Linux 3.0.49
[linux/fpc-iii.git] / kernel / rcutree.c
blobfe7a9b090f96a8fdb40b70a8402d06e4c41dadb5
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 static struct rcu_state *rcu_state;
88 * The rcu_scheduler_active variable transitions from zero to one just
89 * before the first task is spawned. So when this variable is zero, RCU
90 * can assume that there is but one task, allowing RCU to (for example)
91 * optimized synchronize_sched() to a simple barrier(). When this variable
92 * is one, RCU must actually do all the hard work required to detect real
93 * grace periods. This variable is also used to suppress boot-time false
94 * positives from lockdep-RCU error checking.
96 int rcu_scheduler_active __read_mostly;
97 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
100 * The rcu_scheduler_fully_active variable transitions from zero to one
101 * during the early_initcall() processing, which is after the scheduler
102 * is capable of creating new tasks. So RCU processing (for example,
103 * creating tasks for RCU priority boosting) must be delayed until after
104 * rcu_scheduler_fully_active transitions from zero to one. We also
105 * currently delay invocation of any RCU callbacks until after this point.
107 * It might later prove better for people registering RCU callbacks during
108 * early boot to take responsibility for these callbacks, but one step at
109 * a time.
111 static int rcu_scheduler_fully_active __read_mostly;
113 #ifdef CONFIG_RCU_BOOST
116 * Control variables for per-CPU and per-rcu_node kthreads. These
117 * handle all flavors of RCU.
119 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
120 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
121 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
122 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
123 DEFINE_PER_CPU(char, rcu_cpu_has_work);
125 #endif /* #ifdef CONFIG_RCU_BOOST */
127 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
128 static void invoke_rcu_core(void);
129 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
131 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
134 * Track the rcutorture test sequence number and the update version
135 * number within a given test. The rcutorture_testseq is incremented
136 * on every rcutorture module load and unload, so has an odd value
137 * when a test is running. The rcutorture_vernum is set to zero
138 * when rcutorture starts and is incremented on each rcutorture update.
139 * These variables enable correlating rcutorture output with the
140 * RCU tracing information.
142 unsigned long rcutorture_testseq;
143 unsigned long rcutorture_vernum;
146 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
147 * permit this function to be invoked without holding the root rcu_node
148 * structure's ->lock, but of course results can be subject to change.
150 static int rcu_gp_in_progress(struct rcu_state *rsp)
152 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156 * Note a quiescent state. Because we do not need to know
157 * how many quiescent states passed, just if there was at least
158 * one since the start of the grace period, this just sets a flag.
160 void rcu_sched_qs(int cpu)
162 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
164 rdp->passed_quiesc_completed = rdp->gpnum - 1;
165 barrier();
166 rdp->passed_quiesc = 1;
169 void rcu_bh_qs(int cpu)
171 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
173 rdp->passed_quiesc_completed = rdp->gpnum - 1;
174 barrier();
175 rdp->passed_quiesc = 1;
179 * Note a context switch. This is a quiescent state for RCU-sched,
180 * and requires special handling for preemptible RCU.
182 void rcu_note_context_switch(int cpu)
184 rcu_sched_qs(cpu);
185 rcu_preempt_note_context_switch(cpu);
187 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
189 #ifdef CONFIG_NO_HZ
190 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
191 .dynticks_nesting = 1,
192 .dynticks = ATOMIC_INIT(1),
194 #endif /* #ifdef CONFIG_NO_HZ */
196 static int blimit = 10; /* Maximum callbacks per softirq. */
197 static int qhimark = 10000; /* If this many pending, ignore blimit. */
198 static int qlowmark = 100; /* Once only this many pending, use blimit. */
200 module_param(blimit, int, 0);
201 module_param(qhimark, int, 0);
202 module_param(qlowmark, int, 0);
204 int rcu_cpu_stall_suppress __read_mostly;
205 module_param(rcu_cpu_stall_suppress, int, 0644);
207 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
208 static int rcu_pending(int cpu);
211 * Return the number of RCU-sched batches processed thus far for debug & stats.
213 long rcu_batches_completed_sched(void)
215 return rcu_sched_state.completed;
217 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
220 * Return the number of RCU BH batches processed thus far for debug & stats.
222 long rcu_batches_completed_bh(void)
224 return rcu_bh_state.completed;
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
229 * Force a quiescent state for RCU BH.
231 void rcu_bh_force_quiescent_state(void)
233 force_quiescent_state(&rcu_bh_state, 0);
235 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
238 * Record the number of times rcutorture tests have been initiated and
239 * terminated. This information allows the debugfs tracing stats to be
240 * correlated to the rcutorture messages, even when the rcutorture module
241 * is being repeatedly loaded and unloaded. In other words, we cannot
242 * store this state in rcutorture itself.
244 void rcutorture_record_test_transition(void)
246 rcutorture_testseq++;
247 rcutorture_vernum = 0;
249 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
252 * Record the number of writer passes through the current rcutorture test.
253 * This is also used to correlate debugfs tracing stats with the rcutorture
254 * messages.
256 void rcutorture_record_progress(unsigned long vernum)
258 rcutorture_vernum++;
260 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
263 * Force a quiescent state for RCU-sched.
265 void rcu_sched_force_quiescent_state(void)
267 force_quiescent_state(&rcu_sched_state, 0);
269 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
272 * Does the CPU have callbacks ready to be invoked?
274 static int
275 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
277 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
281 * Does the current CPU require a yet-as-unscheduled grace period?
283 static int
284 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
286 return *rdp->nxttail[RCU_DONE_TAIL +
287 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
288 !rcu_gp_in_progress(rsp);
292 * Return the root node of the specified rcu_state structure.
294 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
296 return &rsp->node[0];
299 #ifdef CONFIG_SMP
302 * If the specified CPU is offline, tell the caller that it is in
303 * a quiescent state. Otherwise, whack it with a reschedule IPI.
304 * Grace periods can end up waiting on an offline CPU when that
305 * CPU is in the process of coming online -- it will be added to the
306 * rcu_node bitmasks before it actually makes it online. The same thing
307 * can happen while a CPU is in the process of coming online. Because this
308 * race is quite rare, we check for it after detecting that the grace
309 * period has been delayed rather than checking each and every CPU
310 * each and every time we start a new grace period.
312 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
315 * If the CPU is offline, it is in a quiescent state. We can
316 * trust its state not to change because interrupts are disabled.
318 if (cpu_is_offline(rdp->cpu)) {
319 rdp->offline_fqs++;
320 return 1;
323 /* If preemptible RCU, no point in sending reschedule IPI. */
324 if (rdp->preemptible)
325 return 0;
327 /* The CPU is online, so send it a reschedule IPI. */
328 if (rdp->cpu != smp_processor_id())
329 smp_send_reschedule(rdp->cpu);
330 else
331 set_need_resched();
332 rdp->resched_ipi++;
333 return 0;
336 #endif /* #ifdef CONFIG_SMP */
338 #ifdef CONFIG_NO_HZ
341 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
343 * Enter nohz mode, in other words, -leave- the mode in which RCU
344 * read-side critical sections can occur. (Though RCU read-side
345 * critical sections can occur in irq handlers in nohz mode, a possibility
346 * handled by rcu_irq_enter() and rcu_irq_exit()).
348 void rcu_enter_nohz(void)
350 unsigned long flags;
351 struct rcu_dynticks *rdtp;
353 local_irq_save(flags);
354 rdtp = &__get_cpu_var(rcu_dynticks);
355 if (--rdtp->dynticks_nesting) {
356 local_irq_restore(flags);
357 return;
359 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 smp_mb__before_atomic_inc(); /* See above. */
361 atomic_inc(&rdtp->dynticks);
362 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
363 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
364 local_irq_restore(flags);
366 /* If the interrupt queued a callback, get out of dyntick mode. */
367 if (in_irq() &&
368 (__get_cpu_var(rcu_sched_data).nxtlist ||
369 __get_cpu_var(rcu_bh_data).nxtlist ||
370 rcu_preempt_needs_cpu(smp_processor_id())))
371 set_need_resched();
375 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
377 * Exit nohz mode, in other words, -enter- the mode in which RCU
378 * read-side critical sections normally occur.
380 void rcu_exit_nohz(void)
382 unsigned long flags;
383 struct rcu_dynticks *rdtp;
385 local_irq_save(flags);
386 rdtp = &__get_cpu_var(rcu_dynticks);
387 if (rdtp->dynticks_nesting++) {
388 local_irq_restore(flags);
389 return;
391 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
392 atomic_inc(&rdtp->dynticks);
393 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
394 smp_mb__after_atomic_inc(); /* See above. */
395 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
396 local_irq_restore(flags);
400 * rcu_nmi_enter - inform RCU of entry to NMI context
402 * If the CPU was idle with dynamic ticks active, and there is no
403 * irq handler running, this updates rdtp->dynticks_nmi to let the
404 * RCU grace-period handling know that the CPU is active.
406 void rcu_nmi_enter(void)
408 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
410 if (rdtp->dynticks_nmi_nesting == 0 &&
411 (atomic_read(&rdtp->dynticks) & 0x1))
412 return;
413 rdtp->dynticks_nmi_nesting++;
414 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
415 atomic_inc(&rdtp->dynticks);
416 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
417 smp_mb__after_atomic_inc(); /* See above. */
418 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
422 * rcu_nmi_exit - inform RCU of exit from NMI context
424 * If the CPU was idle with dynamic ticks active, and there is no
425 * irq handler running, this updates rdtp->dynticks_nmi to let the
426 * RCU grace-period handling know that the CPU is no longer active.
428 void rcu_nmi_exit(void)
430 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
432 if (rdtp->dynticks_nmi_nesting == 0 ||
433 --rdtp->dynticks_nmi_nesting != 0)
434 return;
435 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
436 smp_mb__before_atomic_inc(); /* See above. */
437 atomic_inc(&rdtp->dynticks);
438 smp_mb__after_atomic_inc(); /* Force delay to next write. */
439 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
443 * rcu_irq_enter - inform RCU of entry to hard irq context
445 * If the CPU was idle with dynamic ticks active, this updates the
446 * rdtp->dynticks to let the RCU handling know that the CPU is active.
448 void rcu_irq_enter(void)
450 rcu_exit_nohz();
454 * rcu_irq_exit - inform RCU of exit from hard irq context
456 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
457 * to put let the RCU handling be aware that the CPU is going back to idle
458 * with no ticks.
460 void rcu_irq_exit(void)
462 rcu_enter_nohz();
465 #ifdef CONFIG_SMP
468 * Snapshot the specified CPU's dynticks counter so that we can later
469 * credit them with an implicit quiescent state. Return 1 if this CPU
470 * is in dynticks idle mode, which is an extended quiescent state.
472 static int dyntick_save_progress_counter(struct rcu_data *rdp)
474 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
475 return 0;
479 * Return true if the specified CPU has passed through a quiescent
480 * state by virtue of being in or having passed through an dynticks
481 * idle state since the last call to dyntick_save_progress_counter()
482 * for this same CPU.
484 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
486 unsigned long curr;
487 unsigned long snap;
489 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
490 snap = (unsigned long)rdp->dynticks_snap;
493 * If the CPU passed through or entered a dynticks idle phase with
494 * no active irq/NMI handlers, then we can safely pretend that the CPU
495 * already acknowledged the request to pass through a quiescent
496 * state. Either way, that CPU cannot possibly be in an RCU
497 * read-side critical section that started before the beginning
498 * of the current RCU grace period.
500 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
501 rdp->dynticks_fqs++;
502 return 1;
505 /* Go check for the CPU being offline. */
506 return rcu_implicit_offline_qs(rdp);
509 #endif /* #ifdef CONFIG_SMP */
511 #else /* #ifdef CONFIG_NO_HZ */
513 #ifdef CONFIG_SMP
515 static int dyntick_save_progress_counter(struct rcu_data *rdp)
517 return 0;
520 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
522 return rcu_implicit_offline_qs(rdp);
525 #endif /* #ifdef CONFIG_SMP */
527 #endif /* #else #ifdef CONFIG_NO_HZ */
529 int rcu_cpu_stall_suppress __read_mostly;
531 static void record_gp_stall_check_time(struct rcu_state *rsp)
533 rsp->gp_start = jiffies;
534 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
537 static void print_other_cpu_stall(struct rcu_state *rsp)
539 int cpu;
540 long delta;
541 unsigned long flags;
542 struct rcu_node *rnp = rcu_get_root(rsp);
544 /* Only let one CPU complain about others per time interval. */
546 raw_spin_lock_irqsave(&rnp->lock, flags);
547 delta = jiffies - rsp->jiffies_stall;
548 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
549 raw_spin_unlock_irqrestore(&rnp->lock, flags);
550 return;
552 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
555 * Now rat on any tasks that got kicked up to the root rcu_node
556 * due to CPU offlining.
558 rcu_print_task_stall(rnp);
559 raw_spin_unlock_irqrestore(&rnp->lock, flags);
562 * OK, time to rat on our buddy...
563 * See Documentation/RCU/stallwarn.txt for info on how to debug
564 * RCU CPU stall warnings.
566 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
567 rsp->name);
568 rcu_for_each_leaf_node(rsp, rnp) {
569 raw_spin_lock_irqsave(&rnp->lock, flags);
570 rcu_print_task_stall(rnp);
571 raw_spin_unlock_irqrestore(&rnp->lock, flags);
572 if (rnp->qsmask == 0)
573 continue;
574 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
575 if (rnp->qsmask & (1UL << cpu))
576 printk(" %d", rnp->grplo + cpu);
578 printk("} (detected by %d, t=%ld jiffies)\n",
579 smp_processor_id(), (long)(jiffies - rsp->gp_start));
580 trigger_all_cpu_backtrace();
582 /* If so configured, complain about tasks blocking the grace period. */
584 rcu_print_detail_task_stall(rsp);
586 force_quiescent_state(rsp, 0); /* Kick them all. */
589 static void print_cpu_stall(struct rcu_state *rsp)
591 unsigned long flags;
592 struct rcu_node *rnp = rcu_get_root(rsp);
595 * OK, time to rat on ourselves...
596 * See Documentation/RCU/stallwarn.txt for info on how to debug
597 * RCU CPU stall warnings.
599 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
600 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
601 trigger_all_cpu_backtrace();
603 raw_spin_lock_irqsave(&rnp->lock, flags);
604 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
605 rsp->jiffies_stall =
606 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
607 raw_spin_unlock_irqrestore(&rnp->lock, flags);
609 set_need_resched(); /* kick ourselves to get things going. */
612 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
614 unsigned long j;
615 unsigned long js;
616 struct rcu_node *rnp;
618 if (rcu_cpu_stall_suppress)
619 return;
620 j = ACCESS_ONCE(jiffies);
621 js = ACCESS_ONCE(rsp->jiffies_stall);
622 rnp = rdp->mynode;
623 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
625 /* We haven't checked in, so go dump stack. */
626 print_cpu_stall(rsp);
628 } else if (rcu_gp_in_progress(rsp) &&
629 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
631 /* They had a few time units to dump stack, so complain. */
632 print_other_cpu_stall(rsp);
636 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
638 rcu_cpu_stall_suppress = 1;
639 return NOTIFY_DONE;
643 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
645 * Set the stall-warning timeout way off into the future, thus preventing
646 * any RCU CPU stall-warning messages from appearing in the current set of
647 * RCU grace periods.
649 * The caller must disable hard irqs.
651 void rcu_cpu_stall_reset(void)
653 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
654 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
655 rcu_preempt_stall_reset();
658 static struct notifier_block rcu_panic_block = {
659 .notifier_call = rcu_panic,
662 static void __init check_cpu_stall_init(void)
664 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
668 * Update CPU-local rcu_data state to record the newly noticed grace period.
669 * This is used both when we started the grace period and when we notice
670 * that someone else started the grace period. The caller must hold the
671 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
672 * and must have irqs disabled.
674 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
676 if (rdp->gpnum != rnp->gpnum) {
678 * If the current grace period is waiting for this CPU,
679 * set up to detect a quiescent state, otherwise don't
680 * go looking for one.
682 rdp->gpnum = rnp->gpnum;
683 if (rnp->qsmask & rdp->grpmask) {
684 rdp->qs_pending = 1;
685 rdp->passed_quiesc = 0;
686 } else
687 rdp->qs_pending = 0;
691 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
693 unsigned long flags;
694 struct rcu_node *rnp;
696 local_irq_save(flags);
697 rnp = rdp->mynode;
698 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
699 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
700 local_irq_restore(flags);
701 return;
703 __note_new_gpnum(rsp, rnp, rdp);
704 raw_spin_unlock_irqrestore(&rnp->lock, flags);
708 * Did someone else start a new RCU grace period start since we last
709 * checked? Update local state appropriately if so. Must be called
710 * on the CPU corresponding to rdp.
712 static int
713 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
715 unsigned long flags;
716 int ret = 0;
718 local_irq_save(flags);
719 if (rdp->gpnum != rsp->gpnum) {
720 note_new_gpnum(rsp, rdp);
721 ret = 1;
723 local_irq_restore(flags);
724 return ret;
728 * Advance this CPU's callbacks, but only if the current grace period
729 * has ended. This may be called only from the CPU to whom the rdp
730 * belongs. In addition, the corresponding leaf rcu_node structure's
731 * ->lock must be held by the caller, with irqs disabled.
733 static void
734 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
736 /* Did another grace period end? */
737 if (rdp->completed != rnp->completed) {
739 /* Advance callbacks. No harm if list empty. */
740 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
741 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
742 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
744 /* Remember that we saw this grace-period completion. */
745 rdp->completed = rnp->completed;
748 * If we were in an extended quiescent state, we may have
749 * missed some grace periods that others CPUs handled on
750 * our behalf. Catch up with this state to avoid noting
751 * spurious new grace periods. If another grace period
752 * has started, then rnp->gpnum will have advanced, so
753 * we will detect this later on.
755 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
756 rdp->gpnum = rdp->completed;
759 * If RCU does not need a quiescent state from this CPU,
760 * then make sure that this CPU doesn't go looking for one.
762 if ((rnp->qsmask & rdp->grpmask) == 0)
763 rdp->qs_pending = 0;
768 * Advance this CPU's callbacks, but only if the current grace period
769 * has ended. This may be called only from the CPU to whom the rdp
770 * belongs.
772 static void
773 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
775 unsigned long flags;
776 struct rcu_node *rnp;
778 local_irq_save(flags);
779 rnp = rdp->mynode;
780 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
781 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
782 local_irq_restore(flags);
783 return;
785 __rcu_process_gp_end(rsp, rnp, rdp);
786 raw_spin_unlock_irqrestore(&rnp->lock, flags);
790 * Do per-CPU grace-period initialization for running CPU. The caller
791 * must hold the lock of the leaf rcu_node structure corresponding to
792 * this CPU.
794 static void
795 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
797 /* Prior grace period ended, so advance callbacks for current CPU. */
798 __rcu_process_gp_end(rsp, rnp, rdp);
801 * Because this CPU just now started the new grace period, we know
802 * that all of its callbacks will be covered by this upcoming grace
803 * period, even the ones that were registered arbitrarily recently.
804 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
806 * Other CPUs cannot be sure exactly when the grace period started.
807 * Therefore, their recently registered callbacks must pass through
808 * an additional RCU_NEXT_READY stage, so that they will be handled
809 * by the next RCU grace period.
811 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
812 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
814 /* Set state so that this CPU will detect the next quiescent state. */
815 __note_new_gpnum(rsp, rnp, rdp);
819 * Start a new RCU grace period if warranted, re-initializing the hierarchy
820 * in preparation for detecting the next grace period. The caller must hold
821 * the root node's ->lock, which is released before return. Hard irqs must
822 * be disabled.
824 static void
825 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
826 __releases(rcu_get_root(rsp)->lock)
828 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
829 struct rcu_node *rnp = rcu_get_root(rsp);
831 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
832 if (cpu_needs_another_gp(rsp, rdp))
833 rsp->fqs_need_gp = 1;
834 if (rnp->completed == rsp->completed) {
835 raw_spin_unlock_irqrestore(&rnp->lock, flags);
836 return;
838 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
841 * Propagate new ->completed value to rcu_node structures
842 * so that other CPUs don't have to wait until the start
843 * of the next grace period to process their callbacks.
845 rcu_for_each_node_breadth_first(rsp, rnp) {
846 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
847 rnp->completed = rsp->completed;
848 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
850 local_irq_restore(flags);
851 return;
854 /* Advance to a new grace period and initialize state. */
855 rsp->gpnum++;
856 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
857 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
858 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
859 record_gp_stall_check_time(rsp);
861 /* Special-case the common single-level case. */
862 if (NUM_RCU_NODES == 1) {
863 rcu_preempt_check_blocked_tasks(rnp);
864 rnp->qsmask = rnp->qsmaskinit;
865 rnp->gpnum = rsp->gpnum;
866 rnp->completed = rsp->completed;
867 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
868 rcu_start_gp_per_cpu(rsp, rnp, rdp);
869 rcu_preempt_boost_start_gp(rnp);
870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
871 return;
874 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
877 /* Exclude any concurrent CPU-hotplug operations. */
878 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
881 * Set the quiescent-state-needed bits in all the rcu_node
882 * structures for all currently online CPUs in breadth-first
883 * order, starting from the root rcu_node structure. This
884 * operation relies on the layout of the hierarchy within the
885 * rsp->node[] array. Note that other CPUs will access only
886 * the leaves of the hierarchy, which still indicate that no
887 * grace period is in progress, at least until the corresponding
888 * leaf node has been initialized. In addition, we have excluded
889 * CPU-hotplug operations.
891 * Note that the grace period cannot complete until we finish
892 * the initialization process, as there will be at least one
893 * qsmask bit set in the root node until that time, namely the
894 * one corresponding to this CPU, due to the fact that we have
895 * irqs disabled.
897 rcu_for_each_node_breadth_first(rsp, rnp) {
898 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
899 rcu_preempt_check_blocked_tasks(rnp);
900 rnp->qsmask = rnp->qsmaskinit;
901 rnp->gpnum = rsp->gpnum;
902 rnp->completed = rsp->completed;
903 if (rnp == rdp->mynode)
904 rcu_start_gp_per_cpu(rsp, rnp, rdp);
905 rcu_preempt_boost_start_gp(rnp);
906 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
909 rnp = rcu_get_root(rsp);
910 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
911 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
912 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
913 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
917 * Report a full set of quiescent states to the specified rcu_state
918 * data structure. This involves cleaning up after the prior grace
919 * period and letting rcu_start_gp() start up the next grace period
920 * if one is needed. Note that the caller must hold rnp->lock, as
921 * required by rcu_start_gp(), which will release it.
923 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
924 __releases(rcu_get_root(rsp)->lock)
926 unsigned long gp_duration;
928 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
931 * Ensure that all grace-period and pre-grace-period activity
932 * is seen before the assignment to rsp->completed.
934 smp_mb(); /* See above block comment. */
935 gp_duration = jiffies - rsp->gp_start;
936 if (gp_duration > rsp->gp_max)
937 rsp->gp_max = gp_duration;
938 rsp->completed = rsp->gpnum;
939 rsp->signaled = RCU_GP_IDLE;
940 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
944 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
945 * Allows quiescent states for a group of CPUs to be reported at one go
946 * to the specified rcu_node structure, though all the CPUs in the group
947 * must be represented by the same rcu_node structure (which need not be
948 * a leaf rcu_node structure, though it often will be). That structure's
949 * lock must be held upon entry, and it is released before return.
951 static void
952 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
953 struct rcu_node *rnp, unsigned long flags)
954 __releases(rnp->lock)
956 struct rcu_node *rnp_c;
958 /* Walk up the rcu_node hierarchy. */
959 for (;;) {
960 if (!(rnp->qsmask & mask)) {
962 /* Our bit has already been cleared, so done. */
963 raw_spin_unlock_irqrestore(&rnp->lock, flags);
964 return;
966 rnp->qsmask &= ~mask;
967 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
969 /* Other bits still set at this level, so done. */
970 raw_spin_unlock_irqrestore(&rnp->lock, flags);
971 return;
973 mask = rnp->grpmask;
974 if (rnp->parent == NULL) {
976 /* No more levels. Exit loop holding root lock. */
978 break;
980 raw_spin_unlock_irqrestore(&rnp->lock, flags);
981 rnp_c = rnp;
982 rnp = rnp->parent;
983 raw_spin_lock_irqsave(&rnp->lock, flags);
984 WARN_ON_ONCE(rnp_c->qsmask);
988 * Get here if we are the last CPU to pass through a quiescent
989 * state for this grace period. Invoke rcu_report_qs_rsp()
990 * to clean up and start the next grace period if one is needed.
992 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
996 * Record a quiescent state for the specified CPU to that CPU's rcu_data
997 * structure. This must be either called from the specified CPU, or
998 * called when the specified CPU is known to be offline (and when it is
999 * also known that no other CPU is concurrently trying to help the offline
1000 * CPU). The lastcomp argument is used to make sure we are still in the
1001 * grace period of interest. We don't want to end the current grace period
1002 * based on quiescent states detected in an earlier grace period!
1004 static void
1005 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
1007 unsigned long flags;
1008 unsigned long mask;
1009 struct rcu_node *rnp;
1011 rnp = rdp->mynode;
1012 raw_spin_lock_irqsave(&rnp->lock, flags);
1013 if (lastcomp != rnp->completed) {
1016 * Someone beat us to it for this grace period, so leave.
1017 * The race with GP start is resolved by the fact that we
1018 * hold the leaf rcu_node lock, so that the per-CPU bits
1019 * cannot yet be initialized -- so we would simply find our
1020 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1021 * race occurred.
1023 rdp->passed_quiesc = 0; /* try again later! */
1024 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1025 return;
1027 mask = rdp->grpmask;
1028 if ((rnp->qsmask & mask) == 0) {
1029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1030 } else {
1031 rdp->qs_pending = 0;
1034 * This GP can't end until cpu checks in, so all of our
1035 * callbacks can be processed during the next GP.
1037 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1039 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1044 * Check to see if there is a new grace period of which this CPU
1045 * is not yet aware, and if so, set up local rcu_data state for it.
1046 * Otherwise, see if this CPU has just passed through its first
1047 * quiescent state for this grace period, and record that fact if so.
1049 static void
1050 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1052 /* If there is now a new grace period, record and return. */
1053 if (check_for_new_grace_period(rsp, rdp))
1054 return;
1057 * Does this CPU still need to do its part for current grace period?
1058 * If no, return and let the other CPUs do their part as well.
1060 if (!rdp->qs_pending)
1061 return;
1064 * Was there a quiescent state since the beginning of the grace
1065 * period? If no, then exit and wait for the next call.
1067 if (!rdp->passed_quiesc)
1068 return;
1071 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1072 * judge of that).
1074 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1077 #ifdef CONFIG_HOTPLUG_CPU
1080 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1081 * Synchronization is not required because this function executes
1082 * in stop_machine() context.
1084 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1086 int i;
1087 /* current DYING CPU is cleared in the cpu_online_mask */
1088 int receive_cpu = cpumask_any(cpu_online_mask);
1089 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1090 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1092 if (rdp->nxtlist == NULL)
1093 return; /* irqs disabled, so comparison is stable. */
1095 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1096 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1097 receive_rdp->qlen += rdp->qlen;
1098 receive_rdp->n_cbs_adopted += rdp->qlen;
1099 rdp->n_cbs_orphaned += rdp->qlen;
1101 rdp->nxtlist = NULL;
1102 for (i = 0; i < RCU_NEXT_SIZE; i++)
1103 rdp->nxttail[i] = &rdp->nxtlist;
1104 rdp->qlen = 0;
1108 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1109 * and move all callbacks from the outgoing CPU to the current one.
1110 * There can only be one CPU hotplug operation at a time, so no other
1111 * CPU can be attempting to update rcu_cpu_kthread_task.
1113 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1115 unsigned long flags;
1116 unsigned long mask;
1117 int need_report = 0;
1118 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1119 struct rcu_node *rnp;
1121 rcu_stop_cpu_kthread(cpu);
1123 /* Exclude any attempts to start a new grace period. */
1124 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1126 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1127 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1128 mask = rdp->grpmask; /* rnp->grplo is constant. */
1129 do {
1130 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1131 rnp->qsmaskinit &= ~mask;
1132 if (rnp->qsmaskinit != 0) {
1133 if (rnp != rdp->mynode)
1134 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1135 break;
1137 if (rnp == rdp->mynode)
1138 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1139 else
1140 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1141 mask = rnp->grpmask;
1142 rnp = rnp->parent;
1143 } while (rnp != NULL);
1146 * We still hold the leaf rcu_node structure lock here, and
1147 * irqs are still disabled. The reason for this subterfuge is
1148 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1149 * held leads to deadlock.
1151 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1152 rnp = rdp->mynode;
1153 if (need_report & RCU_OFL_TASKS_NORM_GP)
1154 rcu_report_unblock_qs_rnp(rnp, flags);
1155 else
1156 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1157 if (need_report & RCU_OFL_TASKS_EXP_GP)
1158 rcu_report_exp_rnp(rsp, rnp);
1159 rcu_node_kthread_setaffinity(rnp, -1);
1163 * Remove the specified CPU from the RCU hierarchy and move any pending
1164 * callbacks that it might have to the current CPU. This code assumes
1165 * that at least one CPU in the system will remain running at all times.
1166 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1168 static void rcu_offline_cpu(int cpu)
1170 __rcu_offline_cpu(cpu, &rcu_sched_state);
1171 __rcu_offline_cpu(cpu, &rcu_bh_state);
1172 rcu_preempt_offline_cpu(cpu);
1175 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1177 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1181 static void rcu_offline_cpu(int cpu)
1185 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1188 * Invoke any RCU callbacks that have made it to the end of their grace
1189 * period. Thottle as specified by rdp->blimit.
1191 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1193 unsigned long flags;
1194 struct rcu_head *next, *list, **tail;
1195 int count;
1197 /* If no callbacks are ready, just return.*/
1198 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1199 return;
1202 * Extract the list of ready callbacks, disabling to prevent
1203 * races with call_rcu() from interrupt handlers.
1205 local_irq_save(flags);
1206 list = rdp->nxtlist;
1207 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1208 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1209 tail = rdp->nxttail[RCU_DONE_TAIL];
1210 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1211 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1212 rdp->nxttail[count] = &rdp->nxtlist;
1213 local_irq_restore(flags);
1215 /* Invoke callbacks. */
1216 count = 0;
1217 while (list) {
1218 next = list->next;
1219 prefetch(next);
1220 debug_rcu_head_unqueue(list);
1221 __rcu_reclaim(list);
1222 list = next;
1223 if (++count >= rdp->blimit)
1224 break;
1227 local_irq_save(flags);
1229 /* Update count, and requeue any remaining callbacks. */
1230 rdp->qlen -= count;
1231 rdp->n_cbs_invoked += count;
1232 if (list != NULL) {
1233 *tail = rdp->nxtlist;
1234 rdp->nxtlist = list;
1235 for (count = 0; count < RCU_NEXT_SIZE; count++)
1236 if (&rdp->nxtlist == rdp->nxttail[count])
1237 rdp->nxttail[count] = tail;
1238 else
1239 break;
1242 /* Reinstate batch limit if we have worked down the excess. */
1243 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1244 rdp->blimit = blimit;
1246 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1247 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1248 rdp->qlen_last_fqs_check = 0;
1249 rdp->n_force_qs_snap = rsp->n_force_qs;
1250 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1251 rdp->qlen_last_fqs_check = rdp->qlen;
1253 local_irq_restore(flags);
1255 /* Re-raise the RCU softirq if there are callbacks remaining. */
1256 if (cpu_has_callbacks_ready_to_invoke(rdp))
1257 invoke_rcu_core();
1261 * Check to see if this CPU is in a non-context-switch quiescent state
1262 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1263 * Also schedule the RCU softirq handler.
1265 * This function must be called with hardirqs disabled. It is normally
1266 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1267 * false, there is no point in invoking rcu_check_callbacks().
1269 void rcu_check_callbacks(int cpu, int user)
1271 if (user ||
1272 (idle_cpu(cpu) && rcu_scheduler_active &&
1273 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1276 * Get here if this CPU took its interrupt from user
1277 * mode or from the idle loop, and if this is not a
1278 * nested interrupt. In this case, the CPU is in
1279 * a quiescent state, so note it.
1281 * No memory barrier is required here because both
1282 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1283 * variables that other CPUs neither access nor modify,
1284 * at least not while the corresponding CPU is online.
1287 rcu_sched_qs(cpu);
1288 rcu_bh_qs(cpu);
1290 } else if (!in_softirq()) {
1293 * Get here if this CPU did not take its interrupt from
1294 * softirq, in other words, if it is not interrupting
1295 * a rcu_bh read-side critical section. This is an _bh
1296 * critical section, so note it.
1299 rcu_bh_qs(cpu);
1301 rcu_preempt_check_callbacks(cpu);
1302 if (rcu_pending(cpu))
1303 invoke_rcu_core();
1306 #ifdef CONFIG_SMP
1309 * Scan the leaf rcu_node structures, processing dyntick state for any that
1310 * have not yet encountered a quiescent state, using the function specified.
1311 * Also initiate boosting for any threads blocked on the root rcu_node.
1313 * The caller must have suppressed start of new grace periods.
1315 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1317 unsigned long bit;
1318 int cpu;
1319 unsigned long flags;
1320 unsigned long mask;
1321 struct rcu_node *rnp;
1323 rcu_for_each_leaf_node(rsp, rnp) {
1324 mask = 0;
1325 raw_spin_lock_irqsave(&rnp->lock, flags);
1326 if (!rcu_gp_in_progress(rsp)) {
1327 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328 return;
1330 if (rnp->qsmask == 0) {
1331 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1332 continue;
1334 cpu = rnp->grplo;
1335 bit = 1;
1336 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1337 if ((rnp->qsmask & bit) != 0 &&
1338 f(per_cpu_ptr(rsp->rda, cpu)))
1339 mask |= bit;
1341 if (mask != 0) {
1343 /* rcu_report_qs_rnp() releases rnp->lock. */
1344 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1345 continue;
1347 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1349 rnp = rcu_get_root(rsp);
1350 if (rnp->qsmask == 0) {
1351 raw_spin_lock_irqsave(&rnp->lock, flags);
1352 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1357 * Force quiescent states on reluctant CPUs, and also detect which
1358 * CPUs are in dyntick-idle mode.
1360 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1362 unsigned long flags;
1363 struct rcu_node *rnp = rcu_get_root(rsp);
1365 if (!rcu_gp_in_progress(rsp))
1366 return; /* No grace period in progress, nothing to force. */
1367 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1368 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1369 return; /* Someone else is already on the job. */
1371 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1372 goto unlock_fqs_ret; /* no emergency and done recently. */
1373 rsp->n_force_qs++;
1374 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1375 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1376 if(!rcu_gp_in_progress(rsp)) {
1377 rsp->n_force_qs_ngp++;
1378 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1379 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1381 rsp->fqs_active = 1;
1382 switch (rsp->signaled) {
1383 case RCU_GP_IDLE:
1384 case RCU_GP_INIT:
1386 break; /* grace period idle or initializing, ignore. */
1388 case RCU_SAVE_DYNTICK:
1389 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1390 break; /* So gcc recognizes the dead code. */
1392 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1394 /* Record dyntick-idle state. */
1395 force_qs_rnp(rsp, dyntick_save_progress_counter);
1396 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1397 if (rcu_gp_in_progress(rsp))
1398 rsp->signaled = RCU_FORCE_QS;
1399 break;
1401 case RCU_FORCE_QS:
1403 /* Check dyntick-idle state, send IPI to laggarts. */
1404 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1405 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1407 /* Leave state in case more forcing is required. */
1409 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1410 break;
1412 rsp->fqs_active = 0;
1413 if (rsp->fqs_need_gp) {
1414 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1415 rsp->fqs_need_gp = 0;
1416 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1417 return;
1419 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1420 unlock_fqs_ret:
1421 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1424 #else /* #ifdef CONFIG_SMP */
1426 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1428 set_need_resched();
1431 #endif /* #else #ifdef CONFIG_SMP */
1434 * This does the RCU processing work from softirq context for the
1435 * specified rcu_state and rcu_data structures. This may be called
1436 * only from the CPU to whom the rdp belongs.
1438 static void
1439 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1441 unsigned long flags;
1443 WARN_ON_ONCE(rdp->beenonline == 0);
1446 * If an RCU GP has gone long enough, go check for dyntick
1447 * idle CPUs and, if needed, send resched IPIs.
1449 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1450 force_quiescent_state(rsp, 1);
1453 * Advance callbacks in response to end of earlier grace
1454 * period that some other CPU ended.
1456 rcu_process_gp_end(rsp, rdp);
1458 /* Update RCU state based on any recent quiescent states. */
1459 rcu_check_quiescent_state(rsp, rdp);
1461 /* Does this CPU require a not-yet-started grace period? */
1462 if (cpu_needs_another_gp(rsp, rdp)) {
1463 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1464 rcu_start_gp(rsp, flags); /* releases above lock */
1467 /* If there are callbacks ready, invoke them. */
1468 if (cpu_has_callbacks_ready_to_invoke(rdp))
1469 invoke_rcu_callbacks(rsp, rdp);
1473 * Do softirq processing for the current CPU.
1475 static void rcu_process_callbacks(struct softirq_action *unused)
1477 __rcu_process_callbacks(&rcu_sched_state,
1478 &__get_cpu_var(rcu_sched_data));
1479 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1480 rcu_preempt_process_callbacks();
1482 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1483 rcu_needs_cpu_flush();
1487 * Wake up the current CPU's kthread. This replaces raise_softirq()
1488 * in earlier versions of RCU. Note that because we are running on
1489 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1490 * cannot disappear out from under us.
1492 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1494 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1495 return;
1496 if (likely(!rsp->boost)) {
1497 rcu_do_batch(rsp, rdp);
1498 return;
1500 invoke_rcu_callbacks_kthread();
1503 static void invoke_rcu_core(void)
1505 raise_softirq(RCU_SOFTIRQ);
1508 static void
1509 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1510 struct rcu_state *rsp)
1512 unsigned long flags;
1513 struct rcu_data *rdp;
1515 debug_rcu_head_queue(head);
1516 head->func = func;
1517 head->next = NULL;
1519 smp_mb(); /* Ensure RCU update seen before callback registry. */
1522 * Opportunistically note grace-period endings and beginnings.
1523 * Note that we might see a beginning right after we see an
1524 * end, but never vice versa, since this CPU has to pass through
1525 * a quiescent state betweentimes.
1527 local_irq_save(flags);
1528 rdp = this_cpu_ptr(rsp->rda);
1530 /* Add the callback to our list. */
1531 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1532 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1533 rdp->qlen++;
1535 /* If interrupts were disabled, don't dive into RCU core. */
1536 if (irqs_disabled_flags(flags)) {
1537 local_irq_restore(flags);
1538 return;
1542 * Force the grace period if too many callbacks or too long waiting.
1543 * Enforce hysteresis, and don't invoke force_quiescent_state()
1544 * if some other CPU has recently done so. Also, don't bother
1545 * invoking force_quiescent_state() if the newly enqueued callback
1546 * is the only one waiting for a grace period to complete.
1548 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1550 /* Are we ignoring a completed grace period? */
1551 rcu_process_gp_end(rsp, rdp);
1552 check_for_new_grace_period(rsp, rdp);
1554 /* Start a new grace period if one not already started. */
1555 if (!rcu_gp_in_progress(rsp)) {
1556 unsigned long nestflag;
1557 struct rcu_node *rnp_root = rcu_get_root(rsp);
1559 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1560 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1561 } else {
1562 /* Give the grace period a kick. */
1563 rdp->blimit = LONG_MAX;
1564 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1565 *rdp->nxttail[RCU_DONE_TAIL] != head)
1566 force_quiescent_state(rsp, 0);
1567 rdp->n_force_qs_snap = rsp->n_force_qs;
1568 rdp->qlen_last_fqs_check = rdp->qlen;
1570 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1571 force_quiescent_state(rsp, 1);
1572 local_irq_restore(flags);
1576 * Queue an RCU-sched callback for invocation after a grace period.
1578 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1580 __call_rcu(head, func, &rcu_sched_state);
1582 EXPORT_SYMBOL_GPL(call_rcu_sched);
1585 * Queue an RCU for invocation after a quicker grace period.
1587 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1589 __call_rcu(head, func, &rcu_bh_state);
1591 EXPORT_SYMBOL_GPL(call_rcu_bh);
1594 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1596 * Control will return to the caller some time after a full rcu-sched
1597 * grace period has elapsed, in other words after all currently executing
1598 * rcu-sched read-side critical sections have completed. These read-side
1599 * critical sections are delimited by rcu_read_lock_sched() and
1600 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1601 * local_irq_disable(), and so on may be used in place of
1602 * rcu_read_lock_sched().
1604 * This means that all preempt_disable code sequences, including NMI and
1605 * hardware-interrupt handlers, in progress on entry will have completed
1606 * before this primitive returns. However, this does not guarantee that
1607 * softirq handlers will have completed, since in some kernels, these
1608 * handlers can run in process context, and can block.
1610 * This primitive provides the guarantees made by the (now removed)
1611 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1612 * guarantees that rcu_read_lock() sections will have completed.
1613 * In "classic RCU", these two guarantees happen to be one and
1614 * the same, but can differ in realtime RCU implementations.
1616 void synchronize_sched(void)
1618 struct rcu_synchronize rcu;
1620 if (rcu_blocking_is_gp())
1621 return;
1623 init_rcu_head_on_stack(&rcu.head);
1624 init_completion(&rcu.completion);
1625 /* Will wake me after RCU finished. */
1626 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1627 /* Wait for it. */
1628 wait_for_completion(&rcu.completion);
1629 destroy_rcu_head_on_stack(&rcu.head);
1631 EXPORT_SYMBOL_GPL(synchronize_sched);
1634 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1636 * Control will return to the caller some time after a full rcu_bh grace
1637 * period has elapsed, in other words after all currently executing rcu_bh
1638 * read-side critical sections have completed. RCU read-side critical
1639 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1640 * and may be nested.
1642 void synchronize_rcu_bh(void)
1644 struct rcu_synchronize rcu;
1646 if (rcu_blocking_is_gp())
1647 return;
1649 init_rcu_head_on_stack(&rcu.head);
1650 init_completion(&rcu.completion);
1651 /* Will wake me after RCU finished. */
1652 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1653 /* Wait for it. */
1654 wait_for_completion(&rcu.completion);
1655 destroy_rcu_head_on_stack(&rcu.head);
1657 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1660 * Check to see if there is any immediate RCU-related work to be done
1661 * by the current CPU, for the specified type of RCU, returning 1 if so.
1662 * The checks are in order of increasing expense: checks that can be
1663 * carried out against CPU-local state are performed first. However,
1664 * we must check for CPU stalls first, else we might not get a chance.
1666 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1668 struct rcu_node *rnp = rdp->mynode;
1670 rdp->n_rcu_pending++;
1672 /* Check for CPU stalls, if enabled. */
1673 check_cpu_stall(rsp, rdp);
1675 /* Is the RCU core waiting for a quiescent state from this CPU? */
1676 if (rdp->qs_pending && !rdp->passed_quiesc) {
1679 * If force_quiescent_state() coming soon and this CPU
1680 * needs a quiescent state, and this is either RCU-sched
1681 * or RCU-bh, force a local reschedule.
1683 rdp->n_rp_qs_pending++;
1684 if (!rdp->preemptible &&
1685 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1686 jiffies))
1687 set_need_resched();
1688 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1689 rdp->n_rp_report_qs++;
1690 return 1;
1693 /* Does this CPU have callbacks ready to invoke? */
1694 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1695 rdp->n_rp_cb_ready++;
1696 return 1;
1699 /* Has RCU gone idle with this CPU needing another grace period? */
1700 if (cpu_needs_another_gp(rsp, rdp)) {
1701 rdp->n_rp_cpu_needs_gp++;
1702 return 1;
1705 /* Has another RCU grace period completed? */
1706 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1707 rdp->n_rp_gp_completed++;
1708 return 1;
1711 /* Has a new RCU grace period started? */
1712 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1713 rdp->n_rp_gp_started++;
1714 return 1;
1717 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1718 if (rcu_gp_in_progress(rsp) &&
1719 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1720 rdp->n_rp_need_fqs++;
1721 return 1;
1724 /* nothing to do */
1725 rdp->n_rp_need_nothing++;
1726 return 0;
1730 * Check to see if there is any immediate RCU-related work to be done
1731 * by the current CPU, returning 1 if so. This function is part of the
1732 * RCU implementation; it is -not- an exported member of the RCU API.
1734 static int rcu_pending(int cpu)
1736 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1737 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1738 rcu_preempt_pending(cpu);
1742 * Check to see if any future RCU-related work will need to be done
1743 * by the current CPU, even if none need be done immediately, returning
1744 * 1 if so.
1746 static int rcu_needs_cpu_quick_check(int cpu)
1748 /* RCU callbacks either ready or pending? */
1749 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1750 per_cpu(rcu_bh_data, cpu).nxtlist ||
1751 rcu_preempt_needs_cpu(cpu);
1754 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1755 static atomic_t rcu_barrier_cpu_count;
1756 static DEFINE_MUTEX(rcu_barrier_mutex);
1757 static struct completion rcu_barrier_completion;
1759 static void rcu_barrier_callback(struct rcu_head *notused)
1761 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1762 complete(&rcu_barrier_completion);
1766 * Called with preemption disabled, and from cross-cpu IRQ context.
1768 static void rcu_barrier_func(void *type)
1770 int cpu = smp_processor_id();
1771 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1772 void (*call_rcu_func)(struct rcu_head *head,
1773 void (*func)(struct rcu_head *head));
1775 atomic_inc(&rcu_barrier_cpu_count);
1776 call_rcu_func = type;
1777 call_rcu_func(head, rcu_barrier_callback);
1781 * Orchestrate the specified type of RCU barrier, waiting for all
1782 * RCU callbacks of the specified type to complete.
1784 static void _rcu_barrier(struct rcu_state *rsp,
1785 void (*call_rcu_func)(struct rcu_head *head,
1786 void (*func)(struct rcu_head *head)))
1788 BUG_ON(in_interrupt());
1789 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1790 mutex_lock(&rcu_barrier_mutex);
1791 init_completion(&rcu_barrier_completion);
1793 * Initialize rcu_barrier_cpu_count to 1, then invoke
1794 * rcu_barrier_func() on each CPU, so that each CPU also has
1795 * incremented rcu_barrier_cpu_count. Only then is it safe to
1796 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1797 * might complete its grace period before all of the other CPUs
1798 * did their increment, causing this function to return too
1799 * early. Note that on_each_cpu() disables irqs, which prevents
1800 * any CPUs from coming online or going offline until each online
1801 * CPU has queued its RCU-barrier callback.
1803 atomic_set(&rcu_barrier_cpu_count, 1);
1804 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1805 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1806 complete(&rcu_barrier_completion);
1807 wait_for_completion(&rcu_barrier_completion);
1808 mutex_unlock(&rcu_barrier_mutex);
1812 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1814 void rcu_barrier_bh(void)
1816 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1818 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1821 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1823 void rcu_barrier_sched(void)
1825 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1827 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1830 * Do boot-time initialization of a CPU's per-CPU RCU data.
1832 static void __init
1833 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1835 unsigned long flags;
1836 int i;
1837 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1838 struct rcu_node *rnp = rcu_get_root(rsp);
1840 /* Set up local state, ensuring consistent view of global state. */
1841 raw_spin_lock_irqsave(&rnp->lock, flags);
1842 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1843 rdp->nxtlist = NULL;
1844 for (i = 0; i < RCU_NEXT_SIZE; i++)
1845 rdp->nxttail[i] = &rdp->nxtlist;
1846 rdp->qlen = 0;
1847 #ifdef CONFIG_NO_HZ
1848 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1849 #endif /* #ifdef CONFIG_NO_HZ */
1850 rdp->cpu = cpu;
1851 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1855 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1856 * offline event can be happening at a given time. Note also that we
1857 * can accept some slop in the rsp->completed access due to the fact
1858 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1860 static void __cpuinit
1861 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1863 unsigned long flags;
1864 unsigned long mask;
1865 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1866 struct rcu_node *rnp = rcu_get_root(rsp);
1868 /* Set up local state, ensuring consistent view of global state. */
1869 raw_spin_lock_irqsave(&rnp->lock, flags);
1870 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1871 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1872 rdp->beenonline = 1; /* We have now been online. */
1873 rdp->preemptible = preemptible;
1874 rdp->qlen_last_fqs_check = 0;
1875 rdp->n_force_qs_snap = rsp->n_force_qs;
1876 rdp->blimit = blimit;
1877 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1880 * A new grace period might start here. If so, we won't be part
1881 * of it, but that is OK, as we are currently in a quiescent state.
1884 /* Exclude any attempts to start a new GP on large systems. */
1885 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1887 /* Add CPU to rcu_node bitmasks. */
1888 rnp = rdp->mynode;
1889 mask = rdp->grpmask;
1890 do {
1891 /* Exclude any attempts to start a new GP on small systems. */
1892 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1893 rnp->qsmaskinit |= mask;
1894 mask = rnp->grpmask;
1895 if (rnp == rdp->mynode) {
1896 rdp->gpnum = rnp->completed; /* if GP in progress... */
1897 rdp->completed = rnp->completed;
1898 rdp->passed_quiesc_completed = rnp->completed - 1;
1900 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1901 rnp = rnp->parent;
1902 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1904 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1907 static void __cpuinit rcu_prepare_cpu(int cpu)
1909 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1910 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1911 rcu_preempt_init_percpu_data(cpu);
1915 * Handle CPU online/offline notification events.
1917 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1918 unsigned long action, void *hcpu)
1920 long cpu = (long)hcpu;
1921 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1922 struct rcu_node *rnp = rdp->mynode;
1924 switch (action) {
1925 case CPU_UP_PREPARE:
1926 case CPU_UP_PREPARE_FROZEN:
1927 rcu_prepare_cpu(cpu);
1928 rcu_prepare_kthreads(cpu);
1929 break;
1930 case CPU_ONLINE:
1931 case CPU_DOWN_FAILED:
1932 rcu_node_kthread_setaffinity(rnp, -1);
1933 rcu_cpu_kthread_setrt(cpu, 1);
1934 break;
1935 case CPU_DOWN_PREPARE:
1936 rcu_node_kthread_setaffinity(rnp, cpu);
1937 rcu_cpu_kthread_setrt(cpu, 0);
1938 break;
1939 case CPU_DYING:
1940 case CPU_DYING_FROZEN:
1942 * The whole machine is "stopped" except this CPU, so we can
1943 * touch any data without introducing corruption. We send the
1944 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1946 rcu_send_cbs_to_online(&rcu_bh_state);
1947 rcu_send_cbs_to_online(&rcu_sched_state);
1948 rcu_preempt_send_cbs_to_online();
1949 break;
1950 case CPU_DEAD:
1951 case CPU_DEAD_FROZEN:
1952 case CPU_UP_CANCELED:
1953 case CPU_UP_CANCELED_FROZEN:
1954 rcu_offline_cpu(cpu);
1955 break;
1956 default:
1957 break;
1959 return NOTIFY_OK;
1963 * This function is invoked towards the end of the scheduler's initialization
1964 * process. Before this is called, the idle task might contain
1965 * RCU read-side critical sections (during which time, this idle
1966 * task is booting the system). After this function is called, the
1967 * idle tasks are prohibited from containing RCU read-side critical
1968 * sections. This function also enables RCU lockdep checking.
1970 void rcu_scheduler_starting(void)
1972 WARN_ON(num_online_cpus() != 1);
1973 WARN_ON(nr_context_switches() > 0);
1974 rcu_scheduler_active = 1;
1978 * Compute the per-level fanout, either using the exact fanout specified
1979 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1981 #ifdef CONFIG_RCU_FANOUT_EXACT
1982 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1984 int i;
1986 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
1987 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1988 rsp->levelspread[0] = RCU_FANOUT_LEAF;
1990 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1991 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1993 int ccur;
1994 int cprv;
1995 int i;
1997 cprv = NR_CPUS;
1998 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1999 ccur = rsp->levelcnt[i];
2000 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2001 cprv = ccur;
2004 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2007 * Helper function for rcu_init() that initializes one rcu_state structure.
2009 static void __init rcu_init_one(struct rcu_state *rsp,
2010 struct rcu_data __percpu *rda)
2012 static char *buf[] = { "rcu_node_level_0",
2013 "rcu_node_level_1",
2014 "rcu_node_level_2",
2015 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2016 int cpustride = 1;
2017 int i;
2018 int j;
2019 struct rcu_node *rnp;
2021 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2023 /* Initialize the level-tracking arrays. */
2025 for (i = 1; i < NUM_RCU_LVLS; i++)
2026 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2027 rcu_init_levelspread(rsp);
2029 /* Initialize the elements themselves, starting from the leaves. */
2031 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2032 cpustride *= rsp->levelspread[i];
2033 rnp = rsp->level[i];
2034 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2035 raw_spin_lock_init(&rnp->lock);
2036 lockdep_set_class_and_name(&rnp->lock,
2037 &rcu_node_class[i], buf[i]);
2038 rnp->gpnum = 0;
2039 rnp->qsmask = 0;
2040 rnp->qsmaskinit = 0;
2041 rnp->grplo = j * cpustride;
2042 rnp->grphi = (j + 1) * cpustride - 1;
2043 if (rnp->grphi >= NR_CPUS)
2044 rnp->grphi = NR_CPUS - 1;
2045 if (i == 0) {
2046 rnp->grpnum = 0;
2047 rnp->grpmask = 0;
2048 rnp->parent = NULL;
2049 } else {
2050 rnp->grpnum = j % rsp->levelspread[i - 1];
2051 rnp->grpmask = 1UL << rnp->grpnum;
2052 rnp->parent = rsp->level[i - 1] +
2053 j / rsp->levelspread[i - 1];
2055 rnp->level = i;
2056 INIT_LIST_HEAD(&rnp->blkd_tasks);
2060 rsp->rda = rda;
2061 rnp = rsp->level[NUM_RCU_LVLS - 1];
2062 for_each_possible_cpu(i) {
2063 while (i > rnp->grphi)
2064 rnp++;
2065 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2066 rcu_boot_init_percpu_data(i, rsp);
2070 void __init rcu_init(void)
2072 int cpu;
2074 rcu_bootup_announce();
2075 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2076 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2077 __rcu_init_preempt();
2078 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2081 * We don't need protection against CPU-hotplug here because
2082 * this is called early in boot, before either interrupts
2083 * or the scheduler are operational.
2085 cpu_notifier(rcu_cpu_notify, 0);
2086 for_each_online_cpu(cpu)
2087 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2088 check_cpu_stall_init();
2091 #include "rcutree_plugin.h"