net/mlx4_core: Keep only one driver entry release mlx4_priv
[linux/fpc-iii.git] / fs / btrfs / check-integrity.c
blob0e8388e72d8d0c7dd3884a0d0ff7e8cabf120fbb
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include "ctree.h"
98 #include "disk-io.h"
99 #include "hash.h"
100 #include "transaction.h"
101 #include "extent_io.h"
102 #include "volumes.h"
103 #include "print-tree.h"
104 #include "locking.h"
105 #include "check-integrity.h"
106 #include "rcu-string.h"
108 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
109 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
110 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
111 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
112 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
113 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
114 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
115 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
116 * excluding " [...]" */
117 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
120 * The definition of the bitmask fields for the print_mask.
121 * They are specified with the mount option check_integrity_print_mask.
123 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
124 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
125 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
126 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
127 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
128 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
129 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
130 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
131 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
132 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
133 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
134 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
135 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
136 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
138 struct btrfsic_dev_state;
139 struct btrfsic_state;
141 struct btrfsic_block {
142 u32 magic_num; /* only used for debug purposes */
143 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
144 unsigned int is_superblock:1; /* if it is one of the superblocks */
145 unsigned int is_iodone:1; /* if is done by lower subsystem */
146 unsigned int iodone_w_error:1; /* error was indicated to endio */
147 unsigned int never_written:1; /* block was added because it was
148 * referenced, not because it was
149 * written */
150 unsigned int mirror_num; /* large enough to hold
151 * BTRFS_SUPER_MIRROR_MAX */
152 struct btrfsic_dev_state *dev_state;
153 u64 dev_bytenr; /* key, physical byte num on disk */
154 u64 logical_bytenr; /* logical byte num on disk */
155 u64 generation;
156 struct btrfs_disk_key disk_key; /* extra info to print in case of
157 * issues, will not always be correct */
158 struct list_head collision_resolving_node; /* list node */
159 struct list_head all_blocks_node; /* list node */
161 /* the following two lists contain block_link items */
162 struct list_head ref_to_list; /* list */
163 struct list_head ref_from_list; /* list */
164 struct btrfsic_block *next_in_same_bio;
165 void *orig_bio_bh_private;
166 union {
167 bio_end_io_t *bio;
168 bh_end_io_t *bh;
169 } orig_bio_bh_end_io;
170 int submit_bio_bh_rw;
171 u64 flush_gen; /* only valid if !never_written */
175 * Elements of this type are allocated dynamically and required because
176 * each block object can refer to and can be ref from multiple blocks.
177 * The key to lookup them in the hashtable is the dev_bytenr of
178 * the block ref to plus the one from the block refered from.
179 * The fact that they are searchable via a hashtable and that a
180 * ref_cnt is maintained is not required for the btrfs integrity
181 * check algorithm itself, it is only used to make the output more
182 * beautiful in case that an error is detected (an error is defined
183 * as a write operation to a block while that block is still referenced).
185 struct btrfsic_block_link {
186 u32 magic_num; /* only used for debug purposes */
187 u32 ref_cnt;
188 struct list_head node_ref_to; /* list node */
189 struct list_head node_ref_from; /* list node */
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block *block_ref_to;
192 struct btrfsic_block *block_ref_from;
193 u64 parent_generation;
196 struct btrfsic_dev_state {
197 u32 magic_num; /* only used for debug purposes */
198 struct block_device *bdev;
199 struct btrfsic_state *state;
200 struct list_head collision_resolving_node; /* list node */
201 struct btrfsic_block dummy_block_for_bio_bh_flush;
202 u64 last_flush_gen;
203 char name[BDEVNAME_SIZE];
206 struct btrfsic_block_hashtable {
207 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
210 struct btrfsic_block_link_hashtable {
211 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
214 struct btrfsic_dev_state_hashtable {
215 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
218 struct btrfsic_block_data_ctx {
219 u64 start; /* virtual bytenr */
220 u64 dev_bytenr; /* physical bytenr on device */
221 u32 len;
222 struct btrfsic_dev_state *dev;
223 char **datav;
224 struct page **pagev;
225 void *mem_to_free;
228 /* This structure is used to implement recursion without occupying
229 * any stack space, refer to btrfsic_process_metablock() */
230 struct btrfsic_stack_frame {
231 u32 magic;
232 u32 nr;
233 int error;
234 int i;
235 int limit_nesting;
236 int num_copies;
237 int mirror_num;
238 struct btrfsic_block *block;
239 struct btrfsic_block_data_ctx *block_ctx;
240 struct btrfsic_block *next_block;
241 struct btrfsic_block_data_ctx next_block_ctx;
242 struct btrfs_header *hdr;
243 struct btrfsic_stack_frame *prev;
246 /* Some state per mounted filesystem */
247 struct btrfsic_state {
248 u32 print_mask;
249 int include_extent_data;
250 int csum_size;
251 struct list_head all_blocks_list;
252 struct btrfsic_block_hashtable block_hashtable;
253 struct btrfsic_block_link_hashtable block_link_hashtable;
254 struct btrfs_root *root;
255 u64 max_superblock_generation;
256 struct btrfsic_block *latest_superblock;
257 u32 metablock_size;
258 u32 datablock_size;
261 static void btrfsic_block_init(struct btrfsic_block *b);
262 static struct btrfsic_block *btrfsic_block_alloc(void);
263 static void btrfsic_block_free(struct btrfsic_block *b);
264 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
265 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
266 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
267 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
268 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
269 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
270 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
271 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
272 struct btrfsic_block_hashtable *h);
273 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
274 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
275 struct block_device *bdev,
276 u64 dev_bytenr,
277 struct btrfsic_block_hashtable *h);
278 static void btrfsic_block_link_hashtable_init(
279 struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_block_link_hashtable_add(
281 struct btrfsic_block_link *l,
282 struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
284 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
285 struct block_device *bdev_ref_to,
286 u64 dev_bytenr_ref_to,
287 struct block_device *bdev_ref_from,
288 u64 dev_bytenr_ref_from,
289 struct btrfsic_block_link_hashtable *h);
290 static void btrfsic_dev_state_hashtable_init(
291 struct btrfsic_dev_state_hashtable *h);
292 static void btrfsic_dev_state_hashtable_add(
293 struct btrfsic_dev_state *ds,
294 struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
296 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
297 struct block_device *bdev,
298 struct btrfsic_dev_state_hashtable *h);
299 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
300 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
301 static int btrfsic_process_superblock(struct btrfsic_state *state,
302 struct btrfs_fs_devices *fs_devices);
303 static int btrfsic_process_metablock(struct btrfsic_state *state,
304 struct btrfsic_block *block,
305 struct btrfsic_block_data_ctx *block_ctx,
306 int limit_nesting, int force_iodone_flag);
307 static void btrfsic_read_from_block_data(
308 struct btrfsic_block_data_ctx *block_ctx,
309 void *dst, u32 offset, size_t len);
310 static int btrfsic_create_link_to_next_block(
311 struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx
314 *block_ctx, u64 next_bytenr,
315 int limit_nesting,
316 struct btrfsic_block_data_ctx *next_block_ctx,
317 struct btrfsic_block **next_blockp,
318 int force_iodone_flag,
319 int *num_copiesp, int *mirror_nump,
320 struct btrfs_disk_key *disk_key,
321 u64 parent_generation);
322 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
323 struct btrfsic_block *block,
324 struct btrfsic_block_data_ctx *block_ctx,
325 u32 item_offset, int force_iodone_flag);
326 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
327 struct btrfsic_block_data_ctx *block_ctx_out,
328 int mirror_num);
329 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
330 u32 len, struct block_device *bdev,
331 struct btrfsic_block_data_ctx *block_ctx_out);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
400 static void btrfsic_block_init(struct btrfsic_block *b)
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
427 static struct btrfsic_block *btrfsic_block_alloc(void)
429 struct btrfsic_block *b;
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
435 return b;
438 static void btrfsic_block_free(struct btrfsic_block *b)
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
457 struct btrfsic_block_link *l;
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
463 return l;
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
487 struct btrfsic_dev_state *ds;
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
493 return ds;
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
505 int i;
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
519 list_add(&b->collision_resolving_node, h->table + hashval);
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
524 list_del(&b->collision_resolving_node);
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct list_head *elem;
538 list_for_each(elem, h->table + hashval) {
539 struct btrfsic_block *const b =
540 list_entry(elem, struct btrfsic_block,
541 collision_resolving_node);
543 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
544 return b;
547 return NULL;
550 static void btrfsic_block_link_hashtable_init(
551 struct btrfsic_block_link_hashtable *h)
553 int i;
555 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
556 INIT_LIST_HEAD(h->table + i);
559 static void btrfsic_block_link_hashtable_add(
560 struct btrfsic_block_link *l,
561 struct btrfsic_block_link_hashtable *h)
563 const unsigned int hashval =
564 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
565 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
566 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
567 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
568 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
570 BUG_ON(NULL == l->block_ref_to);
571 BUG_ON(NULL == l->block_ref_from);
572 list_add(&l->collision_resolving_node, h->table + hashval);
575 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
577 list_del(&l->collision_resolving_node);
580 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
581 struct block_device *bdev_ref_to,
582 u64 dev_bytenr_ref_to,
583 struct block_device *bdev_ref_from,
584 u64 dev_bytenr_ref_from,
585 struct btrfsic_block_link_hashtable *h)
587 const unsigned int hashval =
588 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
589 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
590 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
591 ((unsigned int)((uintptr_t)bdev_ref_from))) &
592 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
593 struct list_head *elem;
595 list_for_each(elem, h->table + hashval) {
596 struct btrfsic_block_link *const l =
597 list_entry(elem, struct btrfsic_block_link,
598 collision_resolving_node);
600 BUG_ON(NULL == l->block_ref_to);
601 BUG_ON(NULL == l->block_ref_from);
602 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
603 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
604 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
605 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
606 return l;
609 return NULL;
612 static void btrfsic_dev_state_hashtable_init(
613 struct btrfsic_dev_state_hashtable *h)
615 int i;
617 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
618 INIT_LIST_HEAD(h->table + i);
621 static void btrfsic_dev_state_hashtable_add(
622 struct btrfsic_dev_state *ds,
623 struct btrfsic_dev_state_hashtable *h)
625 const unsigned int hashval =
626 (((unsigned int)((uintptr_t)ds->bdev)) &
627 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
629 list_add(&ds->collision_resolving_node, h->table + hashval);
632 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
634 list_del(&ds->collision_resolving_node);
637 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
638 struct block_device *bdev,
639 struct btrfsic_dev_state_hashtable *h)
641 const unsigned int hashval =
642 (((unsigned int)((uintptr_t)bdev)) &
643 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
644 struct list_head *elem;
646 list_for_each(elem, h->table + hashval) {
647 struct btrfsic_dev_state *const ds =
648 list_entry(elem, struct btrfsic_dev_state,
649 collision_resolving_node);
651 if (ds->bdev == bdev)
652 return ds;
655 return NULL;
658 static int btrfsic_process_superblock(struct btrfsic_state *state,
659 struct btrfs_fs_devices *fs_devices)
661 int ret = 0;
662 struct btrfs_super_block *selected_super;
663 struct list_head *dev_head = &fs_devices->devices;
664 struct btrfs_device *device;
665 struct btrfsic_dev_state *selected_dev_state = NULL;
666 int pass;
668 BUG_ON(NULL == state);
669 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
670 if (NULL == selected_super) {
671 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
672 return -1;
675 list_for_each_entry(device, dev_head, dev_list) {
676 int i;
677 struct btrfsic_dev_state *dev_state;
679 if (!device->bdev || !device->name)
680 continue;
682 dev_state = btrfsic_dev_state_lookup(device->bdev);
683 BUG_ON(NULL == dev_state);
684 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
685 ret = btrfsic_process_superblock_dev_mirror(
686 state, dev_state, device, i,
687 &selected_dev_state, selected_super);
688 if (0 != ret && 0 == i) {
689 kfree(selected_super);
690 return ret;
695 if (NULL == state->latest_superblock) {
696 printk(KERN_INFO "btrfsic: no superblock found!\n");
697 kfree(selected_super);
698 return -1;
701 state->csum_size = btrfs_super_csum_size(selected_super);
703 for (pass = 0; pass < 3; pass++) {
704 int num_copies;
705 int mirror_num;
706 u64 next_bytenr;
708 switch (pass) {
709 case 0:
710 next_bytenr = btrfs_super_root(selected_super);
711 if (state->print_mask &
712 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
713 printk(KERN_INFO "root@%llu\n", next_bytenr);
714 break;
715 case 1:
716 next_bytenr = btrfs_super_chunk_root(selected_super);
717 if (state->print_mask &
718 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
719 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
720 break;
721 case 2:
722 next_bytenr = btrfs_super_log_root(selected_super);
723 if (0 == next_bytenr)
724 continue;
725 if (state->print_mask &
726 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
727 printk(KERN_INFO "log@%llu\n", next_bytenr);
728 break;
731 num_copies =
732 btrfs_num_copies(state->root->fs_info,
733 next_bytenr, state->metablock_size);
734 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
735 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
736 next_bytenr, num_copies);
738 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
739 struct btrfsic_block *next_block;
740 struct btrfsic_block_data_ctx tmp_next_block_ctx;
741 struct btrfsic_block_link *l;
743 ret = btrfsic_map_block(state, next_bytenr,
744 state->metablock_size,
745 &tmp_next_block_ctx,
746 mirror_num);
747 if (ret) {
748 printk(KERN_INFO "btrfsic:"
749 " btrfsic_map_block(root @%llu,"
750 " mirror %d) failed!\n",
751 next_bytenr, mirror_num);
752 kfree(selected_super);
753 return -1;
756 next_block = btrfsic_block_hashtable_lookup(
757 tmp_next_block_ctx.dev->bdev,
758 tmp_next_block_ctx.dev_bytenr,
759 &state->block_hashtable);
760 BUG_ON(NULL == next_block);
762 l = btrfsic_block_link_hashtable_lookup(
763 tmp_next_block_ctx.dev->bdev,
764 tmp_next_block_ctx.dev_bytenr,
765 state->latest_superblock->dev_state->
766 bdev,
767 state->latest_superblock->dev_bytenr,
768 &state->block_link_hashtable);
769 BUG_ON(NULL == l);
771 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
772 if (ret < (int)PAGE_CACHE_SIZE) {
773 printk(KERN_INFO
774 "btrfsic: read @logical %llu failed!\n",
775 tmp_next_block_ctx.start);
776 btrfsic_release_block_ctx(&tmp_next_block_ctx);
777 kfree(selected_super);
778 return -1;
781 ret = btrfsic_process_metablock(state,
782 next_block,
783 &tmp_next_block_ctx,
784 BTRFS_MAX_LEVEL + 3, 1);
785 btrfsic_release_block_ctx(&tmp_next_block_ctx);
789 kfree(selected_super);
790 return ret;
793 static int btrfsic_process_superblock_dev_mirror(
794 struct btrfsic_state *state,
795 struct btrfsic_dev_state *dev_state,
796 struct btrfs_device *device,
797 int superblock_mirror_num,
798 struct btrfsic_dev_state **selected_dev_state,
799 struct btrfs_super_block *selected_super)
801 struct btrfs_super_block *super_tmp;
802 u64 dev_bytenr;
803 struct buffer_head *bh;
804 struct btrfsic_block *superblock_tmp;
805 int pass;
806 struct block_device *const superblock_bdev = device->bdev;
808 /* super block bytenr is always the unmapped device bytenr */
809 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
810 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
811 return -1;
812 bh = __bread(superblock_bdev, dev_bytenr / 4096,
813 BTRFS_SUPER_INFO_SIZE);
814 if (NULL == bh)
815 return -1;
816 super_tmp = (struct btrfs_super_block *)
817 (bh->b_data + (dev_bytenr & 4095));
819 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
820 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
821 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
822 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
823 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
824 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
825 brelse(bh);
826 return 0;
829 superblock_tmp =
830 btrfsic_block_hashtable_lookup(superblock_bdev,
831 dev_bytenr,
832 &state->block_hashtable);
833 if (NULL == superblock_tmp) {
834 superblock_tmp = btrfsic_block_alloc();
835 if (NULL == superblock_tmp) {
836 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
837 brelse(bh);
838 return -1;
840 /* for superblock, only the dev_bytenr makes sense */
841 superblock_tmp->dev_bytenr = dev_bytenr;
842 superblock_tmp->dev_state = dev_state;
843 superblock_tmp->logical_bytenr = dev_bytenr;
844 superblock_tmp->generation = btrfs_super_generation(super_tmp);
845 superblock_tmp->is_metadata = 1;
846 superblock_tmp->is_superblock = 1;
847 superblock_tmp->is_iodone = 1;
848 superblock_tmp->never_written = 0;
849 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
850 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
851 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
852 " @%llu (%s/%llu/%d)\n",
853 superblock_bdev,
854 rcu_str_deref(device->name), dev_bytenr,
855 dev_state->name, dev_bytenr,
856 superblock_mirror_num);
857 list_add(&superblock_tmp->all_blocks_node,
858 &state->all_blocks_list);
859 btrfsic_block_hashtable_add(superblock_tmp,
860 &state->block_hashtable);
863 /* select the one with the highest generation field */
864 if (btrfs_super_generation(super_tmp) >
865 state->max_superblock_generation ||
866 0 == state->max_superblock_generation) {
867 memcpy(selected_super, super_tmp, sizeof(*selected_super));
868 *selected_dev_state = dev_state;
869 state->max_superblock_generation =
870 btrfs_super_generation(super_tmp);
871 state->latest_superblock = superblock_tmp;
874 for (pass = 0; pass < 3; pass++) {
875 u64 next_bytenr;
876 int num_copies;
877 int mirror_num;
878 const char *additional_string = NULL;
879 struct btrfs_disk_key tmp_disk_key;
881 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
882 tmp_disk_key.offset = 0;
883 switch (pass) {
884 case 0:
885 btrfs_set_disk_key_objectid(&tmp_disk_key,
886 BTRFS_ROOT_TREE_OBJECTID);
887 additional_string = "initial root ";
888 next_bytenr = btrfs_super_root(super_tmp);
889 break;
890 case 1:
891 btrfs_set_disk_key_objectid(&tmp_disk_key,
892 BTRFS_CHUNK_TREE_OBJECTID);
893 additional_string = "initial chunk ";
894 next_bytenr = btrfs_super_chunk_root(super_tmp);
895 break;
896 case 2:
897 btrfs_set_disk_key_objectid(&tmp_disk_key,
898 BTRFS_TREE_LOG_OBJECTID);
899 additional_string = "initial log ";
900 next_bytenr = btrfs_super_log_root(super_tmp);
901 if (0 == next_bytenr)
902 continue;
903 break;
906 num_copies =
907 btrfs_num_copies(state->root->fs_info,
908 next_bytenr, state->metablock_size);
909 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
910 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
911 next_bytenr, num_copies);
912 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
913 struct btrfsic_block *next_block;
914 struct btrfsic_block_data_ctx tmp_next_block_ctx;
915 struct btrfsic_block_link *l;
917 if (btrfsic_map_block(state, next_bytenr,
918 state->metablock_size,
919 &tmp_next_block_ctx,
920 mirror_num)) {
921 printk(KERN_INFO "btrfsic: btrfsic_map_block("
922 "bytenr @%llu, mirror %d) failed!\n",
923 next_bytenr, mirror_num);
924 brelse(bh);
925 return -1;
928 next_block = btrfsic_block_lookup_or_add(
929 state, &tmp_next_block_ctx,
930 additional_string, 1, 1, 0,
931 mirror_num, NULL);
932 if (NULL == next_block) {
933 btrfsic_release_block_ctx(&tmp_next_block_ctx);
934 brelse(bh);
935 return -1;
938 next_block->disk_key = tmp_disk_key;
939 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
940 l = btrfsic_block_link_lookup_or_add(
941 state, &tmp_next_block_ctx,
942 next_block, superblock_tmp,
943 BTRFSIC_GENERATION_UNKNOWN);
944 btrfsic_release_block_ctx(&tmp_next_block_ctx);
945 if (NULL == l) {
946 brelse(bh);
947 return -1;
951 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
952 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
954 brelse(bh);
955 return 0;
958 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
960 struct btrfsic_stack_frame *sf;
962 sf = kzalloc(sizeof(*sf), GFP_NOFS);
963 if (NULL == sf)
964 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
965 else
966 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
967 return sf;
970 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
972 BUG_ON(!(NULL == sf ||
973 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
974 kfree(sf);
977 static int btrfsic_process_metablock(
978 struct btrfsic_state *state,
979 struct btrfsic_block *const first_block,
980 struct btrfsic_block_data_ctx *const first_block_ctx,
981 int first_limit_nesting, int force_iodone_flag)
983 struct btrfsic_stack_frame initial_stack_frame = { 0 };
984 struct btrfsic_stack_frame *sf;
985 struct btrfsic_stack_frame *next_stack;
986 struct btrfs_header *const first_hdr =
987 (struct btrfs_header *)first_block_ctx->datav[0];
989 BUG_ON(!first_hdr);
990 sf = &initial_stack_frame;
991 sf->error = 0;
992 sf->i = -1;
993 sf->limit_nesting = first_limit_nesting;
994 sf->block = first_block;
995 sf->block_ctx = first_block_ctx;
996 sf->next_block = NULL;
997 sf->hdr = first_hdr;
998 sf->prev = NULL;
1000 continue_with_new_stack_frame:
1001 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1002 if (0 == sf->hdr->level) {
1003 struct btrfs_leaf *const leafhdr =
1004 (struct btrfs_leaf *)sf->hdr;
1006 if (-1 == sf->i) {
1007 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
1009 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1010 printk(KERN_INFO
1011 "leaf %llu items %d generation %llu"
1012 " owner %llu\n",
1013 sf->block_ctx->start, sf->nr,
1014 btrfs_stack_header_generation(
1015 &leafhdr->header),
1016 btrfs_stack_header_owner(
1017 &leafhdr->header));
1020 continue_with_current_leaf_stack_frame:
1021 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1022 sf->i++;
1023 sf->num_copies = 0;
1026 if (sf->i < sf->nr) {
1027 struct btrfs_item disk_item;
1028 u32 disk_item_offset =
1029 (uintptr_t)(leafhdr->items + sf->i) -
1030 (uintptr_t)leafhdr;
1031 struct btrfs_disk_key *disk_key;
1032 u8 type;
1033 u32 item_offset;
1034 u32 item_size;
1036 if (disk_item_offset + sizeof(struct btrfs_item) >
1037 sf->block_ctx->len) {
1038 leaf_item_out_of_bounce_error:
1039 printk(KERN_INFO
1040 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1041 sf->block_ctx->start,
1042 sf->block_ctx->dev->name);
1043 goto one_stack_frame_backwards;
1045 btrfsic_read_from_block_data(sf->block_ctx,
1046 &disk_item,
1047 disk_item_offset,
1048 sizeof(struct btrfs_item));
1049 item_offset = btrfs_stack_item_offset(&disk_item);
1050 item_size = btrfs_stack_item_size(&disk_item);
1051 disk_key = &disk_item.key;
1052 type = btrfs_disk_key_type(disk_key);
1054 if (BTRFS_ROOT_ITEM_KEY == type) {
1055 struct btrfs_root_item root_item;
1056 u32 root_item_offset;
1057 u64 next_bytenr;
1059 root_item_offset = item_offset +
1060 offsetof(struct btrfs_leaf, items);
1061 if (root_item_offset + item_size >
1062 sf->block_ctx->len)
1063 goto leaf_item_out_of_bounce_error;
1064 btrfsic_read_from_block_data(
1065 sf->block_ctx, &root_item,
1066 root_item_offset,
1067 item_size);
1068 next_bytenr = btrfs_root_bytenr(&root_item);
1070 sf->error =
1071 btrfsic_create_link_to_next_block(
1072 state,
1073 sf->block,
1074 sf->block_ctx,
1075 next_bytenr,
1076 sf->limit_nesting,
1077 &sf->next_block_ctx,
1078 &sf->next_block,
1079 force_iodone_flag,
1080 &sf->num_copies,
1081 &sf->mirror_num,
1082 disk_key,
1083 btrfs_root_generation(
1084 &root_item));
1085 if (sf->error)
1086 goto one_stack_frame_backwards;
1088 if (NULL != sf->next_block) {
1089 struct btrfs_header *const next_hdr =
1090 (struct btrfs_header *)
1091 sf->next_block_ctx.datav[0];
1093 next_stack =
1094 btrfsic_stack_frame_alloc();
1095 if (NULL == next_stack) {
1096 btrfsic_release_block_ctx(
1097 &sf->
1098 next_block_ctx);
1099 goto one_stack_frame_backwards;
1102 next_stack->i = -1;
1103 next_stack->block = sf->next_block;
1104 next_stack->block_ctx =
1105 &sf->next_block_ctx;
1106 next_stack->next_block = NULL;
1107 next_stack->hdr = next_hdr;
1108 next_stack->limit_nesting =
1109 sf->limit_nesting - 1;
1110 next_stack->prev = sf;
1111 sf = next_stack;
1112 goto continue_with_new_stack_frame;
1114 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1115 state->include_extent_data) {
1116 sf->error = btrfsic_handle_extent_data(
1117 state,
1118 sf->block,
1119 sf->block_ctx,
1120 item_offset,
1121 force_iodone_flag);
1122 if (sf->error)
1123 goto one_stack_frame_backwards;
1126 goto continue_with_current_leaf_stack_frame;
1128 } else {
1129 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1131 if (-1 == sf->i) {
1132 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1134 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1135 printk(KERN_INFO "node %llu level %d items %d"
1136 " generation %llu owner %llu\n",
1137 sf->block_ctx->start,
1138 nodehdr->header.level, sf->nr,
1139 btrfs_stack_header_generation(
1140 &nodehdr->header),
1141 btrfs_stack_header_owner(
1142 &nodehdr->header));
1145 continue_with_current_node_stack_frame:
1146 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1147 sf->i++;
1148 sf->num_copies = 0;
1151 if (sf->i < sf->nr) {
1152 struct btrfs_key_ptr key_ptr;
1153 u32 key_ptr_offset;
1154 u64 next_bytenr;
1156 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1157 (uintptr_t)nodehdr;
1158 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1159 sf->block_ctx->len) {
1160 printk(KERN_INFO
1161 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1162 sf->block_ctx->start,
1163 sf->block_ctx->dev->name);
1164 goto one_stack_frame_backwards;
1166 btrfsic_read_from_block_data(
1167 sf->block_ctx, &key_ptr, key_ptr_offset,
1168 sizeof(struct btrfs_key_ptr));
1169 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1171 sf->error = btrfsic_create_link_to_next_block(
1172 state,
1173 sf->block,
1174 sf->block_ctx,
1175 next_bytenr,
1176 sf->limit_nesting,
1177 &sf->next_block_ctx,
1178 &sf->next_block,
1179 force_iodone_flag,
1180 &sf->num_copies,
1181 &sf->mirror_num,
1182 &key_ptr.key,
1183 btrfs_stack_key_generation(&key_ptr));
1184 if (sf->error)
1185 goto one_stack_frame_backwards;
1187 if (NULL != sf->next_block) {
1188 struct btrfs_header *const next_hdr =
1189 (struct btrfs_header *)
1190 sf->next_block_ctx.datav[0];
1192 next_stack = btrfsic_stack_frame_alloc();
1193 if (NULL == next_stack)
1194 goto one_stack_frame_backwards;
1196 next_stack->i = -1;
1197 next_stack->block = sf->next_block;
1198 next_stack->block_ctx = &sf->next_block_ctx;
1199 next_stack->next_block = NULL;
1200 next_stack->hdr = next_hdr;
1201 next_stack->limit_nesting =
1202 sf->limit_nesting - 1;
1203 next_stack->prev = sf;
1204 sf = next_stack;
1205 goto continue_with_new_stack_frame;
1208 goto continue_with_current_node_stack_frame;
1212 one_stack_frame_backwards:
1213 if (NULL != sf->prev) {
1214 struct btrfsic_stack_frame *const prev = sf->prev;
1216 /* the one for the initial block is freed in the caller */
1217 btrfsic_release_block_ctx(sf->block_ctx);
1219 if (sf->error) {
1220 prev->error = sf->error;
1221 btrfsic_stack_frame_free(sf);
1222 sf = prev;
1223 goto one_stack_frame_backwards;
1226 btrfsic_stack_frame_free(sf);
1227 sf = prev;
1228 goto continue_with_new_stack_frame;
1229 } else {
1230 BUG_ON(&initial_stack_frame != sf);
1233 return sf->error;
1236 static void btrfsic_read_from_block_data(
1237 struct btrfsic_block_data_ctx *block_ctx,
1238 void *dstv, u32 offset, size_t len)
1240 size_t cur;
1241 size_t offset_in_page;
1242 char *kaddr;
1243 char *dst = (char *)dstv;
1244 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1245 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1247 WARN_ON(offset + len > block_ctx->len);
1248 offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
1250 while (len > 0) {
1251 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1252 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1253 PAGE_CACHE_SHIFT);
1254 kaddr = block_ctx->datav[i];
1255 memcpy(dst, kaddr + offset_in_page, cur);
1257 dst += cur;
1258 len -= cur;
1259 offset_in_page = 0;
1260 i++;
1264 static int btrfsic_create_link_to_next_block(
1265 struct btrfsic_state *state,
1266 struct btrfsic_block *block,
1267 struct btrfsic_block_data_ctx *block_ctx,
1268 u64 next_bytenr,
1269 int limit_nesting,
1270 struct btrfsic_block_data_ctx *next_block_ctx,
1271 struct btrfsic_block **next_blockp,
1272 int force_iodone_flag,
1273 int *num_copiesp, int *mirror_nump,
1274 struct btrfs_disk_key *disk_key,
1275 u64 parent_generation)
1277 struct btrfsic_block *next_block = NULL;
1278 int ret;
1279 struct btrfsic_block_link *l;
1280 int did_alloc_block_link;
1281 int block_was_created;
1283 *next_blockp = NULL;
1284 if (0 == *num_copiesp) {
1285 *num_copiesp =
1286 btrfs_num_copies(state->root->fs_info,
1287 next_bytenr, state->metablock_size);
1288 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1289 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1290 next_bytenr, *num_copiesp);
1291 *mirror_nump = 1;
1294 if (*mirror_nump > *num_copiesp)
1295 return 0;
1297 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1298 printk(KERN_INFO
1299 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1300 *mirror_nump);
1301 ret = btrfsic_map_block(state, next_bytenr,
1302 state->metablock_size,
1303 next_block_ctx, *mirror_nump);
1304 if (ret) {
1305 printk(KERN_INFO
1306 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1307 next_bytenr, *mirror_nump);
1308 btrfsic_release_block_ctx(next_block_ctx);
1309 *next_blockp = NULL;
1310 return -1;
1313 next_block = btrfsic_block_lookup_or_add(state,
1314 next_block_ctx, "referenced ",
1315 1, force_iodone_flag,
1316 !force_iodone_flag,
1317 *mirror_nump,
1318 &block_was_created);
1319 if (NULL == next_block) {
1320 btrfsic_release_block_ctx(next_block_ctx);
1321 *next_blockp = NULL;
1322 return -1;
1324 if (block_was_created) {
1325 l = NULL;
1326 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1327 } else {
1328 if (next_block->logical_bytenr != next_bytenr &&
1329 !(!next_block->is_metadata &&
1330 0 == next_block->logical_bytenr)) {
1331 printk(KERN_INFO
1332 "Referenced block @%llu (%s/%llu/%d)"
1333 " found in hash table, %c,"
1334 " bytenr mismatch (!= stored %llu).\n",
1335 next_bytenr, next_block_ctx->dev->name,
1336 next_block_ctx->dev_bytenr, *mirror_nump,
1337 btrfsic_get_block_type(state, next_block),
1338 next_block->logical_bytenr);
1339 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1340 printk(KERN_INFO
1341 "Referenced block @%llu (%s/%llu/%d)"
1342 " found in hash table, %c.\n",
1343 next_bytenr, next_block_ctx->dev->name,
1344 next_block_ctx->dev_bytenr, *mirror_nump,
1345 btrfsic_get_block_type(state, next_block));
1346 next_block->logical_bytenr = next_bytenr;
1348 next_block->mirror_num = *mirror_nump;
1349 l = btrfsic_block_link_hashtable_lookup(
1350 next_block_ctx->dev->bdev,
1351 next_block_ctx->dev_bytenr,
1352 block_ctx->dev->bdev,
1353 block_ctx->dev_bytenr,
1354 &state->block_link_hashtable);
1357 next_block->disk_key = *disk_key;
1358 if (NULL == l) {
1359 l = btrfsic_block_link_alloc();
1360 if (NULL == l) {
1361 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1362 btrfsic_release_block_ctx(next_block_ctx);
1363 *next_blockp = NULL;
1364 return -1;
1367 did_alloc_block_link = 1;
1368 l->block_ref_to = next_block;
1369 l->block_ref_from = block;
1370 l->ref_cnt = 1;
1371 l->parent_generation = parent_generation;
1373 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1374 btrfsic_print_add_link(state, l);
1376 list_add(&l->node_ref_to, &block->ref_to_list);
1377 list_add(&l->node_ref_from, &next_block->ref_from_list);
1379 btrfsic_block_link_hashtable_add(l,
1380 &state->block_link_hashtable);
1381 } else {
1382 did_alloc_block_link = 0;
1383 if (0 == limit_nesting) {
1384 l->ref_cnt++;
1385 l->parent_generation = parent_generation;
1386 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1387 btrfsic_print_add_link(state, l);
1391 if (limit_nesting > 0 && did_alloc_block_link) {
1392 ret = btrfsic_read_block(state, next_block_ctx);
1393 if (ret < (int)next_block_ctx->len) {
1394 printk(KERN_INFO
1395 "btrfsic: read block @logical %llu failed!\n",
1396 next_bytenr);
1397 btrfsic_release_block_ctx(next_block_ctx);
1398 *next_blockp = NULL;
1399 return -1;
1402 *next_blockp = next_block;
1403 } else {
1404 *next_blockp = NULL;
1406 (*mirror_nump)++;
1408 return 0;
1411 static int btrfsic_handle_extent_data(
1412 struct btrfsic_state *state,
1413 struct btrfsic_block *block,
1414 struct btrfsic_block_data_ctx *block_ctx,
1415 u32 item_offset, int force_iodone_flag)
1417 int ret;
1418 struct btrfs_file_extent_item file_extent_item;
1419 u64 file_extent_item_offset;
1420 u64 next_bytenr;
1421 u64 num_bytes;
1422 u64 generation;
1423 struct btrfsic_block_link *l;
1425 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1426 item_offset;
1427 if (file_extent_item_offset +
1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1429 block_ctx->len) {
1430 printk(KERN_INFO
1431 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1432 block_ctx->start, block_ctx->dev->name);
1433 return -1;
1436 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1437 file_extent_item_offset,
1438 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1439 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1440 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1441 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1442 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1443 file_extent_item.type,
1444 btrfs_stack_file_extent_disk_bytenr(
1445 &file_extent_item));
1446 return 0;
1449 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1450 block_ctx->len) {
1451 printk(KERN_INFO
1452 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1453 block_ctx->start, block_ctx->dev->name);
1454 return -1;
1456 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1457 file_extent_item_offset,
1458 sizeof(struct btrfs_file_extent_item));
1459 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1460 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1461 BTRFS_COMPRESS_NONE) {
1462 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1463 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1464 } else {
1465 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1467 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1469 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1470 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1471 " offset = %llu, num_bytes = %llu\n",
1472 file_extent_item.type,
1473 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1474 btrfs_stack_file_extent_offset(&file_extent_item),
1475 num_bytes);
1476 while (num_bytes > 0) {
1477 u32 chunk_len;
1478 int num_copies;
1479 int mirror_num;
1481 if (num_bytes > state->datablock_size)
1482 chunk_len = state->datablock_size;
1483 else
1484 chunk_len = num_bytes;
1486 num_copies =
1487 btrfs_num_copies(state->root->fs_info,
1488 next_bytenr, state->datablock_size);
1489 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1490 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1491 next_bytenr, num_copies);
1492 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1493 struct btrfsic_block_data_ctx next_block_ctx;
1494 struct btrfsic_block *next_block;
1495 int block_was_created;
1497 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1498 printk(KERN_INFO "btrfsic_handle_extent_data("
1499 "mirror_num=%d)\n", mirror_num);
1500 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1501 printk(KERN_INFO
1502 "\tdisk_bytenr = %llu, num_bytes %u\n",
1503 next_bytenr, chunk_len);
1504 ret = btrfsic_map_block(state, next_bytenr,
1505 chunk_len, &next_block_ctx,
1506 mirror_num);
1507 if (ret) {
1508 printk(KERN_INFO
1509 "btrfsic: btrfsic_map_block(@%llu,"
1510 " mirror=%d) failed!\n",
1511 next_bytenr, mirror_num);
1512 return -1;
1515 next_block = btrfsic_block_lookup_or_add(
1516 state,
1517 &next_block_ctx,
1518 "referenced ",
1520 force_iodone_flag,
1521 !force_iodone_flag,
1522 mirror_num,
1523 &block_was_created);
1524 if (NULL == next_block) {
1525 printk(KERN_INFO
1526 "btrfsic: error, kmalloc failed!\n");
1527 btrfsic_release_block_ctx(&next_block_ctx);
1528 return -1;
1530 if (!block_was_created) {
1531 if (next_block->logical_bytenr != next_bytenr &&
1532 !(!next_block->is_metadata &&
1533 0 == next_block->logical_bytenr)) {
1534 printk(KERN_INFO
1535 "Referenced block"
1536 " @%llu (%s/%llu/%d)"
1537 " found in hash table, D,"
1538 " bytenr mismatch"
1539 " (!= stored %llu).\n",
1540 next_bytenr,
1541 next_block_ctx.dev->name,
1542 next_block_ctx.dev_bytenr,
1543 mirror_num,
1544 next_block->logical_bytenr);
1546 next_block->logical_bytenr = next_bytenr;
1547 next_block->mirror_num = mirror_num;
1550 l = btrfsic_block_link_lookup_or_add(state,
1551 &next_block_ctx,
1552 next_block, block,
1553 generation);
1554 btrfsic_release_block_ctx(&next_block_ctx);
1555 if (NULL == l)
1556 return -1;
1559 next_bytenr += chunk_len;
1560 num_bytes -= chunk_len;
1563 return 0;
1566 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1567 struct btrfsic_block_data_ctx *block_ctx_out,
1568 int mirror_num)
1570 int ret;
1571 u64 length;
1572 struct btrfs_bio *multi = NULL;
1573 struct btrfs_device *device;
1575 length = len;
1576 ret = btrfs_map_block(state->root->fs_info, READ,
1577 bytenr, &length, &multi, mirror_num);
1579 if (ret) {
1580 block_ctx_out->start = 0;
1581 block_ctx_out->dev_bytenr = 0;
1582 block_ctx_out->len = 0;
1583 block_ctx_out->dev = NULL;
1584 block_ctx_out->datav = NULL;
1585 block_ctx_out->pagev = NULL;
1586 block_ctx_out->mem_to_free = NULL;
1588 return ret;
1591 device = multi->stripes[0].dev;
1592 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1593 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1594 block_ctx_out->start = bytenr;
1595 block_ctx_out->len = len;
1596 block_ctx_out->datav = NULL;
1597 block_ctx_out->pagev = NULL;
1598 block_ctx_out->mem_to_free = NULL;
1600 kfree(multi);
1601 if (NULL == block_ctx_out->dev) {
1602 ret = -ENXIO;
1603 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1606 return ret;
1609 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1610 u32 len, struct block_device *bdev,
1611 struct btrfsic_block_data_ctx *block_ctx_out)
1613 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1614 block_ctx_out->dev_bytenr = bytenr;
1615 block_ctx_out->start = bytenr;
1616 block_ctx_out->len = len;
1617 block_ctx_out->datav = NULL;
1618 block_ctx_out->pagev = NULL;
1619 block_ctx_out->mem_to_free = NULL;
1620 if (NULL != block_ctx_out->dev) {
1621 return 0;
1622 } else {
1623 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1624 return -ENXIO;
1628 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1630 if (block_ctx->mem_to_free) {
1631 unsigned int num_pages;
1633 BUG_ON(!block_ctx->datav);
1634 BUG_ON(!block_ctx->pagev);
1635 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1636 PAGE_CACHE_SHIFT;
1637 while (num_pages > 0) {
1638 num_pages--;
1639 if (block_ctx->datav[num_pages]) {
1640 kunmap(block_ctx->pagev[num_pages]);
1641 block_ctx->datav[num_pages] = NULL;
1643 if (block_ctx->pagev[num_pages]) {
1644 __free_page(block_ctx->pagev[num_pages]);
1645 block_ctx->pagev[num_pages] = NULL;
1649 kfree(block_ctx->mem_to_free);
1650 block_ctx->mem_to_free = NULL;
1651 block_ctx->pagev = NULL;
1652 block_ctx->datav = NULL;
1656 static int btrfsic_read_block(struct btrfsic_state *state,
1657 struct btrfsic_block_data_ctx *block_ctx)
1659 unsigned int num_pages;
1660 unsigned int i;
1661 u64 dev_bytenr;
1662 int ret;
1664 BUG_ON(block_ctx->datav);
1665 BUG_ON(block_ctx->pagev);
1666 BUG_ON(block_ctx->mem_to_free);
1667 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1668 printk(KERN_INFO
1669 "btrfsic: read_block() with unaligned bytenr %llu\n",
1670 block_ctx->dev_bytenr);
1671 return -1;
1674 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1675 PAGE_CACHE_SHIFT;
1676 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1677 sizeof(*block_ctx->pagev)) *
1678 num_pages, GFP_NOFS);
1679 if (!block_ctx->mem_to_free)
1680 return -1;
1681 block_ctx->datav = block_ctx->mem_to_free;
1682 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1683 for (i = 0; i < num_pages; i++) {
1684 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1685 if (!block_ctx->pagev[i])
1686 return -1;
1689 dev_bytenr = block_ctx->dev_bytenr;
1690 for (i = 0; i < num_pages;) {
1691 struct bio *bio;
1692 unsigned int j;
1694 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1695 if (!bio) {
1696 printk(KERN_INFO
1697 "btrfsic: bio_alloc() for %u pages failed!\n",
1698 num_pages - i);
1699 return -1;
1701 bio->bi_bdev = block_ctx->dev->bdev;
1702 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1704 for (j = i; j < num_pages; j++) {
1705 ret = bio_add_page(bio, block_ctx->pagev[j],
1706 PAGE_CACHE_SIZE, 0);
1707 if (PAGE_CACHE_SIZE != ret)
1708 break;
1710 if (j == i) {
1711 printk(KERN_INFO
1712 "btrfsic: error, failed to add a single page!\n");
1713 return -1;
1715 if (submit_bio_wait(READ, bio)) {
1716 printk(KERN_INFO
1717 "btrfsic: read error at logical %llu dev %s!\n",
1718 block_ctx->start, block_ctx->dev->name);
1719 bio_put(bio);
1720 return -1;
1722 bio_put(bio);
1723 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1724 i = j;
1726 for (i = 0; i < num_pages; i++) {
1727 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1728 if (!block_ctx->datav[i]) {
1729 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1730 block_ctx->dev->name);
1731 return -1;
1735 return block_ctx->len;
1738 static void btrfsic_dump_database(struct btrfsic_state *state)
1740 struct list_head *elem_all;
1742 BUG_ON(NULL == state);
1744 printk(KERN_INFO "all_blocks_list:\n");
1745 list_for_each(elem_all, &state->all_blocks_list) {
1746 const struct btrfsic_block *const b_all =
1747 list_entry(elem_all, struct btrfsic_block,
1748 all_blocks_node);
1749 struct list_head *elem_ref_to;
1750 struct list_head *elem_ref_from;
1752 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1753 btrfsic_get_block_type(state, b_all),
1754 b_all->logical_bytenr, b_all->dev_state->name,
1755 b_all->dev_bytenr, b_all->mirror_num);
1757 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1758 const struct btrfsic_block_link *const l =
1759 list_entry(elem_ref_to,
1760 struct btrfsic_block_link,
1761 node_ref_to);
1763 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1764 " refers %u* to"
1765 " %c @%llu (%s/%llu/%d)\n",
1766 btrfsic_get_block_type(state, b_all),
1767 b_all->logical_bytenr, b_all->dev_state->name,
1768 b_all->dev_bytenr, b_all->mirror_num,
1769 l->ref_cnt,
1770 btrfsic_get_block_type(state, l->block_ref_to),
1771 l->block_ref_to->logical_bytenr,
1772 l->block_ref_to->dev_state->name,
1773 l->block_ref_to->dev_bytenr,
1774 l->block_ref_to->mirror_num);
1777 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1778 const struct btrfsic_block_link *const l =
1779 list_entry(elem_ref_from,
1780 struct btrfsic_block_link,
1781 node_ref_from);
1783 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1784 " is ref %u* from"
1785 " %c @%llu (%s/%llu/%d)\n",
1786 btrfsic_get_block_type(state, b_all),
1787 b_all->logical_bytenr, b_all->dev_state->name,
1788 b_all->dev_bytenr, b_all->mirror_num,
1789 l->ref_cnt,
1790 btrfsic_get_block_type(state, l->block_ref_from),
1791 l->block_ref_from->logical_bytenr,
1792 l->block_ref_from->dev_state->name,
1793 l->block_ref_from->dev_bytenr,
1794 l->block_ref_from->mirror_num);
1797 printk(KERN_INFO "\n");
1802 * Test whether the disk block contains a tree block (leaf or node)
1803 * (note that this test fails for the super block)
1805 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1806 char **datav, unsigned int num_pages)
1808 struct btrfs_header *h;
1809 u8 csum[BTRFS_CSUM_SIZE];
1810 u32 crc = ~(u32)0;
1811 unsigned int i;
1813 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1814 return 1; /* not metadata */
1815 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1816 h = (struct btrfs_header *)datav[0];
1818 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1819 return 1;
1821 for (i = 0; i < num_pages; i++) {
1822 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1823 size_t sublen = i ? PAGE_CACHE_SIZE :
1824 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1826 crc = btrfs_crc32c(crc, data, sublen);
1828 btrfs_csum_final(crc, csum);
1829 if (memcmp(csum, h->csum, state->csum_size))
1830 return 1;
1832 return 0; /* is metadata */
1835 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1836 u64 dev_bytenr, char **mapped_datav,
1837 unsigned int num_pages,
1838 struct bio *bio, int *bio_is_patched,
1839 struct buffer_head *bh,
1840 int submit_bio_bh_rw)
1842 int is_metadata;
1843 struct btrfsic_block *block;
1844 struct btrfsic_block_data_ctx block_ctx;
1845 int ret;
1846 struct btrfsic_state *state = dev_state->state;
1847 struct block_device *bdev = dev_state->bdev;
1848 unsigned int processed_len;
1850 if (NULL != bio_is_patched)
1851 *bio_is_patched = 0;
1853 again:
1854 if (num_pages == 0)
1855 return;
1857 processed_len = 0;
1858 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1859 num_pages));
1861 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1862 &state->block_hashtable);
1863 if (NULL != block) {
1864 u64 bytenr = 0;
1865 struct list_head *elem_ref_to;
1866 struct list_head *tmp_ref_to;
1868 if (block->is_superblock) {
1869 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1870 mapped_datav[0]);
1871 if (num_pages * PAGE_CACHE_SIZE <
1872 BTRFS_SUPER_INFO_SIZE) {
1873 printk(KERN_INFO
1874 "btrfsic: cannot work with too short bios!\n");
1875 return;
1877 is_metadata = 1;
1878 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1879 processed_len = BTRFS_SUPER_INFO_SIZE;
1880 if (state->print_mask &
1881 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1882 printk(KERN_INFO
1883 "[before new superblock is written]:\n");
1884 btrfsic_dump_tree_sub(state, block, 0);
1887 if (is_metadata) {
1888 if (!block->is_superblock) {
1889 if (num_pages * PAGE_CACHE_SIZE <
1890 state->metablock_size) {
1891 printk(KERN_INFO
1892 "btrfsic: cannot work with too short bios!\n");
1893 return;
1895 processed_len = state->metablock_size;
1896 bytenr = btrfs_stack_header_bytenr(
1897 (struct btrfs_header *)
1898 mapped_datav[0]);
1899 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1900 dev_state,
1901 dev_bytenr);
1903 if (block->logical_bytenr != bytenr &&
1904 !(!block->is_metadata &&
1905 block->logical_bytenr == 0))
1906 printk(KERN_INFO
1907 "Written block @%llu (%s/%llu/%d)"
1908 " found in hash table, %c,"
1909 " bytenr mismatch"
1910 " (!= stored %llu).\n",
1911 bytenr, dev_state->name, dev_bytenr,
1912 block->mirror_num,
1913 btrfsic_get_block_type(state, block),
1914 block->logical_bytenr);
1915 else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1916 printk(KERN_INFO
1917 "Written block @%llu (%s/%llu/%d)"
1918 " found in hash table, %c.\n",
1919 bytenr, dev_state->name, dev_bytenr,
1920 block->mirror_num,
1921 btrfsic_get_block_type(state, block));
1922 block->logical_bytenr = bytenr;
1923 } else {
1924 if (num_pages * PAGE_CACHE_SIZE <
1925 state->datablock_size) {
1926 printk(KERN_INFO
1927 "btrfsic: cannot work with too short bios!\n");
1928 return;
1930 processed_len = state->datablock_size;
1931 bytenr = block->logical_bytenr;
1932 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1933 printk(KERN_INFO
1934 "Written block @%llu (%s/%llu/%d)"
1935 " found in hash table, %c.\n",
1936 bytenr, dev_state->name, dev_bytenr,
1937 block->mirror_num,
1938 btrfsic_get_block_type(state, block));
1941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1942 printk(KERN_INFO
1943 "ref_to_list: %cE, ref_from_list: %cE\n",
1944 list_empty(&block->ref_to_list) ? ' ' : '!',
1945 list_empty(&block->ref_from_list) ? ' ' : '!');
1946 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1947 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1948 " @%llu (%s/%llu/%d), old(gen=%llu,"
1949 " objectid=%llu, type=%d, offset=%llu),"
1950 " new(gen=%llu),"
1951 " which is referenced by most recent superblock"
1952 " (superblockgen=%llu)!\n",
1953 btrfsic_get_block_type(state, block), bytenr,
1954 dev_state->name, dev_bytenr, block->mirror_num,
1955 block->generation,
1956 btrfs_disk_key_objectid(&block->disk_key),
1957 block->disk_key.type,
1958 btrfs_disk_key_offset(&block->disk_key),
1959 btrfs_stack_header_generation(
1960 (struct btrfs_header *) mapped_datav[0]),
1961 state->max_superblock_generation);
1962 btrfsic_dump_tree(state);
1965 if (!block->is_iodone && !block->never_written) {
1966 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1967 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1968 " which is not yet iodone!\n",
1969 btrfsic_get_block_type(state, block), bytenr,
1970 dev_state->name, dev_bytenr, block->mirror_num,
1971 block->generation,
1972 btrfs_stack_header_generation(
1973 (struct btrfs_header *)
1974 mapped_datav[0]));
1975 /* it would not be safe to go on */
1976 btrfsic_dump_tree(state);
1977 goto continue_loop;
1981 * Clear all references of this block. Do not free
1982 * the block itself even if is not referenced anymore
1983 * because it still carries valueable information
1984 * like whether it was ever written and IO completed.
1986 list_for_each_safe(elem_ref_to, tmp_ref_to,
1987 &block->ref_to_list) {
1988 struct btrfsic_block_link *const l =
1989 list_entry(elem_ref_to,
1990 struct btrfsic_block_link,
1991 node_ref_to);
1993 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1994 btrfsic_print_rem_link(state, l);
1995 l->ref_cnt--;
1996 if (0 == l->ref_cnt) {
1997 list_del(&l->node_ref_to);
1998 list_del(&l->node_ref_from);
1999 btrfsic_block_link_hashtable_remove(l);
2000 btrfsic_block_link_free(l);
2004 if (block->is_superblock)
2005 ret = btrfsic_map_superblock(state, bytenr,
2006 processed_len,
2007 bdev, &block_ctx);
2008 else
2009 ret = btrfsic_map_block(state, bytenr, processed_len,
2010 &block_ctx, 0);
2011 if (ret) {
2012 printk(KERN_INFO
2013 "btrfsic: btrfsic_map_block(root @%llu)"
2014 " failed!\n", bytenr);
2015 goto continue_loop;
2017 block_ctx.datav = mapped_datav;
2018 /* the following is required in case of writes to mirrors,
2019 * use the same that was used for the lookup */
2020 block_ctx.dev = dev_state;
2021 block_ctx.dev_bytenr = dev_bytenr;
2023 if (is_metadata || state->include_extent_data) {
2024 block->never_written = 0;
2025 block->iodone_w_error = 0;
2026 if (NULL != bio) {
2027 block->is_iodone = 0;
2028 BUG_ON(NULL == bio_is_patched);
2029 if (!*bio_is_patched) {
2030 block->orig_bio_bh_private =
2031 bio->bi_private;
2032 block->orig_bio_bh_end_io.bio =
2033 bio->bi_end_io;
2034 block->next_in_same_bio = NULL;
2035 bio->bi_private = block;
2036 bio->bi_end_io = btrfsic_bio_end_io;
2037 *bio_is_patched = 1;
2038 } else {
2039 struct btrfsic_block *chained_block =
2040 (struct btrfsic_block *)
2041 bio->bi_private;
2043 BUG_ON(NULL == chained_block);
2044 block->orig_bio_bh_private =
2045 chained_block->orig_bio_bh_private;
2046 block->orig_bio_bh_end_io.bio =
2047 chained_block->orig_bio_bh_end_io.
2048 bio;
2049 block->next_in_same_bio = chained_block;
2050 bio->bi_private = block;
2052 } else if (NULL != bh) {
2053 block->is_iodone = 0;
2054 block->orig_bio_bh_private = bh->b_private;
2055 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2056 block->next_in_same_bio = NULL;
2057 bh->b_private = block;
2058 bh->b_end_io = btrfsic_bh_end_io;
2059 } else {
2060 block->is_iodone = 1;
2061 block->orig_bio_bh_private = NULL;
2062 block->orig_bio_bh_end_io.bio = NULL;
2063 block->next_in_same_bio = NULL;
2067 block->flush_gen = dev_state->last_flush_gen + 1;
2068 block->submit_bio_bh_rw = submit_bio_bh_rw;
2069 if (is_metadata) {
2070 block->logical_bytenr = bytenr;
2071 block->is_metadata = 1;
2072 if (block->is_superblock) {
2073 BUG_ON(PAGE_CACHE_SIZE !=
2074 BTRFS_SUPER_INFO_SIZE);
2075 ret = btrfsic_process_written_superblock(
2076 state,
2077 block,
2078 (struct btrfs_super_block *)
2079 mapped_datav[0]);
2080 if (state->print_mask &
2081 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2082 printk(KERN_INFO
2083 "[after new superblock is written]:\n");
2084 btrfsic_dump_tree_sub(state, block, 0);
2086 } else {
2087 block->mirror_num = 0; /* unknown */
2088 ret = btrfsic_process_metablock(
2089 state,
2090 block,
2091 &block_ctx,
2092 0, 0);
2094 if (ret)
2095 printk(KERN_INFO
2096 "btrfsic: btrfsic_process_metablock"
2097 "(root @%llu) failed!\n",
2098 dev_bytenr);
2099 } else {
2100 block->is_metadata = 0;
2101 block->mirror_num = 0; /* unknown */
2102 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2103 if (!state->include_extent_data
2104 && list_empty(&block->ref_from_list)) {
2106 * disk block is overwritten with extent
2107 * data (not meta data) and we are configured
2108 * to not include extent data: take the
2109 * chance and free the block's memory
2111 btrfsic_block_hashtable_remove(block);
2112 list_del(&block->all_blocks_node);
2113 btrfsic_block_free(block);
2116 btrfsic_release_block_ctx(&block_ctx);
2117 } else {
2118 /* block has not been found in hash table */
2119 u64 bytenr;
2121 if (!is_metadata) {
2122 processed_len = state->datablock_size;
2123 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2124 printk(KERN_INFO "Written block (%s/%llu/?)"
2125 " !found in hash table, D.\n",
2126 dev_state->name, dev_bytenr);
2127 if (!state->include_extent_data) {
2128 /* ignore that written D block */
2129 goto continue_loop;
2132 /* this is getting ugly for the
2133 * include_extent_data case... */
2134 bytenr = 0; /* unknown */
2135 block_ctx.start = bytenr;
2136 block_ctx.len = processed_len;
2137 block_ctx.mem_to_free = NULL;
2138 block_ctx.pagev = NULL;
2139 } else {
2140 processed_len = state->metablock_size;
2141 bytenr = btrfs_stack_header_bytenr(
2142 (struct btrfs_header *)
2143 mapped_datav[0]);
2144 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2145 dev_bytenr);
2146 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2147 printk(KERN_INFO
2148 "Written block @%llu (%s/%llu/?)"
2149 " !found in hash table, M.\n",
2150 bytenr, dev_state->name, dev_bytenr);
2152 ret = btrfsic_map_block(state, bytenr, processed_len,
2153 &block_ctx, 0);
2154 if (ret) {
2155 printk(KERN_INFO
2156 "btrfsic: btrfsic_map_block(root @%llu)"
2157 " failed!\n",
2158 dev_bytenr);
2159 goto continue_loop;
2162 block_ctx.datav = mapped_datav;
2163 /* the following is required in case of writes to mirrors,
2164 * use the same that was used for the lookup */
2165 block_ctx.dev = dev_state;
2166 block_ctx.dev_bytenr = dev_bytenr;
2168 block = btrfsic_block_alloc();
2169 if (NULL == block) {
2170 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2171 btrfsic_release_block_ctx(&block_ctx);
2172 goto continue_loop;
2174 block->dev_state = dev_state;
2175 block->dev_bytenr = dev_bytenr;
2176 block->logical_bytenr = bytenr;
2177 block->is_metadata = is_metadata;
2178 block->never_written = 0;
2179 block->iodone_w_error = 0;
2180 block->mirror_num = 0; /* unknown */
2181 block->flush_gen = dev_state->last_flush_gen + 1;
2182 block->submit_bio_bh_rw = submit_bio_bh_rw;
2183 if (NULL != bio) {
2184 block->is_iodone = 0;
2185 BUG_ON(NULL == bio_is_patched);
2186 if (!*bio_is_patched) {
2187 block->orig_bio_bh_private = bio->bi_private;
2188 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2189 block->next_in_same_bio = NULL;
2190 bio->bi_private = block;
2191 bio->bi_end_io = btrfsic_bio_end_io;
2192 *bio_is_patched = 1;
2193 } else {
2194 struct btrfsic_block *chained_block =
2195 (struct btrfsic_block *)
2196 bio->bi_private;
2198 BUG_ON(NULL == chained_block);
2199 block->orig_bio_bh_private =
2200 chained_block->orig_bio_bh_private;
2201 block->orig_bio_bh_end_io.bio =
2202 chained_block->orig_bio_bh_end_io.bio;
2203 block->next_in_same_bio = chained_block;
2204 bio->bi_private = block;
2206 } else if (NULL != bh) {
2207 block->is_iodone = 0;
2208 block->orig_bio_bh_private = bh->b_private;
2209 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2210 block->next_in_same_bio = NULL;
2211 bh->b_private = block;
2212 bh->b_end_io = btrfsic_bh_end_io;
2213 } else {
2214 block->is_iodone = 1;
2215 block->orig_bio_bh_private = NULL;
2216 block->orig_bio_bh_end_io.bio = NULL;
2217 block->next_in_same_bio = NULL;
2219 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2220 printk(KERN_INFO
2221 "New written %c-block @%llu (%s/%llu/%d)\n",
2222 is_metadata ? 'M' : 'D',
2223 block->logical_bytenr, block->dev_state->name,
2224 block->dev_bytenr, block->mirror_num);
2225 list_add(&block->all_blocks_node, &state->all_blocks_list);
2226 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2228 if (is_metadata) {
2229 ret = btrfsic_process_metablock(state, block,
2230 &block_ctx, 0, 0);
2231 if (ret)
2232 printk(KERN_INFO
2233 "btrfsic: process_metablock(root @%llu)"
2234 " failed!\n",
2235 dev_bytenr);
2237 btrfsic_release_block_ctx(&block_ctx);
2240 continue_loop:
2241 BUG_ON(!processed_len);
2242 dev_bytenr += processed_len;
2243 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2244 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2245 goto again;
2248 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2250 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2251 int iodone_w_error;
2253 /* mutex is not held! This is not save if IO is not yet completed
2254 * on umount */
2255 iodone_w_error = 0;
2256 if (bio_error_status)
2257 iodone_w_error = 1;
2259 BUG_ON(NULL == block);
2260 bp->bi_private = block->orig_bio_bh_private;
2261 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2263 do {
2264 struct btrfsic_block *next_block;
2265 struct btrfsic_dev_state *const dev_state = block->dev_state;
2267 if ((dev_state->state->print_mask &
2268 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2269 printk(KERN_INFO
2270 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2271 bio_error_status,
2272 btrfsic_get_block_type(dev_state->state, block),
2273 block->logical_bytenr, dev_state->name,
2274 block->dev_bytenr, block->mirror_num);
2275 next_block = block->next_in_same_bio;
2276 block->iodone_w_error = iodone_w_error;
2277 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2278 dev_state->last_flush_gen++;
2279 if ((dev_state->state->print_mask &
2280 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2281 printk(KERN_INFO
2282 "bio_end_io() new %s flush_gen=%llu\n",
2283 dev_state->name,
2284 dev_state->last_flush_gen);
2286 if (block->submit_bio_bh_rw & REQ_FUA)
2287 block->flush_gen = 0; /* FUA completed means block is
2288 * on disk */
2289 block->is_iodone = 1; /* for FLUSH, this releases the block */
2290 block = next_block;
2291 } while (NULL != block);
2293 bp->bi_end_io(bp, bio_error_status);
2296 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2298 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2299 int iodone_w_error = !uptodate;
2300 struct btrfsic_dev_state *dev_state;
2302 BUG_ON(NULL == block);
2303 dev_state = block->dev_state;
2304 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2305 printk(KERN_INFO
2306 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2307 iodone_w_error,
2308 btrfsic_get_block_type(dev_state->state, block),
2309 block->logical_bytenr, block->dev_state->name,
2310 block->dev_bytenr, block->mirror_num);
2312 block->iodone_w_error = iodone_w_error;
2313 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2314 dev_state->last_flush_gen++;
2315 if ((dev_state->state->print_mask &
2316 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2317 printk(KERN_INFO
2318 "bh_end_io() new %s flush_gen=%llu\n",
2319 dev_state->name, dev_state->last_flush_gen);
2321 if (block->submit_bio_bh_rw & REQ_FUA)
2322 block->flush_gen = 0; /* FUA completed means block is on disk */
2324 bh->b_private = block->orig_bio_bh_private;
2325 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2326 block->is_iodone = 1; /* for FLUSH, this releases the block */
2327 bh->b_end_io(bh, uptodate);
2330 static int btrfsic_process_written_superblock(
2331 struct btrfsic_state *state,
2332 struct btrfsic_block *const superblock,
2333 struct btrfs_super_block *const super_hdr)
2335 int pass;
2337 superblock->generation = btrfs_super_generation(super_hdr);
2338 if (!(superblock->generation > state->max_superblock_generation ||
2339 0 == state->max_superblock_generation)) {
2340 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2341 printk(KERN_INFO
2342 "btrfsic: superblock @%llu (%s/%llu/%d)"
2343 " with old gen %llu <= %llu\n",
2344 superblock->logical_bytenr,
2345 superblock->dev_state->name,
2346 superblock->dev_bytenr, superblock->mirror_num,
2347 btrfs_super_generation(super_hdr),
2348 state->max_superblock_generation);
2349 } else {
2350 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2351 printk(KERN_INFO
2352 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2353 " with new gen %llu > %llu\n",
2354 superblock->logical_bytenr,
2355 superblock->dev_state->name,
2356 superblock->dev_bytenr, superblock->mirror_num,
2357 btrfs_super_generation(super_hdr),
2358 state->max_superblock_generation);
2360 state->max_superblock_generation =
2361 btrfs_super_generation(super_hdr);
2362 state->latest_superblock = superblock;
2365 for (pass = 0; pass < 3; pass++) {
2366 int ret;
2367 u64 next_bytenr;
2368 struct btrfsic_block *next_block;
2369 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2370 struct btrfsic_block_link *l;
2371 int num_copies;
2372 int mirror_num;
2373 const char *additional_string = NULL;
2374 struct btrfs_disk_key tmp_disk_key = {0};
2376 btrfs_set_disk_key_objectid(&tmp_disk_key,
2377 BTRFS_ROOT_ITEM_KEY);
2378 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2380 switch (pass) {
2381 case 0:
2382 btrfs_set_disk_key_objectid(&tmp_disk_key,
2383 BTRFS_ROOT_TREE_OBJECTID);
2384 additional_string = "root ";
2385 next_bytenr = btrfs_super_root(super_hdr);
2386 if (state->print_mask &
2387 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2388 printk(KERN_INFO "root@%llu\n", next_bytenr);
2389 break;
2390 case 1:
2391 btrfs_set_disk_key_objectid(&tmp_disk_key,
2392 BTRFS_CHUNK_TREE_OBJECTID);
2393 additional_string = "chunk ";
2394 next_bytenr = btrfs_super_chunk_root(super_hdr);
2395 if (state->print_mask &
2396 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2397 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2398 break;
2399 case 2:
2400 btrfs_set_disk_key_objectid(&tmp_disk_key,
2401 BTRFS_TREE_LOG_OBJECTID);
2402 additional_string = "log ";
2403 next_bytenr = btrfs_super_log_root(super_hdr);
2404 if (0 == next_bytenr)
2405 continue;
2406 if (state->print_mask &
2407 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2408 printk(KERN_INFO "log@%llu\n", next_bytenr);
2409 break;
2412 num_copies =
2413 btrfs_num_copies(state->root->fs_info,
2414 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2415 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2416 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2417 next_bytenr, num_copies);
2418 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2419 int was_created;
2421 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2422 printk(KERN_INFO
2423 "btrfsic_process_written_superblock("
2424 "mirror_num=%d)\n", mirror_num);
2425 ret = btrfsic_map_block(state, next_bytenr,
2426 BTRFS_SUPER_INFO_SIZE,
2427 &tmp_next_block_ctx,
2428 mirror_num);
2429 if (ret) {
2430 printk(KERN_INFO
2431 "btrfsic: btrfsic_map_block(@%llu,"
2432 " mirror=%d) failed!\n",
2433 next_bytenr, mirror_num);
2434 return -1;
2437 next_block = btrfsic_block_lookup_or_add(
2438 state,
2439 &tmp_next_block_ctx,
2440 additional_string,
2441 1, 0, 1,
2442 mirror_num,
2443 &was_created);
2444 if (NULL == next_block) {
2445 printk(KERN_INFO
2446 "btrfsic: error, kmalloc failed!\n");
2447 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2448 return -1;
2451 next_block->disk_key = tmp_disk_key;
2452 if (was_created)
2453 next_block->generation =
2454 BTRFSIC_GENERATION_UNKNOWN;
2455 l = btrfsic_block_link_lookup_or_add(
2456 state,
2457 &tmp_next_block_ctx,
2458 next_block,
2459 superblock,
2460 BTRFSIC_GENERATION_UNKNOWN);
2461 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2462 if (NULL == l)
2463 return -1;
2467 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2468 btrfsic_dump_tree(state);
2470 return 0;
2473 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2474 struct btrfsic_block *const block,
2475 int recursion_level)
2477 struct list_head *elem_ref_to;
2478 int ret = 0;
2480 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2482 * Note that this situation can happen and does not
2483 * indicate an error in regular cases. It happens
2484 * when disk blocks are freed and later reused.
2485 * The check-integrity module is not aware of any
2486 * block free operations, it just recognizes block
2487 * write operations. Therefore it keeps the linkage
2488 * information for a block until a block is
2489 * rewritten. This can temporarily cause incorrect
2490 * and even circular linkage informations. This
2491 * causes no harm unless such blocks are referenced
2492 * by the most recent super block.
2494 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2495 printk(KERN_INFO
2496 "btrfsic: abort cyclic linkage (case 1).\n");
2498 return ret;
2502 * This algorithm is recursive because the amount of used stack
2503 * space is very small and the max recursion depth is limited.
2505 list_for_each(elem_ref_to, &block->ref_to_list) {
2506 const struct btrfsic_block_link *const l =
2507 list_entry(elem_ref_to, struct btrfsic_block_link,
2508 node_ref_to);
2510 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2511 printk(KERN_INFO
2512 "rl=%d, %c @%llu (%s/%llu/%d)"
2513 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2514 recursion_level,
2515 btrfsic_get_block_type(state, block),
2516 block->logical_bytenr, block->dev_state->name,
2517 block->dev_bytenr, block->mirror_num,
2518 l->ref_cnt,
2519 btrfsic_get_block_type(state, l->block_ref_to),
2520 l->block_ref_to->logical_bytenr,
2521 l->block_ref_to->dev_state->name,
2522 l->block_ref_to->dev_bytenr,
2523 l->block_ref_to->mirror_num);
2524 if (l->block_ref_to->never_written) {
2525 printk(KERN_INFO "btrfs: attempt to write superblock"
2526 " which references block %c @%llu (%s/%llu/%d)"
2527 " which is never written!\n",
2528 btrfsic_get_block_type(state, l->block_ref_to),
2529 l->block_ref_to->logical_bytenr,
2530 l->block_ref_to->dev_state->name,
2531 l->block_ref_to->dev_bytenr,
2532 l->block_ref_to->mirror_num);
2533 ret = -1;
2534 } else if (!l->block_ref_to->is_iodone) {
2535 printk(KERN_INFO "btrfs: attempt to write superblock"
2536 " which references block %c @%llu (%s/%llu/%d)"
2537 " which is not yet iodone!\n",
2538 btrfsic_get_block_type(state, l->block_ref_to),
2539 l->block_ref_to->logical_bytenr,
2540 l->block_ref_to->dev_state->name,
2541 l->block_ref_to->dev_bytenr,
2542 l->block_ref_to->mirror_num);
2543 ret = -1;
2544 } else if (l->block_ref_to->iodone_w_error) {
2545 printk(KERN_INFO "btrfs: attempt to write superblock"
2546 " which references block %c @%llu (%s/%llu/%d)"
2547 " which has write error!\n",
2548 btrfsic_get_block_type(state, l->block_ref_to),
2549 l->block_ref_to->logical_bytenr,
2550 l->block_ref_to->dev_state->name,
2551 l->block_ref_to->dev_bytenr,
2552 l->block_ref_to->mirror_num);
2553 ret = -1;
2554 } else if (l->parent_generation !=
2555 l->block_ref_to->generation &&
2556 BTRFSIC_GENERATION_UNKNOWN !=
2557 l->parent_generation &&
2558 BTRFSIC_GENERATION_UNKNOWN !=
2559 l->block_ref_to->generation) {
2560 printk(KERN_INFO "btrfs: attempt to write superblock"
2561 " which references block %c @%llu (%s/%llu/%d)"
2562 " with generation %llu !="
2563 " parent generation %llu!\n",
2564 btrfsic_get_block_type(state, l->block_ref_to),
2565 l->block_ref_to->logical_bytenr,
2566 l->block_ref_to->dev_state->name,
2567 l->block_ref_to->dev_bytenr,
2568 l->block_ref_to->mirror_num,
2569 l->block_ref_to->generation,
2570 l->parent_generation);
2571 ret = -1;
2572 } else if (l->block_ref_to->flush_gen >
2573 l->block_ref_to->dev_state->last_flush_gen) {
2574 printk(KERN_INFO "btrfs: attempt to write superblock"
2575 " which references block %c @%llu (%s/%llu/%d)"
2576 " which is not flushed out of disk's write cache"
2577 " (block flush_gen=%llu,"
2578 " dev->flush_gen=%llu)!\n",
2579 btrfsic_get_block_type(state, l->block_ref_to),
2580 l->block_ref_to->logical_bytenr,
2581 l->block_ref_to->dev_state->name,
2582 l->block_ref_to->dev_bytenr,
2583 l->block_ref_to->mirror_num, block->flush_gen,
2584 l->block_ref_to->dev_state->last_flush_gen);
2585 ret = -1;
2586 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2587 l->block_ref_to,
2588 recursion_level +
2589 1)) {
2590 ret = -1;
2594 return ret;
2597 static int btrfsic_is_block_ref_by_superblock(
2598 const struct btrfsic_state *state,
2599 const struct btrfsic_block *block,
2600 int recursion_level)
2602 struct list_head *elem_ref_from;
2604 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2605 /* refer to comment at "abort cyclic linkage (case 1)" */
2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2607 printk(KERN_INFO
2608 "btrfsic: abort cyclic linkage (case 2).\n");
2610 return 0;
2614 * This algorithm is recursive because the amount of used stack space
2615 * is very small and the max recursion depth is limited.
2617 list_for_each(elem_ref_from, &block->ref_from_list) {
2618 const struct btrfsic_block_link *const l =
2619 list_entry(elem_ref_from, struct btrfsic_block_link,
2620 node_ref_from);
2622 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2623 printk(KERN_INFO
2624 "rl=%d, %c @%llu (%s/%llu/%d)"
2625 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2626 recursion_level,
2627 btrfsic_get_block_type(state, block),
2628 block->logical_bytenr, block->dev_state->name,
2629 block->dev_bytenr, block->mirror_num,
2630 l->ref_cnt,
2631 btrfsic_get_block_type(state, l->block_ref_from),
2632 l->block_ref_from->logical_bytenr,
2633 l->block_ref_from->dev_state->name,
2634 l->block_ref_from->dev_bytenr,
2635 l->block_ref_from->mirror_num);
2636 if (l->block_ref_from->is_superblock &&
2637 state->latest_superblock->dev_bytenr ==
2638 l->block_ref_from->dev_bytenr &&
2639 state->latest_superblock->dev_state->bdev ==
2640 l->block_ref_from->dev_state->bdev)
2641 return 1;
2642 else if (btrfsic_is_block_ref_by_superblock(state,
2643 l->block_ref_from,
2644 recursion_level +
2646 return 1;
2649 return 0;
2652 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2653 const struct btrfsic_block_link *l)
2655 printk(KERN_INFO
2656 "Add %u* link from %c @%llu (%s/%llu/%d)"
2657 " to %c @%llu (%s/%llu/%d).\n",
2658 l->ref_cnt,
2659 btrfsic_get_block_type(state, l->block_ref_from),
2660 l->block_ref_from->logical_bytenr,
2661 l->block_ref_from->dev_state->name,
2662 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2663 btrfsic_get_block_type(state, l->block_ref_to),
2664 l->block_ref_to->logical_bytenr,
2665 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2666 l->block_ref_to->mirror_num);
2669 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2670 const struct btrfsic_block_link *l)
2672 printk(KERN_INFO
2673 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2674 " to %c @%llu (%s/%llu/%d).\n",
2675 l->ref_cnt,
2676 btrfsic_get_block_type(state, l->block_ref_from),
2677 l->block_ref_from->logical_bytenr,
2678 l->block_ref_from->dev_state->name,
2679 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2680 btrfsic_get_block_type(state, l->block_ref_to),
2681 l->block_ref_to->logical_bytenr,
2682 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2683 l->block_ref_to->mirror_num);
2686 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2687 const struct btrfsic_block *block)
2689 if (block->is_superblock &&
2690 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2691 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2692 return 'S';
2693 else if (block->is_superblock)
2694 return 's';
2695 else if (block->is_metadata)
2696 return 'M';
2697 else
2698 return 'D';
2701 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2703 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2706 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2707 const struct btrfsic_block *block,
2708 int indent_level)
2710 struct list_head *elem_ref_to;
2711 int indent_add;
2712 static char buf[80];
2713 int cursor_position;
2716 * Should better fill an on-stack buffer with a complete line and
2717 * dump it at once when it is time to print a newline character.
2721 * This algorithm is recursive because the amount of used stack space
2722 * is very small and the max recursion depth is limited.
2724 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2725 btrfsic_get_block_type(state, block),
2726 block->logical_bytenr, block->dev_state->name,
2727 block->dev_bytenr, block->mirror_num);
2728 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2729 printk("[...]\n");
2730 return;
2732 printk(buf);
2733 indent_level += indent_add;
2734 if (list_empty(&block->ref_to_list)) {
2735 printk("\n");
2736 return;
2738 if (block->mirror_num > 1 &&
2739 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2740 printk(" [...]\n");
2741 return;
2744 cursor_position = indent_level;
2745 list_for_each(elem_ref_to, &block->ref_to_list) {
2746 const struct btrfsic_block_link *const l =
2747 list_entry(elem_ref_to, struct btrfsic_block_link,
2748 node_ref_to);
2750 while (cursor_position < indent_level) {
2751 printk(" ");
2752 cursor_position++;
2754 if (l->ref_cnt > 1)
2755 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2756 else
2757 indent_add = sprintf(buf, " --> ");
2758 if (indent_level + indent_add >
2759 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2760 printk("[...]\n");
2761 cursor_position = 0;
2762 continue;
2765 printk(buf);
2767 btrfsic_dump_tree_sub(state, l->block_ref_to,
2768 indent_level + indent_add);
2769 cursor_position = 0;
2773 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2774 struct btrfsic_state *state,
2775 struct btrfsic_block_data_ctx *next_block_ctx,
2776 struct btrfsic_block *next_block,
2777 struct btrfsic_block *from_block,
2778 u64 parent_generation)
2780 struct btrfsic_block_link *l;
2782 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2783 next_block_ctx->dev_bytenr,
2784 from_block->dev_state->bdev,
2785 from_block->dev_bytenr,
2786 &state->block_link_hashtable);
2787 if (NULL == l) {
2788 l = btrfsic_block_link_alloc();
2789 if (NULL == l) {
2790 printk(KERN_INFO
2791 "btrfsic: error, kmalloc" " failed!\n");
2792 return NULL;
2795 l->block_ref_to = next_block;
2796 l->block_ref_from = from_block;
2797 l->ref_cnt = 1;
2798 l->parent_generation = parent_generation;
2800 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2801 btrfsic_print_add_link(state, l);
2803 list_add(&l->node_ref_to, &from_block->ref_to_list);
2804 list_add(&l->node_ref_from, &next_block->ref_from_list);
2806 btrfsic_block_link_hashtable_add(l,
2807 &state->block_link_hashtable);
2808 } else {
2809 l->ref_cnt++;
2810 l->parent_generation = parent_generation;
2811 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2812 btrfsic_print_add_link(state, l);
2815 return l;
2818 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2819 struct btrfsic_state *state,
2820 struct btrfsic_block_data_ctx *block_ctx,
2821 const char *additional_string,
2822 int is_metadata,
2823 int is_iodone,
2824 int never_written,
2825 int mirror_num,
2826 int *was_created)
2828 struct btrfsic_block *block;
2830 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2831 block_ctx->dev_bytenr,
2832 &state->block_hashtable);
2833 if (NULL == block) {
2834 struct btrfsic_dev_state *dev_state;
2836 block = btrfsic_block_alloc();
2837 if (NULL == block) {
2838 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2839 return NULL;
2841 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2842 if (NULL == dev_state) {
2843 printk(KERN_INFO
2844 "btrfsic: error, lookup dev_state failed!\n");
2845 btrfsic_block_free(block);
2846 return NULL;
2848 block->dev_state = dev_state;
2849 block->dev_bytenr = block_ctx->dev_bytenr;
2850 block->logical_bytenr = block_ctx->start;
2851 block->is_metadata = is_metadata;
2852 block->is_iodone = is_iodone;
2853 block->never_written = never_written;
2854 block->mirror_num = mirror_num;
2855 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2856 printk(KERN_INFO
2857 "New %s%c-block @%llu (%s/%llu/%d)\n",
2858 additional_string,
2859 btrfsic_get_block_type(state, block),
2860 block->logical_bytenr, dev_state->name,
2861 block->dev_bytenr, mirror_num);
2862 list_add(&block->all_blocks_node, &state->all_blocks_list);
2863 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2864 if (NULL != was_created)
2865 *was_created = 1;
2866 } else {
2867 if (NULL != was_created)
2868 *was_created = 0;
2871 return block;
2874 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2875 u64 bytenr,
2876 struct btrfsic_dev_state *dev_state,
2877 u64 dev_bytenr)
2879 int num_copies;
2880 int mirror_num;
2881 int ret;
2882 struct btrfsic_block_data_ctx block_ctx;
2883 int match = 0;
2885 num_copies = btrfs_num_copies(state->root->fs_info,
2886 bytenr, state->metablock_size);
2888 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2889 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2890 &block_ctx, mirror_num);
2891 if (ret) {
2892 printk(KERN_INFO "btrfsic:"
2893 " btrfsic_map_block(logical @%llu,"
2894 " mirror %d) failed!\n",
2895 bytenr, mirror_num);
2896 continue;
2899 if (dev_state->bdev == block_ctx.dev->bdev &&
2900 dev_bytenr == block_ctx.dev_bytenr) {
2901 match++;
2902 btrfsic_release_block_ctx(&block_ctx);
2903 break;
2905 btrfsic_release_block_ctx(&block_ctx);
2908 if (WARN_ON(!match)) {
2909 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2910 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2911 " phys_bytenr=%llu)!\n",
2912 bytenr, dev_state->name, dev_bytenr);
2913 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2914 ret = btrfsic_map_block(state, bytenr,
2915 state->metablock_size,
2916 &block_ctx, mirror_num);
2917 if (ret)
2918 continue;
2920 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2921 " (%s/%llu/%d)\n",
2922 bytenr, block_ctx.dev->name,
2923 block_ctx.dev_bytenr, mirror_num);
2928 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2929 struct block_device *bdev)
2931 struct btrfsic_dev_state *ds;
2933 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2934 &btrfsic_dev_state_hashtable);
2935 return ds;
2938 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2940 struct btrfsic_dev_state *dev_state;
2942 if (!btrfsic_is_initialized)
2943 return submit_bh(rw, bh);
2945 mutex_lock(&btrfsic_mutex);
2946 /* since btrfsic_submit_bh() might also be called before
2947 * btrfsic_mount(), this might return NULL */
2948 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2950 /* Only called to write the superblock (incl. FLUSH/FUA) */
2951 if (NULL != dev_state &&
2952 (rw & WRITE) && bh->b_size > 0) {
2953 u64 dev_bytenr;
2955 dev_bytenr = 4096 * bh->b_blocknr;
2956 if (dev_state->state->print_mask &
2957 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2958 printk(KERN_INFO
2959 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2960 " size=%zu, data=%p, bdev=%p)\n",
2961 rw, (unsigned long long)bh->b_blocknr,
2962 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2963 btrfsic_process_written_block(dev_state, dev_bytenr,
2964 &bh->b_data, 1, NULL,
2965 NULL, bh, rw);
2966 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2967 if (dev_state->state->print_mask &
2968 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2969 printk(KERN_INFO
2970 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2971 rw, bh->b_bdev);
2972 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2973 if ((dev_state->state->print_mask &
2974 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2975 BTRFSIC_PRINT_MASK_VERBOSE)))
2976 printk(KERN_INFO
2977 "btrfsic_submit_bh(%s) with FLUSH"
2978 " but dummy block already in use"
2979 " (ignored)!\n",
2980 dev_state->name);
2981 } else {
2982 struct btrfsic_block *const block =
2983 &dev_state->dummy_block_for_bio_bh_flush;
2985 block->is_iodone = 0;
2986 block->never_written = 0;
2987 block->iodone_w_error = 0;
2988 block->flush_gen = dev_state->last_flush_gen + 1;
2989 block->submit_bio_bh_rw = rw;
2990 block->orig_bio_bh_private = bh->b_private;
2991 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2992 block->next_in_same_bio = NULL;
2993 bh->b_private = block;
2994 bh->b_end_io = btrfsic_bh_end_io;
2997 mutex_unlock(&btrfsic_mutex);
2998 return submit_bh(rw, bh);
3001 static void __btrfsic_submit_bio(int rw, struct bio *bio)
3003 struct btrfsic_dev_state *dev_state;
3005 if (!btrfsic_is_initialized)
3006 return;
3008 mutex_lock(&btrfsic_mutex);
3009 /* since btrfsic_submit_bio() is also called before
3010 * btrfsic_mount(), this might return NULL */
3011 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3012 if (NULL != dev_state &&
3013 (rw & WRITE) && NULL != bio->bi_io_vec) {
3014 unsigned int i;
3015 u64 dev_bytenr;
3016 u64 cur_bytenr;
3017 int bio_is_patched;
3018 char **mapped_datav;
3020 dev_bytenr = 512 * bio->bi_iter.bi_sector;
3021 bio_is_patched = 0;
3022 if (dev_state->state->print_mask &
3023 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3024 printk(KERN_INFO
3025 "submit_bio(rw=0x%x, bi_vcnt=%u,"
3026 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
3027 rw, bio->bi_vcnt,
3028 (unsigned long long)bio->bi_iter.bi_sector,
3029 dev_bytenr, bio->bi_bdev);
3031 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3032 GFP_NOFS);
3033 if (!mapped_datav)
3034 goto leave;
3035 cur_bytenr = dev_bytenr;
3036 for (i = 0; i < bio->bi_vcnt; i++) {
3037 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3038 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3039 if (!mapped_datav[i]) {
3040 while (i > 0) {
3041 i--;
3042 kunmap(bio->bi_io_vec[i].bv_page);
3044 kfree(mapped_datav);
3045 goto leave;
3047 if (dev_state->state->print_mask &
3048 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
3049 printk(KERN_INFO
3050 "#%u: bytenr=%llu, len=%u, offset=%u\n",
3051 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
3052 bio->bi_io_vec[i].bv_offset);
3053 cur_bytenr += bio->bi_io_vec[i].bv_len;
3055 btrfsic_process_written_block(dev_state, dev_bytenr,
3056 mapped_datav, bio->bi_vcnt,
3057 bio, &bio_is_patched,
3058 NULL, rw);
3059 while (i > 0) {
3060 i--;
3061 kunmap(bio->bi_io_vec[i].bv_page);
3063 kfree(mapped_datav);
3064 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3065 if (dev_state->state->print_mask &
3066 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3067 printk(KERN_INFO
3068 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3069 rw, bio->bi_bdev);
3070 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3071 if ((dev_state->state->print_mask &
3072 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3073 BTRFSIC_PRINT_MASK_VERBOSE)))
3074 printk(KERN_INFO
3075 "btrfsic_submit_bio(%s) with FLUSH"
3076 " but dummy block already in use"
3077 " (ignored)!\n",
3078 dev_state->name);
3079 } else {
3080 struct btrfsic_block *const block =
3081 &dev_state->dummy_block_for_bio_bh_flush;
3083 block->is_iodone = 0;
3084 block->never_written = 0;
3085 block->iodone_w_error = 0;
3086 block->flush_gen = dev_state->last_flush_gen + 1;
3087 block->submit_bio_bh_rw = rw;
3088 block->orig_bio_bh_private = bio->bi_private;
3089 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3090 block->next_in_same_bio = NULL;
3091 bio->bi_private = block;
3092 bio->bi_end_io = btrfsic_bio_end_io;
3095 leave:
3096 mutex_unlock(&btrfsic_mutex);
3099 void btrfsic_submit_bio(int rw, struct bio *bio)
3101 __btrfsic_submit_bio(rw, bio);
3102 submit_bio(rw, bio);
3105 int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3107 __btrfsic_submit_bio(rw, bio);
3108 return submit_bio_wait(rw, bio);
3111 int btrfsic_mount(struct btrfs_root *root,
3112 struct btrfs_fs_devices *fs_devices,
3113 int including_extent_data, u32 print_mask)
3115 int ret;
3116 struct btrfsic_state *state;
3117 struct list_head *dev_head = &fs_devices->devices;
3118 struct btrfs_device *device;
3120 if (root->nodesize != root->leafsize) {
3121 printk(KERN_INFO
3122 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3123 root->nodesize, root->leafsize);
3124 return -1;
3126 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3127 printk(KERN_INFO
3128 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3129 root->nodesize, PAGE_CACHE_SIZE);
3130 return -1;
3132 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3133 printk(KERN_INFO
3134 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3135 root->leafsize, PAGE_CACHE_SIZE);
3136 return -1;
3138 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3139 printk(KERN_INFO
3140 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3141 root->sectorsize, PAGE_CACHE_SIZE);
3142 return -1;
3144 state = kzalloc(sizeof(*state), GFP_NOFS);
3145 if (NULL == state) {
3146 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3147 return -1;
3150 if (!btrfsic_is_initialized) {
3151 mutex_init(&btrfsic_mutex);
3152 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3153 btrfsic_is_initialized = 1;
3155 mutex_lock(&btrfsic_mutex);
3156 state->root = root;
3157 state->print_mask = print_mask;
3158 state->include_extent_data = including_extent_data;
3159 state->csum_size = 0;
3160 state->metablock_size = root->nodesize;
3161 state->datablock_size = root->sectorsize;
3162 INIT_LIST_HEAD(&state->all_blocks_list);
3163 btrfsic_block_hashtable_init(&state->block_hashtable);
3164 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3165 state->max_superblock_generation = 0;
3166 state->latest_superblock = NULL;
3168 list_for_each_entry(device, dev_head, dev_list) {
3169 struct btrfsic_dev_state *ds;
3170 char *p;
3172 if (!device->bdev || !device->name)
3173 continue;
3175 ds = btrfsic_dev_state_alloc();
3176 if (NULL == ds) {
3177 printk(KERN_INFO
3178 "btrfs check-integrity: kmalloc() failed!\n");
3179 mutex_unlock(&btrfsic_mutex);
3180 return -1;
3182 ds->bdev = device->bdev;
3183 ds->state = state;
3184 bdevname(ds->bdev, ds->name);
3185 ds->name[BDEVNAME_SIZE - 1] = '\0';
3186 for (p = ds->name; *p != '\0'; p++);
3187 while (p > ds->name && *p != '/')
3188 p--;
3189 if (*p == '/')
3190 p++;
3191 strlcpy(ds->name, p, sizeof(ds->name));
3192 btrfsic_dev_state_hashtable_add(ds,
3193 &btrfsic_dev_state_hashtable);
3196 ret = btrfsic_process_superblock(state, fs_devices);
3197 if (0 != ret) {
3198 mutex_unlock(&btrfsic_mutex);
3199 btrfsic_unmount(root, fs_devices);
3200 return ret;
3203 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3204 btrfsic_dump_database(state);
3205 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3206 btrfsic_dump_tree(state);
3208 mutex_unlock(&btrfsic_mutex);
3209 return 0;
3212 void btrfsic_unmount(struct btrfs_root *root,
3213 struct btrfs_fs_devices *fs_devices)
3215 struct list_head *elem_all;
3216 struct list_head *tmp_all;
3217 struct btrfsic_state *state;
3218 struct list_head *dev_head = &fs_devices->devices;
3219 struct btrfs_device *device;
3221 if (!btrfsic_is_initialized)
3222 return;
3224 mutex_lock(&btrfsic_mutex);
3226 state = NULL;
3227 list_for_each_entry(device, dev_head, dev_list) {
3228 struct btrfsic_dev_state *ds;
3230 if (!device->bdev || !device->name)
3231 continue;
3233 ds = btrfsic_dev_state_hashtable_lookup(
3234 device->bdev,
3235 &btrfsic_dev_state_hashtable);
3236 if (NULL != ds) {
3237 state = ds->state;
3238 btrfsic_dev_state_hashtable_remove(ds);
3239 btrfsic_dev_state_free(ds);
3243 if (NULL == state) {
3244 printk(KERN_INFO
3245 "btrfsic: error, cannot find state information"
3246 " on umount!\n");
3247 mutex_unlock(&btrfsic_mutex);
3248 return;
3252 * Don't care about keeping the lists' state up to date,
3253 * just free all memory that was allocated dynamically.
3254 * Free the blocks and the block_links.
3256 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3257 struct btrfsic_block *const b_all =
3258 list_entry(elem_all, struct btrfsic_block,
3259 all_blocks_node);
3260 struct list_head *elem_ref_to;
3261 struct list_head *tmp_ref_to;
3263 list_for_each_safe(elem_ref_to, tmp_ref_to,
3264 &b_all->ref_to_list) {
3265 struct btrfsic_block_link *const l =
3266 list_entry(elem_ref_to,
3267 struct btrfsic_block_link,
3268 node_ref_to);
3270 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3271 btrfsic_print_rem_link(state, l);
3273 l->ref_cnt--;
3274 if (0 == l->ref_cnt)
3275 btrfsic_block_link_free(l);
3278 if (b_all->is_iodone || b_all->never_written)
3279 btrfsic_block_free(b_all);
3280 else
3281 printk(KERN_INFO "btrfs: attempt to free %c-block"
3282 " @%llu (%s/%llu/%d) on umount which is"
3283 " not yet iodone!\n",
3284 btrfsic_get_block_type(state, b_all),
3285 b_all->logical_bytenr, b_all->dev_state->name,
3286 b_all->dev_bytenr, b_all->mirror_num);
3289 mutex_unlock(&btrfsic_mutex);
3291 kfree(state);