1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
31 * - reservation for superuser
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
130 * The regular allocator (using the buddy cache) supports a few tunables.
132 * /sys/fs/ext4/<partition>/mb_min_to_scan
133 * /sys/fs/ext4/<partition>/mb_max_to_scan
134 * /sys/fs/ext4/<partition>/mb_order2_req
136 * The regular allocator uses buddy scan only if the request len is power of
137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138 * value of s_mb_order2_reqs can be tuned via
139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
140 * stripe size (sbi->s_stripe), we try to search for contiguous block in
141 * stripe size. This should result in better allocation on RAID setups. If
142 * not, we search in the specific group using bitmap for best extents. The
143 * tunable min_to_scan and max_to_scan control the behaviour here.
144 * min_to_scan indicate how long the mballoc __must__ look for a best
145 * extent and max_to_scan indicates how long the mballoc __can__ look for a
146 * best extent in the found extents. Searching for the blocks starts with
147 * the group specified as the goal value in allocation context via
148 * ac_g_ex. Each group is first checked based on the criteria whether it
149 * can be used for allocation. ext4_mb_good_group explains how the groups are
152 * Both the prealloc space are getting populated as above. So for the first
153 * request we will hit the buddy cache which will result in this prealloc
154 * space getting filled. The prealloc space is then later used for the
155 * subsequent request.
159 * mballoc operates on the following data:
161 * - in-core buddy (actually includes buddy and bitmap)
162 * - preallocation descriptors (PAs)
164 * there are two types of preallocations:
166 * assiged to specific inode and can be used for this inode only.
167 * it describes part of inode's space preallocated to specific
168 * physical blocks. any block from that preallocated can be used
169 * independent. the descriptor just tracks number of blocks left
170 * unused. so, before taking some block from descriptor, one must
171 * make sure corresponded logical block isn't allocated yet. this
172 * also means that freeing any block within descriptor's range
173 * must discard all preallocated blocks.
175 * assigned to specific locality group which does not translate to
176 * permanent set of inodes: inode can join and leave group. space
177 * from this type of preallocation can be used for any inode. thus
178 * it's consumed from the beginning to the end.
180 * relation between them can be expressed as:
181 * in-core buddy = on-disk bitmap + preallocation descriptors
183 * this mean blocks mballoc considers used are:
184 * - allocated blocks (persistent)
185 * - preallocated blocks (non-persistent)
187 * consistency in mballoc world means that at any time a block is either
188 * free or used in ALL structures. notice: "any time" should not be read
189 * literally -- time is discrete and delimited by locks.
191 * to keep it simple, we don't use block numbers, instead we count number of
192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 * all operations can be expressed as:
195 * - init buddy: buddy = on-disk + PAs
196 * - new PA: buddy += N; PA = N
197 * - use inode PA: on-disk += N; PA -= N
198 * - discard inode PA buddy -= on-disk - PA; PA = 0
199 * - use locality group PA on-disk += N; PA -= N
200 * - discard locality group PA buddy -= PA; PA = 0
201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202 * is used in real operation because we can't know actual used
203 * bits from PA, only from on-disk bitmap
205 * if we follow this strict logic, then all operations above should be atomic.
206 * given some of them can block, we'd have to use something like semaphores
207 * killing performance on high-end SMP hardware. let's try to relax it using
208 * the following knowledge:
209 * 1) if buddy is referenced, it's already initialized
210 * 2) while block is used in buddy and the buddy is referenced,
211 * nobody can re-allocate that block
212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213 * bit set and PA claims same block, it's OK. IOW, one can set bit in
214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
217 * so, now we're building a concurrency table:
220 * blocks for PA are allocated in the buddy, buddy must be referenced
221 * until PA is linked to allocation group to avoid concurrent buddy init
223 * we need to make sure that either on-disk bitmap or PA has uptodate data
224 * given (3) we care that PA-=N operation doesn't interfere with init
226 * the simplest way would be to have buddy initialized by the discard
227 * - use locality group PA
228 * again PA-=N must be serialized with init
229 * - discard locality group PA
230 * the simplest way would be to have buddy initialized by the discard
233 * i_data_sem serializes them
235 * discard process must wait until PA isn't used by another process
236 * - use locality group PA
237 * some mutex should serialize them
238 * - discard locality group PA
239 * discard process must wait until PA isn't used by another process
242 * i_data_sem or another mutex should serializes them
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * nothing wrong here -- they're different PAs covering different blocks
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
250 * now we're ready to make few consequences:
251 * - PA is referenced and while it is no discard is possible
252 * - PA is referenced until block isn't marked in on-disk bitmap
253 * - PA changes only after on-disk bitmap
254 * - discard must not compete with init. either init is done before
255 * any discard or they're serialized somehow
256 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 * a special case when we've used PA to emptiness. no need to modify buddy
259 * in this case, but we should care about concurrent init
264 * Logic in few words:
269 * mark bits in on-disk bitmap
272 * - use preallocation:
273 * find proper PA (per-inode or group)
275 * mark bits in on-disk bitmap
281 * mark bits in on-disk bitmap
284 * - discard preallocations in group:
286 * move them onto local list
287 * load on-disk bitmap
289 * remove PA from object (inode or locality group)
290 * mark free blocks in-core
292 * - discard inode's preallocations:
299 * - bitlock on a group (group)
300 * - object (inode/locality) (object)
311 * - release consumed pa:
316 * - generate in-core bitmap:
320 * - discard all for given object (inode, locality group):
325 * - discard all for given group:
332 static struct kmem_cache
*ext4_pspace_cachep
;
333 static struct kmem_cache
*ext4_ac_cachep
;
334 static struct kmem_cache
*ext4_free_data_cachep
;
336 /* We create slab caches for groupinfo data structures based on the
337 * superblock block size. There will be one per mounted filesystem for
338 * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
342 static const char * const ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
348 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
350 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
);
355 * The algorithm using this percpu seq counter goes below:
356 * 1. We sample the percpu discard_pa_seq counter before trying for block
357 * allocation in ext4_mb_new_blocks().
358 * 2. We increment this percpu discard_pa_seq counter when we either allocate
359 * or free these blocks i.e. while marking those blocks as used/free in
360 * mb_mark_used()/mb_free_blocks().
361 * 3. We also increment this percpu seq counter when we successfully identify
362 * that the bb_prealloc_list is not empty and hence proceed for discarding
363 * of those PAs inside ext4_mb_discard_group_preallocations().
365 * Now to make sure that the regular fast path of block allocation is not
366 * affected, as a small optimization we only sample the percpu seq counter
367 * on that cpu. Only when the block allocation fails and when freed blocks
368 * found were 0, that is when we sample percpu seq counter for all cpus using
369 * below function ext4_get_discard_pa_seq_sum(). This happens after making
370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
372 static DEFINE_PER_CPU(u64
, discard_pa_seq
);
373 static inline u64
ext4_get_discard_pa_seq_sum(void)
378 for_each_possible_cpu(__cpu
)
379 __seq
+= per_cpu(discard_pa_seq
, __cpu
);
383 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
385 #if BITS_PER_LONG == 64
386 *bit
+= ((unsigned long) addr
& 7UL) << 3;
387 addr
= (void *) ((unsigned long) addr
& ~7UL);
388 #elif BITS_PER_LONG == 32
389 *bit
+= ((unsigned long) addr
& 3UL) << 3;
390 addr
= (void *) ((unsigned long) addr
& ~3UL);
392 #error "how many bits you are?!"
397 static inline int mb_test_bit(int bit
, void *addr
)
400 * ext4_test_bit on architecture like powerpc
401 * needs unsigned long aligned address
403 addr
= mb_correct_addr_and_bit(&bit
, addr
);
404 return ext4_test_bit(bit
, addr
);
407 static inline void mb_set_bit(int bit
, void *addr
)
409 addr
= mb_correct_addr_and_bit(&bit
, addr
);
410 ext4_set_bit(bit
, addr
);
413 static inline void mb_clear_bit(int bit
, void *addr
)
415 addr
= mb_correct_addr_and_bit(&bit
, addr
);
416 ext4_clear_bit(bit
, addr
);
419 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
421 addr
= mb_correct_addr_and_bit(&bit
, addr
);
422 return ext4_test_and_clear_bit(bit
, addr
);
425 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
427 int fix
= 0, ret
, tmpmax
;
428 addr
= mb_correct_addr_and_bit(&fix
, addr
);
432 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
438 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
440 int fix
= 0, ret
, tmpmax
;
441 addr
= mb_correct_addr_and_bit(&fix
, addr
);
445 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
451 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
455 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
458 if (order
> e4b
->bd_blkbits
+ 1) {
463 /* at order 0 we see each particular block */
465 *max
= 1 << (e4b
->bd_blkbits
+ 3);
466 return e4b
->bd_bitmap
;
469 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
470 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
476 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
477 int first
, int count
)
480 struct super_block
*sb
= e4b
->bd_sb
;
482 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
484 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
485 for (i
= 0; i
< count
; i
++) {
486 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
487 ext4_fsblk_t blocknr
;
489 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
490 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
491 ext4_grp_locked_error(sb
, e4b
->bd_group
,
492 inode
? inode
->i_ino
: 0,
494 "freeing block already freed "
497 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
498 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
500 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
504 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
508 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
510 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
511 for (i
= 0; i
< count
; i
++) {
512 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
513 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
517 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
519 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
521 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
522 unsigned char *b1
, *b2
;
524 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
525 b2
= (unsigned char *) bitmap
;
526 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
527 if (b1
[i
] != b2
[i
]) {
528 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
529 "corruption in group %u "
530 "at byte %u(%u): %x in copy != %x "
532 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
539 static void mb_group_bb_bitmap_alloc(struct super_block
*sb
,
540 struct ext4_group_info
*grp
, ext4_group_t group
)
542 struct buffer_head
*bh
;
544 grp
->bb_bitmap
= kmalloc(sb
->s_blocksize
, GFP_NOFS
);
548 bh
= ext4_read_block_bitmap(sb
, group
);
549 if (IS_ERR_OR_NULL(bh
)) {
550 kfree(grp
->bb_bitmap
);
551 grp
->bb_bitmap
= NULL
;
555 memcpy(grp
->bb_bitmap
, bh
->b_data
, sb
->s_blocksize
);
559 static void mb_group_bb_bitmap_free(struct ext4_group_info
*grp
)
561 kfree(grp
->bb_bitmap
);
565 static inline void mb_free_blocks_double(struct inode
*inode
,
566 struct ext4_buddy
*e4b
, int first
, int count
)
570 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
571 int first
, int count
)
575 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
580 static inline void mb_group_bb_bitmap_alloc(struct super_block
*sb
,
581 struct ext4_group_info
*grp
, ext4_group_t group
)
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info
*grp
)
592 #ifdef AGGRESSIVE_CHECK
594 #define MB_CHECK_ASSERT(assert) \
598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
599 function, file, line, # assert); \
604 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
605 const char *function
, int line
)
607 struct super_block
*sb
= e4b
->bd_sb
;
608 int order
= e4b
->bd_blkbits
+ 1;
615 struct ext4_group_info
*grp
;
618 struct list_head
*cur
;
622 if (e4b
->bd_info
->bb_check_counter
++ % 10)
626 buddy
= mb_find_buddy(e4b
, order
, &max
);
627 MB_CHECK_ASSERT(buddy
);
628 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
629 MB_CHECK_ASSERT(buddy2
);
630 MB_CHECK_ASSERT(buddy
!= buddy2
);
631 MB_CHECK_ASSERT(max
* 2 == max2
);
634 for (i
= 0; i
< max
; i
++) {
636 if (mb_test_bit(i
, buddy
)) {
637 /* only single bit in buddy2 may be 1 */
638 if (!mb_test_bit(i
<< 1, buddy2
)) {
640 mb_test_bit((i
<<1)+1, buddy2
));
641 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
643 mb_test_bit(i
<< 1, buddy2
));
648 /* both bits in buddy2 must be 1 */
649 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
650 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
652 for (j
= 0; j
< (1 << order
); j
++) {
653 k
= (i
* (1 << order
)) + j
;
655 !mb_test_bit(k
, e4b
->bd_bitmap
));
659 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
664 buddy
= mb_find_buddy(e4b
, 0, &max
);
665 for (i
= 0; i
< max
; i
++) {
666 if (!mb_test_bit(i
, buddy
)) {
667 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
675 /* check used bits only */
676 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
677 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
679 MB_CHECK_ASSERT(k
< max2
);
680 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
683 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
684 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
686 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
687 list_for_each(cur
, &grp
->bb_prealloc_list
) {
688 ext4_group_t groupnr
;
689 struct ext4_prealloc_space
*pa
;
690 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
691 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
692 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
693 for (i
= 0; i
< pa
->pa_len
; i
++)
694 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
698 #undef MB_CHECK_ASSERT
699 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
700 __FILE__, __func__, __LINE__)
702 #define mb_check_buddy(e4b)
706 * Divide blocks started from @first with length @len into
707 * smaller chunks with power of 2 blocks.
708 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
709 * then increase bb_counters[] for corresponded chunk size.
711 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
712 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
713 struct ext4_group_info
*grp
)
715 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
721 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
723 border
= 2 << sb
->s_blocksize_bits
;
726 /* find how many blocks can be covered since this position */
727 max
= ffs(first
| border
) - 1;
729 /* find how many blocks of power 2 we need to mark */
736 /* mark multiblock chunks only */
737 grp
->bb_counters
[min
]++;
739 mb_clear_bit(first
>> min
,
740 buddy
+ sbi
->s_mb_offsets
[min
]);
748 * Cache the order of the largest free extent we have available in this block
752 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
757 grp
->bb_largest_free_order
= -1; /* uninit */
759 bits
= sb
->s_blocksize_bits
+ 1;
760 for (i
= bits
; i
>= 0; i
--) {
761 if (grp
->bb_counters
[i
] > 0) {
762 grp
->bb_largest_free_order
= i
;
768 static noinline_for_stack
769 void ext4_mb_generate_buddy(struct super_block
*sb
,
770 void *buddy
, void *bitmap
, ext4_group_t group
)
772 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
773 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
774 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
779 unsigned fragments
= 0;
780 unsigned long long period
= get_cycles();
782 /* initialize buddy from bitmap which is aggregation
783 * of on-disk bitmap and preallocations */
784 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
785 grp
->bb_first_free
= i
;
789 i
= mb_find_next_bit(bitmap
, max
, i
);
793 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
795 grp
->bb_counters
[0]++;
797 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
799 grp
->bb_fragments
= fragments
;
801 if (free
!= grp
->bb_free
) {
802 ext4_grp_locked_error(sb
, group
, 0, 0,
803 "block bitmap and bg descriptor "
804 "inconsistent: %u vs %u free clusters",
807 * If we intend to continue, we consider group descriptor
808 * corrupt and update bb_free using bitmap value
811 ext4_mark_group_bitmap_corrupted(sb
, group
,
812 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
814 mb_set_largest_free_order(sb
, grp
);
816 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
818 period
= get_cycles() - period
;
819 spin_lock(&sbi
->s_bal_lock
);
820 sbi
->s_mb_buddies_generated
++;
821 sbi
->s_mb_generation_time
+= period
;
822 spin_unlock(&sbi
->s_bal_lock
);
825 /* The buddy information is attached the buddy cache inode
826 * for convenience. The information regarding each group
827 * is loaded via ext4_mb_load_buddy. The information involve
828 * block bitmap and buddy information. The information are
829 * stored in the inode as
832 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
835 * one block each for bitmap and buddy information.
836 * So for each group we take up 2 blocks. A page can
837 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
838 * So it can have information regarding groups_per_page which
839 * is blocks_per_page/2
841 * Locking note: This routine takes the block group lock of all groups
842 * for this page; do not hold this lock when calling this routine!
845 static int ext4_mb_init_cache(struct page
*page
, char *incore
, gfp_t gfp
)
847 ext4_group_t ngroups
;
853 ext4_group_t first_group
, group
;
855 struct super_block
*sb
;
856 struct buffer_head
*bhs
;
857 struct buffer_head
**bh
= NULL
;
861 struct ext4_group_info
*grinfo
;
863 inode
= page
->mapping
->host
;
865 ngroups
= ext4_get_groups_count(sb
);
866 blocksize
= i_blocksize(inode
);
867 blocks_per_page
= PAGE_SIZE
/ blocksize
;
869 mb_debug(sb
, "init page %lu\n", page
->index
);
871 groups_per_page
= blocks_per_page
>> 1;
872 if (groups_per_page
== 0)
875 /* allocate buffer_heads to read bitmaps */
876 if (groups_per_page
> 1) {
877 i
= sizeof(struct buffer_head
*) * groups_per_page
;
878 bh
= kzalloc(i
, gfp
);
886 first_group
= page
->index
* blocks_per_page
/ 2;
888 /* read all groups the page covers into the cache */
889 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
890 if (group
>= ngroups
)
893 grinfo
= ext4_get_group_info(sb
, group
);
895 * If page is uptodate then we came here after online resize
896 * which added some new uninitialized group info structs, so
897 * we must skip all initialized uptodate buddies on the page,
898 * which may be currently in use by an allocating task.
900 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
904 bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
, false);
906 err
= PTR_ERR(bh
[i
]);
910 mb_debug(sb
, "read bitmap for group %u\n", group
);
913 /* wait for I/O completion */
914 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
919 err2
= ext4_wait_block_bitmap(sb
, group
, bh
[i
]);
924 first_block
= page
->index
* blocks_per_page
;
925 for (i
= 0; i
< blocks_per_page
; i
++) {
926 group
= (first_block
+ i
) >> 1;
927 if (group
>= ngroups
)
930 if (!bh
[group
- first_group
])
931 /* skip initialized uptodate buddy */
934 if (!buffer_verified(bh
[group
- first_group
]))
935 /* Skip faulty bitmaps */
940 * data carry information regarding this
941 * particular group in the format specified
945 data
= page_address(page
) + (i
* blocksize
);
946 bitmap
= bh
[group
- first_group
]->b_data
;
949 * We place the buddy block and bitmap block
952 if ((first_block
+ i
) & 1) {
953 /* this is block of buddy */
954 BUG_ON(incore
== NULL
);
955 mb_debug(sb
, "put buddy for group %u in page %lu/%x\n",
956 group
, page
->index
, i
* blocksize
);
957 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
958 grinfo
= ext4_get_group_info(sb
, group
);
959 grinfo
->bb_fragments
= 0;
960 memset(grinfo
->bb_counters
, 0,
961 sizeof(*grinfo
->bb_counters
) *
962 (sb
->s_blocksize_bits
+2));
964 * incore got set to the group block bitmap below
966 ext4_lock_group(sb
, group
);
968 memset(data
, 0xff, blocksize
);
969 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
970 ext4_unlock_group(sb
, group
);
973 /* this is block of bitmap */
974 BUG_ON(incore
!= NULL
);
975 mb_debug(sb
, "put bitmap for group %u in page %lu/%x\n",
976 group
, page
->index
, i
* blocksize
);
977 trace_ext4_mb_bitmap_load(sb
, group
);
979 /* see comments in ext4_mb_put_pa() */
980 ext4_lock_group(sb
, group
);
981 memcpy(data
, bitmap
, blocksize
);
983 /* mark all preallocated blks used in in-core bitmap */
984 ext4_mb_generate_from_pa(sb
, data
, group
);
985 ext4_mb_generate_from_freelist(sb
, data
, group
);
986 ext4_unlock_group(sb
, group
);
988 /* set incore so that the buddy information can be
989 * generated using this
994 SetPageUptodate(page
);
998 for (i
= 0; i
< groups_per_page
; i
++)
1007 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1008 * on the same buddy page doesn't happen whild holding the buddy page lock.
1009 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1010 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1012 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
1013 ext4_group_t group
, struct ext4_buddy
*e4b
, gfp_t gfp
)
1015 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
1016 int block
, pnum
, poff
;
1017 int blocks_per_page
;
1020 e4b
->bd_buddy_page
= NULL
;
1021 e4b
->bd_bitmap_page
= NULL
;
1023 blocks_per_page
= PAGE_SIZE
/ sb
->s_blocksize
;
1025 * the buddy cache inode stores the block bitmap
1026 * and buddy information in consecutive blocks.
1027 * So for each group we need two blocks.
1030 pnum
= block
/ blocks_per_page
;
1031 poff
= block
% blocks_per_page
;
1032 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1035 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1036 e4b
->bd_bitmap_page
= page
;
1037 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1039 if (blocks_per_page
>= 2) {
1040 /* buddy and bitmap are on the same page */
1045 pnum
= block
/ blocks_per_page
;
1046 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1049 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1050 e4b
->bd_buddy_page
= page
;
1054 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1056 if (e4b
->bd_bitmap_page
) {
1057 unlock_page(e4b
->bd_bitmap_page
);
1058 put_page(e4b
->bd_bitmap_page
);
1060 if (e4b
->bd_buddy_page
) {
1061 unlock_page(e4b
->bd_buddy_page
);
1062 put_page(e4b
->bd_buddy_page
);
1067 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1068 * block group lock of all groups for this page; do not hold the BG lock when
1069 * calling this routine!
1071 static noinline_for_stack
1072 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
, gfp_t gfp
)
1075 struct ext4_group_info
*this_grp
;
1076 struct ext4_buddy e4b
;
1081 mb_debug(sb
, "init group %u\n", group
);
1082 this_grp
= ext4_get_group_info(sb
, group
);
1084 * This ensures that we don't reinit the buddy cache
1085 * page which map to the group from which we are already
1086 * allocating. If we are looking at the buddy cache we would
1087 * have taken a reference using ext4_mb_load_buddy and that
1088 * would have pinned buddy page to page cache.
1089 * The call to ext4_mb_get_buddy_page_lock will mark the
1092 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
, gfp
);
1093 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1095 * somebody initialized the group
1096 * return without doing anything
1101 page
= e4b
.bd_bitmap_page
;
1102 ret
= ext4_mb_init_cache(page
, NULL
, gfp
);
1105 if (!PageUptodate(page
)) {
1110 if (e4b
.bd_buddy_page
== NULL
) {
1112 * If both the bitmap and buddy are in
1113 * the same page we don't need to force
1119 /* init buddy cache */
1120 page
= e4b
.bd_buddy_page
;
1121 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
, gfp
);
1124 if (!PageUptodate(page
)) {
1129 ext4_mb_put_buddy_page_lock(&e4b
);
1134 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1135 * block group lock of all groups for this page; do not hold the BG lock when
1136 * calling this routine!
1138 static noinline_for_stack
int
1139 ext4_mb_load_buddy_gfp(struct super_block
*sb
, ext4_group_t group
,
1140 struct ext4_buddy
*e4b
, gfp_t gfp
)
1142 int blocks_per_page
;
1148 struct ext4_group_info
*grp
;
1149 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1150 struct inode
*inode
= sbi
->s_buddy_cache
;
1153 mb_debug(sb
, "load group %u\n", group
);
1155 blocks_per_page
= PAGE_SIZE
/ sb
->s_blocksize
;
1156 grp
= ext4_get_group_info(sb
, group
);
1158 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1161 e4b
->bd_group
= group
;
1162 e4b
->bd_buddy_page
= NULL
;
1163 e4b
->bd_bitmap_page
= NULL
;
1165 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1167 * we need full data about the group
1168 * to make a good selection
1170 ret
= ext4_mb_init_group(sb
, group
, gfp
);
1176 * the buddy cache inode stores the block bitmap
1177 * and buddy information in consecutive blocks.
1178 * So for each group we need two blocks.
1181 pnum
= block
/ blocks_per_page
;
1182 poff
= block
% blocks_per_page
;
1184 /* we could use find_or_create_page(), but it locks page
1185 * what we'd like to avoid in fast path ... */
1186 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1187 if (page
== NULL
|| !PageUptodate(page
)) {
1190 * drop the page reference and try
1191 * to get the page with lock. If we
1192 * are not uptodate that implies
1193 * somebody just created the page but
1194 * is yet to initialize the same. So
1195 * wait for it to initialize.
1198 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1200 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1201 if (!PageUptodate(page
)) {
1202 ret
= ext4_mb_init_cache(page
, NULL
, gfp
);
1207 mb_cmp_bitmaps(e4b
, page_address(page
) +
1208 (poff
* sb
->s_blocksize
));
1217 if (!PageUptodate(page
)) {
1222 /* Pages marked accessed already */
1223 e4b
->bd_bitmap_page
= page
;
1224 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1227 pnum
= block
/ blocks_per_page
;
1228 poff
= block
% blocks_per_page
;
1230 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1231 if (page
== NULL
|| !PageUptodate(page
)) {
1234 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1236 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1237 if (!PageUptodate(page
)) {
1238 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
,
1252 if (!PageUptodate(page
)) {
1257 /* Pages marked accessed already */
1258 e4b
->bd_buddy_page
= page
;
1259 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1266 if (e4b
->bd_bitmap_page
)
1267 put_page(e4b
->bd_bitmap_page
);
1268 if (e4b
->bd_buddy_page
)
1269 put_page(e4b
->bd_buddy_page
);
1270 e4b
->bd_buddy
= NULL
;
1271 e4b
->bd_bitmap
= NULL
;
1275 static int ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1276 struct ext4_buddy
*e4b
)
1278 return ext4_mb_load_buddy_gfp(sb
, group
, e4b
, GFP_NOFS
);
1281 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1283 if (e4b
->bd_bitmap_page
)
1284 put_page(e4b
->bd_bitmap_page
);
1285 if (e4b
->bd_buddy_page
)
1286 put_page(e4b
->bd_buddy_page
);
1290 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1295 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1296 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1298 while (order
<= e4b
->bd_blkbits
+ 1) {
1299 bb
= mb_find_buddy(e4b
, order
, &max
);
1300 if (!mb_test_bit(block
>> order
, bb
)) {
1301 /* this block is part of buddy of order 'order' */
1309 static void mb_clear_bits(void *bm
, int cur
, int len
)
1315 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1316 /* fast path: clear whole word at once */
1317 addr
= bm
+ (cur
>> 3);
1322 mb_clear_bit(cur
, bm
);
1327 /* clear bits in given range
1328 * will return first found zero bit if any, -1 otherwise
1330 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1337 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1338 /* fast path: clear whole word at once */
1339 addr
= bm
+ (cur
>> 3);
1340 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1341 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1346 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1354 void ext4_set_bits(void *bm
, int cur
, int len
)
1360 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1361 /* fast path: set whole word at once */
1362 addr
= bm
+ (cur
>> 3);
1367 mb_set_bit(cur
, bm
);
1372 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1374 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1375 mb_clear_bit(*bit
, bitmap
);
1381 mb_set_bit(*bit
, bitmap
);
1386 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1390 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1395 /* Bits in range [first; last] are known to be set since
1396 * corresponding blocks were allocated. Bits in range
1397 * (first; last) will stay set because they form buddies on
1398 * upper layer. We just deal with borders if they don't
1399 * align with upper layer and then go up.
1400 * Releasing entire group is all about clearing
1401 * single bit of highest order buddy.
1405 * ---------------------------------
1407 * ---------------------------------
1408 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1409 * ---------------------------------
1411 * \_____________________/
1413 * Neither [1] nor [6] is aligned to above layer.
1414 * Left neighbour [0] is free, so mark it busy,
1415 * decrease bb_counters and extend range to
1417 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1418 * mark [6] free, increase bb_counters and shrink range to
1420 * Then shift range to [0; 2], go up and do the same.
1425 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1427 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1432 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1433 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1434 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1443 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1444 int first
, int count
)
1446 int left_is_free
= 0;
1447 int right_is_free
= 0;
1449 int last
= first
+ count
- 1;
1450 struct super_block
*sb
= e4b
->bd_sb
;
1452 if (WARN_ON(count
== 0))
1454 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1455 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1456 /* Don't bother if the block group is corrupt. */
1457 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
)))
1460 mb_check_buddy(e4b
);
1461 mb_free_blocks_double(inode
, e4b
, first
, count
);
1463 this_cpu_inc(discard_pa_seq
);
1464 e4b
->bd_info
->bb_free
+= count
;
1465 if (first
< e4b
->bd_info
->bb_first_free
)
1466 e4b
->bd_info
->bb_first_free
= first
;
1468 /* access memory sequentially: check left neighbour,
1469 * clear range and then check right neighbour
1472 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1473 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1474 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1475 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1477 if (unlikely(block
!= -1)) {
1478 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1479 ext4_fsblk_t blocknr
;
1481 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1482 blocknr
+= EXT4_C2B(sbi
, block
);
1483 if (!(sbi
->s_mount_state
& EXT4_FC_REPLAY
)) {
1484 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1485 inode
? inode
->i_ino
: 0,
1487 "freeing already freed block (bit %u); block bitmap corrupt.",
1489 ext4_mark_group_bitmap_corrupted(
1491 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
1496 /* let's maintain fragments counter */
1497 if (left_is_free
&& right_is_free
)
1498 e4b
->bd_info
->bb_fragments
--;
1499 else if (!left_is_free
&& !right_is_free
)
1500 e4b
->bd_info
->bb_fragments
++;
1502 /* buddy[0] == bd_bitmap is a special case, so handle
1503 * it right away and let mb_buddy_mark_free stay free of
1504 * zero order checks.
1505 * Check if neighbours are to be coaleasced,
1506 * adjust bitmap bb_counters and borders appropriately.
1509 first
+= !left_is_free
;
1510 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1513 last
-= !right_is_free
;
1514 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1518 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1521 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1522 mb_check_buddy(e4b
);
1525 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1526 int needed
, struct ext4_free_extent
*ex
)
1532 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1535 buddy
= mb_find_buddy(e4b
, 0, &max
);
1536 BUG_ON(buddy
== NULL
);
1537 BUG_ON(block
>= max
);
1538 if (mb_test_bit(block
, buddy
)) {
1545 /* find actual order */
1546 order
= mb_find_order_for_block(e4b
, block
);
1547 block
= block
>> order
;
1549 ex
->fe_len
= 1 << order
;
1550 ex
->fe_start
= block
<< order
;
1551 ex
->fe_group
= e4b
->bd_group
;
1553 /* calc difference from given start */
1554 next
= next
- ex
->fe_start
;
1556 ex
->fe_start
+= next
;
1558 while (needed
> ex
->fe_len
&&
1559 mb_find_buddy(e4b
, order
, &max
)) {
1561 if (block
+ 1 >= max
)
1564 next
= (block
+ 1) * (1 << order
);
1565 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1568 order
= mb_find_order_for_block(e4b
, next
);
1570 block
= next
>> order
;
1571 ex
->fe_len
+= 1 << order
;
1574 if (ex
->fe_start
+ ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(e4b
->bd_sb
)) {
1575 /* Should never happen! (but apparently sometimes does?!?) */
1577 ext4_error(e4b
->bd_sb
, "corruption or bug in mb_find_extent "
1578 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1579 block
, order
, needed
, ex
->fe_group
, ex
->fe_start
,
1580 ex
->fe_len
, ex
->fe_logical
);
1588 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1594 int start
= ex
->fe_start
;
1595 int len
= ex
->fe_len
;
1600 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1601 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1602 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1603 mb_check_buddy(e4b
);
1604 mb_mark_used_double(e4b
, start
, len
);
1606 this_cpu_inc(discard_pa_seq
);
1607 e4b
->bd_info
->bb_free
-= len
;
1608 if (e4b
->bd_info
->bb_first_free
== start
)
1609 e4b
->bd_info
->bb_first_free
+= len
;
1611 /* let's maintain fragments counter */
1613 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1614 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1615 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1617 e4b
->bd_info
->bb_fragments
++;
1618 else if (!mlen
&& !max
)
1619 e4b
->bd_info
->bb_fragments
--;
1621 /* let's maintain buddy itself */
1623 ord
= mb_find_order_for_block(e4b
, start
);
1625 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1626 /* the whole chunk may be allocated at once! */
1628 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1629 BUG_ON((start
>> ord
) >= max
);
1630 mb_set_bit(start
>> ord
, buddy
);
1631 e4b
->bd_info
->bb_counters
[ord
]--;
1638 /* store for history */
1640 ret
= len
| (ord
<< 16);
1642 /* we have to split large buddy */
1644 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1645 mb_set_bit(start
>> ord
, buddy
);
1646 e4b
->bd_info
->bb_counters
[ord
]--;
1649 cur
= (start
>> ord
) & ~1U;
1650 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1651 mb_clear_bit(cur
, buddy
);
1652 mb_clear_bit(cur
+ 1, buddy
);
1653 e4b
->bd_info
->bb_counters
[ord
]++;
1654 e4b
->bd_info
->bb_counters
[ord
]++;
1656 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1658 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1659 mb_check_buddy(e4b
);
1665 * Must be called under group lock!
1667 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1668 struct ext4_buddy
*e4b
)
1670 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1673 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1674 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1676 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1677 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1678 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1680 /* preallocation can change ac_b_ex, thus we store actually
1681 * allocated blocks for history */
1682 ac
->ac_f_ex
= ac
->ac_b_ex
;
1684 ac
->ac_status
= AC_STATUS_FOUND
;
1685 ac
->ac_tail
= ret
& 0xffff;
1686 ac
->ac_buddy
= ret
>> 16;
1689 * take the page reference. We want the page to be pinned
1690 * so that we don't get a ext4_mb_init_cache_call for this
1691 * group until we update the bitmap. That would mean we
1692 * double allocate blocks. The reference is dropped
1693 * in ext4_mb_release_context
1695 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1696 get_page(ac
->ac_bitmap_page
);
1697 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1698 get_page(ac
->ac_buddy_page
);
1699 /* store last allocated for subsequent stream allocation */
1700 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1701 spin_lock(&sbi
->s_md_lock
);
1702 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1703 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1704 spin_unlock(&sbi
->s_md_lock
);
1707 * As we've just preallocated more space than
1708 * user requested originally, we store allocated
1709 * space in a special descriptor.
1711 if (ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
1712 ext4_mb_new_preallocation(ac
);
1716 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1717 struct ext4_buddy
*e4b
,
1720 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1721 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1722 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1723 struct ext4_free_extent ex
;
1726 if (ac
->ac_status
== AC_STATUS_FOUND
)
1729 * We don't want to scan for a whole year
1731 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1732 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1733 ac
->ac_status
= AC_STATUS_BREAK
;
1738 * Haven't found good chunk so far, let's continue
1740 if (bex
->fe_len
< gex
->fe_len
)
1743 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1744 && bex
->fe_group
== e4b
->bd_group
) {
1745 /* recheck chunk's availability - we don't know
1746 * when it was found (within this lock-unlock
1748 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1749 if (max
>= gex
->fe_len
) {
1750 ext4_mb_use_best_found(ac
, e4b
);
1757 * The routine checks whether found extent is good enough. If it is,
1758 * then the extent gets marked used and flag is set to the context
1759 * to stop scanning. Otherwise, the extent is compared with the
1760 * previous found extent and if new one is better, then it's stored
1761 * in the context. Later, the best found extent will be used, if
1762 * mballoc can't find good enough extent.
1764 * FIXME: real allocation policy is to be designed yet!
1766 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1767 struct ext4_free_extent
*ex
,
1768 struct ext4_buddy
*e4b
)
1770 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1771 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1773 BUG_ON(ex
->fe_len
<= 0);
1774 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1775 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1776 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1781 * The special case - take what you catch first
1783 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1785 ext4_mb_use_best_found(ac
, e4b
);
1790 * Let's check whether the chuck is good enough
1792 if (ex
->fe_len
== gex
->fe_len
) {
1794 ext4_mb_use_best_found(ac
, e4b
);
1799 * If this is first found extent, just store it in the context
1801 if (bex
->fe_len
== 0) {
1807 * If new found extent is better, store it in the context
1809 if (bex
->fe_len
< gex
->fe_len
) {
1810 /* if the request isn't satisfied, any found extent
1811 * larger than previous best one is better */
1812 if (ex
->fe_len
> bex
->fe_len
)
1814 } else if (ex
->fe_len
> gex
->fe_len
) {
1815 /* if the request is satisfied, then we try to find
1816 * an extent that still satisfy the request, but is
1817 * smaller than previous one */
1818 if (ex
->fe_len
< bex
->fe_len
)
1822 ext4_mb_check_limits(ac
, e4b
, 0);
1825 static noinline_for_stack
1826 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1827 struct ext4_buddy
*e4b
)
1829 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1830 ext4_group_t group
= ex
.fe_group
;
1834 BUG_ON(ex
.fe_len
<= 0);
1835 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1839 ext4_lock_group(ac
->ac_sb
, group
);
1840 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1844 ext4_mb_use_best_found(ac
, e4b
);
1847 ext4_unlock_group(ac
->ac_sb
, group
);
1848 ext4_mb_unload_buddy(e4b
);
1853 static noinline_for_stack
1854 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1855 struct ext4_buddy
*e4b
)
1857 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1860 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1861 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1862 struct ext4_free_extent ex
;
1864 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1866 if (grp
->bb_free
== 0)
1869 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1873 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))) {
1874 ext4_mb_unload_buddy(e4b
);
1878 ext4_lock_group(ac
->ac_sb
, group
);
1879 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1880 ac
->ac_g_ex
.fe_len
, &ex
);
1881 ex
.fe_logical
= 0xDEADFA11; /* debug value */
1883 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1886 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1888 /* use do_div to get remainder (would be 64-bit modulo) */
1889 if (do_div(start
, sbi
->s_stripe
) == 0) {
1892 ext4_mb_use_best_found(ac
, e4b
);
1894 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1895 BUG_ON(ex
.fe_len
<= 0);
1896 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1897 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1900 ext4_mb_use_best_found(ac
, e4b
);
1901 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1902 /* Sometimes, caller may want to merge even small
1903 * number of blocks to an existing extent */
1904 BUG_ON(ex
.fe_len
<= 0);
1905 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1906 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1909 ext4_mb_use_best_found(ac
, e4b
);
1911 ext4_unlock_group(ac
->ac_sb
, group
);
1912 ext4_mb_unload_buddy(e4b
);
1918 * The routine scans buddy structures (not bitmap!) from given order
1919 * to max order and tries to find big enough chunk to satisfy the req
1921 static noinline_for_stack
1922 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1923 struct ext4_buddy
*e4b
)
1925 struct super_block
*sb
= ac
->ac_sb
;
1926 struct ext4_group_info
*grp
= e4b
->bd_info
;
1932 BUG_ON(ac
->ac_2order
<= 0);
1933 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1934 if (grp
->bb_counters
[i
] == 0)
1937 buddy
= mb_find_buddy(e4b
, i
, &max
);
1938 BUG_ON(buddy
== NULL
);
1940 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1942 ext4_grp_locked_error(ac
->ac_sb
, e4b
->bd_group
, 0, 0,
1943 "%d free clusters of order %d. But found 0",
1944 grp
->bb_counters
[i
], i
);
1945 ext4_mark_group_bitmap_corrupted(ac
->ac_sb
,
1947 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
1952 ac
->ac_b_ex
.fe_len
= 1 << i
;
1953 ac
->ac_b_ex
.fe_start
= k
<< i
;
1954 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1956 ext4_mb_use_best_found(ac
, e4b
);
1958 BUG_ON(ac
->ac_f_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1960 if (EXT4_SB(sb
)->s_mb_stats
)
1961 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1968 * The routine scans the group and measures all found extents.
1969 * In order to optimize scanning, caller must pass number of
1970 * free blocks in the group, so the routine can know upper limit.
1972 static noinline_for_stack
1973 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1974 struct ext4_buddy
*e4b
)
1976 struct super_block
*sb
= ac
->ac_sb
;
1977 void *bitmap
= e4b
->bd_bitmap
;
1978 struct ext4_free_extent ex
;
1982 free
= e4b
->bd_info
->bb_free
;
1983 if (WARN_ON(free
<= 0))
1986 i
= e4b
->bd_info
->bb_first_free
;
1988 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1989 i
= mb_find_next_zero_bit(bitmap
,
1990 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1991 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1993 * IF we have corrupt bitmap, we won't find any
1994 * free blocks even though group info says we
1997 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1998 "%d free clusters as per "
1999 "group info. But bitmap says 0",
2001 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
2002 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
2006 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
2007 if (WARN_ON(ex
.fe_len
<= 0))
2009 if (free
< ex
.fe_len
) {
2010 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
2011 "%d free clusters as per "
2012 "group info. But got %d blocks",
2014 ext4_mark_group_bitmap_corrupted(sb
, e4b
->bd_group
,
2015 EXT4_GROUP_INFO_BBITMAP_CORRUPT
);
2017 * The number of free blocks differs. This mostly
2018 * indicate that the bitmap is corrupt. So exit
2019 * without claiming the space.
2023 ex
.fe_logical
= 0xDEADC0DE; /* debug value */
2024 ext4_mb_measure_extent(ac
, &ex
, e4b
);
2030 ext4_mb_check_limits(ac
, e4b
, 1);
2034 * This is a special case for storages like raid5
2035 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2037 static noinline_for_stack
2038 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
2039 struct ext4_buddy
*e4b
)
2041 struct super_block
*sb
= ac
->ac_sb
;
2042 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2043 void *bitmap
= e4b
->bd_bitmap
;
2044 struct ext4_free_extent ex
;
2045 ext4_fsblk_t first_group_block
;
2050 BUG_ON(sbi
->s_stripe
== 0);
2052 /* find first stripe-aligned block in group */
2053 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
2055 a
= first_group_block
+ sbi
->s_stripe
- 1;
2056 do_div(a
, sbi
->s_stripe
);
2057 i
= (a
* sbi
->s_stripe
) - first_group_block
;
2059 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
2060 if (!mb_test_bit(i
, bitmap
)) {
2061 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
2062 if (max
>= sbi
->s_stripe
) {
2064 ex
.fe_logical
= 0xDEADF00D; /* debug value */
2066 ext4_mb_use_best_found(ac
, e4b
);
2075 * This is also called BEFORE we load the buddy bitmap.
2076 * Returns either 1 or 0 indicating that the group is either suitable
2077 * for the allocation or not.
2079 static bool ext4_mb_good_group(struct ext4_allocation_context
*ac
,
2080 ext4_group_t group
, int cr
)
2082 ext4_grpblk_t free
, fragments
;
2083 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
2084 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2086 BUG_ON(cr
< 0 || cr
>= 4);
2088 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2091 free
= grp
->bb_free
;
2095 fragments
= grp
->bb_fragments
;
2101 BUG_ON(ac
->ac_2order
== 0);
2103 /* Avoid using the first bg of a flexgroup for data files */
2104 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2105 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2106 ((group
% flex_size
) == 0))
2109 if (free
< ac
->ac_g_ex
.fe_len
)
2112 if (ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1)
2115 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2120 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2124 if (free
>= ac
->ac_g_ex
.fe_len
)
2137 * This could return negative error code if something goes wrong
2138 * during ext4_mb_init_group(). This should not be called with
2139 * ext4_lock_group() held.
2141 static int ext4_mb_good_group_nolock(struct ext4_allocation_context
*ac
,
2142 ext4_group_t group
, int cr
)
2144 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2145 struct super_block
*sb
= ac
->ac_sb
;
2146 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2147 bool should_lock
= ac
->ac_flags
& EXT4_MB_STRICT_CHECK
;
2152 ext4_lock_group(sb
, group
);
2153 free
= grp
->bb_free
;
2156 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
2158 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2161 ext4_unlock_group(sb
, group
);
2163 /* We only do this if the grp has never been initialized */
2164 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
2165 struct ext4_group_desc
*gdp
=
2166 ext4_get_group_desc(sb
, group
, NULL
);
2169 /* cr=0/1 is a very optimistic search to find large
2170 * good chunks almost for free. If buddy data is not
2171 * ready, then this optimization makes no sense. But
2172 * we never skip the first block group in a flex_bg,
2173 * since this gets used for metadata block allocation,
2174 * and we want to make sure we locate metadata blocks
2175 * in the first block group in the flex_bg if possible.
2178 (!sbi
->s_log_groups_per_flex
||
2179 ((group
& ((1 << sbi
->s_log_groups_per_flex
) - 1)) != 0)) &&
2180 !(ext4_has_group_desc_csum(sb
) &&
2181 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))))
2183 ret
= ext4_mb_init_group(sb
, group
, GFP_NOFS
);
2189 ext4_lock_group(sb
, group
);
2190 ret
= ext4_mb_good_group(ac
, group
, cr
);
2193 ext4_unlock_group(sb
, group
);
2198 * Start prefetching @nr block bitmaps starting at @group.
2199 * Return the next group which needs to be prefetched.
2201 ext4_group_t
ext4_mb_prefetch(struct super_block
*sb
, ext4_group_t group
,
2202 unsigned int nr
, int *cnt
)
2204 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2205 struct buffer_head
*bh
;
2206 struct blk_plug plug
;
2208 blk_start_plug(&plug
);
2210 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, group
,
2212 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
2215 * Prefetch block groups with free blocks; but don't
2216 * bother if it is marked uninitialized on disk, since
2217 * it won't require I/O to read. Also only try to
2218 * prefetch once, so we avoid getblk() call, which can
2221 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp
) &&
2222 EXT4_MB_GRP_NEED_INIT(grp
) &&
2223 ext4_free_group_clusters(sb
, gdp
) > 0 &&
2224 !(ext4_has_group_desc_csum(sb
) &&
2225 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)))) {
2226 bh
= ext4_read_block_bitmap_nowait(sb
, group
, true);
2227 if (bh
&& !IS_ERR(bh
)) {
2228 if (!buffer_uptodate(bh
) && cnt
)
2233 if (++group
>= ngroups
)
2236 blk_finish_plug(&plug
);
2241 * Prefetching reads the block bitmap into the buffer cache; but we
2242 * need to make sure that the buddy bitmap in the page cache has been
2243 * initialized. Note that ext4_mb_init_group() will block if the I/O
2244 * is not yet completed, or indeed if it was not initiated by
2245 * ext4_mb_prefetch did not start the I/O.
2247 * TODO: We should actually kick off the buddy bitmap setup in a work
2248 * queue when the buffer I/O is completed, so that we don't block
2249 * waiting for the block allocation bitmap read to finish when
2250 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2252 void ext4_mb_prefetch_fini(struct super_block
*sb
, ext4_group_t group
,
2256 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, group
,
2258 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
2261 group
= ext4_get_groups_count(sb
);
2263 grp
= ext4_get_group_info(sb
, group
);
2265 if (EXT4_MB_GRP_NEED_INIT(grp
) &&
2266 ext4_free_group_clusters(sb
, gdp
) > 0 &&
2267 !(ext4_has_group_desc_csum(sb
) &&
2268 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)))) {
2269 if (ext4_mb_init_group(sb
, group
, GFP_NOFS
))
2275 static noinline_for_stack
int
2276 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2278 ext4_group_t prefetch_grp
= 0, ngroups
, group
, i
;
2280 int err
= 0, first_err
= 0;
2281 unsigned int nr
= 0, prefetch_ios
= 0;
2282 struct ext4_sb_info
*sbi
;
2283 struct super_block
*sb
;
2284 struct ext4_buddy e4b
;
2289 ngroups
= ext4_get_groups_count(sb
);
2290 /* non-extent files are limited to low blocks/groups */
2291 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2292 ngroups
= sbi
->s_blockfile_groups
;
2294 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2296 /* first, try the goal */
2297 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2298 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2301 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2305 * ac->ac_2order is set only if the fe_len is a power of 2
2306 * if ac->ac_2order is set we also set criteria to 0 so that we
2307 * try exact allocation using buddy.
2309 i
= fls(ac
->ac_g_ex
.fe_len
);
2312 * We search using buddy data only if the order of the request
2313 * is greater than equal to the sbi_s_mb_order2_reqs
2314 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2315 * We also support searching for power-of-two requests only for
2316 * requests upto maximum buddy size we have constructed.
2318 if (i
>= sbi
->s_mb_order2_reqs
&& i
<= sb
->s_blocksize_bits
+ 2) {
2320 * This should tell if fe_len is exactly power of 2
2322 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2323 ac
->ac_2order
= array_index_nospec(i
- 1,
2324 sb
->s_blocksize_bits
+ 2);
2327 /* if stream allocation is enabled, use global goal */
2328 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2329 /* TBD: may be hot point */
2330 spin_lock(&sbi
->s_md_lock
);
2331 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2332 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2333 spin_unlock(&sbi
->s_md_lock
);
2336 /* Let's just scan groups to find more-less suitable blocks */
2337 cr
= ac
->ac_2order
? 0 : 1;
2339 * cr == 0 try to get exact allocation,
2340 * cr == 3 try to get anything
2343 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2344 ac
->ac_criteria
= cr
;
2346 * searching for the right group start
2347 * from the goal value specified
2349 group
= ac
->ac_g_ex
.fe_group
;
2350 prefetch_grp
= group
;
2352 for (i
= 0; i
< ngroups
; group
++, i
++) {
2356 * Artificially restricted ngroups for non-extent
2357 * files makes group > ngroups possible on first loop.
2359 if (group
>= ngroups
)
2363 * Batch reads of the block allocation bitmaps
2364 * to get multiple READs in flight; limit
2365 * prefetching at cr=0/1, otherwise mballoc can
2366 * spend a lot of time loading imperfect groups
2368 if ((prefetch_grp
== group
) &&
2370 prefetch_ios
< sbi
->s_mb_prefetch_limit
)) {
2371 unsigned int curr_ios
= prefetch_ios
;
2373 nr
= sbi
->s_mb_prefetch
;
2374 if (ext4_has_feature_flex_bg(sb
)) {
2375 nr
= 1 << sbi
->s_log_groups_per_flex
;
2376 nr
-= group
& (nr
- 1);
2377 nr
= min(nr
, sbi
->s_mb_prefetch
);
2379 prefetch_grp
= ext4_mb_prefetch(sb
, group
,
2381 if (prefetch_ios
== curr_ios
)
2385 /* This now checks without needing the buddy page */
2386 ret
= ext4_mb_good_group_nolock(ac
, group
, cr
);
2393 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2397 ext4_lock_group(sb
, group
);
2400 * We need to check again after locking the
2403 ret
= ext4_mb_good_group(ac
, group
, cr
);
2405 ext4_unlock_group(sb
, group
);
2406 ext4_mb_unload_buddy(&e4b
);
2410 ac
->ac_groups_scanned
++;
2412 ext4_mb_simple_scan_group(ac
, &e4b
);
2413 else if (cr
== 1 && sbi
->s_stripe
&&
2414 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2415 ext4_mb_scan_aligned(ac
, &e4b
);
2417 ext4_mb_complex_scan_group(ac
, &e4b
);
2419 ext4_unlock_group(sb
, group
);
2420 ext4_mb_unload_buddy(&e4b
);
2422 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2427 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2428 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2430 * We've been searching too long. Let's try to allocate
2431 * the best chunk we've found so far
2433 ext4_mb_try_best_found(ac
, &e4b
);
2434 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2436 * Someone more lucky has already allocated it.
2437 * The only thing we can do is just take first
2440 lost
= atomic_inc_return(&sbi
->s_mb_lost_chunks
);
2441 mb_debug(sb
, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2442 ac
->ac_b_ex
.fe_group
, ac
->ac_b_ex
.fe_start
,
2443 ac
->ac_b_ex
.fe_len
, lost
);
2445 ac
->ac_b_ex
.fe_group
= 0;
2446 ac
->ac_b_ex
.fe_start
= 0;
2447 ac
->ac_b_ex
.fe_len
= 0;
2448 ac
->ac_status
= AC_STATUS_CONTINUE
;
2449 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2455 if (!err
&& ac
->ac_status
!= AC_STATUS_FOUND
&& first_err
)
2458 mb_debug(sb
, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2459 ac
->ac_b_ex
.fe_len
, ac
->ac_o_ex
.fe_len
, ac
->ac_status
,
2460 ac
->ac_flags
, cr
, err
);
2463 ext4_mb_prefetch_fini(sb
, prefetch_grp
, nr
);
2468 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2470 struct super_block
*sb
= PDE_DATA(file_inode(seq
->file
));
2473 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2476 return (void *) ((unsigned long) group
);
2479 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2481 struct super_block
*sb
= PDE_DATA(file_inode(seq
->file
));
2485 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2488 return (void *) ((unsigned long) group
);
2491 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2493 struct super_block
*sb
= PDE_DATA(file_inode(seq
->file
));
2494 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2496 int err
, buddy_loaded
= 0;
2497 struct ext4_buddy e4b
;
2498 struct ext4_group_info
*grinfo
;
2499 unsigned char blocksize_bits
= min_t(unsigned char,
2500 sb
->s_blocksize_bits
,
2501 EXT4_MAX_BLOCK_LOG_SIZE
);
2503 struct ext4_group_info info
;
2504 ext4_grpblk_t counters
[EXT4_MAX_BLOCK_LOG_SIZE
+ 2];
2509 seq_puts(seq
, "#group: free frags first ["
2510 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2511 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2513 i
= (blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2514 sizeof(struct ext4_group_info
);
2516 grinfo
= ext4_get_group_info(sb
, group
);
2517 /* Load the group info in memory only if not already loaded. */
2518 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2519 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2521 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2527 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2530 ext4_mb_unload_buddy(&e4b
);
2532 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2533 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2534 for (i
= 0; i
<= 13; i
++)
2535 seq_printf(seq
, " %-5u", i
<= blocksize_bits
+ 1 ?
2536 sg
.info
.bb_counters
[i
] : 0);
2537 seq_puts(seq
, " ]\n");
2542 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2546 const struct seq_operations ext4_mb_seq_groups_ops
= {
2547 .start
= ext4_mb_seq_groups_start
,
2548 .next
= ext4_mb_seq_groups_next
,
2549 .stop
= ext4_mb_seq_groups_stop
,
2550 .show
= ext4_mb_seq_groups_show
,
2553 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2555 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2556 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2563 * Allocate the top-level s_group_info array for the specified number
2566 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2568 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2570 struct ext4_group_info
***old_groupinfo
, ***new_groupinfo
;
2572 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2573 EXT4_DESC_PER_BLOCK_BITS(sb
);
2574 if (size
<= sbi
->s_group_info_size
)
2577 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2578 new_groupinfo
= kvzalloc(size
, GFP_KERNEL
);
2579 if (!new_groupinfo
) {
2580 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2584 old_groupinfo
= rcu_dereference(sbi
->s_group_info
);
2586 memcpy(new_groupinfo
, old_groupinfo
,
2587 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2589 rcu_assign_pointer(sbi
->s_group_info
, new_groupinfo
);
2590 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2592 ext4_kvfree_array_rcu(old_groupinfo
);
2593 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2594 sbi
->s_group_info_size
);
2598 /* Create and initialize ext4_group_info data for the given group. */
2599 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2600 struct ext4_group_desc
*desc
)
2604 int idx
= group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
2605 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2606 struct ext4_group_info
**meta_group_info
;
2607 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2610 * First check if this group is the first of a reserved block.
2611 * If it's true, we have to allocate a new table of pointers
2612 * to ext4_group_info structures
2614 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2615 metalen
= sizeof(*meta_group_info
) <<
2616 EXT4_DESC_PER_BLOCK_BITS(sb
);
2617 meta_group_info
= kmalloc(metalen
, GFP_NOFS
);
2618 if (meta_group_info
== NULL
) {
2619 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2620 "for a buddy group");
2621 goto exit_meta_group_info
;
2624 rcu_dereference(sbi
->s_group_info
)[idx
] = meta_group_info
;
2628 meta_group_info
= sbi_array_rcu_deref(sbi
, s_group_info
, idx
);
2629 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2631 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_NOFS
);
2632 if (meta_group_info
[i
] == NULL
) {
2633 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2634 goto exit_group_info
;
2636 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2637 &(meta_group_info
[i
]->bb_state
));
2640 * initialize bb_free to be able to skip
2641 * empty groups without initialization
2643 if (ext4_has_group_desc_csum(sb
) &&
2644 (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
2645 meta_group_info
[i
]->bb_free
=
2646 ext4_free_clusters_after_init(sb
, group
, desc
);
2648 meta_group_info
[i
]->bb_free
=
2649 ext4_free_group_clusters(sb
, desc
);
2652 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2653 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2654 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2655 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2657 mb_group_bb_bitmap_alloc(sb
, meta_group_info
[i
], group
);
2661 /* If a meta_group_info table has been allocated, release it now */
2662 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2663 struct ext4_group_info
***group_info
;
2666 group_info
= rcu_dereference(sbi
->s_group_info
);
2667 kfree(group_info
[idx
]);
2668 group_info
[idx
] = NULL
;
2671 exit_meta_group_info
:
2673 } /* ext4_mb_add_groupinfo */
2675 static int ext4_mb_init_backend(struct super_block
*sb
)
2677 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2679 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2681 struct ext4_group_desc
*desc
;
2682 struct ext4_group_info
***group_info
;
2683 struct kmem_cache
*cachep
;
2685 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2689 sbi
->s_buddy_cache
= new_inode(sb
);
2690 if (sbi
->s_buddy_cache
== NULL
) {
2691 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2694 /* To avoid potentially colliding with an valid on-disk inode number,
2695 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2696 * not in the inode hash, so it should never be found by iget(), but
2697 * this will avoid confusion if it ever shows up during debugging. */
2698 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2699 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2700 for (i
= 0; i
< ngroups
; i
++) {
2702 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2704 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2707 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2711 if (ext4_has_feature_flex_bg(sb
)) {
2712 /* a single flex group is supposed to be read by a single IO */
2713 sbi
->s_mb_prefetch
= min(1 << sbi
->s_es
->s_log_groups_per_flex
,
2714 BLK_MAX_SEGMENT_SIZE
>> (sb
->s_blocksize_bits
- 9));
2715 sbi
->s_mb_prefetch
*= 8; /* 8 prefetch IOs in flight at most */
2717 sbi
->s_mb_prefetch
= 32;
2719 if (sbi
->s_mb_prefetch
> ext4_get_groups_count(sb
))
2720 sbi
->s_mb_prefetch
= ext4_get_groups_count(sb
);
2721 /* now many real IOs to prefetch within a single allocation at cr=0
2722 * given cr=0 is an CPU-related optimization we shouldn't try to
2723 * load too many groups, at some point we should start to use what
2724 * we've got in memory.
2725 * with an average random access time 5ms, it'd take a second to get
2726 * 200 groups (* N with flex_bg), so let's make this limit 4
2728 sbi
->s_mb_prefetch_limit
= sbi
->s_mb_prefetch
* 4;
2729 if (sbi
->s_mb_prefetch_limit
> ext4_get_groups_count(sb
))
2730 sbi
->s_mb_prefetch_limit
= ext4_get_groups_count(sb
);
2735 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2737 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2738 i
= sbi
->s_group_info_size
;
2740 group_info
= rcu_dereference(sbi
->s_group_info
);
2742 kfree(group_info
[i
]);
2744 iput(sbi
->s_buddy_cache
);
2747 kvfree(rcu_dereference(sbi
->s_group_info
));
2752 static void ext4_groupinfo_destroy_slabs(void)
2756 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2757 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2758 ext4_groupinfo_caches
[i
] = NULL
;
2762 static int ext4_groupinfo_create_slab(size_t size
)
2764 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2766 int blocksize_bits
= order_base_2(size
);
2767 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2768 struct kmem_cache
*cachep
;
2770 if (cache_index
>= NR_GRPINFO_CACHES
)
2773 if (unlikely(cache_index
< 0))
2776 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2777 if (ext4_groupinfo_caches
[cache_index
]) {
2778 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2779 return 0; /* Already created */
2782 slab_size
= offsetof(struct ext4_group_info
,
2783 bb_counters
[blocksize_bits
+ 2]);
2785 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2786 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2789 ext4_groupinfo_caches
[cache_index
] = cachep
;
2791 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2794 "EXT4-fs: no memory for groupinfo slab cache\n");
2801 int ext4_mb_init(struct super_block
*sb
)
2803 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2805 unsigned offset
, offset_incr
;
2809 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2811 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2812 if (sbi
->s_mb_offsets
== NULL
) {
2817 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2818 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2819 if (sbi
->s_mb_maxs
== NULL
) {
2824 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2828 /* order 0 is regular bitmap */
2829 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2830 sbi
->s_mb_offsets
[0] = 0;
2834 offset_incr
= 1 << (sb
->s_blocksize_bits
- 1);
2835 max
= sb
->s_blocksize
<< 2;
2837 sbi
->s_mb_offsets
[i
] = offset
;
2838 sbi
->s_mb_maxs
[i
] = max
;
2839 offset
+= offset_incr
;
2840 offset_incr
= offset_incr
>> 1;
2843 } while (i
<= sb
->s_blocksize_bits
+ 1);
2845 spin_lock_init(&sbi
->s_md_lock
);
2846 spin_lock_init(&sbi
->s_bal_lock
);
2847 sbi
->s_mb_free_pending
= 0;
2848 INIT_LIST_HEAD(&sbi
->s_freed_data_list
);
2850 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2851 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2852 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2853 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2854 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2855 sbi
->s_mb_max_inode_prealloc
= MB_DEFAULT_MAX_INODE_PREALLOC
;
2857 * The default group preallocation is 512, which for 4k block
2858 * sizes translates to 2 megabytes. However for bigalloc file
2859 * systems, this is probably too big (i.e, if the cluster size
2860 * is 1 megabyte, then group preallocation size becomes half a
2861 * gigabyte!). As a default, we will keep a two megabyte
2862 * group pralloc size for cluster sizes up to 64k, and after
2863 * that, we will force a minimum group preallocation size of
2864 * 32 clusters. This translates to 8 megs when the cluster
2865 * size is 256k, and 32 megs when the cluster size is 1 meg,
2866 * which seems reasonable as a default.
2868 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2869 sbi
->s_cluster_bits
, 32);
2871 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2872 * to the lowest multiple of s_stripe which is bigger than
2873 * the s_mb_group_prealloc as determined above. We want
2874 * the preallocation size to be an exact multiple of the
2875 * RAID stripe size so that preallocations don't fragment
2878 if (sbi
->s_stripe
> 1) {
2879 sbi
->s_mb_group_prealloc
= roundup(
2880 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2883 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2884 if (sbi
->s_locality_groups
== NULL
) {
2888 for_each_possible_cpu(i
) {
2889 struct ext4_locality_group
*lg
;
2890 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2891 mutex_init(&lg
->lg_mutex
);
2892 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2893 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2894 spin_lock_init(&lg
->lg_prealloc_lock
);
2897 /* init file for buddy data */
2898 ret
= ext4_mb_init_backend(sb
);
2900 goto out_free_locality_groups
;
2904 out_free_locality_groups
:
2905 free_percpu(sbi
->s_locality_groups
);
2906 sbi
->s_locality_groups
= NULL
;
2908 kfree(sbi
->s_mb_offsets
);
2909 sbi
->s_mb_offsets
= NULL
;
2910 kfree(sbi
->s_mb_maxs
);
2911 sbi
->s_mb_maxs
= NULL
;
2915 /* need to called with the ext4 group lock held */
2916 static int ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2918 struct ext4_prealloc_space
*pa
;
2919 struct list_head
*cur
, *tmp
;
2922 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2923 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2924 list_del(&pa
->pa_group_list
);
2926 kmem_cache_free(ext4_pspace_cachep
, pa
);
2931 int ext4_mb_release(struct super_block
*sb
)
2933 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2935 int num_meta_group_infos
;
2936 struct ext4_group_info
*grinfo
, ***group_info
;
2937 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2938 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2941 if (sbi
->s_group_info
) {
2942 for (i
= 0; i
< ngroups
; i
++) {
2944 grinfo
= ext4_get_group_info(sb
, i
);
2945 mb_group_bb_bitmap_free(grinfo
);
2946 ext4_lock_group(sb
, i
);
2947 count
= ext4_mb_cleanup_pa(grinfo
);
2949 mb_debug(sb
, "mballoc: %d PAs left\n",
2951 ext4_unlock_group(sb
, i
);
2952 kmem_cache_free(cachep
, grinfo
);
2954 num_meta_group_infos
= (ngroups
+
2955 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2956 EXT4_DESC_PER_BLOCK_BITS(sb
);
2958 group_info
= rcu_dereference(sbi
->s_group_info
);
2959 for (i
= 0; i
< num_meta_group_infos
; i
++)
2960 kfree(group_info
[i
]);
2964 kfree(sbi
->s_mb_offsets
);
2965 kfree(sbi
->s_mb_maxs
);
2966 iput(sbi
->s_buddy_cache
);
2967 if (sbi
->s_mb_stats
) {
2968 ext4_msg(sb
, KERN_INFO
,
2969 "mballoc: %u blocks %u reqs (%u success)",
2970 atomic_read(&sbi
->s_bal_allocated
),
2971 atomic_read(&sbi
->s_bal_reqs
),
2972 atomic_read(&sbi
->s_bal_success
));
2973 ext4_msg(sb
, KERN_INFO
,
2974 "mballoc: %u extents scanned, %u goal hits, "
2975 "%u 2^N hits, %u breaks, %u lost",
2976 atomic_read(&sbi
->s_bal_ex_scanned
),
2977 atomic_read(&sbi
->s_bal_goals
),
2978 atomic_read(&sbi
->s_bal_2orders
),
2979 atomic_read(&sbi
->s_bal_breaks
),
2980 atomic_read(&sbi
->s_mb_lost_chunks
));
2981 ext4_msg(sb
, KERN_INFO
,
2982 "mballoc: %lu generated and it took %Lu",
2983 sbi
->s_mb_buddies_generated
,
2984 sbi
->s_mb_generation_time
);
2985 ext4_msg(sb
, KERN_INFO
,
2986 "mballoc: %u preallocated, %u discarded",
2987 atomic_read(&sbi
->s_mb_preallocated
),
2988 atomic_read(&sbi
->s_mb_discarded
));
2991 free_percpu(sbi
->s_locality_groups
);
2996 static inline int ext4_issue_discard(struct super_block
*sb
,
2997 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
,
3000 ext4_fsblk_t discard_block
;
3002 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
3003 ext4_group_first_block_no(sb
, block_group
));
3004 count
= EXT4_C2B(EXT4_SB(sb
), count
);
3005 trace_ext4_discard_blocks(sb
,
3006 (unsigned long long) discard_block
, count
);
3008 return __blkdev_issue_discard(sb
->s_bdev
,
3009 (sector_t
)discard_block
<< (sb
->s_blocksize_bits
- 9),
3010 (sector_t
)count
<< (sb
->s_blocksize_bits
- 9),
3013 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
3016 static void ext4_free_data_in_buddy(struct super_block
*sb
,
3017 struct ext4_free_data
*entry
)
3019 struct ext4_buddy e4b
;
3020 struct ext4_group_info
*db
;
3021 int err
, count
= 0, count2
= 0;
3023 mb_debug(sb
, "gonna free %u blocks in group %u (0x%p):",
3024 entry
->efd_count
, entry
->efd_group
, entry
);
3026 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
3027 /* we expect to find existing buddy because it's pinned */
3030 spin_lock(&EXT4_SB(sb
)->s_md_lock
);
3031 EXT4_SB(sb
)->s_mb_free_pending
-= entry
->efd_count
;
3032 spin_unlock(&EXT4_SB(sb
)->s_md_lock
);
3035 /* there are blocks to put in buddy to make them really free */
3036 count
+= entry
->efd_count
;
3038 ext4_lock_group(sb
, entry
->efd_group
);
3039 /* Take it out of per group rb tree */
3040 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
3041 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
3044 * Clear the trimmed flag for the group so that the next
3045 * ext4_trim_fs can trim it.
3046 * If the volume is mounted with -o discard, online discard
3047 * is supported and the free blocks will be trimmed online.
3049 if (!test_opt(sb
, DISCARD
))
3050 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
3052 if (!db
->bb_free_root
.rb_node
) {
3053 /* No more items in the per group rb tree
3054 * balance refcounts from ext4_mb_free_metadata()
3056 put_page(e4b
.bd_buddy_page
);
3057 put_page(e4b
.bd_bitmap_page
);
3059 ext4_unlock_group(sb
, entry
->efd_group
);
3060 kmem_cache_free(ext4_free_data_cachep
, entry
);
3061 ext4_mb_unload_buddy(&e4b
);
3063 mb_debug(sb
, "freed %d blocks in %d structures\n", count
,
3068 * This function is called by the jbd2 layer once the commit has finished,
3069 * so we know we can free the blocks that were released with that commit.
3071 void ext4_process_freed_data(struct super_block
*sb
, tid_t commit_tid
)
3073 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3074 struct ext4_free_data
*entry
, *tmp
;
3075 struct bio
*discard_bio
= NULL
;
3076 struct list_head freed_data_list
;
3077 struct list_head
*cut_pos
= NULL
;
3080 INIT_LIST_HEAD(&freed_data_list
);
3082 spin_lock(&sbi
->s_md_lock
);
3083 list_for_each_entry(entry
, &sbi
->s_freed_data_list
, efd_list
) {
3084 if (entry
->efd_tid
!= commit_tid
)
3086 cut_pos
= &entry
->efd_list
;
3089 list_cut_position(&freed_data_list
, &sbi
->s_freed_data_list
,
3091 spin_unlock(&sbi
->s_md_lock
);
3093 if (test_opt(sb
, DISCARD
)) {
3094 list_for_each_entry(entry
, &freed_data_list
, efd_list
) {
3095 err
= ext4_issue_discard(sb
, entry
->efd_group
,
3096 entry
->efd_start_cluster
,
3099 if (err
&& err
!= -EOPNOTSUPP
) {
3100 ext4_msg(sb
, KERN_WARNING
, "discard request in"
3101 " group:%d block:%d count:%d failed"
3102 " with %d", entry
->efd_group
,
3103 entry
->efd_start_cluster
,
3104 entry
->efd_count
, err
);
3105 } else if (err
== -EOPNOTSUPP
)
3110 submit_bio_wait(discard_bio
);
3111 bio_put(discard_bio
);
3115 list_for_each_entry_safe(entry
, tmp
, &freed_data_list
, efd_list
)
3116 ext4_free_data_in_buddy(sb
, entry
);
3119 int __init
ext4_init_mballoc(void)
3121 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
3122 SLAB_RECLAIM_ACCOUNT
);
3123 if (ext4_pspace_cachep
== NULL
)
3126 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
3127 SLAB_RECLAIM_ACCOUNT
);
3128 if (ext4_ac_cachep
== NULL
)
3131 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
3132 SLAB_RECLAIM_ACCOUNT
);
3133 if (ext4_free_data_cachep
== NULL
)
3139 kmem_cache_destroy(ext4_ac_cachep
);
3141 kmem_cache_destroy(ext4_pspace_cachep
);
3146 void ext4_exit_mballoc(void)
3149 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3150 * before destroying the slab cache.
3153 kmem_cache_destroy(ext4_pspace_cachep
);
3154 kmem_cache_destroy(ext4_ac_cachep
);
3155 kmem_cache_destroy(ext4_free_data_cachep
);
3156 ext4_groupinfo_destroy_slabs();
3161 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3162 * Returns 0 if success or error code
3164 static noinline_for_stack
int
3165 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
3166 handle_t
*handle
, unsigned int reserv_clstrs
)
3168 struct buffer_head
*bitmap_bh
= NULL
;
3169 struct ext4_group_desc
*gdp
;
3170 struct buffer_head
*gdp_bh
;
3171 struct ext4_sb_info
*sbi
;
3172 struct super_block
*sb
;
3176 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3177 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
3182 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
3183 if (IS_ERR(bitmap_bh
)) {
3184 err
= PTR_ERR(bitmap_bh
);
3189 BUFFER_TRACE(bitmap_bh
, "getting write access");
3190 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
3195 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
3199 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
3200 ext4_free_group_clusters(sb
, gdp
));
3202 BUFFER_TRACE(gdp_bh
, "get_write_access");
3203 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
3207 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3209 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3210 if (!ext4_inode_block_valid(ac
->ac_inode
, block
, len
)) {
3211 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
3212 "fs metadata", block
, block
+len
);
3213 /* File system mounted not to panic on error
3214 * Fix the bitmap and return EFSCORRUPTED
3215 * We leak some of the blocks here.
3217 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3218 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
3219 ac
->ac_b_ex
.fe_len
);
3220 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3221 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3223 err
= -EFSCORRUPTED
;
3227 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3228 #ifdef AGGRESSIVE_CHECK
3231 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
3232 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
3233 bitmap_bh
->b_data
));
3237 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
3238 ac
->ac_b_ex
.fe_len
);
3239 if (ext4_has_group_desc_csum(sb
) &&
3240 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
3241 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
3242 ext4_free_group_clusters_set(sb
, gdp
,
3243 ext4_free_clusters_after_init(sb
,
3244 ac
->ac_b_ex
.fe_group
, gdp
));
3246 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
3247 ext4_free_group_clusters_set(sb
, gdp
, len
);
3248 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
3249 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
3251 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3252 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
3254 * Now reduce the dirty block count also. Should not go negative
3256 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
3257 /* release all the reserved blocks if non delalloc */
3258 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
3261 if (sbi
->s_log_groups_per_flex
) {
3262 ext4_group_t flex_group
= ext4_flex_group(sbi
,
3263 ac
->ac_b_ex
.fe_group
);
3264 atomic64_sub(ac
->ac_b_ex
.fe_len
,
3265 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
3266 flex_group
)->free_clusters
);
3269 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3272 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
3280 * Idempotent helper for Ext4 fast commit replay path to set the state of
3281 * blocks in bitmaps and update counters.
3283 void ext4_mb_mark_bb(struct super_block
*sb
, ext4_fsblk_t block
,
3286 struct buffer_head
*bitmap_bh
= NULL
;
3287 struct ext4_group_desc
*gdp
;
3288 struct buffer_head
*gdp_bh
;
3289 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3291 ext4_grpblk_t blkoff
;
3295 clen
= EXT4_B2C(sbi
, len
);
3297 ext4_get_group_no_and_offset(sb
, block
, &group
, &blkoff
);
3298 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3299 if (IS_ERR(bitmap_bh
)) {
3300 err
= PTR_ERR(bitmap_bh
);
3306 gdp
= ext4_get_group_desc(sb
, group
, &gdp_bh
);
3310 ext4_lock_group(sb
, group
);
3312 for (i
= 0; i
< clen
; i
++)
3313 if (!mb_test_bit(blkoff
+ i
, bitmap_bh
->b_data
) == !state
)
3317 ext4_set_bits(bitmap_bh
->b_data
, blkoff
, clen
);
3319 mb_test_and_clear_bits(bitmap_bh
->b_data
, blkoff
, clen
);
3320 if (ext4_has_group_desc_csum(sb
) &&
3321 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
3322 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
3323 ext4_free_group_clusters_set(sb
, gdp
,
3324 ext4_free_clusters_after_init(sb
,
3328 clen
= ext4_free_group_clusters(sb
, gdp
) - clen
+ already
;
3330 clen
= ext4_free_group_clusters(sb
, gdp
) + clen
- already
;
3332 ext4_free_group_clusters_set(sb
, gdp
, clen
);
3333 ext4_block_bitmap_csum_set(sb
, group
, gdp
, bitmap_bh
);
3334 ext4_group_desc_csum_set(sb
, group
, gdp
);
3336 ext4_unlock_group(sb
, group
);
3338 if (sbi
->s_log_groups_per_flex
) {
3339 ext4_group_t flex_group
= ext4_flex_group(sbi
, group
);
3342 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
3343 flex_group
)->free_clusters
);
3346 err
= ext4_handle_dirty_metadata(NULL
, NULL
, bitmap_bh
);
3349 sync_dirty_buffer(bitmap_bh
);
3350 err
= ext4_handle_dirty_metadata(NULL
, NULL
, gdp_bh
);
3351 sync_dirty_buffer(gdp_bh
);
3358 * here we normalize request for locality group
3359 * Group request are normalized to s_mb_group_prealloc, which goes to
3360 * s_strip if we set the same via mount option.
3361 * s_mb_group_prealloc can be configured via
3362 * /sys/fs/ext4/<partition>/mb_group_prealloc
3364 * XXX: should we try to preallocate more than the group has now?
3366 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
3368 struct super_block
*sb
= ac
->ac_sb
;
3369 struct ext4_locality_group
*lg
= ac
->ac_lg
;
3372 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
3373 mb_debug(sb
, "goal %u blocks for locality group\n", ac
->ac_g_ex
.fe_len
);
3377 * Normalization means making request better in terms of
3378 * size and alignment
3380 static noinline_for_stack
void
3381 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3382 struct ext4_allocation_request
*ar
)
3384 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3387 loff_t size
, start_off
;
3388 loff_t orig_size __maybe_unused
;
3390 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3391 struct ext4_prealloc_space
*pa
;
3393 /* do normalize only data requests, metadata requests
3394 do not need preallocation */
3395 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3398 /* sometime caller may want exact blocks */
3399 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3402 /* caller may indicate that preallocation isn't
3403 * required (it's a tail, for example) */
3404 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3407 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3408 ext4_mb_normalize_group_request(ac
);
3412 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3414 /* first, let's learn actual file size
3415 * given current request is allocated */
3416 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3417 size
= size
<< bsbits
;
3418 if (size
< i_size_read(ac
->ac_inode
))
3419 size
= i_size_read(ac
->ac_inode
);
3422 /* max size of free chunks */
3425 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3426 (req <= (size) || max <= (chunk_size))
3428 /* first, try to predict filesize */
3429 /* XXX: should this table be tunable? */
3431 if (size
<= 16 * 1024) {
3433 } else if (size
<= 32 * 1024) {
3435 } else if (size
<= 64 * 1024) {
3437 } else if (size
<= 128 * 1024) {
3439 } else if (size
<= 256 * 1024) {
3441 } else if (size
<= 512 * 1024) {
3443 } else if (size
<= 1024 * 1024) {
3445 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3446 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3447 (21 - bsbits
)) << 21;
3448 size
= 2 * 1024 * 1024;
3449 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3450 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3451 (22 - bsbits
)) << 22;
3452 size
= 4 * 1024 * 1024;
3453 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3454 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3455 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3456 (23 - bsbits
)) << 23;
3457 size
= 8 * 1024 * 1024;
3459 start_off
= (loff_t
) ac
->ac_o_ex
.fe_logical
<< bsbits
;
3460 size
= (loff_t
) EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3461 ac
->ac_o_ex
.fe_len
) << bsbits
;
3463 size
= size
>> bsbits
;
3464 start
= start_off
>> bsbits
;
3466 /* don't cover already allocated blocks in selected range */
3467 if (ar
->pleft
&& start
<= ar
->lleft
) {
3468 size
-= ar
->lleft
+ 1 - start
;
3469 start
= ar
->lleft
+ 1;
3471 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3472 size
-= start
+ size
- ar
->lright
;
3475 * Trim allocation request for filesystems with artificially small
3478 if (size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
))
3479 size
= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
);
3483 /* check we don't cross already preallocated blocks */
3485 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3490 spin_lock(&pa
->pa_lock
);
3491 if (pa
->pa_deleted
) {
3492 spin_unlock(&pa
->pa_lock
);
3496 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3499 /* PA must not overlap original request */
3500 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3501 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3503 /* skip PAs this normalized request doesn't overlap with */
3504 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3505 spin_unlock(&pa
->pa_lock
);
3508 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3510 /* adjust start or end to be adjacent to this pa */
3511 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3512 BUG_ON(pa_end
< start
);
3514 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3515 BUG_ON(pa
->pa_lstart
> end
);
3516 end
= pa
->pa_lstart
;
3518 spin_unlock(&pa
->pa_lock
);
3523 /* XXX: extra loop to check we really don't overlap preallocations */
3525 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3528 spin_lock(&pa
->pa_lock
);
3529 if (pa
->pa_deleted
== 0) {
3530 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3532 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3534 spin_unlock(&pa
->pa_lock
);
3538 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3539 start
> ac
->ac_o_ex
.fe_logical
) {
3540 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3541 "start %lu, size %lu, fe_logical %lu",
3542 (unsigned long) start
, (unsigned long) size
,
3543 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3546 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3548 /* now prepare goal request */
3550 /* XXX: is it better to align blocks WRT to logical
3551 * placement or satisfy big request as is */
3552 ac
->ac_g_ex
.fe_logical
= start
;
3553 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3555 /* define goal start in order to merge */
3556 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3557 /* merge to the right */
3558 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3559 &ac
->ac_f_ex
.fe_group
,
3560 &ac
->ac_f_ex
.fe_start
);
3561 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3563 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3564 /* merge to the left */
3565 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3566 &ac
->ac_f_ex
.fe_group
,
3567 &ac
->ac_f_ex
.fe_start
);
3568 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3571 mb_debug(ac
->ac_sb
, "goal: %lld(was %lld) blocks at %u\n", size
,
3575 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3577 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3579 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3580 atomic_inc(&sbi
->s_bal_reqs
);
3581 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3582 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3583 atomic_inc(&sbi
->s_bal_success
);
3584 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3585 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3586 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3587 atomic_inc(&sbi
->s_bal_goals
);
3588 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3589 atomic_inc(&sbi
->s_bal_breaks
);
3592 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3593 trace_ext4_mballoc_alloc(ac
);
3595 trace_ext4_mballoc_prealloc(ac
);
3599 * Called on failure; free up any blocks from the inode PA for this
3600 * context. We don't need this for MB_GROUP_PA because we only change
3601 * pa_free in ext4_mb_release_context(), but on failure, we've already
3602 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3604 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3606 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3607 struct ext4_buddy e4b
;
3611 if (ac
->ac_f_ex
.fe_len
== 0)
3613 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3616 * This should never happen since we pin the
3617 * pages in the ext4_allocation_context so
3618 * ext4_mb_load_buddy() should never fail.
3620 WARN(1, "mb_load_buddy failed (%d)", err
);
3623 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3624 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3625 ac
->ac_f_ex
.fe_len
);
3626 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3627 ext4_mb_unload_buddy(&e4b
);
3630 if (pa
->pa_type
== MB_INODE_PA
)
3631 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3635 * use blocks preallocated to inode
3637 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3638 struct ext4_prealloc_space
*pa
)
3640 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3645 /* found preallocated blocks, use them */
3646 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3647 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3648 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3649 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3650 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3651 &ac
->ac_b_ex
.fe_start
);
3652 ac
->ac_b_ex
.fe_len
= len
;
3653 ac
->ac_status
= AC_STATUS_FOUND
;
3656 BUG_ON(start
< pa
->pa_pstart
);
3657 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3658 BUG_ON(pa
->pa_free
< len
);
3661 mb_debug(ac
->ac_sb
, "use %llu/%d from inode pa %p\n", start
, len
, pa
);
3665 * use blocks preallocated to locality group
3667 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3668 struct ext4_prealloc_space
*pa
)
3670 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3672 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3673 &ac
->ac_b_ex
.fe_group
,
3674 &ac
->ac_b_ex
.fe_start
);
3675 ac
->ac_b_ex
.fe_len
= len
;
3676 ac
->ac_status
= AC_STATUS_FOUND
;
3679 /* we don't correct pa_pstart or pa_plen here to avoid
3680 * possible race when the group is being loaded concurrently
3681 * instead we correct pa later, after blocks are marked
3682 * in on-disk bitmap -- see ext4_mb_release_context()
3683 * Other CPUs are prevented from allocating from this pa by lg_mutex
3685 mb_debug(ac
->ac_sb
, "use %u/%u from group pa %p\n",
3686 pa
->pa_lstart
-len
, len
, pa
);
3690 * Return the prealloc space that have minimal distance
3691 * from the goal block. @cpa is the prealloc
3692 * space that is having currently known minimal distance
3693 * from the goal block.
3695 static struct ext4_prealloc_space
*
3696 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3697 struct ext4_prealloc_space
*pa
,
3698 struct ext4_prealloc_space
*cpa
)
3700 ext4_fsblk_t cur_distance
, new_distance
;
3703 atomic_inc(&pa
->pa_count
);
3706 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3707 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3709 if (cur_distance
<= new_distance
)
3712 /* drop the previous reference */
3713 atomic_dec(&cpa
->pa_count
);
3714 atomic_inc(&pa
->pa_count
);
3719 * search goal blocks in preallocated space
3721 static noinline_for_stack
bool
3722 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3724 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3726 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3727 struct ext4_locality_group
*lg
;
3728 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3729 ext4_fsblk_t goal_block
;
3731 /* only data can be preallocated */
3732 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3735 /* first, try per-file preallocation */
3737 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3739 /* all fields in this condition don't change,
3740 * so we can skip locking for them */
3741 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3742 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3743 EXT4_C2B(sbi
, pa
->pa_len
)))
3746 /* non-extent files can't have physical blocks past 2^32 */
3747 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3748 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3749 EXT4_MAX_BLOCK_FILE_PHYS
))
3752 /* found preallocated blocks, use them */
3753 spin_lock(&pa
->pa_lock
);
3754 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3755 atomic_inc(&pa
->pa_count
);
3756 ext4_mb_use_inode_pa(ac
, pa
);
3757 spin_unlock(&pa
->pa_lock
);
3758 ac
->ac_criteria
= 10;
3762 spin_unlock(&pa
->pa_lock
);
3766 /* can we use group allocation? */
3767 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3770 /* inode may have no locality group for some reason */
3774 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3775 if (order
> PREALLOC_TB_SIZE
- 1)
3776 /* The max size of hash table is PREALLOC_TB_SIZE */
3777 order
= PREALLOC_TB_SIZE
- 1;
3779 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3781 * search for the prealloc space that is having
3782 * minimal distance from the goal block.
3784 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3786 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3788 spin_lock(&pa
->pa_lock
);
3789 if (pa
->pa_deleted
== 0 &&
3790 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3792 cpa
= ext4_mb_check_group_pa(goal_block
,
3795 spin_unlock(&pa
->pa_lock
);
3800 ext4_mb_use_group_pa(ac
, cpa
);
3801 ac
->ac_criteria
= 20;
3808 * the function goes through all block freed in the group
3809 * but not yet committed and marks them used in in-core bitmap.
3810 * buddy must be generated from this bitmap
3811 * Need to be called with the ext4 group lock held
3813 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3817 struct ext4_group_info
*grp
;
3818 struct ext4_free_data
*entry
;
3820 grp
= ext4_get_group_info(sb
, group
);
3821 n
= rb_first(&(grp
->bb_free_root
));
3824 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3825 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3832 * the function goes through all preallocation in this group and marks them
3833 * used in in-core bitmap. buddy must be generated from this bitmap
3834 * Need to be called with ext4 group lock held
3836 static noinline_for_stack
3837 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3840 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3841 struct ext4_prealloc_space
*pa
;
3842 struct list_head
*cur
;
3843 ext4_group_t groupnr
;
3844 ext4_grpblk_t start
;
3845 int preallocated
= 0;
3848 /* all form of preallocation discards first load group,
3849 * so the only competing code is preallocation use.
3850 * we don't need any locking here
3851 * notice we do NOT ignore preallocations with pa_deleted
3852 * otherwise we could leave used blocks available for
3853 * allocation in buddy when concurrent ext4_mb_put_pa()
3854 * is dropping preallocation
3856 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3857 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3858 spin_lock(&pa
->pa_lock
);
3859 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3862 spin_unlock(&pa
->pa_lock
);
3863 if (unlikely(len
== 0))
3865 BUG_ON(groupnr
!= group
);
3866 ext4_set_bits(bitmap
, start
, len
);
3867 preallocated
+= len
;
3869 mb_debug(sb
, "preallocated %d for group %u\n", preallocated
, group
);
3872 static void ext4_mb_mark_pa_deleted(struct super_block
*sb
,
3873 struct ext4_prealloc_space
*pa
)
3875 struct ext4_inode_info
*ei
;
3877 if (pa
->pa_deleted
) {
3878 ext4_warning(sb
, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3879 pa
->pa_type
, pa
->pa_pstart
, pa
->pa_lstart
,
3886 if (pa
->pa_type
== MB_INODE_PA
) {
3887 ei
= EXT4_I(pa
->pa_inode
);
3888 atomic_dec(&ei
->i_prealloc_active
);
3892 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3894 struct ext4_prealloc_space
*pa
;
3895 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3897 BUG_ON(atomic_read(&pa
->pa_count
));
3898 BUG_ON(pa
->pa_deleted
== 0);
3899 kmem_cache_free(ext4_pspace_cachep
, pa
);
3903 * drops a reference to preallocated space descriptor
3904 * if this was the last reference and the space is consumed
3906 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3907 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3910 ext4_fsblk_t grp_blk
;
3912 /* in this short window concurrent discard can set pa_deleted */
3913 spin_lock(&pa
->pa_lock
);
3914 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3915 spin_unlock(&pa
->pa_lock
);
3919 if (pa
->pa_deleted
== 1) {
3920 spin_unlock(&pa
->pa_lock
);
3924 ext4_mb_mark_pa_deleted(sb
, pa
);
3925 spin_unlock(&pa
->pa_lock
);
3927 grp_blk
= pa
->pa_pstart
;
3929 * If doing group-based preallocation, pa_pstart may be in the
3930 * next group when pa is used up
3932 if (pa
->pa_type
== MB_GROUP_PA
)
3935 grp
= ext4_get_group_number(sb
, grp_blk
);
3940 * P1 (buddy init) P2 (regular allocation)
3941 * find block B in PA
3942 * copy on-disk bitmap to buddy
3943 * mark B in on-disk bitmap
3944 * drop PA from group
3945 * mark all PAs in buddy
3947 * thus, P1 initializes buddy with B available. to prevent this
3948 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3951 ext4_lock_group(sb
, grp
);
3952 list_del(&pa
->pa_group_list
);
3953 ext4_unlock_group(sb
, grp
);
3955 spin_lock(pa
->pa_obj_lock
);
3956 list_del_rcu(&pa
->pa_inode_list
);
3957 spin_unlock(pa
->pa_obj_lock
);
3959 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3963 * creates new preallocated space for given inode
3965 static noinline_for_stack
void
3966 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3968 struct super_block
*sb
= ac
->ac_sb
;
3969 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3970 struct ext4_prealloc_space
*pa
;
3971 struct ext4_group_info
*grp
;
3972 struct ext4_inode_info
*ei
;
3974 /* preallocate only when found space is larger then requested */
3975 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3976 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3977 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3978 BUG_ON(ac
->ac_pa
== NULL
);
3982 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3988 /* we can't allocate as much as normalizer wants.
3989 * so, found space must get proper lstart
3990 * to cover original request */
3991 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3992 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3994 /* we're limited by original request in that
3995 * logical block must be covered any way
3996 * winl is window we can move our chunk within */
3997 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3999 /* also, we should cover whole original request */
4000 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
4002 /* the smallest one defines real window */
4003 win
= min(winl
, wins
);
4005 offs
= ac
->ac_o_ex
.fe_logical
%
4006 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4007 if (offs
&& offs
< win
)
4010 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
4011 EXT4_NUM_B2C(sbi
, win
);
4012 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
4013 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
4016 /* preallocation can change ac_b_ex, thus we store actually
4017 * allocated blocks for history */
4018 ac
->ac_f_ex
= ac
->ac_b_ex
;
4020 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
4021 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4022 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
4023 pa
->pa_free
= pa
->pa_len
;
4024 spin_lock_init(&pa
->pa_lock
);
4025 INIT_LIST_HEAD(&pa
->pa_inode_list
);
4026 INIT_LIST_HEAD(&pa
->pa_group_list
);
4028 pa
->pa_type
= MB_INODE_PA
;
4030 mb_debug(sb
, "new inode pa %p: %llu/%d for %u\n", pa
, pa
->pa_pstart
,
4031 pa
->pa_len
, pa
->pa_lstart
);
4032 trace_ext4_mb_new_inode_pa(ac
, pa
);
4034 ext4_mb_use_inode_pa(ac
, pa
);
4035 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
4037 ei
= EXT4_I(ac
->ac_inode
);
4038 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
4040 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
4041 pa
->pa_inode
= ac
->ac_inode
;
4043 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
4045 spin_lock(pa
->pa_obj_lock
);
4046 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
4047 spin_unlock(pa
->pa_obj_lock
);
4048 atomic_inc(&ei
->i_prealloc_active
);
4052 * creates new preallocated space for locality group inodes belongs to
4054 static noinline_for_stack
void
4055 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
4057 struct super_block
*sb
= ac
->ac_sb
;
4058 struct ext4_locality_group
*lg
;
4059 struct ext4_prealloc_space
*pa
;
4060 struct ext4_group_info
*grp
;
4062 /* preallocate only when found space is larger then requested */
4063 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
4064 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
4065 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
4066 BUG_ON(ac
->ac_pa
== NULL
);
4070 /* preallocation can change ac_b_ex, thus we store actually
4071 * allocated blocks for history */
4072 ac
->ac_f_ex
= ac
->ac_b_ex
;
4074 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4075 pa
->pa_lstart
= pa
->pa_pstart
;
4076 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
4077 pa
->pa_free
= pa
->pa_len
;
4078 spin_lock_init(&pa
->pa_lock
);
4079 INIT_LIST_HEAD(&pa
->pa_inode_list
);
4080 INIT_LIST_HEAD(&pa
->pa_group_list
);
4082 pa
->pa_type
= MB_GROUP_PA
;
4084 mb_debug(sb
, "new group pa %p: %llu/%d for %u\n", pa
, pa
->pa_pstart
,
4085 pa
->pa_len
, pa
->pa_lstart
);
4086 trace_ext4_mb_new_group_pa(ac
, pa
);
4088 ext4_mb_use_group_pa(ac
, pa
);
4089 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
4091 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
4095 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
4096 pa
->pa_inode
= NULL
;
4098 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
4101 * We will later add the new pa to the right bucket
4102 * after updating the pa_free in ext4_mb_release_context
4106 static void ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
4108 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4109 ext4_mb_new_group_pa(ac
);
4111 ext4_mb_new_inode_pa(ac
);
4115 * finds all unused blocks in on-disk bitmap, frees them in
4116 * in-core bitmap and buddy.
4117 * @pa must be unlinked from inode and group lists, so that
4118 * nobody else can find/use it.
4119 * the caller MUST hold group/inode locks.
4120 * TODO: optimize the case when there are no in-core structures yet
4122 static noinline_for_stack
int
4123 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
4124 struct ext4_prealloc_space
*pa
)
4126 struct super_block
*sb
= e4b
->bd_sb
;
4127 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4132 unsigned long long grp_blk_start
;
4135 BUG_ON(pa
->pa_deleted
== 0);
4136 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
4137 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
4138 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
4139 end
= bit
+ pa
->pa_len
;
4142 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
4145 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
4146 mb_debug(sb
, "free preallocated %u/%u in group %u\n",
4147 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
4148 (unsigned) next
- bit
, (unsigned) group
);
4151 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
4152 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
4153 EXT4_C2B(sbi
, bit
)),
4155 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
4158 if (free
!= pa
->pa_free
) {
4159 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
4160 "pa %p: logic %lu, phys. %lu, len %d",
4161 pa
, (unsigned long) pa
->pa_lstart
,
4162 (unsigned long) pa
->pa_pstart
,
4164 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
4167 * pa is already deleted so we use the value obtained
4168 * from the bitmap and continue.
4171 atomic_add(free
, &sbi
->s_mb_discarded
);
4176 static noinline_for_stack
int
4177 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
4178 struct ext4_prealloc_space
*pa
)
4180 struct super_block
*sb
= e4b
->bd_sb
;
4184 trace_ext4_mb_release_group_pa(sb
, pa
);
4185 BUG_ON(pa
->pa_deleted
== 0);
4186 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
4187 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
4188 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
4189 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
4190 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
4196 * releases all preallocations in given group
4198 * first, we need to decide discard policy:
4199 * - when do we discard
4201 * - how many do we discard
4202 * 1) how many requested
4204 static noinline_for_stack
int
4205 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
4206 ext4_group_t group
, int needed
)
4208 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
4209 struct buffer_head
*bitmap_bh
= NULL
;
4210 struct ext4_prealloc_space
*pa
, *tmp
;
4211 struct list_head list
;
4212 struct ext4_buddy e4b
;
4215 int free
, free_total
= 0;
4217 mb_debug(sb
, "discard preallocation for group %u\n", group
);
4218 if (list_empty(&grp
->bb_prealloc_list
))
4221 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4222 if (IS_ERR(bitmap_bh
)) {
4223 err
= PTR_ERR(bitmap_bh
);
4224 ext4_error_err(sb
, -err
,
4225 "Error %d reading block bitmap for %u",
4230 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4232 ext4_warning(sb
, "Error %d loading buddy information for %u",
4239 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
4241 INIT_LIST_HEAD(&list
);
4244 ext4_lock_group(sb
, group
);
4245 list_for_each_entry_safe(pa
, tmp
,
4246 &grp
->bb_prealloc_list
, pa_group_list
) {
4247 spin_lock(&pa
->pa_lock
);
4248 if (atomic_read(&pa
->pa_count
)) {
4249 spin_unlock(&pa
->pa_lock
);
4253 if (pa
->pa_deleted
) {
4254 spin_unlock(&pa
->pa_lock
);
4258 /* seems this one can be freed ... */
4259 ext4_mb_mark_pa_deleted(sb
, pa
);
4262 this_cpu_inc(discard_pa_seq
);
4264 /* we can trust pa_free ... */
4265 free
+= pa
->pa_free
;
4267 spin_unlock(&pa
->pa_lock
);
4269 list_del(&pa
->pa_group_list
);
4270 list_add(&pa
->u
.pa_tmp_list
, &list
);
4273 /* now free all selected PAs */
4274 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4276 /* remove from object (inode or locality group) */
4277 spin_lock(pa
->pa_obj_lock
);
4278 list_del_rcu(&pa
->pa_inode_list
);
4279 spin_unlock(pa
->pa_obj_lock
);
4281 if (pa
->pa_type
== MB_GROUP_PA
)
4282 ext4_mb_release_group_pa(&e4b
, pa
);
4284 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4286 list_del(&pa
->u
.pa_tmp_list
);
4287 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4292 /* if we still need more blocks and some PAs were used, try again */
4293 if (free_total
< needed
&& busy
) {
4294 ext4_unlock_group(sb
, group
);
4299 ext4_unlock_group(sb
, group
);
4300 ext4_mb_unload_buddy(&e4b
);
4303 mb_debug(sb
, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4304 free_total
, group
, grp
->bb_free
);
4309 * releases all non-used preallocated blocks for given inode
4311 * It's important to discard preallocations under i_data_sem
4312 * We don't want another block to be served from the prealloc
4313 * space when we are discarding the inode prealloc space.
4315 * FIXME!! Make sure it is valid at all the call sites
4317 void ext4_discard_preallocations(struct inode
*inode
, unsigned int needed
)
4319 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4320 struct super_block
*sb
= inode
->i_sb
;
4321 struct buffer_head
*bitmap_bh
= NULL
;
4322 struct ext4_prealloc_space
*pa
, *tmp
;
4323 ext4_group_t group
= 0;
4324 struct list_head list
;
4325 struct ext4_buddy e4b
;
4328 if (!S_ISREG(inode
->i_mode
)) {
4329 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4333 if (EXT4_SB(sb
)->s_mount_state
& EXT4_FC_REPLAY
)
4336 mb_debug(sb
, "discard preallocation for inode %lu\n",
4338 trace_ext4_discard_preallocations(inode
,
4339 atomic_read(&ei
->i_prealloc_active
), needed
);
4341 INIT_LIST_HEAD(&list
);
4347 /* first, collect all pa's in the inode */
4348 spin_lock(&ei
->i_prealloc_lock
);
4349 while (!list_empty(&ei
->i_prealloc_list
) && needed
) {
4350 pa
= list_entry(ei
->i_prealloc_list
.prev
,
4351 struct ext4_prealloc_space
, pa_inode_list
);
4352 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
4353 spin_lock(&pa
->pa_lock
);
4354 if (atomic_read(&pa
->pa_count
)) {
4355 /* this shouldn't happen often - nobody should
4356 * use preallocation while we're discarding it */
4357 spin_unlock(&pa
->pa_lock
);
4358 spin_unlock(&ei
->i_prealloc_lock
);
4359 ext4_msg(sb
, KERN_ERR
,
4360 "uh-oh! used pa while discarding");
4362 schedule_timeout_uninterruptible(HZ
);
4366 if (pa
->pa_deleted
== 0) {
4367 ext4_mb_mark_pa_deleted(sb
, pa
);
4368 spin_unlock(&pa
->pa_lock
);
4369 list_del_rcu(&pa
->pa_inode_list
);
4370 list_add(&pa
->u
.pa_tmp_list
, &list
);
4375 /* someone is deleting pa right now */
4376 spin_unlock(&pa
->pa_lock
);
4377 spin_unlock(&ei
->i_prealloc_lock
);
4379 /* we have to wait here because pa_deleted
4380 * doesn't mean pa is already unlinked from
4381 * the list. as we might be called from
4382 * ->clear_inode() the inode will get freed
4383 * and concurrent thread which is unlinking
4384 * pa from inode's list may access already
4385 * freed memory, bad-bad-bad */
4387 /* XXX: if this happens too often, we can
4388 * add a flag to force wait only in case
4389 * of ->clear_inode(), but not in case of
4390 * regular truncate */
4391 schedule_timeout_uninterruptible(HZ
);
4394 spin_unlock(&ei
->i_prealloc_lock
);
4396 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4397 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
4398 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4400 err
= ext4_mb_load_buddy_gfp(sb
, group
, &e4b
,
4401 GFP_NOFS
|__GFP_NOFAIL
);
4403 ext4_error_err(sb
, -err
, "Error %d loading buddy information for %u",
4408 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4409 if (IS_ERR(bitmap_bh
)) {
4410 err
= PTR_ERR(bitmap_bh
);
4411 ext4_error_err(sb
, -err
, "Error %d reading block bitmap for %u",
4413 ext4_mb_unload_buddy(&e4b
);
4417 ext4_lock_group(sb
, group
);
4418 list_del(&pa
->pa_group_list
);
4419 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4420 ext4_unlock_group(sb
, group
);
4422 ext4_mb_unload_buddy(&e4b
);
4425 list_del(&pa
->u
.pa_tmp_list
);
4426 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4430 static int ext4_mb_pa_alloc(struct ext4_allocation_context
*ac
)
4432 struct ext4_prealloc_space
*pa
;
4434 BUG_ON(ext4_pspace_cachep
== NULL
);
4435 pa
= kmem_cache_zalloc(ext4_pspace_cachep
, GFP_NOFS
);
4438 atomic_set(&pa
->pa_count
, 1);
4443 static void ext4_mb_pa_free(struct ext4_allocation_context
*ac
)
4445 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4449 WARN_ON(!atomic_dec_and_test(&pa
->pa_count
));
4450 kmem_cache_free(ext4_pspace_cachep
, pa
);
4453 #ifdef CONFIG_EXT4_DEBUG
4454 static inline void ext4_mb_show_pa(struct super_block
*sb
)
4456 ext4_group_t i
, ngroups
;
4458 if (ext4_test_mount_flag(sb
, EXT4_MF_FS_ABORTED
))
4461 ngroups
= ext4_get_groups_count(sb
);
4462 mb_debug(sb
, "groups: ");
4463 for (i
= 0; i
< ngroups
; i
++) {
4464 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4465 struct ext4_prealloc_space
*pa
;
4466 ext4_grpblk_t start
;
4467 struct list_head
*cur
;
4468 ext4_lock_group(sb
, i
);
4469 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4470 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4472 spin_lock(&pa
->pa_lock
);
4473 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4475 spin_unlock(&pa
->pa_lock
);
4476 mb_debug(sb
, "PA:%u:%d:%d\n", i
, start
,
4479 ext4_unlock_group(sb
, i
);
4480 mb_debug(sb
, "%u: %d/%d\n", i
, grp
->bb_free
,
4485 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4487 struct super_block
*sb
= ac
->ac_sb
;
4489 if (ext4_test_mount_flag(sb
, EXT4_MF_FS_ABORTED
))
4492 mb_debug(sb
, "Can't allocate:"
4493 " Allocation context details:");
4494 mb_debug(sb
, "status %u flags 0x%x",
4495 ac
->ac_status
, ac
->ac_flags
);
4496 mb_debug(sb
, "orig %lu/%lu/%lu@%lu, "
4497 "goal %lu/%lu/%lu@%lu, "
4498 "best %lu/%lu/%lu@%lu cr %d",
4499 (unsigned long)ac
->ac_o_ex
.fe_group
,
4500 (unsigned long)ac
->ac_o_ex
.fe_start
,
4501 (unsigned long)ac
->ac_o_ex
.fe_len
,
4502 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4503 (unsigned long)ac
->ac_g_ex
.fe_group
,
4504 (unsigned long)ac
->ac_g_ex
.fe_start
,
4505 (unsigned long)ac
->ac_g_ex
.fe_len
,
4506 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4507 (unsigned long)ac
->ac_b_ex
.fe_group
,
4508 (unsigned long)ac
->ac_b_ex
.fe_start
,
4509 (unsigned long)ac
->ac_b_ex
.fe_len
,
4510 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4511 (int)ac
->ac_criteria
);
4512 mb_debug(sb
, "%u found", ac
->ac_found
);
4513 ext4_mb_show_pa(sb
);
4516 static inline void ext4_mb_show_pa(struct super_block
*sb
)
4520 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4522 ext4_mb_show_pa(ac
->ac_sb
);
4528 * We use locality group preallocation for small size file. The size of the
4529 * file is determined by the current size or the resulting size after
4530 * allocation which ever is larger
4532 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4534 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4536 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4537 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4540 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4543 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4546 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4547 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4550 if ((size
== isize
) && !ext4_fs_is_busy(sbi
) &&
4551 !inode_is_open_for_write(ac
->ac_inode
)) {
4552 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4556 if (sbi
->s_mb_group_prealloc
<= 0) {
4557 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4561 /* don't use group allocation for large files */
4562 size
= max(size
, isize
);
4563 if (size
> sbi
->s_mb_stream_request
) {
4564 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4568 BUG_ON(ac
->ac_lg
!= NULL
);
4570 * locality group prealloc space are per cpu. The reason for having
4571 * per cpu locality group is to reduce the contention between block
4572 * request from multiple CPUs.
4574 ac
->ac_lg
= raw_cpu_ptr(sbi
->s_locality_groups
);
4576 /* we're going to use group allocation */
4577 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4579 /* serialize all allocations in the group */
4580 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4583 static noinline_for_stack
int
4584 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4585 struct ext4_allocation_request
*ar
)
4587 struct super_block
*sb
= ar
->inode
->i_sb
;
4588 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4589 struct ext4_super_block
*es
= sbi
->s_es
;
4593 ext4_grpblk_t block
;
4595 /* we can't allocate > group size */
4598 /* just a dirty hack to filter too big requests */
4599 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4600 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4602 /* start searching from the goal */
4604 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4605 goal
>= ext4_blocks_count(es
))
4606 goal
= le32_to_cpu(es
->s_first_data_block
);
4607 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4609 /* set up allocation goals */
4610 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4611 ac
->ac_status
= AC_STATUS_CONTINUE
;
4613 ac
->ac_inode
= ar
->inode
;
4614 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4615 ac
->ac_o_ex
.fe_group
= group
;
4616 ac
->ac_o_ex
.fe_start
= block
;
4617 ac
->ac_o_ex
.fe_len
= len
;
4618 ac
->ac_g_ex
= ac
->ac_o_ex
;
4619 ac
->ac_flags
= ar
->flags
;
4621 /* we have to define context: we'll work with a file or
4622 * locality group. this is a policy, actually */
4623 ext4_mb_group_or_file(ac
);
4625 mb_debug(sb
, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4626 "left: %u/%u, right %u/%u to %swritable\n",
4627 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4628 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4629 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4630 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4631 inode_is_open_for_write(ar
->inode
) ? "" : "non-");
4636 static noinline_for_stack
void
4637 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4638 struct ext4_locality_group
*lg
,
4639 int order
, int total_entries
)
4641 ext4_group_t group
= 0;
4642 struct ext4_buddy e4b
;
4643 struct list_head discard_list
;
4644 struct ext4_prealloc_space
*pa
, *tmp
;
4646 mb_debug(sb
, "discard locality group preallocation\n");
4648 INIT_LIST_HEAD(&discard_list
);
4650 spin_lock(&lg
->lg_prealloc_lock
);
4651 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4653 lockdep_is_held(&lg
->lg_prealloc_lock
)) {
4654 spin_lock(&pa
->pa_lock
);
4655 if (atomic_read(&pa
->pa_count
)) {
4657 * This is the pa that we just used
4658 * for block allocation. So don't
4661 spin_unlock(&pa
->pa_lock
);
4664 if (pa
->pa_deleted
) {
4665 spin_unlock(&pa
->pa_lock
);
4668 /* only lg prealloc space */
4669 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4671 /* seems this one can be freed ... */
4672 ext4_mb_mark_pa_deleted(sb
, pa
);
4673 spin_unlock(&pa
->pa_lock
);
4675 list_del_rcu(&pa
->pa_inode_list
);
4676 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4679 if (total_entries
<= 5) {
4681 * we want to keep only 5 entries
4682 * allowing it to grow to 8. This
4683 * mak sure we don't call discard
4684 * soon for this list.
4689 spin_unlock(&lg
->lg_prealloc_lock
);
4691 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4694 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4695 err
= ext4_mb_load_buddy_gfp(sb
, group
, &e4b
,
4696 GFP_NOFS
|__GFP_NOFAIL
);
4698 ext4_error_err(sb
, -err
, "Error %d loading buddy information for %u",
4702 ext4_lock_group(sb
, group
);
4703 list_del(&pa
->pa_group_list
);
4704 ext4_mb_release_group_pa(&e4b
, pa
);
4705 ext4_unlock_group(sb
, group
);
4707 ext4_mb_unload_buddy(&e4b
);
4708 list_del(&pa
->u
.pa_tmp_list
);
4709 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4714 * We have incremented pa_count. So it cannot be freed at this
4715 * point. Also we hold lg_mutex. So no parallel allocation is
4716 * possible from this lg. That means pa_free cannot be updated.
4718 * A parallel ext4_mb_discard_group_preallocations is possible.
4719 * which can cause the lg_prealloc_list to be updated.
4722 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4724 int order
, added
= 0, lg_prealloc_count
= 1;
4725 struct super_block
*sb
= ac
->ac_sb
;
4726 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4727 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4729 order
= fls(pa
->pa_free
) - 1;
4730 if (order
> PREALLOC_TB_SIZE
- 1)
4731 /* The max size of hash table is PREALLOC_TB_SIZE */
4732 order
= PREALLOC_TB_SIZE
- 1;
4733 /* Add the prealloc space to lg */
4734 spin_lock(&lg
->lg_prealloc_lock
);
4735 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4737 lockdep_is_held(&lg
->lg_prealloc_lock
)) {
4738 spin_lock(&tmp_pa
->pa_lock
);
4739 if (tmp_pa
->pa_deleted
) {
4740 spin_unlock(&tmp_pa
->pa_lock
);
4743 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4744 /* Add to the tail of the previous entry */
4745 list_add_tail_rcu(&pa
->pa_inode_list
,
4746 &tmp_pa
->pa_inode_list
);
4749 * we want to count the total
4750 * number of entries in the list
4753 spin_unlock(&tmp_pa
->pa_lock
);
4754 lg_prealloc_count
++;
4757 list_add_tail_rcu(&pa
->pa_inode_list
,
4758 &lg
->lg_prealloc_list
[order
]);
4759 spin_unlock(&lg
->lg_prealloc_lock
);
4761 /* Now trim the list to be not more than 8 elements */
4762 if (lg_prealloc_count
> 8) {
4763 ext4_mb_discard_lg_preallocations(sb
, lg
,
4764 order
, lg_prealloc_count
);
4771 * if per-inode prealloc list is too long, trim some PA
4773 static void ext4_mb_trim_inode_pa(struct inode
*inode
)
4775 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4776 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4779 count
= atomic_read(&ei
->i_prealloc_active
);
4780 delta
= (sbi
->s_mb_max_inode_prealloc
>> 2) + 1;
4781 if (count
> sbi
->s_mb_max_inode_prealloc
+ delta
) {
4782 count
-= sbi
->s_mb_max_inode_prealloc
;
4783 ext4_discard_preallocations(inode
, count
);
4788 * release all resource we used in allocation
4790 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4792 struct inode
*inode
= ac
->ac_inode
;
4793 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4794 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4795 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4797 if (pa
->pa_type
== MB_GROUP_PA
) {
4798 /* see comment in ext4_mb_use_group_pa() */
4799 spin_lock(&pa
->pa_lock
);
4800 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4801 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4802 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4803 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4804 spin_unlock(&pa
->pa_lock
);
4807 * We want to add the pa to the right bucket.
4808 * Remove it from the list and while adding
4809 * make sure the list to which we are adding
4812 if (likely(pa
->pa_free
)) {
4813 spin_lock(pa
->pa_obj_lock
);
4814 list_del_rcu(&pa
->pa_inode_list
);
4815 spin_unlock(pa
->pa_obj_lock
);
4816 ext4_mb_add_n_trim(ac
);
4820 if (pa
->pa_type
== MB_INODE_PA
) {
4822 * treat per-inode prealloc list as a lru list, then try
4823 * to trim the least recently used PA.
4825 spin_lock(pa
->pa_obj_lock
);
4826 list_move(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
4827 spin_unlock(pa
->pa_obj_lock
);
4830 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4832 if (ac
->ac_bitmap_page
)
4833 put_page(ac
->ac_bitmap_page
);
4834 if (ac
->ac_buddy_page
)
4835 put_page(ac
->ac_buddy_page
);
4836 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4837 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4838 ext4_mb_collect_stats(ac
);
4839 ext4_mb_trim_inode_pa(inode
);
4843 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4845 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4849 trace_ext4_mb_discard_preallocations(sb
, needed
);
4850 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4851 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4859 static bool ext4_mb_discard_preallocations_should_retry(struct super_block
*sb
,
4860 struct ext4_allocation_context
*ac
, u64
*seq
)
4866 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4871 seq_retry
= ext4_get_discard_pa_seq_sum();
4872 if (!(ac
->ac_flags
& EXT4_MB_STRICT_CHECK
) || seq_retry
!= *seq
) {
4873 ac
->ac_flags
|= EXT4_MB_STRICT_CHECK
;
4879 mb_debug(sb
, "freed %d, retry ? %s\n", freed
, ret
? "yes" : "no");
4883 static ext4_fsblk_t
ext4_mb_new_blocks_simple(handle_t
*handle
,
4884 struct ext4_allocation_request
*ar
, int *errp
);
4887 * Main entry point into mballoc to allocate blocks
4888 * it tries to use preallocation first, then falls back
4889 * to usual allocation
4891 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4892 struct ext4_allocation_request
*ar
, int *errp
)
4894 struct ext4_allocation_context
*ac
= NULL
;
4895 struct ext4_sb_info
*sbi
;
4896 struct super_block
*sb
;
4897 ext4_fsblk_t block
= 0;
4898 unsigned int inquota
= 0;
4899 unsigned int reserv_clstrs
= 0;
4903 sb
= ar
->inode
->i_sb
;
4906 trace_ext4_request_blocks(ar
);
4907 if (sbi
->s_mount_state
& EXT4_FC_REPLAY
)
4908 return ext4_mb_new_blocks_simple(handle
, ar
, errp
);
4910 /* Allow to use superuser reservation for quota file */
4911 if (ext4_is_quota_file(ar
->inode
))
4912 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4914 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0) {
4915 /* Without delayed allocation we need to verify
4916 * there is enough free blocks to do block allocation
4917 * and verify allocation doesn't exceed the quota limits.
4920 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4922 /* let others to free the space */
4924 ar
->len
= ar
->len
>> 1;
4927 ext4_mb_show_pa(sb
);
4931 reserv_clstrs
= ar
->len
;
4932 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4933 dquot_alloc_block_nofail(ar
->inode
,
4934 EXT4_C2B(sbi
, ar
->len
));
4937 dquot_alloc_block(ar
->inode
,
4938 EXT4_C2B(sbi
, ar
->len
))) {
4940 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4951 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4958 *errp
= ext4_mb_initialize_context(ac
, ar
);
4964 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4965 seq
= this_cpu_read(discard_pa_seq
);
4966 if (!ext4_mb_use_preallocated(ac
)) {
4967 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4968 ext4_mb_normalize_request(ac
, ar
);
4970 *errp
= ext4_mb_pa_alloc(ac
);
4974 /* allocate space in core */
4975 *errp
= ext4_mb_regular_allocator(ac
);
4977 * pa allocated above is added to grp->bb_prealloc_list only
4978 * when we were able to allocate some block i.e. when
4979 * ac->ac_status == AC_STATUS_FOUND.
4980 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4981 * So we have to free this pa here itself.
4984 ext4_mb_pa_free(ac
);
4985 ext4_discard_allocated_blocks(ac
);
4988 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4989 ac
->ac_o_ex
.fe_len
>= ac
->ac_f_ex
.fe_len
)
4990 ext4_mb_pa_free(ac
);
4992 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4993 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4995 ext4_discard_allocated_blocks(ac
);
4998 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4999 ar
->len
= ac
->ac_b_ex
.fe_len
;
5002 if (ext4_mb_discard_preallocations_should_retry(sb
, ac
, &seq
))
5005 * If block allocation fails then the pa allocated above
5006 * needs to be freed here itself.
5008 ext4_mb_pa_free(ac
);
5014 ac
->ac_b_ex
.fe_len
= 0;
5016 ext4_mb_show_ac(ac
);
5018 ext4_mb_release_context(ac
);
5021 kmem_cache_free(ext4_ac_cachep
, ac
);
5022 if (inquota
&& ar
->len
< inquota
)
5023 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
5025 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0)
5026 /* release all the reserved blocks if non delalloc */
5027 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
5031 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
5037 * We can merge two free data extents only if the physical blocks
5038 * are contiguous, AND the extents were freed by the same transaction,
5039 * AND the blocks are associated with the same group.
5041 static void ext4_try_merge_freed_extent(struct ext4_sb_info
*sbi
,
5042 struct ext4_free_data
*entry
,
5043 struct ext4_free_data
*new_entry
,
5044 struct rb_root
*entry_rb_root
)
5046 if ((entry
->efd_tid
!= new_entry
->efd_tid
) ||
5047 (entry
->efd_group
!= new_entry
->efd_group
))
5049 if (entry
->efd_start_cluster
+ entry
->efd_count
==
5050 new_entry
->efd_start_cluster
) {
5051 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
5052 new_entry
->efd_count
+= entry
->efd_count
;
5053 } else if (new_entry
->efd_start_cluster
+ new_entry
->efd_count
==
5054 entry
->efd_start_cluster
) {
5055 new_entry
->efd_count
+= entry
->efd_count
;
5058 spin_lock(&sbi
->s_md_lock
);
5059 list_del(&entry
->efd_list
);
5060 spin_unlock(&sbi
->s_md_lock
);
5061 rb_erase(&entry
->efd_node
, entry_rb_root
);
5062 kmem_cache_free(ext4_free_data_cachep
, entry
);
5065 static noinline_for_stack
int
5066 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
5067 struct ext4_free_data
*new_entry
)
5069 ext4_group_t group
= e4b
->bd_group
;
5070 ext4_grpblk_t cluster
;
5071 ext4_grpblk_t clusters
= new_entry
->efd_count
;
5072 struct ext4_free_data
*entry
;
5073 struct ext4_group_info
*db
= e4b
->bd_info
;
5074 struct super_block
*sb
= e4b
->bd_sb
;
5075 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
5076 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
5077 struct rb_node
*parent
= NULL
, *new_node
;
5079 BUG_ON(!ext4_handle_valid(handle
));
5080 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
5081 BUG_ON(e4b
->bd_buddy_page
== NULL
);
5083 new_node
= &new_entry
->efd_node
;
5084 cluster
= new_entry
->efd_start_cluster
;
5087 /* first free block exent. We need to
5088 protect buddy cache from being freed,
5089 * otherwise we'll refresh it from
5090 * on-disk bitmap and lose not-yet-available
5092 get_page(e4b
->bd_buddy_page
);
5093 get_page(e4b
->bd_bitmap_page
);
5097 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
5098 if (cluster
< entry
->efd_start_cluster
)
5100 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
5101 n
= &(*n
)->rb_right
;
5103 ext4_grp_locked_error(sb
, group
, 0,
5104 ext4_group_first_block_no(sb
, group
) +
5105 EXT4_C2B(sbi
, cluster
),
5106 "Block already on to-be-freed list");
5107 kmem_cache_free(ext4_free_data_cachep
, new_entry
);
5112 rb_link_node(new_node
, parent
, n
);
5113 rb_insert_color(new_node
, &db
->bb_free_root
);
5115 /* Now try to see the extent can be merged to left and right */
5116 node
= rb_prev(new_node
);
5118 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
5119 ext4_try_merge_freed_extent(sbi
, entry
, new_entry
,
5120 &(db
->bb_free_root
));
5123 node
= rb_next(new_node
);
5125 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
5126 ext4_try_merge_freed_extent(sbi
, entry
, new_entry
,
5127 &(db
->bb_free_root
));
5130 spin_lock(&sbi
->s_md_lock
);
5131 list_add_tail(&new_entry
->efd_list
, &sbi
->s_freed_data_list
);
5132 sbi
->s_mb_free_pending
+= clusters
;
5133 spin_unlock(&sbi
->s_md_lock
);
5138 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5139 * linearly starting at the goal block and also excludes the blocks which
5140 * are going to be in use after fast commit replay.
5142 static ext4_fsblk_t
ext4_mb_new_blocks_simple(handle_t
*handle
,
5143 struct ext4_allocation_request
*ar
, int *errp
)
5145 struct buffer_head
*bitmap_bh
;
5146 struct super_block
*sb
= ar
->inode
->i_sb
;
5148 ext4_grpblk_t blkoff
;
5149 int i
= sb
->s_blocksize
;
5150 ext4_fsblk_t goal
, block
;
5151 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
5154 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
5155 goal
>= ext4_blocks_count(es
))
5156 goal
= le32_to_cpu(es
->s_first_data_block
);
5159 ext4_get_group_no_and_offset(sb
, goal
, &group
, &blkoff
);
5160 for (; group
< ext4_get_groups_count(sb
); group
++) {
5161 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
5162 if (IS_ERR(bitmap_bh
)) {
5163 *errp
= PTR_ERR(bitmap_bh
);
5164 pr_warn("Failed to read block bitmap\n");
5168 ext4_get_group_no_and_offset(sb
,
5169 max(ext4_group_first_block_no(sb
, group
), goal
),
5171 i
= mb_find_next_zero_bit(bitmap_bh
->b_data
, sb
->s_blocksize
,
5174 if (i
>= sb
->s_blocksize
)
5176 if (ext4_fc_replay_check_excluded(sb
,
5177 ext4_group_first_block_no(sb
, group
) + i
))
5182 if (group
>= ext4_get_groups_count(sb
) && i
>= sb
->s_blocksize
)
5185 block
= ext4_group_first_block_no(sb
, group
) + i
;
5186 ext4_mb_mark_bb(sb
, block
, 1, 1);
5192 static void ext4_free_blocks_simple(struct inode
*inode
, ext4_fsblk_t block
,
5193 unsigned long count
)
5195 struct buffer_head
*bitmap_bh
;
5196 struct super_block
*sb
= inode
->i_sb
;
5197 struct ext4_group_desc
*gdp
;
5198 struct buffer_head
*gdp_bh
;
5200 ext4_grpblk_t blkoff
;
5201 int already_freed
= 0, err
, i
;
5203 ext4_get_group_no_and_offset(sb
, block
, &group
, &blkoff
);
5204 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
5205 if (IS_ERR(bitmap_bh
)) {
5206 err
= PTR_ERR(bitmap_bh
);
5207 pr_warn("Failed to read block bitmap\n");
5210 gdp
= ext4_get_group_desc(sb
, group
, &gdp_bh
);
5214 for (i
= 0; i
< count
; i
++) {
5215 if (!mb_test_bit(blkoff
+ i
, bitmap_bh
->b_data
))
5218 mb_clear_bits(bitmap_bh
->b_data
, blkoff
, count
);
5219 err
= ext4_handle_dirty_metadata(NULL
, NULL
, bitmap_bh
);
5222 ext4_free_group_clusters_set(
5223 sb
, gdp
, ext4_free_group_clusters(sb
, gdp
) +
5224 count
- already_freed
);
5225 ext4_block_bitmap_csum_set(sb
, group
, gdp
, bitmap_bh
);
5226 ext4_group_desc_csum_set(sb
, group
, gdp
);
5227 ext4_handle_dirty_metadata(NULL
, NULL
, gdp_bh
);
5228 sync_dirty_buffer(bitmap_bh
);
5229 sync_dirty_buffer(gdp_bh
);
5234 * ext4_free_blocks() -- Free given blocks and update quota
5235 * @handle: handle for this transaction
5237 * @bh: optional buffer of the block to be freed
5238 * @block: starting physical block to be freed
5239 * @count: number of blocks to be freed
5240 * @flags: flags used by ext4_free_blocks
5242 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
5243 struct buffer_head
*bh
, ext4_fsblk_t block
,
5244 unsigned long count
, int flags
)
5246 struct buffer_head
*bitmap_bh
= NULL
;
5247 struct super_block
*sb
= inode
->i_sb
;
5248 struct ext4_group_desc
*gdp
;
5249 unsigned int overflow
;
5251 struct buffer_head
*gd_bh
;
5252 ext4_group_t block_group
;
5253 struct ext4_sb_info
*sbi
;
5254 struct ext4_buddy e4b
;
5255 unsigned int count_clusters
;
5261 if (sbi
->s_mount_state
& EXT4_FC_REPLAY
) {
5262 ext4_free_blocks_simple(inode
, block
, count
);
5269 BUG_ON(block
!= bh
->b_blocknr
);
5271 block
= bh
->b_blocknr
;
5274 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
5275 !ext4_inode_block_valid(inode
, block
, count
)) {
5276 ext4_error(sb
, "Freeing blocks not in datazone - "
5277 "block = %llu, count = %lu", block
, count
);
5281 ext4_debug("freeing block %llu\n", block
);
5282 trace_ext4_free_blocks(inode
, block
, count
, flags
);
5284 if (bh
&& (flags
& EXT4_FREE_BLOCKS_FORGET
)) {
5287 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
5292 * If the extent to be freed does not begin on a cluster
5293 * boundary, we need to deal with partial clusters at the
5294 * beginning and end of the extent. Normally we will free
5295 * blocks at the beginning or the end unless we are explicitly
5296 * requested to avoid doing so.
5298 overflow
= EXT4_PBLK_COFF(sbi
, block
);
5300 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
5301 overflow
= sbi
->s_cluster_ratio
- overflow
;
5303 if (count
> overflow
)
5312 overflow
= EXT4_LBLK_COFF(sbi
, count
);
5314 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
5315 if (count
> overflow
)
5320 count
+= sbi
->s_cluster_ratio
- overflow
;
5323 if (!bh
&& (flags
& EXT4_FREE_BLOCKS_FORGET
)) {
5325 int is_metadata
= flags
& EXT4_FREE_BLOCKS_METADATA
;
5327 for (i
= 0; i
< count
; i
++) {
5330 bh
= sb_find_get_block(inode
->i_sb
, block
+ i
);
5331 ext4_forget(handle
, is_metadata
, inode
, bh
, block
+ i
);
5337 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
5339 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5340 ext4_get_group_info(sb
, block_group
))))
5344 * Check to see if we are freeing blocks across a group
5347 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
5348 overflow
= EXT4_C2B(sbi
, bit
) + count
-
5349 EXT4_BLOCKS_PER_GROUP(sb
);
5352 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
5353 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
5354 if (IS_ERR(bitmap_bh
)) {
5355 err
= PTR_ERR(bitmap_bh
);
5359 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
5365 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
5366 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
5367 in_range(block
, ext4_inode_table(sb
, gdp
),
5368 sbi
->s_itb_per_group
) ||
5369 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
5370 sbi
->s_itb_per_group
)) {
5372 ext4_error(sb
, "Freeing blocks in system zone - "
5373 "Block = %llu, count = %lu", block
, count
);
5374 /* err = 0. ext4_std_error should be a no op */
5378 BUFFER_TRACE(bitmap_bh
, "getting write access");
5379 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
5384 * We are about to modify some metadata. Call the journal APIs
5385 * to unshare ->b_data if a currently-committing transaction is
5388 BUFFER_TRACE(gd_bh
, "get_write_access");
5389 err
= ext4_journal_get_write_access(handle
, gd_bh
);
5392 #ifdef AGGRESSIVE_CHECK
5395 for (i
= 0; i
< count_clusters
; i
++)
5396 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
5399 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
5401 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5402 err
= ext4_mb_load_buddy_gfp(sb
, block_group
, &e4b
,
5403 GFP_NOFS
|__GFP_NOFAIL
);
5408 * We need to make sure we don't reuse the freed block until after the
5409 * transaction is committed. We make an exception if the inode is to be
5410 * written in writeback mode since writeback mode has weak data
5411 * consistency guarantees.
5413 if (ext4_handle_valid(handle
) &&
5414 ((flags
& EXT4_FREE_BLOCKS_METADATA
) ||
5415 !ext4_should_writeback_data(inode
))) {
5416 struct ext4_free_data
*new_entry
;
5418 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5421 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
,
5422 GFP_NOFS
|__GFP_NOFAIL
);
5423 new_entry
->efd_start_cluster
= bit
;
5424 new_entry
->efd_group
= block_group
;
5425 new_entry
->efd_count
= count_clusters
;
5426 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
5428 ext4_lock_group(sb
, block_group
);
5429 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
5430 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
5432 /* need to update group_info->bb_free and bitmap
5433 * with group lock held. generate_buddy look at
5434 * them with group lock_held
5436 if (test_opt(sb
, DISCARD
)) {
5437 err
= ext4_issue_discard(sb
, block_group
, bit
, count
,
5439 if (err
&& err
!= -EOPNOTSUPP
)
5440 ext4_msg(sb
, KERN_WARNING
, "discard request in"
5441 " group:%d block:%d count:%lu failed"
5442 " with %d", block_group
, bit
, count
,
5445 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
5447 ext4_lock_group(sb
, block_group
);
5448 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
5449 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
5452 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
5453 ext4_free_group_clusters_set(sb
, gdp
, ret
);
5454 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
5455 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
5456 ext4_unlock_group(sb
, block_group
);
5458 if (sbi
->s_log_groups_per_flex
) {
5459 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
5460 atomic64_add(count_clusters
,
5461 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
5462 flex_group
)->free_clusters
);
5466 * on a bigalloc file system, defer the s_freeclusters_counter
5467 * update to the caller (ext4_remove_space and friends) so they
5468 * can determine if a cluster freed here should be rereserved
5470 if (!(flags
& EXT4_FREE_BLOCKS_RERESERVE_CLUSTER
)) {
5471 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
5472 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
5473 percpu_counter_add(&sbi
->s_freeclusters_counter
,
5477 ext4_mb_unload_buddy(&e4b
);
5479 /* We dirtied the bitmap block */
5480 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5481 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5483 /* And the group descriptor block */
5484 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5485 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5489 if (overflow
&& !err
) {
5497 ext4_std_error(sb
, err
);
5502 * ext4_group_add_blocks() -- Add given blocks to an existing group
5503 * @handle: handle to this transaction
5505 * @block: start physical block to add to the block group
5506 * @count: number of blocks to free
5508 * This marks the blocks as free in the bitmap and buddy.
5510 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
5511 ext4_fsblk_t block
, unsigned long count
)
5513 struct buffer_head
*bitmap_bh
= NULL
;
5514 struct buffer_head
*gd_bh
;
5515 ext4_group_t block_group
;
5518 struct ext4_group_desc
*desc
;
5519 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
5520 struct ext4_buddy e4b
;
5521 int err
= 0, ret
, free_clusters_count
;
5522 ext4_grpblk_t clusters_freed
;
5523 ext4_fsblk_t first_cluster
= EXT4_B2C(sbi
, block
);
5524 ext4_fsblk_t last_cluster
= EXT4_B2C(sbi
, block
+ count
- 1);
5525 unsigned long cluster_count
= last_cluster
- first_cluster
+ 1;
5527 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
5532 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
5534 * Check to see if we are freeing blocks across a group
5537 if (bit
+ cluster_count
> EXT4_CLUSTERS_PER_GROUP(sb
)) {
5538 ext4_warning(sb
, "too many blocks added to group %u",
5544 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
5545 if (IS_ERR(bitmap_bh
)) {
5546 err
= PTR_ERR(bitmap_bh
);
5551 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
5557 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
5558 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
5559 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
5560 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
5561 sbi
->s_itb_per_group
)) {
5562 ext4_error(sb
, "Adding blocks in system zones - "
5563 "Block = %llu, count = %lu",
5569 BUFFER_TRACE(bitmap_bh
, "getting write access");
5570 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
5575 * We are about to modify some metadata. Call the journal APIs
5576 * to unshare ->b_data if a currently-committing transaction is
5579 BUFFER_TRACE(gd_bh
, "get_write_access");
5580 err
= ext4_journal_get_write_access(handle
, gd_bh
);
5584 for (i
= 0, clusters_freed
= 0; i
< cluster_count
; i
++) {
5585 BUFFER_TRACE(bitmap_bh
, "clear bit");
5586 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
5587 ext4_error(sb
, "bit already cleared for block %llu",
5588 (ext4_fsblk_t
)(block
+ i
));
5589 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
5595 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
5600 * need to update group_info->bb_free and bitmap
5601 * with group lock held. generate_buddy look at
5602 * them with group lock_held
5604 ext4_lock_group(sb
, block_group
);
5605 mb_clear_bits(bitmap_bh
->b_data
, bit
, cluster_count
);
5606 mb_free_blocks(NULL
, &e4b
, bit
, cluster_count
);
5607 free_clusters_count
= clusters_freed
+
5608 ext4_free_group_clusters(sb
, desc
);
5609 ext4_free_group_clusters_set(sb
, desc
, free_clusters_count
);
5610 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
5611 ext4_group_desc_csum_set(sb
, block_group
, desc
);
5612 ext4_unlock_group(sb
, block_group
);
5613 percpu_counter_add(&sbi
->s_freeclusters_counter
,
5616 if (sbi
->s_log_groups_per_flex
) {
5617 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
5618 atomic64_add(clusters_freed
,
5619 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
5620 flex_group
)->free_clusters
);
5623 ext4_mb_unload_buddy(&e4b
);
5625 /* We dirtied the bitmap block */
5626 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5627 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5629 /* And the group descriptor block */
5630 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5631 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5637 ext4_std_error(sb
, err
);
5642 * ext4_trim_extent -- function to TRIM one single free extent in the group
5643 * @sb: super block for the file system
5644 * @start: starting block of the free extent in the alloc. group
5645 * @count: number of blocks to TRIM
5646 * @group: alloc. group we are working with
5647 * @e4b: ext4 buddy for the group
5649 * Trim "count" blocks starting at "start" in the "group". To assure that no
5650 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5651 * be called with under the group lock.
5653 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5654 ext4_group_t group
, struct ext4_buddy
*e4b
)
5658 struct ext4_free_extent ex
;
5661 trace_ext4_trim_extent(sb
, group
, start
, count
);
5663 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5665 ex
.fe_start
= start
;
5666 ex
.fe_group
= group
;
5670 * Mark blocks used, so no one can reuse them while
5673 mb_mark_used(e4b
, &ex
);
5674 ext4_unlock_group(sb
, group
);
5675 ret
= ext4_issue_discard(sb
, group
, start
, count
, NULL
);
5676 ext4_lock_group(sb
, group
);
5677 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5682 * ext4_trim_all_free -- function to trim all free space in alloc. group
5683 * @sb: super block for file system
5684 * @group: group to be trimmed
5685 * @start: first group block to examine
5686 * @max: last group block to examine
5687 * @minblocks: minimum extent block count
5689 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5690 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5694 * ext4_trim_all_free walks through group's block bitmap searching for free
5695 * extents. When the free extent is found, mark it as used in group buddy
5696 * bitmap. Then issue a TRIM command on this extent and free the extent in
5697 * the group buddy bitmap. This is done until whole group is scanned.
5699 static ext4_grpblk_t
5700 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5701 ext4_grpblk_t start
, ext4_grpblk_t max
,
5702 ext4_grpblk_t minblocks
)
5705 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5706 struct ext4_buddy e4b
;
5709 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5711 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5713 ext4_warning(sb
, "Error %d loading buddy information for %u",
5717 bitmap
= e4b
.bd_bitmap
;
5719 ext4_lock_group(sb
, group
);
5720 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5721 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5724 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5725 e4b
.bd_info
->bb_first_free
: start
;
5727 while (start
<= max
) {
5728 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5731 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5733 if ((next
- start
) >= minblocks
) {
5734 ret
= ext4_trim_extent(sb
, start
,
5735 next
- start
, group
, &e4b
);
5736 if (ret
&& ret
!= -EOPNOTSUPP
)
5739 count
+= next
- start
;
5741 free_count
+= next
- start
;
5744 if (fatal_signal_pending(current
)) {
5745 count
= -ERESTARTSYS
;
5749 if (need_resched()) {
5750 ext4_unlock_group(sb
, group
);
5752 ext4_lock_group(sb
, group
);
5755 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5761 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5764 ext4_unlock_group(sb
, group
);
5765 ext4_mb_unload_buddy(&e4b
);
5767 ext4_debug("trimmed %d blocks in the group %d\n",
5774 * ext4_trim_fs() -- trim ioctl handle function
5775 * @sb: superblock for filesystem
5776 * @range: fstrim_range structure
5778 * start: First Byte to trim
5779 * len: number of Bytes to trim from start
5780 * minlen: minimum extent length in Bytes
5781 * ext4_trim_fs goes through all allocation groups containing Bytes from
5782 * start to start+len. For each such a group ext4_trim_all_free function
5783 * is invoked to trim all free space.
5785 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5787 struct ext4_group_info
*grp
;
5788 ext4_group_t group
, first_group
, last_group
;
5789 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5790 uint64_t start
, end
, minlen
, trimmed
= 0;
5791 ext4_fsblk_t first_data_blk
=
5792 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5793 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5796 start
= range
->start
>> sb
->s_blocksize_bits
;
5797 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5798 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5799 range
->minlen
>> sb
->s_blocksize_bits
);
5801 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5802 start
>= max_blks
||
5803 range
->len
< sb
->s_blocksize
)
5805 if (end
>= max_blks
)
5807 if (end
<= first_data_blk
)
5809 if (start
< first_data_blk
)
5810 start
= first_data_blk
;
5812 /* Determine first and last group to examine based on start and end */
5813 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5814 &first_group
, &first_cluster
);
5815 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5816 &last_group
, &last_cluster
);
5818 /* end now represents the last cluster to discard in this group */
5819 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5821 for (group
= first_group
; group
<= last_group
; group
++) {
5822 grp
= ext4_get_group_info(sb
, group
);
5823 /* We only do this if the grp has never been initialized */
5824 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5825 ret
= ext4_mb_init_group(sb
, group
, GFP_NOFS
);
5831 * For all the groups except the last one, last cluster will
5832 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5833 * change it for the last group, note that last_cluster is
5834 * already computed earlier by ext4_get_group_no_and_offset()
5836 if (group
== last_group
)
5839 if (grp
->bb_free
>= minlen
) {
5840 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5850 * For every group except the first one, we are sure
5851 * that the first cluster to discard will be cluster #0.
5857 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5860 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;
5864 /* Iterate all the free extents in the group. */
5866 ext4_mballoc_query_range(
5867 struct super_block
*sb
,
5869 ext4_grpblk_t start
,
5871 ext4_mballoc_query_range_fn formatter
,
5876 struct ext4_buddy e4b
;
5879 error
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5882 bitmap
= e4b
.bd_bitmap
;
5884 ext4_lock_group(sb
, group
);
5886 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5887 e4b
.bd_info
->bb_first_free
: start
;
5888 if (end
>= EXT4_CLUSTERS_PER_GROUP(sb
))
5889 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5891 while (start
<= end
) {
5892 start
= mb_find_next_zero_bit(bitmap
, end
+ 1, start
);
5895 next
= mb_find_next_bit(bitmap
, end
+ 1, start
);
5897 ext4_unlock_group(sb
, group
);
5898 error
= formatter(sb
, group
, start
, next
- start
, priv
);
5901 ext4_lock_group(sb
, group
);
5906 ext4_unlock_group(sb
, group
);
5908 ext4_mb_unload_buddy(&e4b
);