LiteX: driver for SPI Flash (mtd) device
[linux/fpc-iii.git] / net / xdp / xsk_queue.h
blob2823b7c3302d0a24db4ce1f0720ca8094693bde7
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
4 */
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
14 #include "xsk.h"
16 struct xdp_ring {
17 u32 producer ____cacheline_aligned_in_smp;
18 /* Hinder the adjacent cache prefetcher to prefetch the consumer
19 * pointer if the producer pointer is touched and vice versa.
21 u32 pad1 ____cacheline_aligned_in_smp;
22 u32 consumer ____cacheline_aligned_in_smp;
23 u32 pad2 ____cacheline_aligned_in_smp;
24 u32 flags;
25 u32 pad3 ____cacheline_aligned_in_smp;
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 struct xdp_ring ptrs;
31 struct xdp_desc desc[] ____cacheline_aligned_in_smp;
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 struct xdp_ring ptrs;
37 u64 desc[] ____cacheline_aligned_in_smp;
40 struct xsk_queue {
41 u32 ring_mask;
42 u32 nentries;
43 u32 cached_prod;
44 u32 cached_cons;
45 struct xdp_ring *ring;
46 u64 invalid_descs;
47 u64 queue_empty_descs;
50 /* The structure of the shared state of the rings are the same as the
51 * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
52 * ring, the kernel is the producer and user space is the consumer. For
53 * the Tx and fill rings, the kernel is the consumer and user space is
54 * the producer.
56 * producer consumer
58 * if (LOAD ->consumer) { LOAD ->producer
59 * (A) smp_rmb() (C)
60 * STORE $data LOAD $data
61 * smp_wmb() (B) smp_mb() (D)
62 * STORE ->producer STORE ->consumer
63 * }
65 * (A) pairs with (D), and (B) pairs with (C).
67 * Starting with (B), it protects the data from being written after
68 * the producer pointer. If this barrier was missing, the consumer
69 * could observe the producer pointer being set and thus load the data
70 * before the producer has written the new data. The consumer would in
71 * this case load the old data.
73 * (C) protects the consumer from speculatively loading the data before
74 * the producer pointer actually has been read. If we do not have this
75 * barrier, some architectures could load old data as speculative loads
76 * are not discarded as the CPU does not know there is a dependency
77 * between ->producer and data.
79 * (A) is a control dependency that separates the load of ->consumer
80 * from the stores of $data. In case ->consumer indicates there is no
81 * room in the buffer to store $data we do not. So no barrier is needed.
83 * (D) protects the load of the data to be observed to happen after the
84 * store of the consumer pointer. If we did not have this memory
85 * barrier, the producer could observe the consumer pointer being set
86 * and overwrite the data with a new value before the consumer got the
87 * chance to read the old value. The consumer would thus miss reading
88 * the old entry and very likely read the new entry twice, once right
89 * now and again after circling through the ring.
92 /* The operations on the rings are the following:
94 * producer consumer
96 * RESERVE entries PEEK in the ring for entries
97 * WRITE data into the ring READ data from the ring
98 * SUBMIT entries RELEASE entries
100 * The producer reserves one or more entries in the ring. It can then
101 * fill in these entries and finally submit them so that they can be
102 * seen and read by the consumer.
104 * The consumer peeks into the ring to see if the producer has written
105 * any new entries. If so, the consumer can then read these entries
106 * and when it is done reading them release them back to the producer
107 * so that the producer can use these slots to fill in new entries.
109 * The function names below reflect these operations.
112 /* Functions that read and validate content from consumer rings. */
114 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
116 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
118 if (q->cached_cons != q->cached_prod) {
119 u32 idx = q->cached_cons & q->ring_mask;
121 *addr = ring->desc[idx];
122 return true;
125 return false;
128 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
129 struct xdp_desc *desc)
131 u64 chunk, chunk_end;
133 chunk = xp_aligned_extract_addr(pool, desc->addr);
134 chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len);
135 if (chunk != chunk_end)
136 return false;
138 if (chunk >= pool->addrs_cnt)
139 return false;
141 if (desc->options)
142 return false;
143 return true;
146 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
147 struct xdp_desc *desc)
149 u64 addr, base_addr;
151 base_addr = xp_unaligned_extract_addr(desc->addr);
152 addr = xp_unaligned_add_offset_to_addr(desc->addr);
154 if (desc->len > pool->chunk_size)
155 return false;
157 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
158 xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
159 return false;
161 if (desc->options)
162 return false;
163 return true;
166 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
167 struct xdp_desc *desc)
169 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
170 xp_aligned_validate_desc(pool, desc);
173 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
174 struct xdp_desc *d,
175 struct xsk_buff_pool *pool)
177 if (!xp_validate_desc(pool, d)) {
178 q->invalid_descs++;
179 return false;
181 return true;
184 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
185 struct xdp_desc *desc,
186 struct xsk_buff_pool *pool)
188 while (q->cached_cons != q->cached_prod) {
189 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
190 u32 idx = q->cached_cons & q->ring_mask;
192 *desc = ring->desc[idx];
193 if (xskq_cons_is_valid_desc(q, desc, pool))
194 return true;
196 q->cached_cons++;
199 return false;
202 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q,
203 struct xdp_desc *descs,
204 struct xsk_buff_pool *pool, u32 max)
206 u32 cached_cons = q->cached_cons, nb_entries = 0;
208 while (cached_cons != q->cached_prod && nb_entries < max) {
209 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
210 u32 idx = cached_cons & q->ring_mask;
212 descs[nb_entries] = ring->desc[idx];
213 if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
214 /* Skip the entry */
215 cached_cons++;
216 continue;
219 nb_entries++;
220 cached_cons++;
223 return nb_entries;
226 /* Functions for consumers */
228 static inline void __xskq_cons_release(struct xsk_queue *q)
230 smp_mb(); /* D, matches A */
231 WRITE_ONCE(q->ring->consumer, q->cached_cons);
234 static inline void __xskq_cons_peek(struct xsk_queue *q)
236 /* Refresh the local pointer */
237 q->cached_prod = READ_ONCE(q->ring->producer);
238 smp_rmb(); /* C, matches B */
241 static inline void xskq_cons_get_entries(struct xsk_queue *q)
243 __xskq_cons_release(q);
244 __xskq_cons_peek(q);
247 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
249 u32 entries = q->cached_prod - q->cached_cons;
251 if (entries >= max)
252 return max;
254 __xskq_cons_peek(q);
255 entries = q->cached_prod - q->cached_cons;
257 return entries >= max ? max : entries;
260 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
262 return xskq_cons_nb_entries(q, cnt) >= cnt ? true : false;
265 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
267 if (q->cached_prod == q->cached_cons)
268 xskq_cons_get_entries(q);
269 return xskq_cons_read_addr_unchecked(q, addr);
272 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
273 struct xdp_desc *desc,
274 struct xsk_buff_pool *pool)
276 if (q->cached_prod == q->cached_cons)
277 xskq_cons_get_entries(q);
278 return xskq_cons_read_desc(q, desc, pool);
281 static inline u32 xskq_cons_peek_desc_batch(struct xsk_queue *q, struct xdp_desc *descs,
282 struct xsk_buff_pool *pool, u32 max)
284 u32 entries = xskq_cons_nb_entries(q, max);
286 return xskq_cons_read_desc_batch(q, descs, pool, entries);
289 /* To improve performance in the xskq_cons_release functions, only update local state here.
290 * Reflect this to global state when we get new entries from the ring in
291 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
293 static inline void xskq_cons_release(struct xsk_queue *q)
295 q->cached_cons++;
298 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
300 q->cached_cons += cnt;
303 static inline bool xskq_cons_is_full(struct xsk_queue *q)
305 /* No barriers needed since data is not accessed */
306 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
307 q->nentries;
310 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
312 /* No barriers needed since data is not accessed */
313 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
316 /* Functions for producers */
318 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
320 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
322 if (free_entries >= max)
323 return max;
325 /* Refresh the local tail pointer */
326 q->cached_cons = READ_ONCE(q->ring->consumer);
327 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
329 return free_entries >= max ? max : free_entries;
332 static inline bool xskq_prod_is_full(struct xsk_queue *q)
334 return xskq_prod_nb_free(q, 1) ? false : true;
337 static inline void xskq_prod_cancel(struct xsk_queue *q)
339 q->cached_prod--;
342 static inline int xskq_prod_reserve(struct xsk_queue *q)
344 if (xskq_prod_is_full(q))
345 return -ENOSPC;
347 /* A, matches D */
348 q->cached_prod++;
349 return 0;
352 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
354 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
356 if (xskq_prod_is_full(q))
357 return -ENOSPC;
359 /* A, matches D */
360 ring->desc[q->cached_prod++ & q->ring_mask] = addr;
361 return 0;
364 static inline u32 xskq_prod_reserve_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
365 u32 max)
367 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
368 u32 nb_entries, i, cached_prod;
370 nb_entries = xskq_prod_nb_free(q, max);
372 /* A, matches D */
373 cached_prod = q->cached_prod;
374 for (i = 0; i < nb_entries; i++)
375 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
376 q->cached_prod = cached_prod;
378 return nb_entries;
381 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
382 u64 addr, u32 len)
384 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
385 u32 idx;
387 if (xskq_prod_is_full(q))
388 return -ENOSPC;
390 /* A, matches D */
391 idx = q->cached_prod++ & q->ring_mask;
392 ring->desc[idx].addr = addr;
393 ring->desc[idx].len = len;
395 return 0;
398 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
400 smp_wmb(); /* B, matches C */
402 WRITE_ONCE(q->ring->producer, idx);
405 static inline void xskq_prod_submit(struct xsk_queue *q)
407 __xskq_prod_submit(q, q->cached_prod);
410 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
412 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
413 u32 idx = q->ring->producer;
415 ring->desc[idx++ & q->ring_mask] = addr;
417 __xskq_prod_submit(q, idx);
420 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
422 __xskq_prod_submit(q, q->ring->producer + nb_entries);
425 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
427 /* No barriers needed since data is not accessed */
428 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
431 /* For both producers and consumers */
433 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
435 return q ? q->invalid_descs : 0;
438 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
440 return q ? q->queue_empty_descs : 0;
443 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
444 void xskq_destroy(struct xsk_queue *q_ops);
446 #endif /* _LINUX_XSK_QUEUE_H */