1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
6 #include <linux/export.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
28 * Inode locking rules:
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
43 * inode->i_sb->s_inode_list_lock
45 * Inode LRU list locks
51 * inode->i_sb->s_inode_list_lock
58 static unsigned int i_hash_mask __read_mostly
;
59 static unsigned int i_hash_shift __read_mostly
;
60 static struct hlist_head
*inode_hashtable __read_mostly
;
61 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
67 const struct address_space_operations empty_aops
= {
69 EXPORT_SYMBOL(empty_aops
);
72 * Statistics gathering..
74 struct inodes_stat_t inodes_stat
;
76 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
77 static DEFINE_PER_CPU(unsigned long, nr_unused
);
79 static struct kmem_cache
*inode_cachep __read_mostly
;
81 static long get_nr_inodes(void)
85 for_each_possible_cpu(i
)
86 sum
+= per_cpu(nr_inodes
, i
);
87 return sum
< 0 ? 0 : sum
;
90 static inline long get_nr_inodes_unused(void)
94 for_each_possible_cpu(i
)
95 sum
+= per_cpu(nr_unused
, i
);
96 return sum
< 0 ? 0 : sum
;
99 long get_nr_dirty_inodes(void)
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty
> 0 ? nr_dirty
: 0;
107 * Handle nr_inode sysctl
110 int proc_nr_inodes(struct ctl_table
*table
, int write
,
111 void *buffer
, size_t *lenp
, loff_t
*ppos
)
113 inodes_stat
.nr_inodes
= get_nr_inodes();
114 inodes_stat
.nr_unused
= get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
119 static int no_open(struct inode
*inode
, struct file
*file
)
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
132 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
134 static const struct inode_operations empty_iops
;
135 static const struct file_operations no_open_fops
= {.open
= no_open
};
136 struct address_space
*const mapping
= &inode
->i_data
;
139 inode
->i_blkbits
= sb
->s_blocksize_bits
;
141 atomic64_set(&inode
->i_sequence
, 0);
142 atomic_set(&inode
->i_count
, 1);
143 inode
->i_op
= &empty_iops
;
144 inode
->i_fop
= &no_open_fops
;
145 inode
->__i_nlink
= 1;
146 inode
->i_opflags
= 0;
148 inode
->i_opflags
|= IOP_XATTR
;
149 i_uid_write(inode
, 0);
150 i_gid_write(inode
, 0);
151 atomic_set(&inode
->i_writecount
, 0);
153 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
156 inode
->i_generation
= 0;
157 inode
->i_pipe
= NULL
;
158 inode
->i_cdev
= NULL
;
159 inode
->i_link
= NULL
;
160 inode
->i_dir_seq
= 0;
162 inode
->dirtied_when
= 0;
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode
->i_wb_frn_winner
= 0;
166 inode
->i_wb_frn_avg_time
= 0;
167 inode
->i_wb_frn_history
= 0;
170 if (security_inode_alloc(inode
))
172 spin_lock_init(&inode
->i_lock
);
173 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
175 init_rwsem(&inode
->i_rwsem
);
176 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
178 atomic_set(&inode
->i_dio_count
, 0);
180 mapping
->a_ops
= &empty_aops
;
181 mapping
->host
= inode
;
183 if (sb
->s_type
->fs_flags
& FS_THP_SUPPORT
)
184 __set_bit(AS_THP_SUPPORT
, &mapping
->flags
);
186 atomic_set(&mapping
->i_mmap_writable
, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping
->nr_thps
, 0);
190 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
191 mapping
->private_data
= NULL
;
192 mapping
->writeback_index
= 0;
193 inode
->i_private
= NULL
;
194 inode
->i_mapping
= mapping
;
195 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
200 #ifdef CONFIG_FSNOTIFY
201 inode
->i_fsnotify_mask
= 0;
203 inode
->i_flctx
= NULL
;
204 this_cpu_inc(nr_inodes
);
210 EXPORT_SYMBOL(inode_init_always
);
212 void free_inode_nonrcu(struct inode
*inode
)
214 kmem_cache_free(inode_cachep
, inode
);
216 EXPORT_SYMBOL(free_inode_nonrcu
);
218 static void i_callback(struct rcu_head
*head
)
220 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
221 if (inode
->free_inode
)
222 inode
->free_inode(inode
);
224 free_inode_nonrcu(inode
);
227 static struct inode
*alloc_inode(struct super_block
*sb
)
229 const struct super_operations
*ops
= sb
->s_op
;
232 if (ops
->alloc_inode
)
233 inode
= ops
->alloc_inode(sb
);
235 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
240 if (unlikely(inode_init_always(sb
, inode
))) {
241 if (ops
->destroy_inode
) {
242 ops
->destroy_inode(inode
);
243 if (!ops
->free_inode
)
246 inode
->free_inode
= ops
->free_inode
;
247 i_callback(&inode
->i_rcu
);
254 void __destroy_inode(struct inode
*inode
)
256 BUG_ON(inode_has_buffers(inode
));
257 inode_detach_wb(inode
);
258 security_inode_free(inode
);
259 fsnotify_inode_delete(inode
);
260 locks_free_lock_context(inode
);
261 if (!inode
->i_nlink
) {
262 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
263 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
266 #ifdef CONFIG_FS_POSIX_ACL
267 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
268 posix_acl_release(inode
->i_acl
);
269 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
270 posix_acl_release(inode
->i_default_acl
);
272 this_cpu_dec(nr_inodes
);
274 EXPORT_SYMBOL(__destroy_inode
);
276 static void destroy_inode(struct inode
*inode
)
278 const struct super_operations
*ops
= inode
->i_sb
->s_op
;
280 BUG_ON(!list_empty(&inode
->i_lru
));
281 __destroy_inode(inode
);
282 if (ops
->destroy_inode
) {
283 ops
->destroy_inode(inode
);
284 if (!ops
->free_inode
)
287 inode
->free_inode
= ops
->free_inode
;
288 call_rcu(&inode
->i_rcu
, i_callback
);
292 * drop_nlink - directly drop an inode's link count
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. In cases
297 * where we are attempting to track writes to the
298 * filesystem, a decrement to zero means an imminent
299 * write when the file is truncated and actually unlinked
302 void drop_nlink(struct inode
*inode
)
304 WARN_ON(inode
->i_nlink
== 0);
307 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
309 EXPORT_SYMBOL(drop_nlink
);
312 * clear_nlink - directly zero an inode's link count
315 * This is a low-level filesystem helper to replace any
316 * direct filesystem manipulation of i_nlink. See
317 * drop_nlink() for why we care about i_nlink hitting zero.
319 void clear_nlink(struct inode
*inode
)
321 if (inode
->i_nlink
) {
322 inode
->__i_nlink
= 0;
323 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
326 EXPORT_SYMBOL(clear_nlink
);
329 * set_nlink - directly set an inode's link count
331 * @nlink: new nlink (should be non-zero)
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink.
336 void set_nlink(struct inode
*inode
, unsigned int nlink
)
341 /* Yes, some filesystems do change nlink from zero to one */
342 if (inode
->i_nlink
== 0)
343 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
345 inode
->__i_nlink
= nlink
;
348 EXPORT_SYMBOL(set_nlink
);
351 * inc_nlink - directly increment an inode's link count
354 * This is a low-level filesystem helper to replace any
355 * direct filesystem manipulation of i_nlink. Currently,
356 * it is only here for parity with dec_nlink().
358 void inc_nlink(struct inode
*inode
)
360 if (unlikely(inode
->i_nlink
== 0)) {
361 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
362 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
367 EXPORT_SYMBOL(inc_nlink
);
369 static void __address_space_init_once(struct address_space
*mapping
)
371 xa_init_flags(&mapping
->i_pages
, XA_FLAGS_LOCK_IRQ
| XA_FLAGS_ACCOUNT
);
372 init_rwsem(&mapping
->i_mmap_rwsem
);
373 INIT_LIST_HEAD(&mapping
->private_list
);
374 spin_lock_init(&mapping
->private_lock
);
375 mapping
->i_mmap
= RB_ROOT_CACHED
;
378 void address_space_init_once(struct address_space
*mapping
)
380 memset(mapping
, 0, sizeof(*mapping
));
381 __address_space_init_once(mapping
);
383 EXPORT_SYMBOL(address_space_init_once
);
386 * These are initializations that only need to be done
387 * once, because the fields are idempotent across use
388 * of the inode, so let the slab aware of that.
390 void inode_init_once(struct inode
*inode
)
392 memset(inode
, 0, sizeof(*inode
));
393 INIT_HLIST_NODE(&inode
->i_hash
);
394 INIT_LIST_HEAD(&inode
->i_devices
);
395 INIT_LIST_HEAD(&inode
->i_io_list
);
396 INIT_LIST_HEAD(&inode
->i_wb_list
);
397 INIT_LIST_HEAD(&inode
->i_lru
);
398 __address_space_init_once(&inode
->i_data
);
399 i_size_ordered_init(inode
);
401 EXPORT_SYMBOL(inode_init_once
);
403 static void init_once(void *foo
)
405 struct inode
*inode
= (struct inode
*) foo
;
407 inode_init_once(inode
);
411 * inode->i_lock must be held
413 void __iget(struct inode
*inode
)
415 atomic_inc(&inode
->i_count
);
419 * get additional reference to inode; caller must already hold one.
421 void ihold(struct inode
*inode
)
423 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
425 EXPORT_SYMBOL(ihold
);
427 static void inode_lru_list_add(struct inode
*inode
)
429 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
430 this_cpu_inc(nr_unused
);
432 inode
->i_state
|= I_REFERENCED
;
436 * Add inode to LRU if needed (inode is unused and clean).
438 * Needs inode->i_lock held.
440 void inode_add_lru(struct inode
*inode
)
442 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
443 I_FREEING
| I_WILL_FREE
)) &&
444 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
445 inode_lru_list_add(inode
);
449 static void inode_lru_list_del(struct inode
*inode
)
452 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
453 this_cpu_dec(nr_unused
);
457 * inode_sb_list_add - add inode to the superblock list of inodes
458 * @inode: inode to add
460 void inode_sb_list_add(struct inode
*inode
)
462 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
463 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
464 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
466 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
468 static inline void inode_sb_list_del(struct inode
*inode
)
470 if (!list_empty(&inode
->i_sb_list
)) {
471 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
472 list_del_init(&inode
->i_sb_list
);
473 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
477 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
481 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
483 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
484 return tmp
& i_hash_mask
;
488 * __insert_inode_hash - hash an inode
489 * @inode: unhashed inode
490 * @hashval: unsigned long value used to locate this object in the
493 * Add an inode to the inode hash for this superblock.
495 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
497 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
499 spin_lock(&inode_hash_lock
);
500 spin_lock(&inode
->i_lock
);
501 hlist_add_head_rcu(&inode
->i_hash
, b
);
502 spin_unlock(&inode
->i_lock
);
503 spin_unlock(&inode_hash_lock
);
505 EXPORT_SYMBOL(__insert_inode_hash
);
508 * __remove_inode_hash - remove an inode from the hash
509 * @inode: inode to unhash
511 * Remove an inode from the superblock.
513 void __remove_inode_hash(struct inode
*inode
)
515 spin_lock(&inode_hash_lock
);
516 spin_lock(&inode
->i_lock
);
517 hlist_del_init_rcu(&inode
->i_hash
);
518 spin_unlock(&inode
->i_lock
);
519 spin_unlock(&inode_hash_lock
);
521 EXPORT_SYMBOL(__remove_inode_hash
);
523 void clear_inode(struct inode
*inode
)
526 * We have to cycle the i_pages lock here because reclaim can be in the
527 * process of removing the last page (in __delete_from_page_cache())
528 * and we must not free the mapping under it.
530 xa_lock_irq(&inode
->i_data
.i_pages
);
531 BUG_ON(inode
->i_data
.nrpages
);
532 BUG_ON(inode
->i_data
.nrexceptional
);
533 xa_unlock_irq(&inode
->i_data
.i_pages
);
534 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
535 BUG_ON(!(inode
->i_state
& I_FREEING
));
536 BUG_ON(inode
->i_state
& I_CLEAR
);
537 BUG_ON(!list_empty(&inode
->i_wb_list
));
538 /* don't need i_lock here, no concurrent mods to i_state */
539 inode
->i_state
= I_FREEING
| I_CLEAR
;
541 EXPORT_SYMBOL(clear_inode
);
544 * Free the inode passed in, removing it from the lists it is still connected
545 * to. We remove any pages still attached to the inode and wait for any IO that
546 * is still in progress before finally destroying the inode.
548 * An inode must already be marked I_FREEING so that we avoid the inode being
549 * moved back onto lists if we race with other code that manipulates the lists
550 * (e.g. writeback_single_inode). The caller is responsible for setting this.
552 * An inode must already be removed from the LRU list before being evicted from
553 * the cache. This should occur atomically with setting the I_FREEING state
554 * flag, so no inodes here should ever be on the LRU when being evicted.
556 static void evict(struct inode
*inode
)
558 const struct super_operations
*op
= inode
->i_sb
->s_op
;
560 BUG_ON(!(inode
->i_state
& I_FREEING
));
561 BUG_ON(!list_empty(&inode
->i_lru
));
563 if (!list_empty(&inode
->i_io_list
))
564 inode_io_list_del(inode
);
566 inode_sb_list_del(inode
);
569 * Wait for flusher thread to be done with the inode so that filesystem
570 * does not start destroying it while writeback is still running. Since
571 * the inode has I_FREEING set, flusher thread won't start new work on
572 * the inode. We just have to wait for running writeback to finish.
574 inode_wait_for_writeback(inode
);
576 if (op
->evict_inode
) {
577 op
->evict_inode(inode
);
579 truncate_inode_pages_final(&inode
->i_data
);
582 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
585 remove_inode_hash(inode
);
587 spin_lock(&inode
->i_lock
);
588 wake_up_bit(&inode
->i_state
, __I_NEW
);
589 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
590 spin_unlock(&inode
->i_lock
);
592 destroy_inode(inode
);
596 * dispose_list - dispose of the contents of a local list
597 * @head: the head of the list to free
599 * Dispose-list gets a local list with local inodes in it, so it doesn't
600 * need to worry about list corruption and SMP locks.
602 static void dispose_list(struct list_head
*head
)
604 while (!list_empty(head
)) {
607 inode
= list_first_entry(head
, struct inode
, i_lru
);
608 list_del_init(&inode
->i_lru
);
616 * evict_inodes - evict all evictable inodes for a superblock
617 * @sb: superblock to operate on
619 * Make sure that no inodes with zero refcount are retained. This is
620 * called by superblock shutdown after having SB_ACTIVE flag removed,
621 * so any inode reaching zero refcount during or after that call will
622 * be immediately evicted.
624 void evict_inodes(struct super_block
*sb
)
626 struct inode
*inode
, *next
;
630 spin_lock(&sb
->s_inode_list_lock
);
631 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
632 if (atomic_read(&inode
->i_count
))
635 spin_lock(&inode
->i_lock
);
636 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
637 spin_unlock(&inode
->i_lock
);
641 inode
->i_state
|= I_FREEING
;
642 inode_lru_list_del(inode
);
643 spin_unlock(&inode
->i_lock
);
644 list_add(&inode
->i_lru
, &dispose
);
647 * We can have a ton of inodes to evict at unmount time given
648 * enough memory, check to see if we need to go to sleep for a
649 * bit so we don't livelock.
651 if (need_resched()) {
652 spin_unlock(&sb
->s_inode_list_lock
);
654 dispose_list(&dispose
);
658 spin_unlock(&sb
->s_inode_list_lock
);
660 dispose_list(&dispose
);
662 EXPORT_SYMBOL_GPL(evict_inodes
);
665 * invalidate_inodes - attempt to free all inodes on a superblock
666 * @sb: superblock to operate on
667 * @kill_dirty: flag to guide handling of dirty inodes
669 * Attempts to free all inodes for a given superblock. If there were any
670 * busy inodes return a non-zero value, else zero.
671 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
674 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
677 struct inode
*inode
, *next
;
681 spin_lock(&sb
->s_inode_list_lock
);
682 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
683 spin_lock(&inode
->i_lock
);
684 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
685 spin_unlock(&inode
->i_lock
);
688 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
689 spin_unlock(&inode
->i_lock
);
693 if (atomic_read(&inode
->i_count
)) {
694 spin_unlock(&inode
->i_lock
);
699 inode
->i_state
|= I_FREEING
;
700 inode_lru_list_del(inode
);
701 spin_unlock(&inode
->i_lock
);
702 list_add(&inode
->i_lru
, &dispose
);
703 if (need_resched()) {
704 spin_unlock(&sb
->s_inode_list_lock
);
706 dispose_list(&dispose
);
710 spin_unlock(&sb
->s_inode_list_lock
);
712 dispose_list(&dispose
);
718 * Isolate the inode from the LRU in preparation for freeing it.
720 * Any inodes which are pinned purely because of attached pagecache have their
721 * pagecache removed. If the inode has metadata buffers attached to
722 * mapping->private_list then try to remove them.
724 * If the inode has the I_REFERENCED flag set, then it means that it has been
725 * used recently - the flag is set in iput_final(). When we encounter such an
726 * inode, clear the flag and move it to the back of the LRU so it gets another
727 * pass through the LRU before it gets reclaimed. This is necessary because of
728 * the fact we are doing lazy LRU updates to minimise lock contention so the
729 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
730 * with this flag set because they are the inodes that are out of order.
732 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
733 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
735 struct list_head
*freeable
= arg
;
736 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
739 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
740 * If we fail to get the lock, just skip it.
742 if (!spin_trylock(&inode
->i_lock
))
746 * Referenced or dirty inodes are still in use. Give them another pass
747 * through the LRU as we canot reclaim them now.
749 if (atomic_read(&inode
->i_count
) ||
750 (inode
->i_state
& ~I_REFERENCED
)) {
751 list_lru_isolate(lru
, &inode
->i_lru
);
752 spin_unlock(&inode
->i_lock
);
753 this_cpu_dec(nr_unused
);
757 /* recently referenced inodes get one more pass */
758 if (inode
->i_state
& I_REFERENCED
) {
759 inode
->i_state
&= ~I_REFERENCED
;
760 spin_unlock(&inode
->i_lock
);
764 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
766 spin_unlock(&inode
->i_lock
);
767 spin_unlock(lru_lock
);
768 if (remove_inode_buffers(inode
)) {
770 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
774 __count_vm_events(PGINODESTEAL
, reap
);
775 if (current
->reclaim_state
)
776 current
->reclaim_state
->reclaimed_slab
+= reap
;
783 WARN_ON(inode
->i_state
& I_NEW
);
784 inode
->i_state
|= I_FREEING
;
785 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
786 spin_unlock(&inode
->i_lock
);
788 this_cpu_dec(nr_unused
);
793 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
794 * This is called from the superblock shrinker function with a number of inodes
795 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
796 * then are freed outside inode_lock by dispose_list().
798 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
803 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
804 inode_lru_isolate
, &freeable
);
805 dispose_list(&freeable
);
809 static void __wait_on_freeing_inode(struct inode
*inode
);
811 * Called with the inode lock held.
813 static struct inode
*find_inode(struct super_block
*sb
,
814 struct hlist_head
*head
,
815 int (*test
)(struct inode
*, void *),
818 struct inode
*inode
= NULL
;
821 hlist_for_each_entry(inode
, head
, i_hash
) {
822 if (inode
->i_sb
!= sb
)
824 if (!test(inode
, data
))
826 spin_lock(&inode
->i_lock
);
827 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
828 __wait_on_freeing_inode(inode
);
831 if (unlikely(inode
->i_state
& I_CREATING
)) {
832 spin_unlock(&inode
->i_lock
);
833 return ERR_PTR(-ESTALE
);
836 spin_unlock(&inode
->i_lock
);
843 * find_inode_fast is the fast path version of find_inode, see the comment at
844 * iget_locked for details.
846 static struct inode
*find_inode_fast(struct super_block
*sb
,
847 struct hlist_head
*head
, unsigned long ino
)
849 struct inode
*inode
= NULL
;
852 hlist_for_each_entry(inode
, head
, i_hash
) {
853 if (inode
->i_ino
!= ino
)
855 if (inode
->i_sb
!= sb
)
857 spin_lock(&inode
->i_lock
);
858 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
859 __wait_on_freeing_inode(inode
);
862 if (unlikely(inode
->i_state
& I_CREATING
)) {
863 spin_unlock(&inode
->i_lock
);
864 return ERR_PTR(-ESTALE
);
867 spin_unlock(&inode
->i_lock
);
874 * Each cpu owns a range of LAST_INO_BATCH numbers.
875 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
876 * to renew the exhausted range.
878 * This does not significantly increase overflow rate because every CPU can
879 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
880 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
881 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
882 * overflow rate by 2x, which does not seem too significant.
884 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
885 * error if st_ino won't fit in target struct field. Use 32bit counter
886 * here to attempt to avoid that.
888 #define LAST_INO_BATCH 1024
889 static DEFINE_PER_CPU(unsigned int, last_ino
);
891 unsigned int get_next_ino(void)
893 unsigned int *p
= &get_cpu_var(last_ino
);
894 unsigned int res
= *p
;
897 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
898 static atomic_t shared_last_ino
;
899 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
901 res
= next
- LAST_INO_BATCH
;
906 /* get_next_ino should not provide a 0 inode number */
910 put_cpu_var(last_ino
);
913 EXPORT_SYMBOL(get_next_ino
);
916 * new_inode_pseudo - obtain an inode
919 * Allocates a new inode for given superblock.
920 * Inode wont be chained in superblock s_inodes list
922 * - fs can't be unmount
923 * - quotas, fsnotify, writeback can't work
925 struct inode
*new_inode_pseudo(struct super_block
*sb
)
927 struct inode
*inode
= alloc_inode(sb
);
930 spin_lock(&inode
->i_lock
);
932 spin_unlock(&inode
->i_lock
);
933 INIT_LIST_HEAD(&inode
->i_sb_list
);
939 * new_inode - obtain an inode
942 * Allocates a new inode for given superblock. The default gfp_mask
943 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
944 * If HIGHMEM pages are unsuitable or it is known that pages allocated
945 * for the page cache are not reclaimable or migratable,
946 * mapping_set_gfp_mask() must be called with suitable flags on the
947 * newly created inode's mapping
950 struct inode
*new_inode(struct super_block
*sb
)
954 spin_lock_prefetch(&sb
->s_inode_list_lock
);
956 inode
= new_inode_pseudo(sb
);
958 inode_sb_list_add(inode
);
961 EXPORT_SYMBOL(new_inode
);
963 #ifdef CONFIG_DEBUG_LOCK_ALLOC
964 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
966 if (S_ISDIR(inode
->i_mode
)) {
967 struct file_system_type
*type
= inode
->i_sb
->s_type
;
969 /* Set new key only if filesystem hasn't already changed it */
970 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
972 * ensure nobody is actually holding i_mutex
974 // mutex_destroy(&inode->i_mutex);
975 init_rwsem(&inode
->i_rwsem
);
976 lockdep_set_class(&inode
->i_rwsem
,
977 &type
->i_mutex_dir_key
);
981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
985 * unlock_new_inode - clear the I_NEW state and wake up any waiters
986 * @inode: new inode to unlock
988 * Called when the inode is fully initialised to clear the new state of the
989 * inode and wake up anyone waiting for the inode to finish initialisation.
991 void unlock_new_inode(struct inode
*inode
)
993 lockdep_annotate_inode_mutex_key(inode
);
994 spin_lock(&inode
->i_lock
);
995 WARN_ON(!(inode
->i_state
& I_NEW
));
996 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
998 wake_up_bit(&inode
->i_state
, __I_NEW
);
999 spin_unlock(&inode
->i_lock
);
1001 EXPORT_SYMBOL(unlock_new_inode
);
1003 void discard_new_inode(struct inode
*inode
)
1005 lockdep_annotate_inode_mutex_key(inode
);
1006 spin_lock(&inode
->i_lock
);
1007 WARN_ON(!(inode
->i_state
& I_NEW
));
1008 inode
->i_state
&= ~I_NEW
;
1010 wake_up_bit(&inode
->i_state
, __I_NEW
);
1011 spin_unlock(&inode
->i_lock
);
1014 EXPORT_SYMBOL(discard_new_inode
);
1017 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019 * Lock any non-NULL argument that is not a directory.
1020 * Zero, one or two objects may be locked by this function.
1022 * @inode1: first inode to lock
1023 * @inode2: second inode to lock
1025 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1027 if (inode1
> inode2
)
1028 swap(inode1
, inode2
);
1030 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1032 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1033 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1035 EXPORT_SYMBOL(lock_two_nondirectories
);
1038 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1039 * @inode1: first inode to unlock
1040 * @inode2: second inode to unlock
1042 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1044 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1045 inode_unlock(inode1
);
1046 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1047 inode_unlock(inode2
);
1049 EXPORT_SYMBOL(unlock_two_nondirectories
);
1052 * inode_insert5 - obtain an inode from a mounted file system
1053 * @inode: pre-allocated inode to use for insert to cache
1054 * @hashval: hash value (usually inode number) to get
1055 * @test: callback used for comparisons between inodes
1056 * @set: callback used to initialize a new struct inode
1057 * @data: opaque data pointer to pass to @test and @set
1059 * Search for the inode specified by @hashval and @data in the inode cache,
1060 * and if present it is return it with an increased reference count. This is
1061 * a variant of iget5_locked() for callers that don't want to fail on memory
1062 * allocation of inode.
1064 * If the inode is not in cache, insert the pre-allocated inode to cache and
1065 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1066 * to fill it in before unlocking it via unlock_new_inode().
1068 * Note both @test and @set are called with the inode_hash_lock held, so can't
1071 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1072 int (*test
)(struct inode
*, void *),
1073 int (*set
)(struct inode
*, void *), void *data
)
1075 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1077 bool creating
= inode
->i_state
& I_CREATING
;
1080 spin_lock(&inode_hash_lock
);
1081 old
= find_inode(inode
->i_sb
, head
, test
, data
);
1082 if (unlikely(old
)) {
1084 * Uhhuh, somebody else created the same inode under us.
1085 * Use the old inode instead of the preallocated one.
1087 spin_unlock(&inode_hash_lock
);
1091 if (unlikely(inode_unhashed(old
))) {
1098 if (set
&& unlikely(set(inode
, data
))) {
1104 * Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1107 spin_lock(&inode
->i_lock
);
1108 inode
->i_state
|= I_NEW
;
1109 hlist_add_head_rcu(&inode
->i_hash
, head
);
1110 spin_unlock(&inode
->i_lock
);
1112 inode_sb_list_add(inode
);
1114 spin_unlock(&inode_hash_lock
);
1118 EXPORT_SYMBOL(inode_insert5
);
1121 * iget5_locked - obtain an inode from a mounted file system
1122 * @sb: super block of file system
1123 * @hashval: hash value (usually inode number) to get
1124 * @test: callback used for comparisons between inodes
1125 * @set: callback used to initialize a new struct inode
1126 * @data: opaque data pointer to pass to @test and @set
1128 * Search for the inode specified by @hashval and @data in the inode cache,
1129 * and if present it is return it with an increased reference count. This is
1130 * a generalized version of iget_locked() for file systems where the inode
1131 * number is not sufficient for unique identification of an inode.
1133 * If the inode is not in cache, allocate a new inode and return it locked,
1134 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1135 * before unlocking it via unlock_new_inode().
1137 * Note both @test and @set are called with the inode_hash_lock held, so can't
1140 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1141 int (*test
)(struct inode
*, void *),
1142 int (*set
)(struct inode
*, void *), void *data
)
1144 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1147 struct inode
*new = alloc_inode(sb
);
1151 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1152 if (unlikely(inode
!= new))
1158 EXPORT_SYMBOL(iget5_locked
);
1161 * iget_locked - obtain an inode from a mounted file system
1162 * @sb: super block of file system
1163 * @ino: inode number to get
1165 * Search for the inode specified by @ino in the inode cache and if present
1166 * return it with an increased reference count. This is for file systems
1167 * where the inode number is sufficient for unique identification of an inode.
1169 * If the inode is not in cache, allocate a new inode and return it locked,
1170 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1171 * before unlocking it via unlock_new_inode().
1173 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1175 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1176 struct inode
*inode
;
1178 spin_lock(&inode_hash_lock
);
1179 inode
= find_inode_fast(sb
, head
, ino
);
1180 spin_unlock(&inode_hash_lock
);
1184 wait_on_inode(inode
);
1185 if (unlikely(inode_unhashed(inode
))) {
1192 inode
= alloc_inode(sb
);
1196 spin_lock(&inode_hash_lock
);
1197 /* We released the lock, so.. */
1198 old
= find_inode_fast(sb
, head
, ino
);
1201 spin_lock(&inode
->i_lock
);
1202 inode
->i_state
= I_NEW
;
1203 hlist_add_head_rcu(&inode
->i_hash
, head
);
1204 spin_unlock(&inode
->i_lock
);
1205 inode_sb_list_add(inode
);
1206 spin_unlock(&inode_hash_lock
);
1208 /* Return the locked inode with I_NEW set, the
1209 * caller is responsible for filling in the contents
1215 * Uhhuh, somebody else created the same inode under
1216 * us. Use the old inode instead of the one we just
1219 spin_unlock(&inode_hash_lock
);
1220 destroy_inode(inode
);
1224 wait_on_inode(inode
);
1225 if (unlikely(inode_unhashed(inode
))) {
1232 EXPORT_SYMBOL(iget_locked
);
1235 * search the inode cache for a matching inode number.
1236 * If we find one, then the inode number we are trying to
1237 * allocate is not unique and so we should not use it.
1239 * Returns 1 if the inode number is unique, 0 if it is not.
1241 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1243 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1244 struct inode
*inode
;
1246 hlist_for_each_entry_rcu(inode
, b
, i_hash
) {
1247 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
)
1254 * iunique - get a unique inode number
1256 * @max_reserved: highest reserved inode number
1258 * Obtain an inode number that is unique on the system for a given
1259 * superblock. This is used by file systems that have no natural
1260 * permanent inode numbering system. An inode number is returned that
1261 * is higher than the reserved limit but unique.
1264 * With a large number of inodes live on the file system this function
1265 * currently becomes quite slow.
1267 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1270 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1271 * error if st_ino won't fit in target struct field. Use 32bit counter
1272 * here to attempt to avoid that.
1274 static DEFINE_SPINLOCK(iunique_lock
);
1275 static unsigned int counter
;
1279 spin_lock(&iunique_lock
);
1281 if (counter
<= max_reserved
)
1282 counter
= max_reserved
+ 1;
1284 } while (!test_inode_iunique(sb
, res
));
1285 spin_unlock(&iunique_lock
);
1290 EXPORT_SYMBOL(iunique
);
1292 struct inode
*igrab(struct inode
*inode
)
1294 spin_lock(&inode
->i_lock
);
1295 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1297 spin_unlock(&inode
->i_lock
);
1299 spin_unlock(&inode
->i_lock
);
1301 * Handle the case where s_op->clear_inode is not been
1302 * called yet, and somebody is calling igrab
1303 * while the inode is getting freed.
1309 EXPORT_SYMBOL(igrab
);
1312 * ilookup5_nowait - search for an inode in the inode cache
1313 * @sb: super block of file system to search
1314 * @hashval: hash value (usually inode number) to search for
1315 * @test: callback used for comparisons between inodes
1316 * @data: opaque data pointer to pass to @test
1318 * Search for the inode specified by @hashval and @data in the inode cache.
1319 * If the inode is in the cache, the inode is returned with an incremented
1322 * Note: I_NEW is not waited upon so you have to be very careful what you do
1323 * with the returned inode. You probably should be using ilookup5() instead.
1325 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1328 int (*test
)(struct inode
*, void *), void *data
)
1330 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1331 struct inode
*inode
;
1333 spin_lock(&inode_hash_lock
);
1334 inode
= find_inode(sb
, head
, test
, data
);
1335 spin_unlock(&inode_hash_lock
);
1337 return IS_ERR(inode
) ? NULL
: inode
;
1339 EXPORT_SYMBOL(ilookup5_nowait
);
1342 * ilookup5 - search for an inode in the inode cache
1343 * @sb: super block of file system to search
1344 * @hashval: hash value (usually inode number) to search for
1345 * @test: callback used for comparisons between inodes
1346 * @data: opaque data pointer to pass to @test
1348 * Search for the inode specified by @hashval and @data in the inode cache,
1349 * and if the inode is in the cache, return the inode with an incremented
1350 * reference count. Waits on I_NEW before returning the inode.
1351 * returned with an incremented reference count.
1353 * This is a generalized version of ilookup() for file systems where the
1354 * inode number is not sufficient for unique identification of an inode.
1356 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1359 int (*test
)(struct inode
*, void *), void *data
)
1361 struct inode
*inode
;
1363 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1365 wait_on_inode(inode
);
1366 if (unlikely(inode_unhashed(inode
))) {
1373 EXPORT_SYMBOL(ilookup5
);
1376 * ilookup - search for an inode in the inode cache
1377 * @sb: super block of file system to search
1378 * @ino: inode number to search for
1380 * Search for the inode @ino in the inode cache, and if the inode is in the
1381 * cache, the inode is returned with an incremented reference count.
1383 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1385 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1386 struct inode
*inode
;
1388 spin_lock(&inode_hash_lock
);
1389 inode
= find_inode_fast(sb
, head
, ino
);
1390 spin_unlock(&inode_hash_lock
);
1395 wait_on_inode(inode
);
1396 if (unlikely(inode_unhashed(inode
))) {
1403 EXPORT_SYMBOL(ilookup
);
1406 * find_inode_nowait - find an inode in the inode cache
1407 * @sb: super block of file system to search
1408 * @hashval: hash value (usually inode number) to search for
1409 * @match: callback used for comparisons between inodes
1410 * @data: opaque data pointer to pass to @match
1412 * Search for the inode specified by @hashval and @data in the inode
1413 * cache, where the helper function @match will return 0 if the inode
1414 * does not match, 1 if the inode does match, and -1 if the search
1415 * should be stopped. The @match function must be responsible for
1416 * taking the i_lock spin_lock and checking i_state for an inode being
1417 * freed or being initialized, and incrementing the reference count
1418 * before returning 1. It also must not sleep, since it is called with
1419 * the inode_hash_lock spinlock held.
1421 * This is a even more generalized version of ilookup5() when the
1422 * function must never block --- find_inode() can block in
1423 * __wait_on_freeing_inode() --- or when the caller can not increment
1424 * the reference count because the resulting iput() might cause an
1425 * inode eviction. The tradeoff is that the @match funtion must be
1426 * very carefully implemented.
1428 struct inode
*find_inode_nowait(struct super_block
*sb
,
1429 unsigned long hashval
,
1430 int (*match
)(struct inode
*, unsigned long,
1434 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1435 struct inode
*inode
, *ret_inode
= NULL
;
1438 spin_lock(&inode_hash_lock
);
1439 hlist_for_each_entry(inode
, head
, i_hash
) {
1440 if (inode
->i_sb
!= sb
)
1442 mval
= match(inode
, hashval
, data
);
1450 spin_unlock(&inode_hash_lock
);
1453 EXPORT_SYMBOL(find_inode_nowait
);
1456 * find_inode_rcu - find an inode in the inode cache
1457 * @sb: Super block of file system to search
1458 * @hashval: Key to hash
1459 * @test: Function to test match on an inode
1460 * @data: Data for test function
1462 * Search for the inode specified by @hashval and @data in the inode cache,
1463 * where the helper function @test will return 0 if the inode does not match
1464 * and 1 if it does. The @test function must be responsible for taking the
1465 * i_lock spin_lock and checking i_state for an inode being freed or being
1468 * If successful, this will return the inode for which the @test function
1469 * returned 1 and NULL otherwise.
1471 * The @test function is not permitted to take a ref on any inode presented.
1472 * It is also not permitted to sleep.
1474 * The caller must hold the RCU read lock.
1476 struct inode
*find_inode_rcu(struct super_block
*sb
, unsigned long hashval
,
1477 int (*test
)(struct inode
*, void *), void *data
)
1479 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1480 struct inode
*inode
;
1482 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1483 "suspicious find_inode_rcu() usage");
1485 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1486 if (inode
->i_sb
== sb
&&
1487 !(READ_ONCE(inode
->i_state
) & (I_FREEING
| I_WILL_FREE
)) &&
1493 EXPORT_SYMBOL(find_inode_rcu
);
1496 * find_inode_by_rcu - Find an inode in the inode cache
1497 * @sb: Super block of file system to search
1498 * @ino: The inode number to match
1500 * Search for the inode specified by @hashval and @data in the inode cache,
1501 * where the helper function @test will return 0 if the inode does not match
1502 * and 1 if it does. The @test function must be responsible for taking the
1503 * i_lock spin_lock and checking i_state for an inode being freed or being
1506 * If successful, this will return the inode for which the @test function
1507 * returned 1 and NULL otherwise.
1509 * The @test function is not permitted to take a ref on any inode presented.
1510 * It is also not permitted to sleep.
1512 * The caller must hold the RCU read lock.
1514 struct inode
*find_inode_by_ino_rcu(struct super_block
*sb
,
1517 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1518 struct inode
*inode
;
1520 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1521 "suspicious find_inode_by_ino_rcu() usage");
1523 hlist_for_each_entry_rcu(inode
, head
, i_hash
) {
1524 if (inode
->i_ino
== ino
&&
1525 inode
->i_sb
== sb
&&
1526 !(READ_ONCE(inode
->i_state
) & (I_FREEING
| I_WILL_FREE
)))
1531 EXPORT_SYMBOL(find_inode_by_ino_rcu
);
1533 int insert_inode_locked(struct inode
*inode
)
1535 struct super_block
*sb
= inode
->i_sb
;
1536 ino_t ino
= inode
->i_ino
;
1537 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1540 struct inode
*old
= NULL
;
1541 spin_lock(&inode_hash_lock
);
1542 hlist_for_each_entry(old
, head
, i_hash
) {
1543 if (old
->i_ino
!= ino
)
1545 if (old
->i_sb
!= sb
)
1547 spin_lock(&old
->i_lock
);
1548 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1549 spin_unlock(&old
->i_lock
);
1555 spin_lock(&inode
->i_lock
);
1556 inode
->i_state
|= I_NEW
| I_CREATING
;
1557 hlist_add_head_rcu(&inode
->i_hash
, head
);
1558 spin_unlock(&inode
->i_lock
);
1559 spin_unlock(&inode_hash_lock
);
1562 if (unlikely(old
->i_state
& I_CREATING
)) {
1563 spin_unlock(&old
->i_lock
);
1564 spin_unlock(&inode_hash_lock
);
1568 spin_unlock(&old
->i_lock
);
1569 spin_unlock(&inode_hash_lock
);
1571 if (unlikely(!inode_unhashed(old
))) {
1578 EXPORT_SYMBOL(insert_inode_locked
);
1580 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1581 int (*test
)(struct inode
*, void *), void *data
)
1585 inode
->i_state
|= I_CREATING
;
1586 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1594 EXPORT_SYMBOL(insert_inode_locked4
);
1597 int generic_delete_inode(struct inode
*inode
)
1601 EXPORT_SYMBOL(generic_delete_inode
);
1604 * Called when we're dropping the last reference
1607 * Call the FS "drop_inode()" function, defaulting to
1608 * the legacy UNIX filesystem behaviour. If it tells
1609 * us to evict inode, do so. Otherwise, retain inode
1610 * in cache if fs is alive, sync and evict if fs is
1613 static void iput_final(struct inode
*inode
)
1615 struct super_block
*sb
= inode
->i_sb
;
1616 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1617 unsigned long state
;
1620 WARN_ON(inode
->i_state
& I_NEW
);
1623 drop
= op
->drop_inode(inode
);
1625 drop
= generic_drop_inode(inode
);
1628 !(inode
->i_state
& I_DONTCACHE
) &&
1629 (sb
->s_flags
& SB_ACTIVE
)) {
1630 inode_add_lru(inode
);
1631 spin_unlock(&inode
->i_lock
);
1635 state
= inode
->i_state
;
1637 WRITE_ONCE(inode
->i_state
, state
| I_WILL_FREE
);
1638 spin_unlock(&inode
->i_lock
);
1640 write_inode_now(inode
, 1);
1642 spin_lock(&inode
->i_lock
);
1643 state
= inode
->i_state
;
1644 WARN_ON(state
& I_NEW
);
1645 state
&= ~I_WILL_FREE
;
1648 WRITE_ONCE(inode
->i_state
, state
| I_FREEING
);
1649 if (!list_empty(&inode
->i_lru
))
1650 inode_lru_list_del(inode
);
1651 spin_unlock(&inode
->i_lock
);
1657 * iput - put an inode
1658 * @inode: inode to put
1660 * Puts an inode, dropping its usage count. If the inode use count hits
1661 * zero, the inode is then freed and may also be destroyed.
1663 * Consequently, iput() can sleep.
1665 void iput(struct inode
*inode
)
1669 BUG_ON(inode
->i_state
& I_CLEAR
);
1671 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1672 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1673 atomic_inc(&inode
->i_count
);
1674 spin_unlock(&inode
->i_lock
);
1675 trace_writeback_lazytime_iput(inode
);
1676 mark_inode_dirty_sync(inode
);
1682 EXPORT_SYMBOL(iput
);
1686 * bmap - find a block number in a file
1687 * @inode: inode owning the block number being requested
1688 * @block: pointer containing the block to find
1690 * Replaces the value in ``*block`` with the block number on the device holding
1691 * corresponding to the requested block number in the file.
1692 * That is, asked for block 4 of inode 1 the function will replace the
1693 * 4 in ``*block``, with disk block relative to the disk start that holds that
1694 * block of the file.
1696 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1697 * hole, returns 0 and ``*block`` is also set to 0.
1699 int bmap(struct inode
*inode
, sector_t
*block
)
1701 if (!inode
->i_mapping
->a_ops
->bmap
)
1704 *block
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, *block
);
1707 EXPORT_SYMBOL(bmap
);
1711 * With relative atime, only update atime if the previous atime is
1712 * earlier than either the ctime or mtime or if at least a day has
1713 * passed since the last atime update.
1715 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1716 struct timespec64 now
)
1719 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1722 * Is mtime younger than atime? If yes, update atime:
1724 if (timespec64_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1727 * Is ctime younger than atime? If yes, update atime:
1729 if (timespec64_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1733 * Is the previous atime value older than a day? If yes,
1736 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1739 * Good, we can skip the atime update:
1744 int generic_update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1746 int iflags
= I_DIRTY_TIME
;
1749 if (flags
& S_ATIME
)
1750 inode
->i_atime
= *time
;
1751 if (flags
& S_VERSION
)
1752 dirty
= inode_maybe_inc_iversion(inode
, false);
1753 if (flags
& S_CTIME
)
1754 inode
->i_ctime
= *time
;
1755 if (flags
& S_MTIME
)
1756 inode
->i_mtime
= *time
;
1757 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1758 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1762 iflags
|= I_DIRTY_SYNC
;
1763 __mark_inode_dirty(inode
, iflags
);
1766 EXPORT_SYMBOL(generic_update_time
);
1769 * This does the actual work of updating an inodes time or version. Must have
1770 * had called mnt_want_write() before calling this.
1772 static int update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1774 if (inode
->i_op
->update_time
)
1775 return inode
->i_op
->update_time(inode
, time
, flags
);
1776 return generic_update_time(inode
, time
, flags
);
1780 * touch_atime - update the access time
1781 * @path: the &struct path to update
1782 * @inode: inode to update
1784 * Update the accessed time on an inode and mark it for writeback.
1785 * This function automatically handles read only file systems and media,
1786 * as well as the "noatime" flag and inode specific "noatime" markers.
1788 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1790 struct vfsmount
*mnt
= path
->mnt
;
1791 struct timespec64 now
;
1793 if (inode
->i_flags
& S_NOATIME
)
1796 /* Atime updates will likely cause i_uid and i_gid to be written
1797 * back improprely if their true value is unknown to the vfs.
1799 if (HAS_UNMAPPED_ID(inode
))
1802 if (IS_NOATIME(inode
))
1804 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1807 if (mnt
->mnt_flags
& MNT_NOATIME
)
1809 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1812 now
= current_time(inode
);
1814 if (!relatime_need_update(mnt
, inode
, now
))
1817 if (timespec64_equal(&inode
->i_atime
, &now
))
1823 void touch_atime(const struct path
*path
)
1825 struct vfsmount
*mnt
= path
->mnt
;
1826 struct inode
*inode
= d_inode(path
->dentry
);
1827 struct timespec64 now
;
1829 if (!atime_needs_update(path
, inode
))
1832 if (!sb_start_write_trylock(inode
->i_sb
))
1835 if (__mnt_want_write(mnt
) != 0)
1838 * File systems can error out when updating inodes if they need to
1839 * allocate new space to modify an inode (such is the case for
1840 * Btrfs), but since we touch atime while walking down the path we
1841 * really don't care if we failed to update the atime of the file,
1842 * so just ignore the return value.
1843 * We may also fail on filesystems that have the ability to make parts
1844 * of the fs read only, e.g. subvolumes in Btrfs.
1846 now
= current_time(inode
);
1847 update_time(inode
, &now
, S_ATIME
);
1848 __mnt_drop_write(mnt
);
1850 sb_end_write(inode
->i_sb
);
1852 EXPORT_SYMBOL(touch_atime
);
1855 * The logic we want is
1857 * if suid or (sgid and xgrp)
1860 int should_remove_suid(struct dentry
*dentry
)
1862 umode_t mode
= d_inode(dentry
)->i_mode
;
1865 /* suid always must be killed */
1866 if (unlikely(mode
& S_ISUID
))
1867 kill
= ATTR_KILL_SUID
;
1870 * sgid without any exec bits is just a mandatory locking mark; leave
1871 * it alone. If some exec bits are set, it's a real sgid; kill it.
1873 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1874 kill
|= ATTR_KILL_SGID
;
1876 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1881 EXPORT_SYMBOL(should_remove_suid
);
1884 * Return mask of changes for notify_change() that need to be done as a
1885 * response to write or truncate. Return 0 if nothing has to be changed.
1886 * Negative value on error (change should be denied).
1888 int dentry_needs_remove_privs(struct dentry
*dentry
)
1890 struct inode
*inode
= d_inode(dentry
);
1894 if (IS_NOSEC(inode
))
1897 mask
= should_remove_suid(dentry
);
1898 ret
= security_inode_need_killpriv(dentry
);
1902 mask
|= ATTR_KILL_PRIV
;
1906 static int __remove_privs(struct dentry
*dentry
, int kill
)
1908 struct iattr newattrs
;
1910 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1912 * Note we call this on write, so notify_change will not
1913 * encounter any conflicting delegations:
1915 return notify_change(dentry
, &newattrs
, NULL
);
1919 * Remove special file priviledges (suid, capabilities) when file is written
1922 int file_remove_privs(struct file
*file
)
1924 struct dentry
*dentry
= file_dentry(file
);
1925 struct inode
*inode
= file_inode(file
);
1930 * Fast path for nothing security related.
1931 * As well for non-regular files, e.g. blkdev inodes.
1932 * For example, blkdev_write_iter() might get here
1933 * trying to remove privs which it is not allowed to.
1935 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
1938 kill
= dentry_needs_remove_privs(dentry
);
1942 error
= __remove_privs(dentry
, kill
);
1944 inode_has_no_xattr(inode
);
1948 EXPORT_SYMBOL(file_remove_privs
);
1951 * file_update_time - update mtime and ctime time
1952 * @file: file accessed
1954 * Update the mtime and ctime members of an inode and mark the inode
1955 * for writeback. Note that this function is meant exclusively for
1956 * usage in the file write path of filesystems, and filesystems may
1957 * choose to explicitly ignore update via this function with the
1958 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1959 * timestamps are handled by the server. This can return an error for
1960 * file systems who need to allocate space in order to update an inode.
1963 int file_update_time(struct file
*file
)
1965 struct inode
*inode
= file_inode(file
);
1966 struct timespec64 now
;
1970 /* First try to exhaust all avenues to not sync */
1971 if (IS_NOCMTIME(inode
))
1974 now
= current_time(inode
);
1975 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1978 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1981 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1982 sync_it
|= S_VERSION
;
1987 /* Finally allowed to write? Takes lock. */
1988 if (__mnt_want_write_file(file
))
1991 ret
= update_time(inode
, &now
, sync_it
);
1992 __mnt_drop_write_file(file
);
1996 EXPORT_SYMBOL(file_update_time
);
1998 /* Caller must hold the file's inode lock */
1999 int file_modified(struct file
*file
)
2004 * Clear the security bits if the process is not being run by root.
2005 * This keeps people from modifying setuid and setgid binaries.
2007 err
= file_remove_privs(file
);
2011 if (unlikely(file
->f_mode
& FMODE_NOCMTIME
))
2014 return file_update_time(file
);
2016 EXPORT_SYMBOL(file_modified
);
2018 int inode_needs_sync(struct inode
*inode
)
2022 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
2026 EXPORT_SYMBOL(inode_needs_sync
);
2029 * If we try to find an inode in the inode hash while it is being
2030 * deleted, we have to wait until the filesystem completes its
2031 * deletion before reporting that it isn't found. This function waits
2032 * until the deletion _might_ have completed. Callers are responsible
2033 * to recheck inode state.
2035 * It doesn't matter if I_NEW is not set initially, a call to
2036 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2039 static void __wait_on_freeing_inode(struct inode
*inode
)
2041 wait_queue_head_t
*wq
;
2042 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
2043 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
2044 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2045 spin_unlock(&inode
->i_lock
);
2046 spin_unlock(&inode_hash_lock
);
2048 finish_wait(wq
, &wait
.wq_entry
);
2049 spin_lock(&inode_hash_lock
);
2052 static __initdata
unsigned long ihash_entries
;
2053 static int __init
set_ihash_entries(char *str
)
2057 ihash_entries
= simple_strtoul(str
, &str
, 0);
2060 __setup("ihash_entries=", set_ihash_entries
);
2063 * Initialize the waitqueues and inode hash table.
2065 void __init
inode_init_early(void)
2067 /* If hashes are distributed across NUMA nodes, defer
2068 * hash allocation until vmalloc space is available.
2074 alloc_large_system_hash("Inode-cache",
2075 sizeof(struct hlist_head
),
2078 HASH_EARLY
| HASH_ZERO
,
2085 void __init
inode_init(void)
2087 /* inode slab cache */
2088 inode_cachep
= kmem_cache_create("inode_cache",
2089 sizeof(struct inode
),
2091 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
2092 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
2095 /* Hash may have been set up in inode_init_early */
2100 alloc_large_system_hash("Inode-cache",
2101 sizeof(struct hlist_head
),
2111 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
2113 inode
->i_mode
= mode
;
2114 if (S_ISCHR(mode
)) {
2115 inode
->i_fop
= &def_chr_fops
;
2116 inode
->i_rdev
= rdev
;
2117 } else if (S_ISBLK(mode
)) {
2118 inode
->i_fop
= &def_blk_fops
;
2119 inode
->i_rdev
= rdev
;
2120 } else if (S_ISFIFO(mode
))
2121 inode
->i_fop
= &pipefifo_fops
;
2122 else if (S_ISSOCK(mode
))
2123 ; /* leave it no_open_fops */
2125 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
2126 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2129 EXPORT_SYMBOL(init_special_inode
);
2132 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2134 * @dir: Directory inode
2135 * @mode: mode of the new inode
2137 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2140 inode
->i_uid
= current_fsuid();
2141 if (dir
&& dir
->i_mode
& S_ISGID
) {
2142 inode
->i_gid
= dir
->i_gid
;
2144 /* Directories are special, and always inherit S_ISGID */
2147 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2148 !in_group_p(inode
->i_gid
) &&
2149 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2152 inode
->i_gid
= current_fsgid();
2153 inode
->i_mode
= mode
;
2155 EXPORT_SYMBOL(inode_init_owner
);
2158 * inode_owner_or_capable - check current task permissions to inode
2159 * @inode: inode being checked
2161 * Return true if current either has CAP_FOWNER in a namespace with the
2162 * inode owner uid mapped, or owns the file.
2164 bool inode_owner_or_capable(const struct inode
*inode
)
2166 struct user_namespace
*ns
;
2168 if (uid_eq(current_fsuid(), inode
->i_uid
))
2171 ns
= current_user_ns();
2172 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2176 EXPORT_SYMBOL(inode_owner_or_capable
);
2179 * Direct i/o helper functions
2181 static void __inode_dio_wait(struct inode
*inode
)
2183 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2184 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2187 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2188 if (atomic_read(&inode
->i_dio_count
))
2190 } while (atomic_read(&inode
->i_dio_count
));
2191 finish_wait(wq
, &q
.wq_entry
);
2195 * inode_dio_wait - wait for outstanding DIO requests to finish
2196 * @inode: inode to wait for
2198 * Waits for all pending direct I/O requests to finish so that we can
2199 * proceed with a truncate or equivalent operation.
2201 * Must be called under a lock that serializes taking new references
2202 * to i_dio_count, usually by inode->i_mutex.
2204 void inode_dio_wait(struct inode
*inode
)
2206 if (atomic_read(&inode
->i_dio_count
))
2207 __inode_dio_wait(inode
);
2209 EXPORT_SYMBOL(inode_dio_wait
);
2212 * inode_set_flags - atomically set some inode flags
2214 * Note: the caller should be holding i_mutex, or else be sure that
2215 * they have exclusive access to the inode structure (i.e., while the
2216 * inode is being instantiated). The reason for the cmpxchg() loop
2217 * --- which wouldn't be necessary if all code paths which modify
2218 * i_flags actually followed this rule, is that there is at least one
2219 * code path which doesn't today so we use cmpxchg() out of an abundance
2222 * In the long run, i_mutex is overkill, and we should probably look
2223 * at using the i_lock spinlock to protect i_flags, and then make sure
2224 * it is so documented in include/linux/fs.h and that all code follows
2225 * the locking convention!!
2227 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2230 WARN_ON_ONCE(flags
& ~mask
);
2231 set_mask_bits(&inode
->i_flags
, mask
, flags
);
2233 EXPORT_SYMBOL(inode_set_flags
);
2235 void inode_nohighmem(struct inode
*inode
)
2237 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2239 EXPORT_SYMBOL(inode_nohighmem
);
2242 * timestamp_truncate - Truncate timespec to a granularity
2244 * @inode: inode being updated
2246 * Truncate a timespec to the granularity supported by the fs
2247 * containing the inode. Always rounds down. gran must
2248 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2250 struct timespec64
timestamp_truncate(struct timespec64 t
, struct inode
*inode
)
2252 struct super_block
*sb
= inode
->i_sb
;
2253 unsigned int gran
= sb
->s_time_gran
;
2255 t
.tv_sec
= clamp(t
.tv_sec
, sb
->s_time_min
, sb
->s_time_max
);
2256 if (unlikely(t
.tv_sec
== sb
->s_time_max
|| t
.tv_sec
== sb
->s_time_min
))
2259 /* Avoid division in the common cases 1 ns and 1 s. */
2262 else if (gran
== NSEC_PER_SEC
)
2264 else if (gran
> 1 && gran
< NSEC_PER_SEC
)
2265 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2267 WARN(1, "invalid file time granularity: %u", gran
);
2270 EXPORT_SYMBOL(timestamp_truncate
);
2273 * current_time - Return FS time
2276 * Return the current time truncated to the time granularity supported by
2279 * Note that inode and inode->sb cannot be NULL.
2280 * Otherwise, the function warns and returns time without truncation.
2282 struct timespec64
current_time(struct inode
*inode
)
2284 struct timespec64 now
;
2286 ktime_get_coarse_real_ts64(&now
);
2288 if (unlikely(!inode
->i_sb
)) {
2289 WARN(1, "current_time() called with uninitialized super_block in the inode");
2293 return timestamp_truncate(now
, inode
);
2295 EXPORT_SYMBOL(current_time
);
2298 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2301 * Note: the caller should be holding i_mutex, or else be sure that they have
2302 * exclusive access to the inode structure.
2304 int vfs_ioc_setflags_prepare(struct inode
*inode
, unsigned int oldflags
,
2308 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2309 * the relevant capability.
2311 * This test looks nicer. Thanks to Pauline Middelink
2313 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
) &&
2314 !capable(CAP_LINUX_IMMUTABLE
))
2317 return fscrypt_prepare_setflags(inode
, oldflags
, flags
);
2319 EXPORT_SYMBOL(vfs_ioc_setflags_prepare
);
2322 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2325 * Note: the caller should be holding i_mutex, or else be sure that they have
2326 * exclusive access to the inode structure.
2328 int vfs_ioc_fssetxattr_check(struct inode
*inode
, const struct fsxattr
*old_fa
,
2332 * Can't modify an immutable/append-only file unless we have
2333 * appropriate permission.
2335 if ((old_fa
->fsx_xflags
^ fa
->fsx_xflags
) &
2336 (FS_XFLAG_IMMUTABLE
| FS_XFLAG_APPEND
) &&
2337 !capable(CAP_LINUX_IMMUTABLE
))
2341 * Project Quota ID state is only allowed to change from within the init
2342 * namespace. Enforce that restriction only if we are trying to change
2343 * the quota ID state. Everything else is allowed in user namespaces.
2345 if (current_user_ns() != &init_user_ns
) {
2346 if (old_fa
->fsx_projid
!= fa
->fsx_projid
)
2348 if ((old_fa
->fsx_xflags
^ fa
->fsx_xflags
) &
2349 FS_XFLAG_PROJINHERIT
)
2353 /* Check extent size hints. */
2354 if ((fa
->fsx_xflags
& FS_XFLAG_EXTSIZE
) && !S_ISREG(inode
->i_mode
))
2357 if ((fa
->fsx_xflags
& FS_XFLAG_EXTSZINHERIT
) &&
2358 !S_ISDIR(inode
->i_mode
))
2361 if ((fa
->fsx_xflags
& FS_XFLAG_COWEXTSIZE
) &&
2362 !S_ISREG(inode
->i_mode
) && !S_ISDIR(inode
->i_mode
))
2366 * It is only valid to set the DAX flag on regular files and
2367 * directories on filesystems.
2369 if ((fa
->fsx_xflags
& FS_XFLAG_DAX
) &&
2370 !(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
2373 /* Extent size hints of zero turn off the flags. */
2374 if (fa
->fsx_extsize
== 0)
2375 fa
->fsx_xflags
&= ~(FS_XFLAG_EXTSIZE
| FS_XFLAG_EXTSZINHERIT
);
2376 if (fa
->fsx_cowextsize
== 0)
2377 fa
->fsx_xflags
&= ~FS_XFLAG_COWEXTSIZE
;
2381 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check
);