file
*file
= vma
->vm_file
;
6061 struct inode
*inode
= file_inode(file
);
6062 struct address_space
*mapping
= inode
->i_mapping
;
6064 get_block_t
*get_block
;
6067 if (unlikely(IS_IMMUTABLE(inode
)))
6068 return VM_FAULT_SIGBUS
;
6070 sb_start_pagefault(inode
->i_sb
);
6071 file_update_time(vma
->vm_file
);
6073 down_read(&EXT4_I(inode
)->i_mmap_sem
);
6075 err
= ext4_convert_inline_data(inode
);
6080 * On data journalling we skip straight to the transaction handle:
6081 * there's no delalloc; page truncated will be checked later; the
6082 * early return w/ all buffers mapped (calculates size/len) can't
6083 * be used; and there's no dioread_nolock, so only ext4_get_block.
6085 if (ext4_should_journal_data(inode
))
6088 /* Delalloc case is easy... */
6089 if (test_opt(inode
->i_sb
, DELALLOC
) &&
6090 !ext4_nonda_switch(inode
->i_sb
)) {
6092 err
= block_page_mkwrite(vma
, vmf
,
6093 ext4_da_get_block_prep
);
6094 } while (err
== -ENOSPC
&&
6095 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
6100 size
= i_size_read(inode
);
6101 /* Page got truncated from under us? */
6102 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
6104 ret
= VM_FAULT_NOPAGE
;
6108 if (page
->index
== size
>> PAGE_SHIFT
)
6109 len
= size
& ~PAGE_MASK
;
6113 * Return if we have all the buffers mapped. This avoids the need to do
6114 * journal_start/journal_stop which can block and take a long time
6116 * This cannot be done for data journalling, as we have to add the
6117 * inode to the transaction's list to writeprotect pages on commit.
6119 if (page_has_buffers(page
)) {
6120 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
6122 ext4_bh_unmapped
)) {
6123 /* Wait so that we don't change page under IO */
6124 wait_for_stable_page(page
);
6125 ret
= VM_FAULT_LOCKED
;
6130 /* OK, we need to fill the hole... */
6131 if (ext4_should_dioread_nolock(inode
))
6132 get_block
= ext4_get_block_unwritten
;
6134 get_block
= ext4_get_block
;
6136 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
6137 ext4_writepage_trans_blocks(inode
));
6138 if (IS_ERR(handle
)) {
6139 ret
= VM_FAULT_SIGBUS
;
6143 * Data journalling can't use block_page_mkwrite() because it
6144 * will set_buffer_dirty() before do_journal_get_write_access()
6145 * thus might hit warning messages for dirty metadata buffers.
6147 if (!ext4_should_journal_data(inode
)) {
6148 err
= block_page_mkwrite(vma
, vmf
, get_block
);
6151 size
= i_size_read(inode
);
6152 /* Page got truncated from under us? */
6153 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
6154 ret
= VM_FAULT_NOPAGE
;
6158 if (page
->index
== size
>> PAGE_SHIFT
)
6159 len
= size
& ~PAGE_MASK
;
6163 err
= __block_write_begin(page
, 0, len
, ext4_get_block
);
6165 ret
= VM_FAULT_SIGBUS
;
6166 if (ext4_walk_page_buffers(handle
, page_buffers(page
),
6167 0, len
, NULL
, do_journal_get_write_access
))
6169 if (ext4_walk_page_buffers(handle
, page_buffers(page
),
6170 0, len
, NULL
, write_end_fn
))
6172 if (ext4_jbd2_inode_add_write(handle
, inode
,
6173 page_offset(page
), len
))
6175 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
6180 ext4_journal_stop(handle
);
6181 if (err
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
6184 ret
= block_page_mkwrite_return(err
);
6186 up_read(&EXT4_I(inode
)->i_mmap_sem
);
6187 sb_end_pagefault(inode
->i_sb
);
6191 ext4_journal_stop(handle
);
6195 vm_fault_t
ext4_filemap_fault(struct vm_fault
*vmf
)
6197 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
6200 down_read(&EXT4_I(inode
)->i_mmap_sem
);
6201 ret
= filemap_fault(vmf
);
6202 up_read(&EXT4_I(inode
)->i_mmap_sem
);