2 * linux/fs/jbd2/revoke.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
28 * We can get interactions between revokes and new log data within a
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits. As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
54 * Revoke information on buffers is a tri-state value:
56 * RevokeValid clear: no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 * buffer has not been revoked, and cancel_revoke
60 * RevokeValid set, Revoked set:
61 * buffer has been revoked.
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table. Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
86 #include <linux/time.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #include <linux/hash.h>
98 static struct kmem_cache
*jbd2_revoke_record_cache
;
99 static struct kmem_cache
*jbd2_revoke_table_cache
;
101 /* Each revoke record represents one single revoked block. During
102 journal replay, this involves recording the transaction ID of the
103 last transaction to revoke this block. */
105 struct jbd2_revoke_record_s
107 struct list_head hash
;
108 tid_t sequence
; /* Used for recovery only */
109 unsigned long long blocknr
;
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd2_revoke_table_s
116 /* It is conceivable that we might want a larger hash table
117 * for recovery. Must be a power of two. */
120 struct list_head
*hash_table
;
125 static void write_one_revoke_record(transaction_t
*,
127 struct buffer_head
**, int *,
128 struct jbd2_revoke_record_s
*);
129 static void flush_descriptor(journal_t
*, struct buffer_head
*, int);
132 /* Utility functions to maintain the revoke table */
134 static inline int hash(journal_t
*journal
, unsigned long long block
)
136 return hash_64(block
, journal
->j_revoke
->hash_shift
);
139 static int insert_revoke_hash(journal_t
*journal
, unsigned long long blocknr
,
142 struct list_head
*hash_list
;
143 struct jbd2_revoke_record_s
*record
;
144 gfp_t gfp_mask
= GFP_NOFS
;
146 if (journal_oom_retry
)
147 gfp_mask
|= __GFP_NOFAIL
;
148 record
= kmem_cache_alloc(jbd2_revoke_record_cache
, gfp_mask
);
152 record
->sequence
= seq
;
153 record
->blocknr
= blocknr
;
154 hash_list
= &journal
->j_revoke
->hash_table
[hash(journal
, blocknr
)];
155 spin_lock(&journal
->j_revoke_lock
);
156 list_add(&record
->hash
, hash_list
);
157 spin_unlock(&journal
->j_revoke_lock
);
161 /* Find a revoke record in the journal's hash table. */
163 static struct jbd2_revoke_record_s
*find_revoke_record(journal_t
*journal
,
164 unsigned long long blocknr
)
166 struct list_head
*hash_list
;
167 struct jbd2_revoke_record_s
*record
;
169 hash_list
= &journal
->j_revoke
->hash_table
[hash(journal
, blocknr
)];
171 spin_lock(&journal
->j_revoke_lock
);
172 record
= (struct jbd2_revoke_record_s
*) hash_list
->next
;
173 while (&(record
->hash
) != hash_list
) {
174 if (record
->blocknr
== blocknr
) {
175 spin_unlock(&journal
->j_revoke_lock
);
178 record
= (struct jbd2_revoke_record_s
*) record
->hash
.next
;
180 spin_unlock(&journal
->j_revoke_lock
);
184 void jbd2_journal_destroy_revoke_caches(void)
186 if (jbd2_revoke_record_cache
) {
187 kmem_cache_destroy(jbd2_revoke_record_cache
);
188 jbd2_revoke_record_cache
= NULL
;
190 if (jbd2_revoke_table_cache
) {
191 kmem_cache_destroy(jbd2_revoke_table_cache
);
192 jbd2_revoke_table_cache
= NULL
;
196 int __init
jbd2_journal_init_revoke_caches(void)
198 J_ASSERT(!jbd2_revoke_record_cache
);
199 J_ASSERT(!jbd2_revoke_table_cache
);
201 jbd2_revoke_record_cache
= KMEM_CACHE(jbd2_revoke_record_s
,
202 SLAB_HWCACHE_ALIGN
|SLAB_TEMPORARY
);
203 if (!jbd2_revoke_record_cache
)
204 goto record_cache_failure
;
206 jbd2_revoke_table_cache
= KMEM_CACHE(jbd2_revoke_table_s
,
208 if (!jbd2_revoke_table_cache
)
209 goto table_cache_failure
;
212 jbd2_journal_destroy_revoke_caches();
213 record_cache_failure
:
217 static struct jbd2_revoke_table_s
*jbd2_journal_init_revoke_table(int hash_size
)
221 struct jbd2_revoke_table_s
*table
;
223 table
= kmem_cache_alloc(jbd2_revoke_table_cache
, GFP_KERNEL
);
227 while((tmp
>>= 1UL) != 0UL)
230 table
->hash_size
= hash_size
;
231 table
->hash_shift
= shift
;
233 kmalloc(hash_size
* sizeof(struct list_head
), GFP_KERNEL
);
234 if (!table
->hash_table
) {
235 kmem_cache_free(jbd2_revoke_table_cache
, table
);
240 for (tmp
= 0; tmp
< hash_size
; tmp
++)
241 INIT_LIST_HEAD(&table
->hash_table
[tmp
]);
247 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s
*table
)
250 struct list_head
*hash_list
;
252 for (i
= 0; i
< table
->hash_size
; i
++) {
253 hash_list
= &table
->hash_table
[i
];
254 J_ASSERT(list_empty(hash_list
));
257 kfree(table
->hash_table
);
258 kmem_cache_free(jbd2_revoke_table_cache
, table
);
261 /* Initialise the revoke table for a given journal to a given size. */
262 int jbd2_journal_init_revoke(journal_t
*journal
, int hash_size
)
264 J_ASSERT(journal
->j_revoke_table
[0] == NULL
);
265 J_ASSERT(is_power_of_2(hash_size
));
267 journal
->j_revoke_table
[0] = jbd2_journal_init_revoke_table(hash_size
);
268 if (!journal
->j_revoke_table
[0])
271 journal
->j_revoke_table
[1] = jbd2_journal_init_revoke_table(hash_size
);
272 if (!journal
->j_revoke_table
[1])
275 journal
->j_revoke
= journal
->j_revoke_table
[1];
277 spin_lock_init(&journal
->j_revoke_lock
);
282 jbd2_journal_destroy_revoke_table(journal
->j_revoke_table
[0]);
287 /* Destroy a journal's revoke table. The table must already be empty! */
288 void jbd2_journal_destroy_revoke(journal_t
*journal
)
290 journal
->j_revoke
= NULL
;
291 if (journal
->j_revoke_table
[0])
292 jbd2_journal_destroy_revoke_table(journal
->j_revoke_table
[0]);
293 if (journal
->j_revoke_table
[1])
294 jbd2_journal_destroy_revoke_table(journal
->j_revoke_table
[1]);
301 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
302 * prevents the block from being replayed during recovery if we take a
303 * crash after this current transaction commits. Any subsequent
304 * metadata writes of the buffer in this transaction cancel the
307 * Note that this call may block --- it is up to the caller to make
308 * sure that there are no further calls to journal_write_metadata
309 * before the revoke is complete. In ext3, this implies calling the
310 * revoke before clearing the block bitmap when we are deleting
313 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
314 * parameter, but does _not_ forget the buffer_head if the bh was only
317 * bh_in may not be a journalled buffer - it may have come off
318 * the hash tables without an attached journal_head.
320 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
324 int jbd2_journal_revoke(handle_t
*handle
, unsigned long long blocknr
,
325 struct buffer_head
*bh_in
)
327 struct buffer_head
*bh
= NULL
;
329 struct block_device
*bdev
;
334 BUFFER_TRACE(bh_in
, "enter");
336 journal
= handle
->h_transaction
->t_journal
;
337 if (!jbd2_journal_set_features(journal
, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE
)){
338 J_ASSERT (!"Cannot set revoke feature!");
342 bdev
= journal
->j_fs_dev
;
346 bh
= __find_get_block(bdev
, blocknr
, journal
->j_blocksize
);
348 BUFFER_TRACE(bh
, "found on hash");
350 #ifdef JBD2_EXPENSIVE_CHECKING
352 struct buffer_head
*bh2
;
354 /* If there is a different buffer_head lying around in
355 * memory anywhere... */
356 bh2
= __find_get_block(bdev
, blocknr
, journal
->j_blocksize
);
358 /* ... and it has RevokeValid status... */
359 if (bh2
!= bh
&& buffer_revokevalid(bh2
))
360 /* ...then it better be revoked too,
361 * since it's illegal to create a revoke
362 * record against a buffer_head which is
363 * not marked revoked --- that would
364 * risk missing a subsequent revoke
366 J_ASSERT_BH(bh2
, buffer_revoked(bh2
));
372 /* We really ought not ever to revoke twice in a row without
373 first having the revoke cancelled: it's illegal to free a
374 block twice without allocating it in between! */
376 if (!J_EXPECT_BH(bh
, !buffer_revoked(bh
),
377 "inconsistent data on disk")) {
382 set_buffer_revoked(bh
);
383 set_buffer_revokevalid(bh
);
385 BUFFER_TRACE(bh_in
, "call jbd2_journal_forget");
386 jbd2_journal_forget(handle
, bh_in
);
388 BUFFER_TRACE(bh
, "call brelse");
393 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr
, bh_in
);
394 err
= insert_revoke_hash(journal
, blocknr
,
395 handle
->h_transaction
->t_tid
);
396 BUFFER_TRACE(bh_in
, "exit");
401 * Cancel an outstanding revoke. For use only internally by the
402 * journaling code (called from jbd2_journal_get_write_access).
404 * We trust buffer_revoked() on the buffer if the buffer is already
405 * being journaled: if there is no revoke pending on the buffer, then we
406 * don't do anything here.
408 * This would break if it were possible for a buffer to be revoked and
409 * discarded, and then reallocated within the same transaction. In such
410 * a case we would have lost the revoked bit, but when we arrived here
411 * the second time we would still have a pending revoke to cancel. So,
412 * do not trust the Revoked bit on buffers unless RevokeValid is also
415 int jbd2_journal_cancel_revoke(handle_t
*handle
, struct journal_head
*jh
)
417 struct jbd2_revoke_record_s
*record
;
418 journal_t
*journal
= handle
->h_transaction
->t_journal
;
420 int did_revoke
= 0; /* akpm: debug */
421 struct buffer_head
*bh
= jh2bh(jh
);
423 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh
);
425 /* Is the existing Revoke bit valid? If so, we trust it, and
426 * only perform the full cancel if the revoke bit is set. If
427 * not, we can't trust the revoke bit, and we need to do the
428 * full search for a revoke record. */
429 if (test_set_buffer_revokevalid(bh
)) {
430 need_cancel
= test_clear_buffer_revoked(bh
);
433 clear_buffer_revoked(bh
);
437 record
= find_revoke_record(journal
, bh
->b_blocknr
);
439 jbd_debug(4, "cancelled existing revoke on "
440 "blocknr %llu\n", (unsigned long long)bh
->b_blocknr
);
441 spin_lock(&journal
->j_revoke_lock
);
442 list_del(&record
->hash
);
443 spin_unlock(&journal
->j_revoke_lock
);
444 kmem_cache_free(jbd2_revoke_record_cache
, record
);
449 #ifdef JBD2_EXPENSIVE_CHECKING
450 /* There better not be one left behind by now! */
451 record
= find_revoke_record(journal
, bh
->b_blocknr
);
452 J_ASSERT_JH(jh
, record
== NULL
);
455 /* Finally, have we just cleared revoke on an unhashed
456 * buffer_head? If so, we'd better make sure we clear the
457 * revoked status on any hashed alias too, otherwise the revoke
458 * state machine will get very upset later on. */
460 struct buffer_head
*bh2
;
461 bh2
= __find_get_block(bh
->b_bdev
, bh
->b_blocknr
, bh
->b_size
);
464 clear_buffer_revoked(bh2
);
472 * journal_clear_revoked_flag clears revoked flag of buffers in
473 * revoke table to reflect there is no revoked buffers in the next
474 * transaction which is going to be started.
476 void jbd2_clear_buffer_revoked_flags(journal_t
*journal
)
478 struct jbd2_revoke_table_s
*revoke
= journal
->j_revoke
;
481 for (i
= 0; i
< revoke
->hash_size
; i
++) {
482 struct list_head
*hash_list
;
483 struct list_head
*list_entry
;
484 hash_list
= &revoke
->hash_table
[i
];
486 list_for_each(list_entry
, hash_list
) {
487 struct jbd2_revoke_record_s
*record
;
488 struct buffer_head
*bh
;
489 record
= (struct jbd2_revoke_record_s
*)list_entry
;
490 bh
= __find_get_block(journal
->j_fs_dev
,
492 journal
->j_blocksize
);
494 clear_buffer_revoked(bh
);
501 /* journal_switch_revoke table select j_revoke for next transaction
502 * we do not want to suspend any processing until all revokes are
505 void jbd2_journal_switch_revoke_table(journal_t
*journal
)
509 if (journal
->j_revoke
== journal
->j_revoke_table
[0])
510 journal
->j_revoke
= journal
->j_revoke_table
[1];
512 journal
->j_revoke
= journal
->j_revoke_table
[0];
514 for (i
= 0; i
< journal
->j_revoke
->hash_size
; i
++)
515 INIT_LIST_HEAD(&journal
->j_revoke
->hash_table
[i
]);
519 * Write revoke records to the journal for all entries in the current
520 * revoke hash, deleting the entries as we go.
522 void jbd2_journal_write_revoke_records(transaction_t
*transaction
,
523 struct list_head
*log_bufs
)
525 journal_t
*journal
= transaction
->t_journal
;
526 struct buffer_head
*descriptor
;
527 struct jbd2_revoke_record_s
*record
;
528 struct jbd2_revoke_table_s
*revoke
;
529 struct list_head
*hash_list
;
530 int i
, offset
, count
;
536 /* select revoke table for committing transaction */
537 revoke
= journal
->j_revoke
== journal
->j_revoke_table
[0] ?
538 journal
->j_revoke_table
[1] : journal
->j_revoke_table
[0];
540 for (i
= 0; i
< revoke
->hash_size
; i
++) {
541 hash_list
= &revoke
->hash_table
[i
];
543 while (!list_empty(hash_list
)) {
544 record
= (struct jbd2_revoke_record_s
*)
546 write_one_revoke_record(transaction
, log_bufs
,
547 &descriptor
, &offset
, record
);
549 list_del(&record
->hash
);
550 kmem_cache_free(jbd2_revoke_record_cache
, record
);
554 flush_descriptor(journal
, descriptor
, offset
);
555 jbd_debug(1, "Wrote %d revoke records\n", count
);
559 * Write out one revoke record. We need to create a new descriptor
560 * block if the old one is full or if we have not already created one.
563 static void write_one_revoke_record(transaction_t
*transaction
,
564 struct list_head
*log_bufs
,
565 struct buffer_head
**descriptorp
,
567 struct jbd2_revoke_record_s
*record
)
569 journal_t
*journal
= transaction
->t_journal
;
571 struct buffer_head
*descriptor
;
574 /* If we are already aborting, this all becomes a noop. We
575 still need to go round the loop in
576 jbd2_journal_write_revoke_records in order to free all of the
577 revoke records: only the IO to the journal is omitted. */
578 if (is_journal_aborted(journal
))
581 descriptor
= *descriptorp
;
584 /* Do we need to leave space at the end for a checksum? */
585 if (jbd2_journal_has_csum_v2or3(journal
))
586 csum_size
= sizeof(struct jbd2_journal_block_tail
);
588 if (jbd2_has_feature_64bit(journal
))
593 /* Make sure we have a descriptor with space left for the record */
595 if (offset
+ sz
> journal
->j_blocksize
- csum_size
) {
596 flush_descriptor(journal
, descriptor
, offset
);
602 descriptor
= jbd2_journal_get_descriptor_buffer(transaction
,
607 /* Record it so that we can wait for IO completion later */
608 BUFFER_TRACE(descriptor
, "file in log_bufs");
609 jbd2_file_log_bh(log_bufs
, descriptor
);
611 offset
= sizeof(jbd2_journal_revoke_header_t
);
612 *descriptorp
= descriptor
;
615 if (jbd2_has_feature_64bit(journal
))
616 * ((__be64
*)(&descriptor
->b_data
[offset
])) =
617 cpu_to_be64(record
->blocknr
);
619 * ((__be32
*)(&descriptor
->b_data
[offset
])) =
620 cpu_to_be32(record
->blocknr
);
627 * Flush a revoke descriptor out to the journal. If we are aborting,
628 * this is a noop; otherwise we are generating a buffer which needs to
629 * be waited for during commit, so it has to go onto the appropriate
630 * journal buffer list.
633 static void flush_descriptor(journal_t
*journal
,
634 struct buffer_head
*descriptor
,
637 jbd2_journal_revoke_header_t
*header
;
639 if (is_journal_aborted(journal
)) {
644 header
= (jbd2_journal_revoke_header_t
*)descriptor
->b_data
;
645 header
->r_count
= cpu_to_be32(offset
);
646 jbd2_descriptor_block_csum_set(journal
, descriptor
);
648 set_buffer_jwrite(descriptor
);
649 BUFFER_TRACE(descriptor
, "write");
650 set_buffer_dirty(descriptor
);
651 write_dirty_buffer(descriptor
, WRITE_SYNC
);
656 * Revoke support for recovery.
658 * Recovery needs to be able to:
660 * record all revoke records, including the tid of the latest instance
661 * of each revoke in the journal
663 * check whether a given block in a given transaction should be replayed
664 * (ie. has not been revoked by a revoke record in that or a subsequent
667 * empty the revoke table after recovery.
671 * First, setting revoke records. We create a new revoke record for
672 * every block ever revoked in the log as we scan it for recovery, and
673 * we update the existing records if we find multiple revokes for a
677 int jbd2_journal_set_revoke(journal_t
*journal
,
678 unsigned long long blocknr
,
681 struct jbd2_revoke_record_s
*record
;
683 record
= find_revoke_record(journal
, blocknr
);
685 /* If we have multiple occurrences, only record the
686 * latest sequence number in the hashed record */
687 if (tid_gt(sequence
, record
->sequence
))
688 record
->sequence
= sequence
;
691 return insert_revoke_hash(journal
, blocknr
, sequence
);
695 * Test revoke records. For a given block referenced in the log, has
696 * that block been revoked? A revoke record with a given transaction
697 * sequence number revokes all blocks in that transaction and earlier
698 * ones, but later transactions still need replayed.
701 int jbd2_journal_test_revoke(journal_t
*journal
,
702 unsigned long long blocknr
,
705 struct jbd2_revoke_record_s
*record
;
707 record
= find_revoke_record(journal
, blocknr
);
710 if (tid_gt(sequence
, record
->sequence
))
716 * Finally, once recovery is over, we need to clear the revoke table so
717 * that it can be reused by the running filesystem.
720 void jbd2_journal_clear_revoke(journal_t
*journal
)
723 struct list_head
*hash_list
;
724 struct jbd2_revoke_record_s
*record
;
725 struct jbd2_revoke_table_s
*revoke
;
727 revoke
= journal
->j_revoke
;
729 for (i
= 0; i
< revoke
->hash_size
; i
++) {
730 hash_list
= &revoke
->hash_table
[i
];
731 while (!list_empty(hash_list
)) {
732 record
= (struct jbd2_revoke_record_s
*) hash_list
->next
;
733 list_del(&record
->hash
);
734 kmem_cache_free(jbd2_revoke_record_cache
, record
);