net/mlx4_core: Keep only one driver entry release mlx4_priv
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blob3955e475ceece295ea9db55def2178a319a817cc
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
32 static DEFINE_SPINLOCK(leak_lock);
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
37 unsigned long flags;
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
47 unsigned long flags;
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
54 static inline
55 void btrfs_leak_debug_check(void)
57 struct extent_state *state;
58 struct extent_buffer *eb;
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
80 #define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct extent_io_tree *tree, u64 start, u64 end)
85 struct inode *inode;
86 u64 isize;
88 if (!tree->mapping)
89 return;
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96 caller, btrfs_ino(inode), isize, start, end);
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry) do {} while (0)
102 #define btrfs_leak_debug_check() do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
104 #endif
106 #define BUFFER_LRU_MAX 64
108 struct tree_entry {
109 u64 start;
110 u64 end;
111 struct rb_node rb_node;
114 struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
118 unsigned long bio_flags;
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
123 unsigned int extent_locked:1;
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
133 if (!tree->mapping)
134 return NULL;
135 return btrfs_sb(tree->mapping->host->i_sb);
138 int __init extent_io_init(void)
140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143 if (!extent_state_cache)
144 return -ENOMEM;
146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149 if (!extent_buffer_cache)
150 goto free_state_cache;
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
160 return 0;
162 free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
166 free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
170 free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
172 extent_state_cache = NULL;
173 return -ENOMEM;
176 void extent_io_exit(void)
178 btrfs_leak_debug_check();
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
184 rcu_barrier();
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
193 void extent_io_tree_init(struct extent_io_tree *tree,
194 struct address_space *mapping)
196 tree->state = RB_ROOT;
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
199 spin_lock_init(&tree->lock);
200 tree->mapping = mapping;
203 static struct extent_state *alloc_extent_state(gfp_t mask)
205 struct extent_state *state;
207 state = kmem_cache_alloc(extent_state_cache, mask);
208 if (!state)
209 return state;
210 state->state = 0;
211 state->private = 0;
212 state->tree = NULL;
213 btrfs_leak_debug_add(&state->leak_list, &states);
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
216 trace_alloc_extent_state(state, mask, _RET_IP_);
217 return state;
220 void free_extent_state(struct extent_state *state)
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
225 WARN_ON(state->tree);
226 btrfs_leak_debug_del(&state->leak_list);
227 trace_free_extent_state(state, _RET_IP_);
228 kmem_cache_free(extent_state_cache, state);
232 static struct rb_node *tree_insert(struct rb_root *root,
233 struct rb_node *search_start,
234 u64 offset,
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
239 struct rb_node **p;
240 struct rb_node *parent = NULL;
241 struct tree_entry *entry;
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
249 p = search_start ? &search_start : &root->rb_node;
250 while (*p) {
251 parent = *p;
252 entry = rb_entry(parent, struct tree_entry, rb_node);
254 if (offset < entry->start)
255 p = &(*p)->rb_left;
256 else if (offset > entry->end)
257 p = &(*p)->rb_right;
258 else
259 return parent;
262 do_insert:
263 rb_link_node(node, parent, p);
264 rb_insert_color(node, root);
265 return NULL;
268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
269 struct rb_node **prev_ret,
270 struct rb_node **next_ret,
271 struct rb_node ***p_ret,
272 struct rb_node **parent_ret)
274 struct rb_root *root = &tree->state;
275 struct rb_node **n = &root->rb_node;
276 struct rb_node *prev = NULL;
277 struct rb_node *orig_prev = NULL;
278 struct tree_entry *entry;
279 struct tree_entry *prev_entry = NULL;
281 while (*n) {
282 prev = *n;
283 entry = rb_entry(prev, struct tree_entry, rb_node);
284 prev_entry = entry;
286 if (offset < entry->start)
287 n = &(*n)->rb_left;
288 else if (offset > entry->end)
289 n = &(*n)->rb_right;
290 else
291 return *n;
294 if (p_ret)
295 *p_ret = n;
296 if (parent_ret)
297 *parent_ret = prev;
299 if (prev_ret) {
300 orig_prev = prev;
301 while (prev && offset > prev_entry->end) {
302 prev = rb_next(prev);
303 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
305 *prev_ret = prev;
306 prev = orig_prev;
309 if (next_ret) {
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 while (prev && offset < prev_entry->start) {
312 prev = rb_prev(prev);
313 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
315 *next_ret = prev;
317 return NULL;
320 static inline struct rb_node *
321 tree_search_for_insert(struct extent_io_tree *tree,
322 u64 offset,
323 struct rb_node ***p_ret,
324 struct rb_node **parent_ret)
326 struct rb_node *prev = NULL;
327 struct rb_node *ret;
329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
330 if (!ret)
331 return prev;
332 return ret;
335 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 u64 offset)
338 return tree_search_for_insert(tree, offset, NULL, NULL);
341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 struct extent_state *other)
344 if (tree->ops && tree->ops->merge_extent_hook)
345 tree->ops->merge_extent_hook(tree->mapping->host, new,
346 other);
350 * utility function to look for merge candidates inside a given range.
351 * Any extents with matching state are merged together into a single
352 * extent in the tree. Extents with EXTENT_IO in their state field
353 * are not merged because the end_io handlers need to be able to do
354 * operations on them without sleeping (or doing allocations/splits).
356 * This should be called with the tree lock held.
358 static void merge_state(struct extent_io_tree *tree,
359 struct extent_state *state)
361 struct extent_state *other;
362 struct rb_node *other_node;
364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
365 return;
367 other_node = rb_prev(&state->rb_node);
368 if (other_node) {
369 other = rb_entry(other_node, struct extent_state, rb_node);
370 if (other->end == state->start - 1 &&
371 other->state == state->state) {
372 merge_cb(tree, state, other);
373 state->start = other->start;
374 other->tree = NULL;
375 rb_erase(&other->rb_node, &tree->state);
376 free_extent_state(other);
379 other_node = rb_next(&state->rb_node);
380 if (other_node) {
381 other = rb_entry(other_node, struct extent_state, rb_node);
382 if (other->start == state->end + 1 &&
383 other->state == state->state) {
384 merge_cb(tree, state, other);
385 state->end = other->end;
386 other->tree = NULL;
387 rb_erase(&other->rb_node, &tree->state);
388 free_extent_state(other);
393 static void set_state_cb(struct extent_io_tree *tree,
394 struct extent_state *state, unsigned long *bits)
396 if (tree->ops && tree->ops->set_bit_hook)
397 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
400 static void clear_state_cb(struct extent_io_tree *tree,
401 struct extent_state *state, unsigned long *bits)
403 if (tree->ops && tree->ops->clear_bit_hook)
404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
407 static void set_state_bits(struct extent_io_tree *tree,
408 struct extent_state *state, unsigned long *bits);
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
420 static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
422 struct rb_node ***p,
423 struct rb_node **parent,
424 unsigned long *bits)
426 struct rb_node *node;
428 if (end < start)
429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 end, start);
431 state->start = start;
432 state->end = end;
434 set_state_bits(tree, state, bits);
436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
441 "%llu %llu\n",
442 found->start, found->end, start, end);
443 return -EEXIST;
445 state->tree = tree;
446 merge_state(tree, state);
447 return 0;
450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
451 u64 split)
453 if (tree->ops && tree->ops->split_extent_hook)
454 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
458 * split a given extent state struct in two, inserting the preallocated
459 * struct 'prealloc' as the newly created second half. 'split' indicates an
460 * offset inside 'orig' where it should be split.
462 * Before calling,
463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
464 * are two extent state structs in the tree:
465 * prealloc: [orig->start, split - 1]
466 * orig: [ split, orig->end ]
468 * The tree locks are not taken by this function. They need to be held
469 * by the caller.
471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 struct extent_state *prealloc, u64 split)
474 struct rb_node *node;
476 split_cb(tree, orig, split);
478 prealloc->start = orig->start;
479 prealloc->end = split - 1;
480 prealloc->state = orig->state;
481 orig->start = split;
483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 &prealloc->rb_node, NULL, NULL);
485 if (node) {
486 free_extent_state(prealloc);
487 return -EEXIST;
489 prealloc->tree = tree;
490 return 0;
493 static struct extent_state *next_state(struct extent_state *state)
495 struct rb_node *next = rb_next(&state->rb_node);
496 if (next)
497 return rb_entry(next, struct extent_state, rb_node);
498 else
499 return NULL;
503 * utility function to clear some bits in an extent state struct.
504 * it will optionally wake up any one waiting on this state (wake == 1).
506 * If no bits are set on the state struct after clearing things, the
507 * struct is freed and removed from the tree
509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 struct extent_state *state,
511 unsigned long *bits, int wake)
513 struct extent_state *next;
514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
517 u64 range = state->end - state->start + 1;
518 WARN_ON(range > tree->dirty_bytes);
519 tree->dirty_bytes -= range;
521 clear_state_cb(tree, state, bits);
522 state->state &= ~bits_to_clear;
523 if (wake)
524 wake_up(&state->wq);
525 if (state->state == 0) {
526 next = next_state(state);
527 if (state->tree) {
528 rb_erase(&state->rb_node, &tree->state);
529 state->tree = NULL;
530 free_extent_state(state);
531 } else {
532 WARN_ON(1);
534 } else {
535 merge_state(tree, state);
536 next = next_state(state);
538 return next;
541 static struct extent_state *
542 alloc_extent_state_atomic(struct extent_state *prealloc)
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
547 return prealloc;
550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
552 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 "Extent tree was modified by another "
554 "thread while locked.");
558 * clear some bits on a range in the tree. This may require splitting
559 * or inserting elements in the tree, so the gfp mask is used to
560 * indicate which allocations or sleeping are allowed.
562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563 * the given range from the tree regardless of state (ie for truncate).
565 * the range [start, end] is inclusive.
567 * This takes the tree lock, and returns 0 on success and < 0 on error.
569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
570 unsigned long bits, int wake, int delete,
571 struct extent_state **cached_state,
572 gfp_t mask)
574 struct extent_state *state;
575 struct extent_state *cached;
576 struct extent_state *prealloc = NULL;
577 struct rb_node *node;
578 u64 last_end;
579 int err;
580 int clear = 0;
582 btrfs_debug_check_extent_io_range(tree, start, end);
584 if (bits & EXTENT_DELALLOC)
585 bits |= EXTENT_NORESERVE;
587 if (delete)
588 bits |= ~EXTENT_CTLBITS;
589 bits |= EXTENT_FIRST_DELALLOC;
591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 clear = 1;
593 again:
594 if (!prealloc && (mask & __GFP_WAIT)) {
595 prealloc = alloc_extent_state(mask);
596 if (!prealloc)
597 return -ENOMEM;
600 spin_lock(&tree->lock);
601 if (cached_state) {
602 cached = *cached_state;
604 if (clear) {
605 *cached_state = NULL;
606 cached_state = NULL;
609 if (cached && cached->tree && cached->start <= start &&
610 cached->end > start) {
611 if (clear)
612 atomic_dec(&cached->refs);
613 state = cached;
614 goto hit_next;
616 if (clear)
617 free_extent_state(cached);
620 * this search will find the extents that end after
621 * our range starts
623 node = tree_search(tree, start);
624 if (!node)
625 goto out;
626 state = rb_entry(node, struct extent_state, rb_node);
627 hit_next:
628 if (state->start > end)
629 goto out;
630 WARN_ON(state->end < start);
631 last_end = state->end;
633 /* the state doesn't have the wanted bits, go ahead */
634 if (!(state->state & bits)) {
635 state = next_state(state);
636 goto next;
640 * | ---- desired range ---- |
641 * | state | or
642 * | ------------- state -------------- |
644 * We need to split the extent we found, and may flip
645 * bits on second half.
647 * If the extent we found extends past our range, we
648 * just split and search again. It'll get split again
649 * the next time though.
651 * If the extent we found is inside our range, we clear
652 * the desired bit on it.
655 if (state->start < start) {
656 prealloc = alloc_extent_state_atomic(prealloc);
657 BUG_ON(!prealloc);
658 err = split_state(tree, state, prealloc, start);
659 if (err)
660 extent_io_tree_panic(tree, err);
662 prealloc = NULL;
663 if (err)
664 goto out;
665 if (state->end <= end) {
666 state = clear_state_bit(tree, state, &bits, wake);
667 goto next;
669 goto search_again;
672 * | ---- desired range ---- |
673 * | state |
674 * We need to split the extent, and clear the bit
675 * on the first half
677 if (state->start <= end && state->end > end) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, end + 1);
681 if (err)
682 extent_io_tree_panic(tree, err);
684 if (wake)
685 wake_up(&state->wq);
687 clear_state_bit(tree, prealloc, &bits, wake);
689 prealloc = NULL;
690 goto out;
693 state = clear_state_bit(tree, state, &bits, wake);
694 next:
695 if (last_end == (u64)-1)
696 goto out;
697 start = last_end + 1;
698 if (start <= end && state && !need_resched())
699 goto hit_next;
700 goto search_again;
702 out:
703 spin_unlock(&tree->lock);
704 if (prealloc)
705 free_extent_state(prealloc);
707 return 0;
709 search_again:
710 if (start > end)
711 goto out;
712 spin_unlock(&tree->lock);
713 if (mask & __GFP_WAIT)
714 cond_resched();
715 goto again;
718 static void wait_on_state(struct extent_io_tree *tree,
719 struct extent_state *state)
720 __releases(tree->lock)
721 __acquires(tree->lock)
723 DEFINE_WAIT(wait);
724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
725 spin_unlock(&tree->lock);
726 schedule();
727 spin_lock(&tree->lock);
728 finish_wait(&state->wq, &wait);
732 * waits for one or more bits to clear on a range in the state tree.
733 * The range [start, end] is inclusive.
734 * The tree lock is taken by this function
736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 unsigned long bits)
739 struct extent_state *state;
740 struct rb_node *node;
742 btrfs_debug_check_extent_io_range(tree, start, end);
744 spin_lock(&tree->lock);
745 again:
746 while (1) {
748 * this search will find all the extents that end after
749 * our range starts
751 node = tree_search(tree, start);
752 process_node:
753 if (!node)
754 break;
756 state = rb_entry(node, struct extent_state, rb_node);
758 if (state->start > end)
759 goto out;
761 if (state->state & bits) {
762 start = state->start;
763 atomic_inc(&state->refs);
764 wait_on_state(tree, state);
765 free_extent_state(state);
766 goto again;
768 start = state->end + 1;
770 if (start > end)
771 break;
773 if (!cond_resched_lock(&tree->lock)) {
774 node = rb_next(node);
775 goto process_node;
778 out:
779 spin_unlock(&tree->lock);
782 static void set_state_bits(struct extent_io_tree *tree,
783 struct extent_state *state,
784 unsigned long *bits)
786 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
788 set_state_cb(tree, state, bits);
789 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
790 u64 range = state->end - state->start + 1;
791 tree->dirty_bytes += range;
793 state->state |= bits_to_set;
796 static void cache_state(struct extent_state *state,
797 struct extent_state **cached_ptr)
799 if (cached_ptr && !(*cached_ptr)) {
800 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801 *cached_ptr = state;
802 atomic_inc(&state->refs);
808 * set some bits on a range in the tree. This may require allocations or
809 * sleeping, so the gfp mask is used to indicate what is allowed.
811 * If any of the exclusive bits are set, this will fail with -EEXIST if some
812 * part of the range already has the desired bits set. The start of the
813 * existing range is returned in failed_start in this case.
815 * [start, end] is inclusive This takes the tree lock.
818 static int __must_check
819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
820 unsigned long bits, unsigned long exclusive_bits,
821 u64 *failed_start, struct extent_state **cached_state,
822 gfp_t mask)
824 struct extent_state *state;
825 struct extent_state *prealloc = NULL;
826 struct rb_node *node;
827 struct rb_node **p;
828 struct rb_node *parent;
829 int err = 0;
830 u64 last_start;
831 u64 last_end;
833 btrfs_debug_check_extent_io_range(tree, start, end);
835 bits |= EXTENT_FIRST_DELALLOC;
836 again:
837 if (!prealloc && (mask & __GFP_WAIT)) {
838 prealloc = alloc_extent_state(mask);
839 BUG_ON(!prealloc);
842 spin_lock(&tree->lock);
843 if (cached_state && *cached_state) {
844 state = *cached_state;
845 if (state->start <= start && state->end > start &&
846 state->tree) {
847 node = &state->rb_node;
848 goto hit_next;
852 * this search will find all the extents that end after
853 * our range starts.
855 node = tree_search_for_insert(tree, start, &p, &parent);
856 if (!node) {
857 prealloc = alloc_extent_state_atomic(prealloc);
858 BUG_ON(!prealloc);
859 err = insert_state(tree, prealloc, start, end,
860 &p, &parent, &bits);
861 if (err)
862 extent_io_tree_panic(tree, err);
864 cache_state(prealloc, cached_state);
865 prealloc = NULL;
866 goto out;
868 state = rb_entry(node, struct extent_state, rb_node);
869 hit_next:
870 last_start = state->start;
871 last_end = state->end;
874 * | ---- desired range ---- |
875 * | state |
877 * Just lock what we found and keep going
879 if (state->start == start && state->end <= end) {
880 if (state->state & exclusive_bits) {
881 *failed_start = state->start;
882 err = -EEXIST;
883 goto out;
886 set_state_bits(tree, state, &bits);
887 cache_state(state, cached_state);
888 merge_state(tree, state);
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
896 goto search_again;
900 * | ---- desired range ---- |
901 * | state |
902 * or
903 * | ------------- state -------------- |
905 * We need to split the extent we found, and may flip bits on
906 * second half.
908 * If the extent we found extends past our
909 * range, we just split and search again. It'll get split
910 * again the next time though.
912 * If the extent we found is inside our range, we set the
913 * desired bit on it.
915 if (state->start < start) {
916 if (state->state & exclusive_bits) {
917 *failed_start = start;
918 err = -EEXIST;
919 goto out;
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
924 err = split_state(tree, state, prealloc, start);
925 if (err)
926 extent_io_tree_panic(tree, err);
928 prealloc = NULL;
929 if (err)
930 goto out;
931 if (state->end <= end) {
932 set_state_bits(tree, state, &bits);
933 cache_state(state, cached_state);
934 merge_state(tree, state);
935 if (last_end == (u64)-1)
936 goto out;
937 start = last_end + 1;
938 state = next_state(state);
939 if (start < end && state && state->start == start &&
940 !need_resched())
941 goto hit_next;
943 goto search_again;
946 * | ---- desired range ---- |
947 * | state | or | state |
949 * There's a hole, we need to insert something in it and
950 * ignore the extent we found.
952 if (state->start > start) {
953 u64 this_end;
954 if (end < last_start)
955 this_end = end;
956 else
957 this_end = last_start - 1;
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
963 * Avoid to free 'prealloc' if it can be merged with
964 * the later extent.
966 err = insert_state(tree, prealloc, start, this_end,
967 NULL, NULL, &bits);
968 if (err)
969 extent_io_tree_panic(tree, err);
971 cache_state(prealloc, cached_state);
972 prealloc = NULL;
973 start = this_end + 1;
974 goto search_again;
977 * | ---- desired range ---- |
978 * | state |
979 * We need to split the extent, and set the bit
980 * on the first half
982 if (state->start <= end && state->end > end) {
983 if (state->state & exclusive_bits) {
984 *failed_start = start;
985 err = -EEXIST;
986 goto out;
989 prealloc = alloc_extent_state_atomic(prealloc);
990 BUG_ON(!prealloc);
991 err = split_state(tree, state, prealloc, end + 1);
992 if (err)
993 extent_io_tree_panic(tree, err);
995 set_state_bits(tree, prealloc, &bits);
996 cache_state(prealloc, cached_state);
997 merge_state(tree, prealloc);
998 prealloc = NULL;
999 goto out;
1002 goto search_again;
1004 out:
1005 spin_unlock(&tree->lock);
1006 if (prealloc)
1007 free_extent_state(prealloc);
1009 return err;
1011 search_again:
1012 if (start > end)
1013 goto out;
1014 spin_unlock(&tree->lock);
1015 if (mask & __GFP_WAIT)
1016 cond_resched();
1017 goto again;
1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021 unsigned long bits, u64 * failed_start,
1022 struct extent_state **cached_state, gfp_t mask)
1024 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025 cached_state, mask);
1030 * convert_extent_bit - convert all bits in a given range from one bit to
1031 * another
1032 * @tree: the io tree to search
1033 * @start: the start offset in bytes
1034 * @end: the end offset in bytes (inclusive)
1035 * @bits: the bits to set in this range
1036 * @clear_bits: the bits to clear in this range
1037 * @cached_state: state that we're going to cache
1038 * @mask: the allocation mask
1040 * This will go through and set bits for the given range. If any states exist
1041 * already in this range they are set with the given bit and cleared of the
1042 * clear_bits. This is only meant to be used by things that are mergeable, ie
1043 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1044 * boundary bits like LOCK.
1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047 unsigned long bits, unsigned long clear_bits,
1048 struct extent_state **cached_state, gfp_t mask)
1050 struct extent_state *state;
1051 struct extent_state *prealloc = NULL;
1052 struct rb_node *node;
1053 struct rb_node **p;
1054 struct rb_node *parent;
1055 int err = 0;
1056 u64 last_start;
1057 u64 last_end;
1059 btrfs_debug_check_extent_io_range(tree, start, end);
1061 again:
1062 if (!prealloc && (mask & __GFP_WAIT)) {
1063 prealloc = alloc_extent_state(mask);
1064 if (!prealloc)
1065 return -ENOMEM;
1068 spin_lock(&tree->lock);
1069 if (cached_state && *cached_state) {
1070 state = *cached_state;
1071 if (state->start <= start && state->end > start &&
1072 state->tree) {
1073 node = &state->rb_node;
1074 goto hit_next;
1079 * this search will find all the extents that end after
1080 * our range starts.
1082 node = tree_search_for_insert(tree, start, &p, &parent);
1083 if (!node) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1089 err = insert_state(tree, prealloc, start, end,
1090 &p, &parent, &bits);
1091 if (err)
1092 extent_io_tree_panic(tree, err);
1093 cache_state(prealloc, cached_state);
1094 prealloc = NULL;
1095 goto out;
1097 state = rb_entry(node, struct extent_state, rb_node);
1098 hit_next:
1099 last_start = state->start;
1100 last_end = state->end;
1103 * | ---- desired range ---- |
1104 * | state |
1106 * Just lock what we found and keep going
1108 if (state->start == start && state->end <= end) {
1109 set_state_bits(tree, state, &bits);
1110 cache_state(state, cached_state);
1111 state = clear_state_bit(tree, state, &clear_bits, 0);
1112 if (last_end == (u64)-1)
1113 goto out;
1114 start = last_end + 1;
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
1118 goto search_again;
1122 * | ---- desired range ---- |
1123 * | state |
1124 * or
1125 * | ------------- state -------------- |
1127 * We need to split the extent we found, and may flip bits on
1128 * second half.
1130 * If the extent we found extends past our
1131 * range, we just split and search again. It'll get split
1132 * again the next time though.
1134 * If the extent we found is inside our range, we set the
1135 * desired bit on it.
1137 if (state->start < start) {
1138 prealloc = alloc_extent_state_atomic(prealloc);
1139 if (!prealloc) {
1140 err = -ENOMEM;
1141 goto out;
1143 err = split_state(tree, state, prealloc, start);
1144 if (err)
1145 extent_io_tree_panic(tree, err);
1146 prealloc = NULL;
1147 if (err)
1148 goto out;
1149 if (state->end <= end) {
1150 set_state_bits(tree, state, &bits);
1151 cache_state(state, cached_state);
1152 state = clear_state_bit(tree, state, &clear_bits, 0);
1153 if (last_end == (u64)-1)
1154 goto out;
1155 start = last_end + 1;
1156 if (start < end && state && state->start == start &&
1157 !need_resched())
1158 goto hit_next;
1160 goto search_again;
1163 * | ---- desired range ---- |
1164 * | state | or | state |
1166 * There's a hole, we need to insert something in it and
1167 * ignore the extent we found.
1169 if (state->start > start) {
1170 u64 this_end;
1171 if (end < last_start)
1172 this_end = end;
1173 else
1174 this_end = last_start - 1;
1176 prealloc = alloc_extent_state_atomic(prealloc);
1177 if (!prealloc) {
1178 err = -ENOMEM;
1179 goto out;
1183 * Avoid to free 'prealloc' if it can be merged with
1184 * the later extent.
1186 err = insert_state(tree, prealloc, start, this_end,
1187 NULL, NULL, &bits);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 cache_state(prealloc, cached_state);
1191 prealloc = NULL;
1192 start = this_end + 1;
1193 goto search_again;
1196 * | ---- desired range ---- |
1197 * | state |
1198 * We need to split the extent, and set the bit
1199 * on the first half
1201 if (state->start <= end && state->end > end) {
1202 prealloc = alloc_extent_state_atomic(prealloc);
1203 if (!prealloc) {
1204 err = -ENOMEM;
1205 goto out;
1208 err = split_state(tree, state, prealloc, end + 1);
1209 if (err)
1210 extent_io_tree_panic(tree, err);
1212 set_state_bits(tree, prealloc, &bits);
1213 cache_state(prealloc, cached_state);
1214 clear_state_bit(tree, prealloc, &clear_bits, 0);
1215 prealloc = NULL;
1216 goto out;
1219 goto search_again;
1221 out:
1222 spin_unlock(&tree->lock);
1223 if (prealloc)
1224 free_extent_state(prealloc);
1226 return err;
1228 search_again:
1229 if (start > end)
1230 goto out;
1231 spin_unlock(&tree->lock);
1232 if (mask & __GFP_WAIT)
1233 cond_resched();
1234 goto again;
1237 /* wrappers around set/clear extent bit */
1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239 gfp_t mask)
1241 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242 NULL, mask);
1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246 unsigned long bits, gfp_t mask)
1248 return set_extent_bit(tree, start, end, bits, NULL,
1249 NULL, mask);
1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253 unsigned long bits, gfp_t mask)
1255 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259 struct extent_state **cached_state, gfp_t mask)
1261 return set_extent_bit(tree, start, end,
1262 EXTENT_DELALLOC | EXTENT_UPTODATE,
1263 NULL, cached_state, mask);
1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267 struct extent_state **cached_state, gfp_t mask)
1269 return set_extent_bit(tree, start, end,
1270 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271 NULL, cached_state, mask);
1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275 gfp_t mask)
1277 return clear_extent_bit(tree, start, end,
1278 EXTENT_DIRTY | EXTENT_DELALLOC |
1279 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283 gfp_t mask)
1285 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286 NULL, mask);
1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 struct extent_state **cached_state, gfp_t mask)
1292 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293 cached_state, mask);
1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297 struct extent_state **cached_state, gfp_t mask)
1299 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300 cached_state, mask);
1304 * either insert or lock state struct between start and end use mask to tell
1305 * us if waiting is desired.
1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308 unsigned long bits, struct extent_state **cached_state)
1310 int err;
1311 u64 failed_start;
1312 while (1) {
1313 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314 EXTENT_LOCKED, &failed_start,
1315 cached_state, GFP_NOFS);
1316 if (err == -EEXIST) {
1317 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318 start = failed_start;
1319 } else
1320 break;
1321 WARN_ON(start > end);
1323 return err;
1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1328 return lock_extent_bits(tree, start, end, 0, NULL);
1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1333 int err;
1334 u64 failed_start;
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337 &failed_start, NULL, GFP_NOFS);
1338 if (err == -EEXIST) {
1339 if (failed_start > start)
1340 clear_extent_bit(tree, start, failed_start - 1,
1341 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342 return 0;
1344 return 1;
1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348 struct extent_state **cached, gfp_t mask)
1350 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351 mask);
1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1356 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357 GFP_NOFS);
1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362 unsigned long index = start >> PAGE_CACHE_SHIFT;
1363 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364 struct page *page;
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 clear_page_dirty_for_io(page);
1370 page_cache_release(page);
1371 index++;
1373 return 0;
1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1378 unsigned long index = start >> PAGE_CACHE_SHIFT;
1379 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380 struct page *page;
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 account_page_redirty(page);
1386 __set_page_dirty_nobuffers(page);
1387 page_cache_release(page);
1388 index++;
1390 return 0;
1394 * helper function to set both pages and extents in the tree writeback
1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398 unsigned long index = start >> PAGE_CACHE_SHIFT;
1399 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400 struct page *page;
1402 while (index <= end_index) {
1403 page = find_get_page(tree->mapping, index);
1404 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405 set_page_writeback(page);
1406 page_cache_release(page);
1407 index++;
1409 return 0;
1412 /* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned long bits)
1420 struct rb_node *node;
1421 struct extent_state *state;
1424 * this search will find all the extents that end after
1425 * our range starts.
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1440 out:
1441 return NULL;
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1449 * If nothing was found, 1 is returned. If found something, return 0.
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned long bits,
1453 struct extent_state **cached_state)
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && state->tree) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1479 state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481 if (state) {
1482 cache_state(state, cached_state);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1487 out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1508 spin_lock(&tree->lock);
1511 * this search will find all the extents that end after
1512 * our range starts.
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1547 out:
1548 spin_unlock(&tree->lock);
1549 return found;
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_CACHE_SHIFT;
1559 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1563 if (index == locked_page->index && end_index == index)
1564 return;
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 page_cache_release(pages[i]);
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1586 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1612 * the caller is taking responsibility for
1613 * locked_page
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 page_cache_release(pages[i]);
1622 goto done;
1625 page_cache_release(pages[i]);
1626 pages_locked++;
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1632 ret = 0;
1633 done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_CACHE_SHIFT);
1640 return ret;
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1661 again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1683 * make sure to limit the number of pages we try to lock down
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1695 free_extent_state(cached_state);
1696 if (!loops) {
1697 max_bytes = PAGE_CACHE_SIZE;
1698 loops = 1;
1699 goto again;
1700 } else {
1701 found = 0;
1702 goto out_failed;
1705 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707 /* step three, lock the state bits for the whole range */
1708 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1710 /* then test to make sure it is all still delalloc */
1711 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1712 EXTENT_DELALLOC, 1, cached_state);
1713 if (!ret) {
1714 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1715 &cached_state, GFP_NOFS);
1716 __unlock_for_delalloc(inode, locked_page,
1717 delalloc_start, delalloc_end);
1718 cond_resched();
1719 goto again;
1721 free_extent_state(cached_state);
1722 *start = delalloc_start;
1723 *end = delalloc_end;
1724 out_failed:
1725 return found;
1728 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729 struct page *locked_page,
1730 unsigned long clear_bits,
1731 unsigned long page_ops)
1733 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1734 int ret;
1735 struct page *pages[16];
1736 unsigned long index = start >> PAGE_CACHE_SHIFT;
1737 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1738 unsigned long nr_pages = end_index - index + 1;
1739 int i;
1741 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1742 if (page_ops == 0)
1743 return 0;
1745 while (nr_pages > 0) {
1746 ret = find_get_pages_contig(inode->i_mapping, index,
1747 min_t(unsigned long,
1748 nr_pages, ARRAY_SIZE(pages)), pages);
1749 for (i = 0; i < ret; i++) {
1751 if (page_ops & PAGE_SET_PRIVATE2)
1752 SetPagePrivate2(pages[i]);
1754 if (pages[i] == locked_page) {
1755 page_cache_release(pages[i]);
1756 continue;
1758 if (page_ops & PAGE_CLEAR_DIRTY)
1759 clear_page_dirty_for_io(pages[i]);
1760 if (page_ops & PAGE_SET_WRITEBACK)
1761 set_page_writeback(pages[i]);
1762 if (page_ops & PAGE_END_WRITEBACK)
1763 end_page_writeback(pages[i]);
1764 if (page_ops & PAGE_UNLOCK)
1765 unlock_page(pages[i]);
1766 page_cache_release(pages[i]);
1768 nr_pages -= ret;
1769 index += ret;
1770 cond_resched();
1772 return 0;
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached. The total number found is returned.
1780 u64 count_range_bits(struct extent_io_tree *tree,
1781 u64 *start, u64 search_end, u64 max_bytes,
1782 unsigned long bits, int contig)
1784 struct rb_node *node;
1785 struct extent_state *state;
1786 u64 cur_start = *start;
1787 u64 total_bytes = 0;
1788 u64 last = 0;
1789 int found = 0;
1791 if (WARN_ON(search_end <= cur_start))
1792 return 0;
1794 spin_lock(&tree->lock);
1795 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 total_bytes = tree->dirty_bytes;
1797 goto out;
1800 * this search will find all the extents that end after
1801 * our range starts.
1803 node = tree_search(tree, cur_start);
1804 if (!node)
1805 goto out;
1807 while (1) {
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start > search_end)
1810 break;
1811 if (contig && found && state->start > last + 1)
1812 break;
1813 if (state->end >= cur_start && (state->state & bits) == bits) {
1814 total_bytes += min(search_end, state->end) + 1 -
1815 max(cur_start, state->start);
1816 if (total_bytes >= max_bytes)
1817 break;
1818 if (!found) {
1819 *start = max(cur_start, state->start);
1820 found = 1;
1822 last = state->end;
1823 } else if (contig && found) {
1824 break;
1826 node = rb_next(node);
1827 if (!node)
1828 break;
1830 out:
1831 spin_unlock(&tree->lock);
1832 return total_bytes;
1836 * set the private field for a given byte offset in the tree. If there isn't
1837 * an extent_state there already, this does nothing.
1839 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1841 struct rb_node *node;
1842 struct extent_state *state;
1843 int ret = 0;
1845 spin_lock(&tree->lock);
1847 * this search will find all the extents that end after
1848 * our range starts.
1850 node = tree_search(tree, start);
1851 if (!node) {
1852 ret = -ENOENT;
1853 goto out;
1855 state = rb_entry(node, struct extent_state, rb_node);
1856 if (state->start != start) {
1857 ret = -ENOENT;
1858 goto out;
1860 state->private = private;
1861 out:
1862 spin_unlock(&tree->lock);
1863 return ret;
1866 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1868 struct rb_node *node;
1869 struct extent_state *state;
1870 int ret = 0;
1872 spin_lock(&tree->lock);
1874 * this search will find all the extents that end after
1875 * our range starts.
1877 node = tree_search(tree, start);
1878 if (!node) {
1879 ret = -ENOENT;
1880 goto out;
1882 state = rb_entry(node, struct extent_state, rb_node);
1883 if (state->start != start) {
1884 ret = -ENOENT;
1885 goto out;
1887 *private = state->private;
1888 out:
1889 spin_unlock(&tree->lock);
1890 return ret;
1894 * searches a range in the state tree for a given mask.
1895 * If 'filled' == 1, this returns 1 only if every extent in the tree
1896 * has the bits set. Otherwise, 1 is returned if any bit in the
1897 * range is found set.
1899 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1900 unsigned long bits, int filled, struct extent_state *cached)
1902 struct extent_state *state = NULL;
1903 struct rb_node *node;
1904 int bitset = 0;
1906 spin_lock(&tree->lock);
1907 if (cached && cached->tree && cached->start <= start &&
1908 cached->end > start)
1909 node = &cached->rb_node;
1910 else
1911 node = tree_search(tree, start);
1912 while (node && start <= end) {
1913 state = rb_entry(node, struct extent_state, rb_node);
1915 if (filled && state->start > start) {
1916 bitset = 0;
1917 break;
1920 if (state->start > end)
1921 break;
1923 if (state->state & bits) {
1924 bitset = 1;
1925 if (!filled)
1926 break;
1927 } else if (filled) {
1928 bitset = 0;
1929 break;
1932 if (state->end == (u64)-1)
1933 break;
1935 start = state->end + 1;
1936 if (start > end)
1937 break;
1938 node = rb_next(node);
1939 if (!node) {
1940 if (filled)
1941 bitset = 0;
1942 break;
1945 spin_unlock(&tree->lock);
1946 return bitset;
1950 * helper function to set a given page up to date if all the
1951 * extents in the tree for that page are up to date
1953 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1955 u64 start = page_offset(page);
1956 u64 end = start + PAGE_CACHE_SIZE - 1;
1957 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1958 SetPageUptodate(page);
1962 * When IO fails, either with EIO or csum verification fails, we
1963 * try other mirrors that might have a good copy of the data. This
1964 * io_failure_record is used to record state as we go through all the
1965 * mirrors. If another mirror has good data, the page is set up to date
1966 * and things continue. If a good mirror can't be found, the original
1967 * bio end_io callback is called to indicate things have failed.
1969 struct io_failure_record {
1970 struct page *page;
1971 u64 start;
1972 u64 len;
1973 u64 logical;
1974 unsigned long bio_flags;
1975 int this_mirror;
1976 int failed_mirror;
1977 int in_validation;
1980 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1981 int did_repair)
1983 int ret;
1984 int err = 0;
1985 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987 set_state_private(failure_tree, rec->start, 0);
1988 ret = clear_extent_bits(failure_tree, rec->start,
1989 rec->start + rec->len - 1,
1990 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1991 if (ret)
1992 err = ret;
1994 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1995 rec->start + rec->len - 1,
1996 EXTENT_DAMAGED, GFP_NOFS);
1997 if (ret && !err)
1998 err = ret;
2000 kfree(rec);
2001 return err;
2005 * this bypasses the standard btrfs submit functions deliberately, as
2006 * the standard behavior is to write all copies in a raid setup. here we only
2007 * want to write the one bad copy. so we do the mapping for ourselves and issue
2008 * submit_bio directly.
2009 * to avoid any synchronization issues, wait for the data after writing, which
2010 * actually prevents the read that triggered the error from finishing.
2011 * currently, there can be no more than two copies of every data bit. thus,
2012 * exactly one rewrite is required.
2014 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2015 u64 length, u64 logical, struct page *page,
2016 int mirror_num)
2018 struct bio *bio;
2019 struct btrfs_device *dev;
2020 u64 map_length = 0;
2021 u64 sector;
2022 struct btrfs_bio *bbio = NULL;
2023 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2024 int ret;
2026 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2027 BUG_ON(!mirror_num);
2029 /* we can't repair anything in raid56 yet */
2030 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2031 return 0;
2033 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2034 if (!bio)
2035 return -EIO;
2036 bio->bi_iter.bi_size = 0;
2037 map_length = length;
2039 ret = btrfs_map_block(fs_info, WRITE, logical,
2040 &map_length, &bbio, mirror_num);
2041 if (ret) {
2042 bio_put(bio);
2043 return -EIO;
2045 BUG_ON(mirror_num != bbio->mirror_num);
2046 sector = bbio->stripes[mirror_num-1].physical >> 9;
2047 bio->bi_iter.bi_sector = sector;
2048 dev = bbio->stripes[mirror_num-1].dev;
2049 kfree(bbio);
2050 if (!dev || !dev->bdev || !dev->writeable) {
2051 bio_put(bio);
2052 return -EIO;
2054 bio->bi_bdev = dev->bdev;
2055 bio_add_page(bio, page, length, start - page_offset(page));
2057 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2058 /* try to remap that extent elsewhere? */
2059 bio_put(bio);
2060 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2061 return -EIO;
2064 printk_ratelimited_in_rcu(KERN_INFO
2065 "BTRFS: read error corrected: ino %lu off %llu "
2066 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2067 start, rcu_str_deref(dev->name), sector);
2069 bio_put(bio);
2070 return 0;
2073 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2074 int mirror_num)
2076 u64 start = eb->start;
2077 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2078 int ret = 0;
2080 if (root->fs_info->sb->s_flags & MS_RDONLY)
2081 return -EROFS;
2083 for (i = 0; i < num_pages; i++) {
2084 struct page *p = extent_buffer_page(eb, i);
2085 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2086 start, p, mirror_num);
2087 if (ret)
2088 break;
2089 start += PAGE_CACHE_SIZE;
2092 return ret;
2096 * each time an IO finishes, we do a fast check in the IO failure tree
2097 * to see if we need to process or clean up an io_failure_record
2099 static int clean_io_failure(u64 start, struct page *page)
2101 u64 private;
2102 u64 private_failure;
2103 struct io_failure_record *failrec;
2104 struct inode *inode = page->mapping->host;
2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106 struct extent_state *state;
2107 int num_copies;
2108 int did_repair = 0;
2109 int ret;
2111 private = 0;
2112 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2113 (u64)-1, 1, EXTENT_DIRTY, 0);
2114 if (!ret)
2115 return 0;
2117 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2118 &private_failure);
2119 if (ret)
2120 return 0;
2122 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2123 BUG_ON(!failrec->this_mirror);
2125 if (failrec->in_validation) {
2126 /* there was no real error, just free the record */
2127 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2128 failrec->start);
2129 did_repair = 1;
2130 goto out;
2132 if (fs_info->sb->s_flags & MS_RDONLY)
2133 goto out;
2135 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2136 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2137 failrec->start,
2138 EXTENT_LOCKED);
2139 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2141 if (state && state->start <= failrec->start &&
2142 state->end >= failrec->start + failrec->len - 1) {
2143 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2144 failrec->len);
2145 if (num_copies > 1) {
2146 ret = repair_io_failure(fs_info, start, failrec->len,
2147 failrec->logical, page,
2148 failrec->failed_mirror);
2149 did_repair = !ret;
2151 ret = 0;
2154 out:
2155 if (!ret)
2156 ret = free_io_failure(inode, failrec, did_repair);
2158 return ret;
2162 * this is a generic handler for readpage errors (default
2163 * readpage_io_failed_hook). if other copies exist, read those and write back
2164 * good data to the failed position. does not investigate in remapping the
2165 * failed extent elsewhere, hoping the device will be smart enough to do this as
2166 * needed
2169 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2170 struct page *page, u64 start, u64 end,
2171 int failed_mirror)
2173 struct io_failure_record *failrec = NULL;
2174 u64 private;
2175 struct extent_map *em;
2176 struct inode *inode = page->mapping->host;
2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2179 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180 struct bio *bio;
2181 struct btrfs_io_bio *btrfs_failed_bio;
2182 struct btrfs_io_bio *btrfs_bio;
2183 int num_copies;
2184 int ret;
2185 int read_mode;
2186 u64 logical;
2188 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2190 ret = get_state_private(failure_tree, start, &private);
2191 if (ret) {
2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 if (!failrec)
2194 return -ENOMEM;
2195 failrec->start = start;
2196 failrec->len = end - start + 1;
2197 failrec->this_mirror = 0;
2198 failrec->bio_flags = 0;
2199 failrec->in_validation = 0;
2201 read_lock(&em_tree->lock);
2202 em = lookup_extent_mapping(em_tree, start, failrec->len);
2203 if (!em) {
2204 read_unlock(&em_tree->lock);
2205 kfree(failrec);
2206 return -EIO;
2209 if (em->start > start || em->start + em->len <= start) {
2210 free_extent_map(em);
2211 em = NULL;
2213 read_unlock(&em_tree->lock);
2215 if (!em) {
2216 kfree(failrec);
2217 return -EIO;
2219 logical = start - em->start;
2220 logical = em->block_start + logical;
2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222 logical = em->block_start;
2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224 extent_set_compress_type(&failrec->bio_flags,
2225 em->compress_type);
2227 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2228 "len=%llu\n", logical, start, failrec->len);
2229 failrec->logical = logical;
2230 free_extent_map(em);
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
2234 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235 if (ret >= 0)
2236 ret = set_state_private(failure_tree, start,
2237 (u64)(unsigned long)failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2246 } else {
2247 failrec = (struct io_failure_record *)(unsigned long)private;
2248 pr_debug("bio_readpage_error: (found) logical=%llu, "
2249 "start=%llu, len=%llu, validation=%d\n",
2250 failrec->logical, failrec->start, failrec->len,
2251 failrec->in_validation);
2253 * when data can be on disk more than twice, add to failrec here
2254 * (e.g. with a list for failed_mirror) to make
2255 * clean_io_failure() clean all those errors at once.
2258 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2259 failrec->logical, failrec->len);
2260 if (num_copies == 1) {
2262 * we only have a single copy of the data, so don't bother with
2263 * all the retry and error correction code that follows. no
2264 * matter what the error is, it is very likely to persist.
2266 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2267 num_copies, failrec->this_mirror, failed_mirror);
2268 free_io_failure(inode, failrec, 0);
2269 return -EIO;
2273 * there are two premises:
2274 * a) deliver good data to the caller
2275 * b) correct the bad sectors on disk
2277 if (failed_bio->bi_vcnt > 1) {
2279 * to fulfill b), we need to know the exact failing sectors, as
2280 * we don't want to rewrite any more than the failed ones. thus,
2281 * we need separate read requests for the failed bio
2283 * if the following BUG_ON triggers, our validation request got
2284 * merged. we need separate requests for our algorithm to work.
2286 BUG_ON(failrec->in_validation);
2287 failrec->in_validation = 1;
2288 failrec->this_mirror = failed_mirror;
2289 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2290 } else {
2292 * we're ready to fulfill a) and b) alongside. get a good copy
2293 * of the failed sector and if we succeed, we have setup
2294 * everything for repair_io_failure to do the rest for us.
2296 if (failrec->in_validation) {
2297 BUG_ON(failrec->this_mirror != failed_mirror);
2298 failrec->in_validation = 0;
2299 failrec->this_mirror = 0;
2301 failrec->failed_mirror = failed_mirror;
2302 failrec->this_mirror++;
2303 if (failrec->this_mirror == failed_mirror)
2304 failrec->this_mirror++;
2305 read_mode = READ_SYNC;
2308 if (failrec->this_mirror > num_copies) {
2309 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310 num_copies, failrec->this_mirror, failed_mirror);
2311 free_io_failure(inode, failrec, 0);
2312 return -EIO;
2315 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2316 if (!bio) {
2317 free_io_failure(inode, failrec, 0);
2318 return -EIO;
2320 bio->bi_end_io = failed_bio->bi_end_io;
2321 bio->bi_iter.bi_sector = failrec->logical >> 9;
2322 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2323 bio->bi_iter.bi_size = 0;
2325 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2326 if (btrfs_failed_bio->csum) {
2327 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2328 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2330 btrfs_bio = btrfs_io_bio(bio);
2331 btrfs_bio->csum = btrfs_bio->csum_inline;
2332 phy_offset >>= inode->i_sb->s_blocksize_bits;
2333 phy_offset *= csum_size;
2334 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2335 csum_size);
2338 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2340 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2341 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2342 failrec->this_mirror, num_copies, failrec->in_validation);
2344 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2345 failrec->this_mirror,
2346 failrec->bio_flags, 0);
2347 return ret;
2350 /* lots and lots of room for performance fixes in the end_bio funcs */
2352 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2354 int uptodate = (err == 0);
2355 struct extent_io_tree *tree;
2356 int ret;
2358 tree = &BTRFS_I(page->mapping->host)->io_tree;
2360 if (tree->ops && tree->ops->writepage_end_io_hook) {
2361 ret = tree->ops->writepage_end_io_hook(page, start,
2362 end, NULL, uptodate);
2363 if (ret)
2364 uptodate = 0;
2367 if (!uptodate) {
2368 ClearPageUptodate(page);
2369 SetPageError(page);
2371 return 0;
2375 * after a writepage IO is done, we need to:
2376 * clear the uptodate bits on error
2377 * clear the writeback bits in the extent tree for this IO
2378 * end_page_writeback if the page has no more pending IO
2380 * Scheduling is not allowed, so the extent state tree is expected
2381 * to have one and only one object corresponding to this IO.
2383 static void end_bio_extent_writepage(struct bio *bio, int err)
2385 struct bio_vec *bvec;
2386 u64 start;
2387 u64 end;
2388 int i;
2390 bio_for_each_segment_all(bvec, bio, i) {
2391 struct page *page = bvec->bv_page;
2393 /* We always issue full-page reads, but if some block
2394 * in a page fails to read, blk_update_request() will
2395 * advance bv_offset and adjust bv_len to compensate.
2396 * Print a warning for nonzero offsets, and an error
2397 * if they don't add up to a full page. */
2398 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2399 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2400 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2401 "partial page write in btrfs with offset %u and length %u",
2402 bvec->bv_offset, bvec->bv_len);
2403 else
2404 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2405 "incomplete page write in btrfs with offset %u and "
2406 "length %u",
2407 bvec->bv_offset, bvec->bv_len);
2410 start = page_offset(page);
2411 end = start + bvec->bv_offset + bvec->bv_len - 1;
2413 if (end_extent_writepage(page, err, start, end))
2414 continue;
2416 end_page_writeback(page);
2419 bio_put(bio);
2422 static void
2423 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2424 int uptodate)
2426 struct extent_state *cached = NULL;
2427 u64 end = start + len - 1;
2429 if (uptodate && tree->track_uptodate)
2430 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2431 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2435 * after a readpage IO is done, we need to:
2436 * clear the uptodate bits on error
2437 * set the uptodate bits if things worked
2438 * set the page up to date if all extents in the tree are uptodate
2439 * clear the lock bit in the extent tree
2440 * unlock the page if there are no other extents locked for it
2442 * Scheduling is not allowed, so the extent state tree is expected
2443 * to have one and only one object corresponding to this IO.
2445 static void end_bio_extent_readpage(struct bio *bio, int err)
2447 struct bio_vec *bvec;
2448 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2449 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2450 struct extent_io_tree *tree;
2451 u64 offset = 0;
2452 u64 start;
2453 u64 end;
2454 u64 len;
2455 u64 extent_start = 0;
2456 u64 extent_len = 0;
2457 int mirror;
2458 int ret;
2459 int i;
2461 if (err)
2462 uptodate = 0;
2464 bio_for_each_segment_all(bvec, bio, i) {
2465 struct page *page = bvec->bv_page;
2466 struct inode *inode = page->mapping->host;
2468 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2469 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2470 io_bio->mirror_num);
2471 tree = &BTRFS_I(inode)->io_tree;
2473 /* We always issue full-page reads, but if some block
2474 * in a page fails to read, blk_update_request() will
2475 * advance bv_offset and adjust bv_len to compensate.
2476 * Print a warning for nonzero offsets, and an error
2477 * if they don't add up to a full page. */
2478 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2479 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2480 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2481 "partial page read in btrfs with offset %u and length %u",
2482 bvec->bv_offset, bvec->bv_len);
2483 else
2484 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2485 "incomplete page read in btrfs with offset %u and "
2486 "length %u",
2487 bvec->bv_offset, bvec->bv_len);
2490 start = page_offset(page);
2491 end = start + bvec->bv_offset + bvec->bv_len - 1;
2492 len = bvec->bv_len;
2494 mirror = io_bio->mirror_num;
2495 if (likely(uptodate && tree->ops &&
2496 tree->ops->readpage_end_io_hook)) {
2497 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2498 page, start, end,
2499 mirror);
2500 if (ret)
2501 uptodate = 0;
2502 else
2503 clean_io_failure(start, page);
2506 if (likely(uptodate))
2507 goto readpage_ok;
2509 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2510 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2511 if (!ret && !err &&
2512 test_bit(BIO_UPTODATE, &bio->bi_flags))
2513 uptodate = 1;
2514 } else {
2516 * The generic bio_readpage_error handles errors the
2517 * following way: If possible, new read requests are
2518 * created and submitted and will end up in
2519 * end_bio_extent_readpage as well (if we're lucky, not
2520 * in the !uptodate case). In that case it returns 0 and
2521 * we just go on with the next page in our bio. If it
2522 * can't handle the error it will return -EIO and we
2523 * remain responsible for that page.
2525 ret = bio_readpage_error(bio, offset, page, start, end,
2526 mirror);
2527 if (ret == 0) {
2528 uptodate =
2529 test_bit(BIO_UPTODATE, &bio->bi_flags);
2530 if (err)
2531 uptodate = 0;
2532 continue;
2535 readpage_ok:
2536 if (likely(uptodate)) {
2537 loff_t i_size = i_size_read(inode);
2538 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2539 unsigned offset;
2541 /* Zero out the end if this page straddles i_size */
2542 offset = i_size & (PAGE_CACHE_SIZE-1);
2543 if (page->index == end_index && offset)
2544 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2545 SetPageUptodate(page);
2546 } else {
2547 ClearPageUptodate(page);
2548 SetPageError(page);
2550 unlock_page(page);
2551 offset += len;
2553 if (unlikely(!uptodate)) {
2554 if (extent_len) {
2555 endio_readpage_release_extent(tree,
2556 extent_start,
2557 extent_len, 1);
2558 extent_start = 0;
2559 extent_len = 0;
2561 endio_readpage_release_extent(tree, start,
2562 end - start + 1, 0);
2563 } else if (!extent_len) {
2564 extent_start = start;
2565 extent_len = end + 1 - start;
2566 } else if (extent_start + extent_len == start) {
2567 extent_len += end + 1 - start;
2568 } else {
2569 endio_readpage_release_extent(tree, extent_start,
2570 extent_len, uptodate);
2571 extent_start = start;
2572 extent_len = end + 1 - start;
2576 if (extent_len)
2577 endio_readpage_release_extent(tree, extent_start, extent_len,
2578 uptodate);
2579 if (io_bio->end_io)
2580 io_bio->end_io(io_bio, err);
2581 bio_put(bio);
2585 * this allocates from the btrfs_bioset. We're returning a bio right now
2586 * but you can call btrfs_io_bio for the appropriate container_of magic
2588 struct bio *
2589 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2590 gfp_t gfp_flags)
2592 struct btrfs_io_bio *btrfs_bio;
2593 struct bio *bio;
2595 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2597 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2598 while (!bio && (nr_vecs /= 2)) {
2599 bio = bio_alloc_bioset(gfp_flags,
2600 nr_vecs, btrfs_bioset);
2604 if (bio) {
2605 bio->bi_bdev = bdev;
2606 bio->bi_iter.bi_sector = first_sector;
2607 btrfs_bio = btrfs_io_bio(bio);
2608 btrfs_bio->csum = NULL;
2609 btrfs_bio->csum_allocated = NULL;
2610 btrfs_bio->end_io = NULL;
2612 return bio;
2615 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2617 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2621 /* this also allocates from the btrfs_bioset */
2622 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2624 struct btrfs_io_bio *btrfs_bio;
2625 struct bio *bio;
2627 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2628 if (bio) {
2629 btrfs_bio = btrfs_io_bio(bio);
2630 btrfs_bio->csum = NULL;
2631 btrfs_bio->csum_allocated = NULL;
2632 btrfs_bio->end_io = NULL;
2634 return bio;
2638 static int __must_check submit_one_bio(int rw, struct bio *bio,
2639 int mirror_num, unsigned long bio_flags)
2641 int ret = 0;
2642 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2643 struct page *page = bvec->bv_page;
2644 struct extent_io_tree *tree = bio->bi_private;
2645 u64 start;
2647 start = page_offset(page) + bvec->bv_offset;
2649 bio->bi_private = NULL;
2651 bio_get(bio);
2653 if (tree->ops && tree->ops->submit_bio_hook)
2654 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2655 mirror_num, bio_flags, start);
2656 else
2657 btrfsic_submit_bio(rw, bio);
2659 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2660 ret = -EOPNOTSUPP;
2661 bio_put(bio);
2662 return ret;
2665 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2666 unsigned long offset, size_t size, struct bio *bio,
2667 unsigned long bio_flags)
2669 int ret = 0;
2670 if (tree->ops && tree->ops->merge_bio_hook)
2671 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2672 bio_flags);
2673 BUG_ON(ret < 0);
2674 return ret;
2678 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2679 struct page *page, sector_t sector,
2680 size_t size, unsigned long offset,
2681 struct block_device *bdev,
2682 struct bio **bio_ret,
2683 unsigned long max_pages,
2684 bio_end_io_t end_io_func,
2685 int mirror_num,
2686 unsigned long prev_bio_flags,
2687 unsigned long bio_flags)
2689 int ret = 0;
2690 struct bio *bio;
2691 int nr;
2692 int contig = 0;
2693 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2694 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2695 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2697 if (bio_ret && *bio_ret) {
2698 bio = *bio_ret;
2699 if (old_compressed)
2700 contig = bio->bi_iter.bi_sector == sector;
2701 else
2702 contig = bio_end_sector(bio) == sector;
2704 if (prev_bio_flags != bio_flags || !contig ||
2705 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2706 bio_add_page(bio, page, page_size, offset) < page_size) {
2707 ret = submit_one_bio(rw, bio, mirror_num,
2708 prev_bio_flags);
2709 if (ret < 0)
2710 return ret;
2711 bio = NULL;
2712 } else {
2713 return 0;
2716 if (this_compressed)
2717 nr = BIO_MAX_PAGES;
2718 else
2719 nr = bio_get_nr_vecs(bdev);
2721 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2722 if (!bio)
2723 return -ENOMEM;
2725 bio_add_page(bio, page, page_size, offset);
2726 bio->bi_end_io = end_io_func;
2727 bio->bi_private = tree;
2729 if (bio_ret)
2730 *bio_ret = bio;
2731 else
2732 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2734 return ret;
2737 static void attach_extent_buffer_page(struct extent_buffer *eb,
2738 struct page *page)
2740 if (!PagePrivate(page)) {
2741 SetPagePrivate(page);
2742 page_cache_get(page);
2743 set_page_private(page, (unsigned long)eb);
2744 } else {
2745 WARN_ON(page->private != (unsigned long)eb);
2749 void set_page_extent_mapped(struct page *page)
2751 if (!PagePrivate(page)) {
2752 SetPagePrivate(page);
2753 page_cache_get(page);
2754 set_page_private(page, EXTENT_PAGE_PRIVATE);
2758 static struct extent_map *
2759 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2760 u64 start, u64 len, get_extent_t *get_extent,
2761 struct extent_map **em_cached)
2763 struct extent_map *em;
2765 if (em_cached && *em_cached) {
2766 em = *em_cached;
2767 if (extent_map_in_tree(em) && start >= em->start &&
2768 start < extent_map_end(em)) {
2769 atomic_inc(&em->refs);
2770 return em;
2773 free_extent_map(em);
2774 *em_cached = NULL;
2777 em = get_extent(inode, page, pg_offset, start, len, 0);
2778 if (em_cached && !IS_ERR_OR_NULL(em)) {
2779 BUG_ON(*em_cached);
2780 atomic_inc(&em->refs);
2781 *em_cached = em;
2783 return em;
2786 * basic readpage implementation. Locked extent state structs are inserted
2787 * into the tree that are removed when the IO is done (by the end_io
2788 * handlers)
2789 * XXX JDM: This needs looking at to ensure proper page locking
2791 static int __do_readpage(struct extent_io_tree *tree,
2792 struct page *page,
2793 get_extent_t *get_extent,
2794 struct extent_map **em_cached,
2795 struct bio **bio, int mirror_num,
2796 unsigned long *bio_flags, int rw)
2798 struct inode *inode = page->mapping->host;
2799 u64 start = page_offset(page);
2800 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2801 u64 end;
2802 u64 cur = start;
2803 u64 extent_offset;
2804 u64 last_byte = i_size_read(inode);
2805 u64 block_start;
2806 u64 cur_end;
2807 sector_t sector;
2808 struct extent_map *em;
2809 struct block_device *bdev;
2810 int ret;
2811 int nr = 0;
2812 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2813 size_t pg_offset = 0;
2814 size_t iosize;
2815 size_t disk_io_size;
2816 size_t blocksize = inode->i_sb->s_blocksize;
2817 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2819 set_page_extent_mapped(page);
2821 end = page_end;
2822 if (!PageUptodate(page)) {
2823 if (cleancache_get_page(page) == 0) {
2824 BUG_ON(blocksize != PAGE_SIZE);
2825 unlock_extent(tree, start, end);
2826 goto out;
2830 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2831 char *userpage;
2832 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2834 if (zero_offset) {
2835 iosize = PAGE_CACHE_SIZE - zero_offset;
2836 userpage = kmap_atomic(page);
2837 memset(userpage + zero_offset, 0, iosize);
2838 flush_dcache_page(page);
2839 kunmap_atomic(userpage);
2842 while (cur <= end) {
2843 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2845 if (cur >= last_byte) {
2846 char *userpage;
2847 struct extent_state *cached = NULL;
2849 iosize = PAGE_CACHE_SIZE - pg_offset;
2850 userpage = kmap_atomic(page);
2851 memset(userpage + pg_offset, 0, iosize);
2852 flush_dcache_page(page);
2853 kunmap_atomic(userpage);
2854 set_extent_uptodate(tree, cur, cur + iosize - 1,
2855 &cached, GFP_NOFS);
2856 if (!parent_locked)
2857 unlock_extent_cached(tree, cur,
2858 cur + iosize - 1,
2859 &cached, GFP_NOFS);
2860 break;
2862 em = __get_extent_map(inode, page, pg_offset, cur,
2863 end - cur + 1, get_extent, em_cached);
2864 if (IS_ERR_OR_NULL(em)) {
2865 SetPageError(page);
2866 if (!parent_locked)
2867 unlock_extent(tree, cur, end);
2868 break;
2870 extent_offset = cur - em->start;
2871 BUG_ON(extent_map_end(em) <= cur);
2872 BUG_ON(end < cur);
2874 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2875 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2876 extent_set_compress_type(&this_bio_flag,
2877 em->compress_type);
2880 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2881 cur_end = min(extent_map_end(em) - 1, end);
2882 iosize = ALIGN(iosize, blocksize);
2883 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2884 disk_io_size = em->block_len;
2885 sector = em->block_start >> 9;
2886 } else {
2887 sector = (em->block_start + extent_offset) >> 9;
2888 disk_io_size = iosize;
2890 bdev = em->bdev;
2891 block_start = em->block_start;
2892 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2893 block_start = EXTENT_MAP_HOLE;
2894 free_extent_map(em);
2895 em = NULL;
2897 /* we've found a hole, just zero and go on */
2898 if (block_start == EXTENT_MAP_HOLE) {
2899 char *userpage;
2900 struct extent_state *cached = NULL;
2902 userpage = kmap_atomic(page);
2903 memset(userpage + pg_offset, 0, iosize);
2904 flush_dcache_page(page);
2905 kunmap_atomic(userpage);
2907 set_extent_uptodate(tree, cur, cur + iosize - 1,
2908 &cached, GFP_NOFS);
2909 unlock_extent_cached(tree, cur, cur + iosize - 1,
2910 &cached, GFP_NOFS);
2911 cur = cur + iosize;
2912 pg_offset += iosize;
2913 continue;
2915 /* the get_extent function already copied into the page */
2916 if (test_range_bit(tree, cur, cur_end,
2917 EXTENT_UPTODATE, 1, NULL)) {
2918 check_page_uptodate(tree, page);
2919 if (!parent_locked)
2920 unlock_extent(tree, cur, cur + iosize - 1);
2921 cur = cur + iosize;
2922 pg_offset += iosize;
2923 continue;
2925 /* we have an inline extent but it didn't get marked up
2926 * to date. Error out
2928 if (block_start == EXTENT_MAP_INLINE) {
2929 SetPageError(page);
2930 if (!parent_locked)
2931 unlock_extent(tree, cur, cur + iosize - 1);
2932 cur = cur + iosize;
2933 pg_offset += iosize;
2934 continue;
2937 pnr -= page->index;
2938 ret = submit_extent_page(rw, tree, page,
2939 sector, disk_io_size, pg_offset,
2940 bdev, bio, pnr,
2941 end_bio_extent_readpage, mirror_num,
2942 *bio_flags,
2943 this_bio_flag);
2944 if (!ret) {
2945 nr++;
2946 *bio_flags = this_bio_flag;
2947 } else {
2948 SetPageError(page);
2949 if (!parent_locked)
2950 unlock_extent(tree, cur, cur + iosize - 1);
2952 cur = cur + iosize;
2953 pg_offset += iosize;
2955 out:
2956 if (!nr) {
2957 if (!PageError(page))
2958 SetPageUptodate(page);
2959 unlock_page(page);
2961 return 0;
2964 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2965 struct page *pages[], int nr_pages,
2966 u64 start, u64 end,
2967 get_extent_t *get_extent,
2968 struct extent_map **em_cached,
2969 struct bio **bio, int mirror_num,
2970 unsigned long *bio_flags, int rw)
2972 struct inode *inode;
2973 struct btrfs_ordered_extent *ordered;
2974 int index;
2976 inode = pages[0]->mapping->host;
2977 while (1) {
2978 lock_extent(tree, start, end);
2979 ordered = btrfs_lookup_ordered_range(inode, start,
2980 end - start + 1);
2981 if (!ordered)
2982 break;
2983 unlock_extent(tree, start, end);
2984 btrfs_start_ordered_extent(inode, ordered, 1);
2985 btrfs_put_ordered_extent(ordered);
2988 for (index = 0; index < nr_pages; index++) {
2989 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2990 mirror_num, bio_flags, rw);
2991 page_cache_release(pages[index]);
2995 static void __extent_readpages(struct extent_io_tree *tree,
2996 struct page *pages[],
2997 int nr_pages, get_extent_t *get_extent,
2998 struct extent_map **em_cached,
2999 struct bio **bio, int mirror_num,
3000 unsigned long *bio_flags, int rw)
3002 u64 start = 0;
3003 u64 end = 0;
3004 u64 page_start;
3005 int index;
3006 int first_index = 0;
3008 for (index = 0; index < nr_pages; index++) {
3009 page_start = page_offset(pages[index]);
3010 if (!end) {
3011 start = page_start;
3012 end = start + PAGE_CACHE_SIZE - 1;
3013 first_index = index;
3014 } else if (end + 1 == page_start) {
3015 end += PAGE_CACHE_SIZE;
3016 } else {
3017 __do_contiguous_readpages(tree, &pages[first_index],
3018 index - first_index, start,
3019 end, get_extent, em_cached,
3020 bio, mirror_num, bio_flags,
3021 rw);
3022 start = page_start;
3023 end = start + PAGE_CACHE_SIZE - 1;
3024 first_index = index;
3028 if (end)
3029 __do_contiguous_readpages(tree, &pages[first_index],
3030 index - first_index, start,
3031 end, get_extent, em_cached, bio,
3032 mirror_num, bio_flags, rw);
3035 static int __extent_read_full_page(struct extent_io_tree *tree,
3036 struct page *page,
3037 get_extent_t *get_extent,
3038 struct bio **bio, int mirror_num,
3039 unsigned long *bio_flags, int rw)
3041 struct inode *inode = page->mapping->host;
3042 struct btrfs_ordered_extent *ordered;
3043 u64 start = page_offset(page);
3044 u64 end = start + PAGE_CACHE_SIZE - 1;
3045 int ret;
3047 while (1) {
3048 lock_extent(tree, start, end);
3049 ordered = btrfs_lookup_ordered_extent(inode, start);
3050 if (!ordered)
3051 break;
3052 unlock_extent(tree, start, end);
3053 btrfs_start_ordered_extent(inode, ordered, 1);
3054 btrfs_put_ordered_extent(ordered);
3057 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3058 bio_flags, rw);
3059 return ret;
3062 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3063 get_extent_t *get_extent, int mirror_num)
3065 struct bio *bio = NULL;
3066 unsigned long bio_flags = 0;
3067 int ret;
3069 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3070 &bio_flags, READ);
3071 if (bio)
3072 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3073 return ret;
3076 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3077 get_extent_t *get_extent, int mirror_num)
3079 struct bio *bio = NULL;
3080 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3081 int ret;
3083 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3084 &bio_flags, READ);
3085 if (bio)
3086 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3087 return ret;
3090 static noinline void update_nr_written(struct page *page,
3091 struct writeback_control *wbc,
3092 unsigned long nr_written)
3094 wbc->nr_to_write -= nr_written;
3095 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3096 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3097 page->mapping->writeback_index = page->index + nr_written;
3101 * the writepage semantics are similar to regular writepage. extent
3102 * records are inserted to lock ranges in the tree, and as dirty areas
3103 * are found, they are marked writeback. Then the lock bits are removed
3104 * and the end_io handler clears the writeback ranges
3106 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3107 void *data)
3109 struct inode *inode = page->mapping->host;
3110 struct extent_page_data *epd = data;
3111 struct extent_io_tree *tree = epd->tree;
3112 u64 start = page_offset(page);
3113 u64 delalloc_start;
3114 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3115 u64 end;
3116 u64 cur = start;
3117 u64 extent_offset;
3118 u64 last_byte = i_size_read(inode);
3119 u64 block_start;
3120 u64 iosize;
3121 sector_t sector;
3122 struct extent_state *cached_state = NULL;
3123 struct extent_map *em;
3124 struct block_device *bdev;
3125 int ret;
3126 int nr = 0;
3127 size_t pg_offset = 0;
3128 size_t blocksize;
3129 loff_t i_size = i_size_read(inode);
3130 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3131 u64 nr_delalloc;
3132 u64 delalloc_end;
3133 int page_started;
3134 int compressed;
3135 int write_flags;
3136 unsigned long nr_written = 0;
3137 bool fill_delalloc = true;
3139 if (wbc->sync_mode == WB_SYNC_ALL)
3140 write_flags = WRITE_SYNC;
3141 else
3142 write_flags = WRITE;
3144 trace___extent_writepage(page, inode, wbc);
3146 WARN_ON(!PageLocked(page));
3148 ClearPageError(page);
3150 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3151 if (page->index > end_index ||
3152 (page->index == end_index && !pg_offset)) {
3153 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3154 unlock_page(page);
3155 return 0;
3158 if (page->index == end_index) {
3159 char *userpage;
3161 userpage = kmap_atomic(page);
3162 memset(userpage + pg_offset, 0,
3163 PAGE_CACHE_SIZE - pg_offset);
3164 kunmap_atomic(userpage);
3165 flush_dcache_page(page);
3167 pg_offset = 0;
3169 set_page_extent_mapped(page);
3171 if (!tree->ops || !tree->ops->fill_delalloc)
3172 fill_delalloc = false;
3174 delalloc_start = start;
3175 delalloc_end = 0;
3176 page_started = 0;
3177 if (!epd->extent_locked && fill_delalloc) {
3178 u64 delalloc_to_write = 0;
3180 * make sure the wbc mapping index is at least updated
3181 * to this page.
3183 update_nr_written(page, wbc, 0);
3185 while (delalloc_end < page_end) {
3186 nr_delalloc = find_lock_delalloc_range(inode, tree,
3187 page,
3188 &delalloc_start,
3189 &delalloc_end,
3190 128 * 1024 * 1024);
3191 if (nr_delalloc == 0) {
3192 delalloc_start = delalloc_end + 1;
3193 continue;
3195 ret = tree->ops->fill_delalloc(inode, page,
3196 delalloc_start,
3197 delalloc_end,
3198 &page_started,
3199 &nr_written);
3200 /* File system has been set read-only */
3201 if (ret) {
3202 SetPageError(page);
3203 goto done;
3206 * delalloc_end is already one less than the total
3207 * length, so we don't subtract one from
3208 * PAGE_CACHE_SIZE
3210 delalloc_to_write += (delalloc_end - delalloc_start +
3211 PAGE_CACHE_SIZE) >>
3212 PAGE_CACHE_SHIFT;
3213 delalloc_start = delalloc_end + 1;
3215 if (wbc->nr_to_write < delalloc_to_write) {
3216 int thresh = 8192;
3218 if (delalloc_to_write < thresh * 2)
3219 thresh = delalloc_to_write;
3220 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3221 thresh);
3224 /* did the fill delalloc function already unlock and start
3225 * the IO?
3227 if (page_started) {
3228 ret = 0;
3230 * we've unlocked the page, so we can't update
3231 * the mapping's writeback index, just update
3232 * nr_to_write.
3234 wbc->nr_to_write -= nr_written;
3235 goto done_unlocked;
3238 if (tree->ops && tree->ops->writepage_start_hook) {
3239 ret = tree->ops->writepage_start_hook(page, start,
3240 page_end);
3241 if (ret) {
3242 /* Fixup worker will requeue */
3243 if (ret == -EBUSY)
3244 wbc->pages_skipped++;
3245 else
3246 redirty_page_for_writepage(wbc, page);
3247 update_nr_written(page, wbc, nr_written);
3248 unlock_page(page);
3249 ret = 0;
3250 goto done_unlocked;
3255 * we don't want to touch the inode after unlocking the page,
3256 * so we update the mapping writeback index now
3258 update_nr_written(page, wbc, nr_written + 1);
3260 end = page_end;
3261 if (last_byte <= start) {
3262 if (tree->ops && tree->ops->writepage_end_io_hook)
3263 tree->ops->writepage_end_io_hook(page, start,
3264 page_end, NULL, 1);
3265 goto done;
3268 blocksize = inode->i_sb->s_blocksize;
3270 while (cur <= end) {
3271 if (cur >= last_byte) {
3272 if (tree->ops && tree->ops->writepage_end_io_hook)
3273 tree->ops->writepage_end_io_hook(page, cur,
3274 page_end, NULL, 1);
3275 break;
3277 em = epd->get_extent(inode, page, pg_offset, cur,
3278 end - cur + 1, 1);
3279 if (IS_ERR_OR_NULL(em)) {
3280 SetPageError(page);
3281 break;
3284 extent_offset = cur - em->start;
3285 BUG_ON(extent_map_end(em) <= cur);
3286 BUG_ON(end < cur);
3287 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3288 iosize = ALIGN(iosize, blocksize);
3289 sector = (em->block_start + extent_offset) >> 9;
3290 bdev = em->bdev;
3291 block_start = em->block_start;
3292 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3293 free_extent_map(em);
3294 em = NULL;
3297 * compressed and inline extents are written through other
3298 * paths in the FS
3300 if (compressed || block_start == EXTENT_MAP_HOLE ||
3301 block_start == EXTENT_MAP_INLINE) {
3303 * end_io notification does not happen here for
3304 * compressed extents
3306 if (!compressed && tree->ops &&
3307 tree->ops->writepage_end_io_hook)
3308 tree->ops->writepage_end_io_hook(page, cur,
3309 cur + iosize - 1,
3310 NULL, 1);
3311 else if (compressed) {
3312 /* we don't want to end_page_writeback on
3313 * a compressed extent. this happens
3314 * elsewhere
3316 nr++;
3319 cur += iosize;
3320 pg_offset += iosize;
3321 continue;
3323 /* leave this out until we have a page_mkwrite call */
3324 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3325 EXTENT_DIRTY, 0, NULL)) {
3326 cur = cur + iosize;
3327 pg_offset += iosize;
3328 continue;
3331 if (tree->ops && tree->ops->writepage_io_hook) {
3332 ret = tree->ops->writepage_io_hook(page, cur,
3333 cur + iosize - 1);
3334 } else {
3335 ret = 0;
3337 if (ret) {
3338 SetPageError(page);
3339 } else {
3340 unsigned long max_nr = end_index + 1;
3342 set_range_writeback(tree, cur, cur + iosize - 1);
3343 if (!PageWriteback(page)) {
3344 btrfs_err(BTRFS_I(inode)->root->fs_info,
3345 "page %lu not writeback, cur %llu end %llu",
3346 page->index, cur, end);
3349 ret = submit_extent_page(write_flags, tree, page,
3350 sector, iosize, pg_offset,
3351 bdev, &epd->bio, max_nr,
3352 end_bio_extent_writepage,
3353 0, 0, 0);
3354 if (ret)
3355 SetPageError(page);
3357 cur = cur + iosize;
3358 pg_offset += iosize;
3359 nr++;
3361 done:
3362 if (nr == 0) {
3363 /* make sure the mapping tag for page dirty gets cleared */
3364 set_page_writeback(page);
3365 end_page_writeback(page);
3367 unlock_page(page);
3369 done_unlocked:
3371 /* drop our reference on any cached states */
3372 free_extent_state(cached_state);
3373 return 0;
3376 static int eb_wait(void *word)
3378 io_schedule();
3379 return 0;
3382 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3384 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3385 TASK_UNINTERRUPTIBLE);
3388 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3389 struct btrfs_fs_info *fs_info,
3390 struct extent_page_data *epd)
3392 unsigned long i, num_pages;
3393 int flush = 0;
3394 int ret = 0;
3396 if (!btrfs_try_tree_write_lock(eb)) {
3397 flush = 1;
3398 flush_write_bio(epd);
3399 btrfs_tree_lock(eb);
3402 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3403 btrfs_tree_unlock(eb);
3404 if (!epd->sync_io)
3405 return 0;
3406 if (!flush) {
3407 flush_write_bio(epd);
3408 flush = 1;
3410 while (1) {
3411 wait_on_extent_buffer_writeback(eb);
3412 btrfs_tree_lock(eb);
3413 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3414 break;
3415 btrfs_tree_unlock(eb);
3420 * We need to do this to prevent races in people who check if the eb is
3421 * under IO since we can end up having no IO bits set for a short period
3422 * of time.
3424 spin_lock(&eb->refs_lock);
3425 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3426 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3427 spin_unlock(&eb->refs_lock);
3428 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3429 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3430 -eb->len,
3431 fs_info->dirty_metadata_batch);
3432 ret = 1;
3433 } else {
3434 spin_unlock(&eb->refs_lock);
3437 btrfs_tree_unlock(eb);
3439 if (!ret)
3440 return ret;
3442 num_pages = num_extent_pages(eb->start, eb->len);
3443 for (i = 0; i < num_pages; i++) {
3444 struct page *p = extent_buffer_page(eb, i);
3446 if (!trylock_page(p)) {
3447 if (!flush) {
3448 flush_write_bio(epd);
3449 flush = 1;
3451 lock_page(p);
3455 return ret;
3458 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3460 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3461 smp_mb__after_clear_bit();
3462 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3465 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3467 struct bio_vec *bvec;
3468 struct extent_buffer *eb;
3469 int i, done;
3471 bio_for_each_segment_all(bvec, bio, i) {
3472 struct page *page = bvec->bv_page;
3474 eb = (struct extent_buffer *)page->private;
3475 BUG_ON(!eb);
3476 done = atomic_dec_and_test(&eb->io_pages);
3478 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3479 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3480 ClearPageUptodate(page);
3481 SetPageError(page);
3484 end_page_writeback(page);
3486 if (!done)
3487 continue;
3489 end_extent_buffer_writeback(eb);
3492 bio_put(bio);
3495 static int write_one_eb(struct extent_buffer *eb,
3496 struct btrfs_fs_info *fs_info,
3497 struct writeback_control *wbc,
3498 struct extent_page_data *epd)
3500 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3501 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3502 u64 offset = eb->start;
3503 unsigned long i, num_pages;
3504 unsigned long bio_flags = 0;
3505 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3506 int ret = 0;
3508 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3509 num_pages = num_extent_pages(eb->start, eb->len);
3510 atomic_set(&eb->io_pages, num_pages);
3511 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3512 bio_flags = EXTENT_BIO_TREE_LOG;
3514 for (i = 0; i < num_pages; i++) {
3515 struct page *p = extent_buffer_page(eb, i);
3517 clear_page_dirty_for_io(p);
3518 set_page_writeback(p);
3519 ret = submit_extent_page(rw, tree, p, offset >> 9,
3520 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3521 -1, end_bio_extent_buffer_writepage,
3522 0, epd->bio_flags, bio_flags);
3523 epd->bio_flags = bio_flags;
3524 if (ret) {
3525 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3526 SetPageError(p);
3527 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3528 end_extent_buffer_writeback(eb);
3529 ret = -EIO;
3530 break;
3532 offset += PAGE_CACHE_SIZE;
3533 update_nr_written(p, wbc, 1);
3534 unlock_page(p);
3537 if (unlikely(ret)) {
3538 for (; i < num_pages; i++) {
3539 struct page *p = extent_buffer_page(eb, i);
3540 unlock_page(p);
3544 return ret;
3547 int btree_write_cache_pages(struct address_space *mapping,
3548 struct writeback_control *wbc)
3550 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3551 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3552 struct extent_buffer *eb, *prev_eb = NULL;
3553 struct extent_page_data epd = {
3554 .bio = NULL,
3555 .tree = tree,
3556 .extent_locked = 0,
3557 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3558 .bio_flags = 0,
3560 int ret = 0;
3561 int done = 0;
3562 int nr_to_write_done = 0;
3563 struct pagevec pvec;
3564 int nr_pages;
3565 pgoff_t index;
3566 pgoff_t end; /* Inclusive */
3567 int scanned = 0;
3568 int tag;
3570 pagevec_init(&pvec, 0);
3571 if (wbc->range_cyclic) {
3572 index = mapping->writeback_index; /* Start from prev offset */
3573 end = -1;
3574 } else {
3575 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3576 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3577 scanned = 1;
3579 if (wbc->sync_mode == WB_SYNC_ALL)
3580 tag = PAGECACHE_TAG_TOWRITE;
3581 else
3582 tag = PAGECACHE_TAG_DIRTY;
3583 retry:
3584 if (wbc->sync_mode == WB_SYNC_ALL)
3585 tag_pages_for_writeback(mapping, index, end);
3586 while (!done && !nr_to_write_done && (index <= end) &&
3587 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3588 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3589 unsigned i;
3591 scanned = 1;
3592 for (i = 0; i < nr_pages; i++) {
3593 struct page *page = pvec.pages[i];
3595 if (!PagePrivate(page))
3596 continue;
3598 if (!wbc->range_cyclic && page->index > end) {
3599 done = 1;
3600 break;
3603 spin_lock(&mapping->private_lock);
3604 if (!PagePrivate(page)) {
3605 spin_unlock(&mapping->private_lock);
3606 continue;
3609 eb = (struct extent_buffer *)page->private;
3612 * Shouldn't happen and normally this would be a BUG_ON
3613 * but no sense in crashing the users box for something
3614 * we can survive anyway.
3616 if (WARN_ON(!eb)) {
3617 spin_unlock(&mapping->private_lock);
3618 continue;
3621 if (eb == prev_eb) {
3622 spin_unlock(&mapping->private_lock);
3623 continue;
3626 ret = atomic_inc_not_zero(&eb->refs);
3627 spin_unlock(&mapping->private_lock);
3628 if (!ret)
3629 continue;
3631 prev_eb = eb;
3632 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3633 if (!ret) {
3634 free_extent_buffer(eb);
3635 continue;
3638 ret = write_one_eb(eb, fs_info, wbc, &epd);
3639 if (ret) {
3640 done = 1;
3641 free_extent_buffer(eb);
3642 break;
3644 free_extent_buffer(eb);
3647 * the filesystem may choose to bump up nr_to_write.
3648 * We have to make sure to honor the new nr_to_write
3649 * at any time
3651 nr_to_write_done = wbc->nr_to_write <= 0;
3653 pagevec_release(&pvec);
3654 cond_resched();
3656 if (!scanned && !done) {
3658 * We hit the last page and there is more work to be done: wrap
3659 * back to the start of the file
3661 scanned = 1;
3662 index = 0;
3663 goto retry;
3665 flush_write_bio(&epd);
3666 return ret;
3670 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3671 * @mapping: address space structure to write
3672 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3673 * @writepage: function called for each page
3674 * @data: data passed to writepage function
3676 * If a page is already under I/O, write_cache_pages() skips it, even
3677 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3678 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3679 * and msync() need to guarantee that all the data which was dirty at the time
3680 * the call was made get new I/O started against them. If wbc->sync_mode is
3681 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3682 * existing IO to complete.
3684 static int extent_write_cache_pages(struct extent_io_tree *tree,
3685 struct address_space *mapping,
3686 struct writeback_control *wbc,
3687 writepage_t writepage, void *data,
3688 void (*flush_fn)(void *))
3690 struct inode *inode = mapping->host;
3691 int ret = 0;
3692 int done = 0;
3693 int nr_to_write_done = 0;
3694 struct pagevec pvec;
3695 int nr_pages;
3696 pgoff_t index;
3697 pgoff_t end; /* Inclusive */
3698 int scanned = 0;
3699 int tag;
3702 * We have to hold onto the inode so that ordered extents can do their
3703 * work when the IO finishes. The alternative to this is failing to add
3704 * an ordered extent if the igrab() fails there and that is a huge pain
3705 * to deal with, so instead just hold onto the inode throughout the
3706 * writepages operation. If it fails here we are freeing up the inode
3707 * anyway and we'd rather not waste our time writing out stuff that is
3708 * going to be truncated anyway.
3710 if (!igrab(inode))
3711 return 0;
3713 pagevec_init(&pvec, 0);
3714 if (wbc->range_cyclic) {
3715 index = mapping->writeback_index; /* Start from prev offset */
3716 end = -1;
3717 } else {
3718 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3719 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3720 scanned = 1;
3722 if (wbc->sync_mode == WB_SYNC_ALL)
3723 tag = PAGECACHE_TAG_TOWRITE;
3724 else
3725 tag = PAGECACHE_TAG_DIRTY;
3726 retry:
3727 if (wbc->sync_mode == WB_SYNC_ALL)
3728 tag_pages_for_writeback(mapping, index, end);
3729 while (!done && !nr_to_write_done && (index <= end) &&
3730 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3731 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3732 unsigned i;
3734 scanned = 1;
3735 for (i = 0; i < nr_pages; i++) {
3736 struct page *page = pvec.pages[i];
3739 * At this point we hold neither mapping->tree_lock nor
3740 * lock on the page itself: the page may be truncated or
3741 * invalidated (changing page->mapping to NULL), or even
3742 * swizzled back from swapper_space to tmpfs file
3743 * mapping
3745 if (!trylock_page(page)) {
3746 flush_fn(data);
3747 lock_page(page);
3750 if (unlikely(page->mapping != mapping)) {
3751 unlock_page(page);
3752 continue;
3755 if (!wbc->range_cyclic && page->index > end) {
3756 done = 1;
3757 unlock_page(page);
3758 continue;
3761 if (wbc->sync_mode != WB_SYNC_NONE) {
3762 if (PageWriteback(page))
3763 flush_fn(data);
3764 wait_on_page_writeback(page);
3767 if (PageWriteback(page) ||
3768 !clear_page_dirty_for_io(page)) {
3769 unlock_page(page);
3770 continue;
3773 ret = (*writepage)(page, wbc, data);
3775 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3776 unlock_page(page);
3777 ret = 0;
3779 if (ret)
3780 done = 1;
3783 * the filesystem may choose to bump up nr_to_write.
3784 * We have to make sure to honor the new nr_to_write
3785 * at any time
3787 nr_to_write_done = wbc->nr_to_write <= 0;
3789 pagevec_release(&pvec);
3790 cond_resched();
3792 if (!scanned && !done) {
3794 * We hit the last page and there is more work to be done: wrap
3795 * back to the start of the file
3797 scanned = 1;
3798 index = 0;
3799 goto retry;
3801 btrfs_add_delayed_iput(inode);
3802 return ret;
3805 static void flush_epd_write_bio(struct extent_page_data *epd)
3807 if (epd->bio) {
3808 int rw = WRITE;
3809 int ret;
3811 if (epd->sync_io)
3812 rw = WRITE_SYNC;
3814 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3815 BUG_ON(ret < 0); /* -ENOMEM */
3816 epd->bio = NULL;
3820 static noinline void flush_write_bio(void *data)
3822 struct extent_page_data *epd = data;
3823 flush_epd_write_bio(epd);
3826 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3827 get_extent_t *get_extent,
3828 struct writeback_control *wbc)
3830 int ret;
3831 struct extent_page_data epd = {
3832 .bio = NULL,
3833 .tree = tree,
3834 .get_extent = get_extent,
3835 .extent_locked = 0,
3836 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3837 .bio_flags = 0,
3840 ret = __extent_writepage(page, wbc, &epd);
3842 flush_epd_write_bio(&epd);
3843 return ret;
3846 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3847 u64 start, u64 end, get_extent_t *get_extent,
3848 int mode)
3850 int ret = 0;
3851 struct address_space *mapping = inode->i_mapping;
3852 struct page *page;
3853 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3854 PAGE_CACHE_SHIFT;
3856 struct extent_page_data epd = {
3857 .bio = NULL,
3858 .tree = tree,
3859 .get_extent = get_extent,
3860 .extent_locked = 1,
3861 .sync_io = mode == WB_SYNC_ALL,
3862 .bio_flags = 0,
3864 struct writeback_control wbc_writepages = {
3865 .sync_mode = mode,
3866 .nr_to_write = nr_pages * 2,
3867 .range_start = start,
3868 .range_end = end + 1,
3871 while (start <= end) {
3872 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3873 if (clear_page_dirty_for_io(page))
3874 ret = __extent_writepage(page, &wbc_writepages, &epd);
3875 else {
3876 if (tree->ops && tree->ops->writepage_end_io_hook)
3877 tree->ops->writepage_end_io_hook(page, start,
3878 start + PAGE_CACHE_SIZE - 1,
3879 NULL, 1);
3880 unlock_page(page);
3882 page_cache_release(page);
3883 start += PAGE_CACHE_SIZE;
3886 flush_epd_write_bio(&epd);
3887 return ret;
3890 int extent_writepages(struct extent_io_tree *tree,
3891 struct address_space *mapping,
3892 get_extent_t *get_extent,
3893 struct writeback_control *wbc)
3895 int ret = 0;
3896 struct extent_page_data epd = {
3897 .bio = NULL,
3898 .tree = tree,
3899 .get_extent = get_extent,
3900 .extent_locked = 0,
3901 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3902 .bio_flags = 0,
3905 ret = extent_write_cache_pages(tree, mapping, wbc,
3906 __extent_writepage, &epd,
3907 flush_write_bio);
3908 flush_epd_write_bio(&epd);
3909 return ret;
3912 int extent_readpages(struct extent_io_tree *tree,
3913 struct address_space *mapping,
3914 struct list_head *pages, unsigned nr_pages,
3915 get_extent_t get_extent)
3917 struct bio *bio = NULL;
3918 unsigned page_idx;
3919 unsigned long bio_flags = 0;
3920 struct page *pagepool[16];
3921 struct page *page;
3922 struct extent_map *em_cached = NULL;
3923 int nr = 0;
3925 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3926 page = list_entry(pages->prev, struct page, lru);
3928 prefetchw(&page->flags);
3929 list_del(&page->lru);
3930 if (add_to_page_cache_lru(page, mapping,
3931 page->index, GFP_NOFS)) {
3932 page_cache_release(page);
3933 continue;
3936 pagepool[nr++] = page;
3937 if (nr < ARRAY_SIZE(pagepool))
3938 continue;
3939 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3940 &bio, 0, &bio_flags, READ);
3941 nr = 0;
3943 if (nr)
3944 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3945 &bio, 0, &bio_flags, READ);
3947 if (em_cached)
3948 free_extent_map(em_cached);
3950 BUG_ON(!list_empty(pages));
3951 if (bio)
3952 return submit_one_bio(READ, bio, 0, bio_flags);
3953 return 0;
3957 * basic invalidatepage code, this waits on any locked or writeback
3958 * ranges corresponding to the page, and then deletes any extent state
3959 * records from the tree
3961 int extent_invalidatepage(struct extent_io_tree *tree,
3962 struct page *page, unsigned long offset)
3964 struct extent_state *cached_state = NULL;
3965 u64 start = page_offset(page);
3966 u64 end = start + PAGE_CACHE_SIZE - 1;
3967 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3969 start += ALIGN(offset, blocksize);
3970 if (start > end)
3971 return 0;
3973 lock_extent_bits(tree, start, end, 0, &cached_state);
3974 wait_on_page_writeback(page);
3975 clear_extent_bit(tree, start, end,
3976 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3977 EXTENT_DO_ACCOUNTING,
3978 1, 1, &cached_state, GFP_NOFS);
3979 return 0;
3983 * a helper for releasepage, this tests for areas of the page that
3984 * are locked or under IO and drops the related state bits if it is safe
3985 * to drop the page.
3987 static int try_release_extent_state(struct extent_map_tree *map,
3988 struct extent_io_tree *tree,
3989 struct page *page, gfp_t mask)
3991 u64 start = page_offset(page);
3992 u64 end = start + PAGE_CACHE_SIZE - 1;
3993 int ret = 1;
3995 if (test_range_bit(tree, start, end,
3996 EXTENT_IOBITS, 0, NULL))
3997 ret = 0;
3998 else {
3999 if ((mask & GFP_NOFS) == GFP_NOFS)
4000 mask = GFP_NOFS;
4002 * at this point we can safely clear everything except the
4003 * locked bit and the nodatasum bit
4005 ret = clear_extent_bit(tree, start, end,
4006 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4007 0, 0, NULL, mask);
4009 /* if clear_extent_bit failed for enomem reasons,
4010 * we can't allow the release to continue.
4012 if (ret < 0)
4013 ret = 0;
4014 else
4015 ret = 1;
4017 return ret;
4021 * a helper for releasepage. As long as there are no locked extents
4022 * in the range corresponding to the page, both state records and extent
4023 * map records are removed
4025 int try_release_extent_mapping(struct extent_map_tree *map,
4026 struct extent_io_tree *tree, struct page *page,
4027 gfp_t mask)
4029 struct extent_map *em;
4030 u64 start = page_offset(page);
4031 u64 end = start + PAGE_CACHE_SIZE - 1;
4033 if ((mask & __GFP_WAIT) &&
4034 page->mapping->host->i_size > 16 * 1024 * 1024) {
4035 u64 len;
4036 while (start <= end) {
4037 len = end - start + 1;
4038 write_lock(&map->lock);
4039 em = lookup_extent_mapping(map, start, len);
4040 if (!em) {
4041 write_unlock(&map->lock);
4042 break;
4044 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4045 em->start != start) {
4046 write_unlock(&map->lock);
4047 free_extent_map(em);
4048 break;
4050 if (!test_range_bit(tree, em->start,
4051 extent_map_end(em) - 1,
4052 EXTENT_LOCKED | EXTENT_WRITEBACK,
4053 0, NULL)) {
4054 remove_extent_mapping(map, em);
4055 /* once for the rb tree */
4056 free_extent_map(em);
4058 start = extent_map_end(em);
4059 write_unlock(&map->lock);
4061 /* once for us */
4062 free_extent_map(em);
4065 return try_release_extent_state(map, tree, page, mask);
4069 * helper function for fiemap, which doesn't want to see any holes.
4070 * This maps until we find something past 'last'
4072 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4073 u64 offset,
4074 u64 last,
4075 get_extent_t *get_extent)
4077 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4078 struct extent_map *em;
4079 u64 len;
4081 if (offset >= last)
4082 return NULL;
4084 while (1) {
4085 len = last - offset;
4086 if (len == 0)
4087 break;
4088 len = ALIGN(len, sectorsize);
4089 em = get_extent(inode, NULL, 0, offset, len, 0);
4090 if (IS_ERR_OR_NULL(em))
4091 return em;
4093 /* if this isn't a hole return it */
4094 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4095 em->block_start != EXTENT_MAP_HOLE) {
4096 return em;
4099 /* this is a hole, advance to the next extent */
4100 offset = extent_map_end(em);
4101 free_extent_map(em);
4102 if (offset >= last)
4103 break;
4105 return NULL;
4108 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4110 unsigned long cnt = *((unsigned long *)ctx);
4112 cnt++;
4113 *((unsigned long *)ctx) = cnt;
4115 /* Now we're sure that the extent is shared. */
4116 if (cnt > 1)
4117 return 1;
4118 return 0;
4121 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4122 __u64 start, __u64 len, get_extent_t *get_extent)
4124 int ret = 0;
4125 u64 off = start;
4126 u64 max = start + len;
4127 u32 flags = 0;
4128 u32 found_type;
4129 u64 last;
4130 u64 last_for_get_extent = 0;
4131 u64 disko = 0;
4132 u64 isize = i_size_read(inode);
4133 struct btrfs_key found_key;
4134 struct extent_map *em = NULL;
4135 struct extent_state *cached_state = NULL;
4136 struct btrfs_path *path;
4137 int end = 0;
4138 u64 em_start = 0;
4139 u64 em_len = 0;
4140 u64 em_end = 0;
4142 if (len == 0)
4143 return -EINVAL;
4145 path = btrfs_alloc_path();
4146 if (!path)
4147 return -ENOMEM;
4148 path->leave_spinning = 1;
4150 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4151 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4154 * lookup the last file extent. We're not using i_size here
4155 * because there might be preallocation past i_size
4157 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4158 path, btrfs_ino(inode), -1, 0);
4159 if (ret < 0) {
4160 btrfs_free_path(path);
4161 return ret;
4163 WARN_ON(!ret);
4164 path->slots[0]--;
4165 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4166 found_type = btrfs_key_type(&found_key);
4168 /* No extents, but there might be delalloc bits */
4169 if (found_key.objectid != btrfs_ino(inode) ||
4170 found_type != BTRFS_EXTENT_DATA_KEY) {
4171 /* have to trust i_size as the end */
4172 last = (u64)-1;
4173 last_for_get_extent = isize;
4174 } else {
4176 * remember the start of the last extent. There are a
4177 * bunch of different factors that go into the length of the
4178 * extent, so its much less complex to remember where it started
4180 last = found_key.offset;
4181 last_for_get_extent = last + 1;
4183 btrfs_release_path(path);
4186 * we might have some extents allocated but more delalloc past those
4187 * extents. so, we trust isize unless the start of the last extent is
4188 * beyond isize
4190 if (last < isize) {
4191 last = (u64)-1;
4192 last_for_get_extent = isize;
4195 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4196 &cached_state);
4198 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4199 get_extent);
4200 if (!em)
4201 goto out;
4202 if (IS_ERR(em)) {
4203 ret = PTR_ERR(em);
4204 goto out;
4207 while (!end) {
4208 u64 offset_in_extent = 0;
4210 /* break if the extent we found is outside the range */
4211 if (em->start >= max || extent_map_end(em) < off)
4212 break;
4215 * get_extent may return an extent that starts before our
4216 * requested range. We have to make sure the ranges
4217 * we return to fiemap always move forward and don't
4218 * overlap, so adjust the offsets here
4220 em_start = max(em->start, off);
4223 * record the offset from the start of the extent
4224 * for adjusting the disk offset below. Only do this if the
4225 * extent isn't compressed since our in ram offset may be past
4226 * what we have actually allocated on disk.
4228 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4229 offset_in_extent = em_start - em->start;
4230 em_end = extent_map_end(em);
4231 em_len = em_end - em_start;
4232 disko = 0;
4233 flags = 0;
4236 * bump off for our next call to get_extent
4238 off = extent_map_end(em);
4239 if (off >= max)
4240 end = 1;
4242 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4243 end = 1;
4244 flags |= FIEMAP_EXTENT_LAST;
4245 } else if (em->block_start == EXTENT_MAP_INLINE) {
4246 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4247 FIEMAP_EXTENT_NOT_ALIGNED);
4248 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4249 flags |= (FIEMAP_EXTENT_DELALLOC |
4250 FIEMAP_EXTENT_UNKNOWN);
4251 } else {
4252 unsigned long ref_cnt = 0;
4254 disko = em->block_start + offset_in_extent;
4257 * As btrfs supports shared space, this information
4258 * can be exported to userspace tools via
4259 * flag FIEMAP_EXTENT_SHARED.
4261 ret = iterate_inodes_from_logical(
4262 em->block_start,
4263 BTRFS_I(inode)->root->fs_info,
4264 path, count_ext_ref, &ref_cnt);
4265 if (ret < 0 && ret != -ENOENT)
4266 goto out_free;
4268 if (ref_cnt > 1)
4269 flags |= FIEMAP_EXTENT_SHARED;
4271 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4272 flags |= FIEMAP_EXTENT_ENCODED;
4274 free_extent_map(em);
4275 em = NULL;
4276 if ((em_start >= last) || em_len == (u64)-1 ||
4277 (last == (u64)-1 && isize <= em_end)) {
4278 flags |= FIEMAP_EXTENT_LAST;
4279 end = 1;
4282 /* now scan forward to see if this is really the last extent. */
4283 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4284 get_extent);
4285 if (IS_ERR(em)) {
4286 ret = PTR_ERR(em);
4287 goto out;
4289 if (!em) {
4290 flags |= FIEMAP_EXTENT_LAST;
4291 end = 1;
4293 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4294 em_len, flags);
4295 if (ret)
4296 goto out_free;
4298 out_free:
4299 free_extent_map(em);
4300 out:
4301 btrfs_free_path(path);
4302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4303 &cached_state, GFP_NOFS);
4304 return ret;
4307 static void __free_extent_buffer(struct extent_buffer *eb)
4309 btrfs_leak_debug_del(&eb->leak_list);
4310 kmem_cache_free(extent_buffer_cache, eb);
4313 int extent_buffer_under_io(struct extent_buffer *eb)
4315 return (atomic_read(&eb->io_pages) ||
4316 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4317 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4321 * Helper for releasing extent buffer page.
4323 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4324 unsigned long start_idx)
4326 unsigned long index;
4327 unsigned long num_pages;
4328 struct page *page;
4329 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4331 BUG_ON(extent_buffer_under_io(eb));
4333 num_pages = num_extent_pages(eb->start, eb->len);
4334 index = start_idx + num_pages;
4335 if (start_idx >= index)
4336 return;
4338 do {
4339 index--;
4340 page = extent_buffer_page(eb, index);
4341 if (page && mapped) {
4342 spin_lock(&page->mapping->private_lock);
4344 * We do this since we'll remove the pages after we've
4345 * removed the eb from the radix tree, so we could race
4346 * and have this page now attached to the new eb. So
4347 * only clear page_private if it's still connected to
4348 * this eb.
4350 if (PagePrivate(page) &&
4351 page->private == (unsigned long)eb) {
4352 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4353 BUG_ON(PageDirty(page));
4354 BUG_ON(PageWriteback(page));
4356 * We need to make sure we haven't be attached
4357 * to a new eb.
4359 ClearPagePrivate(page);
4360 set_page_private(page, 0);
4361 /* One for the page private */
4362 page_cache_release(page);
4364 spin_unlock(&page->mapping->private_lock);
4367 if (page) {
4368 /* One for when we alloced the page */
4369 page_cache_release(page);
4371 } while (index != start_idx);
4375 * Helper for releasing the extent buffer.
4377 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4379 btrfs_release_extent_buffer_page(eb, 0);
4380 __free_extent_buffer(eb);
4383 static struct extent_buffer *
4384 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4385 unsigned long len, gfp_t mask)
4387 struct extent_buffer *eb = NULL;
4389 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4390 if (eb == NULL)
4391 return NULL;
4392 eb->start = start;
4393 eb->len = len;
4394 eb->fs_info = fs_info;
4395 eb->bflags = 0;
4396 rwlock_init(&eb->lock);
4397 atomic_set(&eb->write_locks, 0);
4398 atomic_set(&eb->read_locks, 0);
4399 atomic_set(&eb->blocking_readers, 0);
4400 atomic_set(&eb->blocking_writers, 0);
4401 atomic_set(&eb->spinning_readers, 0);
4402 atomic_set(&eb->spinning_writers, 0);
4403 eb->lock_nested = 0;
4404 init_waitqueue_head(&eb->write_lock_wq);
4405 init_waitqueue_head(&eb->read_lock_wq);
4407 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4409 spin_lock_init(&eb->refs_lock);
4410 atomic_set(&eb->refs, 1);
4411 atomic_set(&eb->io_pages, 0);
4414 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4416 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4417 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4418 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4420 return eb;
4423 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4425 unsigned long i;
4426 struct page *p;
4427 struct extent_buffer *new;
4428 unsigned long num_pages = num_extent_pages(src->start, src->len);
4430 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4431 if (new == NULL)
4432 return NULL;
4434 for (i = 0; i < num_pages; i++) {
4435 p = alloc_page(GFP_NOFS);
4436 if (!p) {
4437 btrfs_release_extent_buffer(new);
4438 return NULL;
4440 attach_extent_buffer_page(new, p);
4441 WARN_ON(PageDirty(p));
4442 SetPageUptodate(p);
4443 new->pages[i] = p;
4446 copy_extent_buffer(new, src, 0, 0, src->len);
4447 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4448 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4450 return new;
4453 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4455 struct extent_buffer *eb;
4456 unsigned long num_pages = num_extent_pages(0, len);
4457 unsigned long i;
4459 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4460 if (!eb)
4461 return NULL;
4463 for (i = 0; i < num_pages; i++) {
4464 eb->pages[i] = alloc_page(GFP_NOFS);
4465 if (!eb->pages[i])
4466 goto err;
4468 set_extent_buffer_uptodate(eb);
4469 btrfs_set_header_nritems(eb, 0);
4470 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4472 return eb;
4473 err:
4474 for (; i > 0; i--)
4475 __free_page(eb->pages[i - 1]);
4476 __free_extent_buffer(eb);
4477 return NULL;
4480 static void check_buffer_tree_ref(struct extent_buffer *eb)
4482 int refs;
4483 /* the ref bit is tricky. We have to make sure it is set
4484 * if we have the buffer dirty. Otherwise the
4485 * code to free a buffer can end up dropping a dirty
4486 * page
4488 * Once the ref bit is set, it won't go away while the
4489 * buffer is dirty or in writeback, and it also won't
4490 * go away while we have the reference count on the
4491 * eb bumped.
4493 * We can't just set the ref bit without bumping the
4494 * ref on the eb because free_extent_buffer might
4495 * see the ref bit and try to clear it. If this happens
4496 * free_extent_buffer might end up dropping our original
4497 * ref by mistake and freeing the page before we are able
4498 * to add one more ref.
4500 * So bump the ref count first, then set the bit. If someone
4501 * beat us to it, drop the ref we added.
4503 refs = atomic_read(&eb->refs);
4504 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4505 return;
4507 spin_lock(&eb->refs_lock);
4508 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4509 atomic_inc(&eb->refs);
4510 spin_unlock(&eb->refs_lock);
4513 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4515 unsigned long num_pages, i;
4517 check_buffer_tree_ref(eb);
4519 num_pages = num_extent_pages(eb->start, eb->len);
4520 for (i = 0; i < num_pages; i++) {
4521 struct page *p = extent_buffer_page(eb, i);
4522 mark_page_accessed(p);
4526 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4527 u64 start)
4529 struct extent_buffer *eb;
4531 rcu_read_lock();
4532 eb = radix_tree_lookup(&fs_info->buffer_radix,
4533 start >> PAGE_CACHE_SHIFT);
4534 if (eb && atomic_inc_not_zero(&eb->refs)) {
4535 rcu_read_unlock();
4536 mark_extent_buffer_accessed(eb);
4537 return eb;
4539 rcu_read_unlock();
4541 return NULL;
4544 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4545 u64 start, unsigned long len)
4547 unsigned long num_pages = num_extent_pages(start, len);
4548 unsigned long i;
4549 unsigned long index = start >> PAGE_CACHE_SHIFT;
4550 struct extent_buffer *eb;
4551 struct extent_buffer *exists = NULL;
4552 struct page *p;
4553 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4554 int uptodate = 1;
4555 int ret;
4557 eb = find_extent_buffer(fs_info, start);
4558 if (eb)
4559 return eb;
4561 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4562 if (!eb)
4563 return NULL;
4565 for (i = 0; i < num_pages; i++, index++) {
4566 p = find_or_create_page(mapping, index, GFP_NOFS);
4567 if (!p)
4568 goto free_eb;
4570 spin_lock(&mapping->private_lock);
4571 if (PagePrivate(p)) {
4573 * We could have already allocated an eb for this page
4574 * and attached one so lets see if we can get a ref on
4575 * the existing eb, and if we can we know it's good and
4576 * we can just return that one, else we know we can just
4577 * overwrite page->private.
4579 exists = (struct extent_buffer *)p->private;
4580 if (atomic_inc_not_zero(&exists->refs)) {
4581 spin_unlock(&mapping->private_lock);
4582 unlock_page(p);
4583 page_cache_release(p);
4584 mark_extent_buffer_accessed(exists);
4585 goto free_eb;
4589 * Do this so attach doesn't complain and we need to
4590 * drop the ref the old guy had.
4592 ClearPagePrivate(p);
4593 WARN_ON(PageDirty(p));
4594 page_cache_release(p);
4596 attach_extent_buffer_page(eb, p);
4597 spin_unlock(&mapping->private_lock);
4598 WARN_ON(PageDirty(p));
4599 mark_page_accessed(p);
4600 eb->pages[i] = p;
4601 if (!PageUptodate(p))
4602 uptodate = 0;
4605 * see below about how we avoid a nasty race with release page
4606 * and why we unlock later
4609 if (uptodate)
4610 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4611 again:
4612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4613 if (ret)
4614 goto free_eb;
4616 spin_lock(&fs_info->buffer_lock);
4617 ret = radix_tree_insert(&fs_info->buffer_radix,
4618 start >> PAGE_CACHE_SHIFT, eb);
4619 spin_unlock(&fs_info->buffer_lock);
4620 radix_tree_preload_end();
4621 if (ret == -EEXIST) {
4622 exists = find_extent_buffer(fs_info, start);
4623 if (exists)
4624 goto free_eb;
4625 else
4626 goto again;
4628 /* add one reference for the tree */
4629 check_buffer_tree_ref(eb);
4630 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4633 * there is a race where release page may have
4634 * tried to find this extent buffer in the radix
4635 * but failed. It will tell the VM it is safe to
4636 * reclaim the, and it will clear the page private bit.
4637 * We must make sure to set the page private bit properly
4638 * after the extent buffer is in the radix tree so
4639 * it doesn't get lost
4641 SetPageChecked(eb->pages[0]);
4642 for (i = 1; i < num_pages; i++) {
4643 p = extent_buffer_page(eb, i);
4644 ClearPageChecked(p);
4645 unlock_page(p);
4647 unlock_page(eb->pages[0]);
4648 return eb;
4650 free_eb:
4651 for (i = 0; i < num_pages; i++) {
4652 if (eb->pages[i])
4653 unlock_page(eb->pages[i]);
4656 WARN_ON(!atomic_dec_and_test(&eb->refs));
4657 btrfs_release_extent_buffer(eb);
4658 return exists;
4661 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4663 struct extent_buffer *eb =
4664 container_of(head, struct extent_buffer, rcu_head);
4666 __free_extent_buffer(eb);
4669 /* Expects to have eb->eb_lock already held */
4670 static int release_extent_buffer(struct extent_buffer *eb)
4672 WARN_ON(atomic_read(&eb->refs) == 0);
4673 if (atomic_dec_and_test(&eb->refs)) {
4674 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4675 struct btrfs_fs_info *fs_info = eb->fs_info;
4677 spin_unlock(&eb->refs_lock);
4679 spin_lock(&fs_info->buffer_lock);
4680 radix_tree_delete(&fs_info->buffer_radix,
4681 eb->start >> PAGE_CACHE_SHIFT);
4682 spin_unlock(&fs_info->buffer_lock);
4683 } else {
4684 spin_unlock(&eb->refs_lock);
4687 /* Should be safe to release our pages at this point */
4688 btrfs_release_extent_buffer_page(eb, 0);
4689 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4690 return 1;
4692 spin_unlock(&eb->refs_lock);
4694 return 0;
4697 void free_extent_buffer(struct extent_buffer *eb)
4699 int refs;
4700 int old;
4701 if (!eb)
4702 return;
4704 while (1) {
4705 refs = atomic_read(&eb->refs);
4706 if (refs <= 3)
4707 break;
4708 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4709 if (old == refs)
4710 return;
4713 spin_lock(&eb->refs_lock);
4714 if (atomic_read(&eb->refs) == 2 &&
4715 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4716 atomic_dec(&eb->refs);
4718 if (atomic_read(&eb->refs) == 2 &&
4719 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4720 !extent_buffer_under_io(eb) &&
4721 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4722 atomic_dec(&eb->refs);
4725 * I know this is terrible, but it's temporary until we stop tracking
4726 * the uptodate bits and such for the extent buffers.
4728 release_extent_buffer(eb);
4731 void free_extent_buffer_stale(struct extent_buffer *eb)
4733 if (!eb)
4734 return;
4736 spin_lock(&eb->refs_lock);
4737 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4739 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4740 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4741 atomic_dec(&eb->refs);
4742 release_extent_buffer(eb);
4745 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4747 unsigned long i;
4748 unsigned long num_pages;
4749 struct page *page;
4751 num_pages = num_extent_pages(eb->start, eb->len);
4753 for (i = 0; i < num_pages; i++) {
4754 page = extent_buffer_page(eb, i);
4755 if (!PageDirty(page))
4756 continue;
4758 lock_page(page);
4759 WARN_ON(!PagePrivate(page));
4761 clear_page_dirty_for_io(page);
4762 spin_lock_irq(&page->mapping->tree_lock);
4763 if (!PageDirty(page)) {
4764 radix_tree_tag_clear(&page->mapping->page_tree,
4765 page_index(page),
4766 PAGECACHE_TAG_DIRTY);
4768 spin_unlock_irq(&page->mapping->tree_lock);
4769 ClearPageError(page);
4770 unlock_page(page);
4772 WARN_ON(atomic_read(&eb->refs) == 0);
4775 int set_extent_buffer_dirty(struct extent_buffer *eb)
4777 unsigned long i;
4778 unsigned long num_pages;
4779 int was_dirty = 0;
4781 check_buffer_tree_ref(eb);
4783 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4785 num_pages = num_extent_pages(eb->start, eb->len);
4786 WARN_ON(atomic_read(&eb->refs) == 0);
4787 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4789 for (i = 0; i < num_pages; i++)
4790 set_page_dirty(extent_buffer_page(eb, i));
4791 return was_dirty;
4794 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4796 unsigned long i;
4797 struct page *page;
4798 unsigned long num_pages;
4800 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4801 num_pages = num_extent_pages(eb->start, eb->len);
4802 for (i = 0; i < num_pages; i++) {
4803 page = extent_buffer_page(eb, i);
4804 if (page)
4805 ClearPageUptodate(page);
4807 return 0;
4810 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4812 unsigned long i;
4813 struct page *page;
4814 unsigned long num_pages;
4816 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4817 num_pages = num_extent_pages(eb->start, eb->len);
4818 for (i = 0; i < num_pages; i++) {
4819 page = extent_buffer_page(eb, i);
4820 SetPageUptodate(page);
4822 return 0;
4825 int extent_buffer_uptodate(struct extent_buffer *eb)
4827 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4830 int read_extent_buffer_pages(struct extent_io_tree *tree,
4831 struct extent_buffer *eb, u64 start, int wait,
4832 get_extent_t *get_extent, int mirror_num)
4834 unsigned long i;
4835 unsigned long start_i;
4836 struct page *page;
4837 int err;
4838 int ret = 0;
4839 int locked_pages = 0;
4840 int all_uptodate = 1;
4841 unsigned long num_pages;
4842 unsigned long num_reads = 0;
4843 struct bio *bio = NULL;
4844 unsigned long bio_flags = 0;
4846 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4847 return 0;
4849 if (start) {
4850 WARN_ON(start < eb->start);
4851 start_i = (start >> PAGE_CACHE_SHIFT) -
4852 (eb->start >> PAGE_CACHE_SHIFT);
4853 } else {
4854 start_i = 0;
4857 num_pages = num_extent_pages(eb->start, eb->len);
4858 for (i = start_i; i < num_pages; i++) {
4859 page = extent_buffer_page(eb, i);
4860 if (wait == WAIT_NONE) {
4861 if (!trylock_page(page))
4862 goto unlock_exit;
4863 } else {
4864 lock_page(page);
4866 locked_pages++;
4867 if (!PageUptodate(page)) {
4868 num_reads++;
4869 all_uptodate = 0;
4872 if (all_uptodate) {
4873 if (start_i == 0)
4874 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4875 goto unlock_exit;
4878 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4879 eb->read_mirror = 0;
4880 atomic_set(&eb->io_pages, num_reads);
4881 for (i = start_i; i < num_pages; i++) {
4882 page = extent_buffer_page(eb, i);
4883 if (!PageUptodate(page)) {
4884 ClearPageError(page);
4885 err = __extent_read_full_page(tree, page,
4886 get_extent, &bio,
4887 mirror_num, &bio_flags,
4888 READ | REQ_META);
4889 if (err)
4890 ret = err;
4891 } else {
4892 unlock_page(page);
4896 if (bio) {
4897 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4898 bio_flags);
4899 if (err)
4900 return err;
4903 if (ret || wait != WAIT_COMPLETE)
4904 return ret;
4906 for (i = start_i; i < num_pages; i++) {
4907 page = extent_buffer_page(eb, i);
4908 wait_on_page_locked(page);
4909 if (!PageUptodate(page))
4910 ret = -EIO;
4913 return ret;
4915 unlock_exit:
4916 i = start_i;
4917 while (locked_pages > 0) {
4918 page = extent_buffer_page(eb, i);
4919 i++;
4920 unlock_page(page);
4921 locked_pages--;
4923 return ret;
4926 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4927 unsigned long start,
4928 unsigned long len)
4930 size_t cur;
4931 size_t offset;
4932 struct page *page;
4933 char *kaddr;
4934 char *dst = (char *)dstv;
4935 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4936 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4938 WARN_ON(start > eb->len);
4939 WARN_ON(start + len > eb->start + eb->len);
4941 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4943 while (len > 0) {
4944 page = extent_buffer_page(eb, i);
4946 cur = min(len, (PAGE_CACHE_SIZE - offset));
4947 kaddr = page_address(page);
4948 memcpy(dst, kaddr + offset, cur);
4950 dst += cur;
4951 len -= cur;
4952 offset = 0;
4953 i++;
4957 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4958 unsigned long min_len, char **map,
4959 unsigned long *map_start,
4960 unsigned long *map_len)
4962 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4963 char *kaddr;
4964 struct page *p;
4965 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4966 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4967 unsigned long end_i = (start_offset + start + min_len - 1) >>
4968 PAGE_CACHE_SHIFT;
4970 if (i != end_i)
4971 return -EINVAL;
4973 if (i == 0) {
4974 offset = start_offset;
4975 *map_start = 0;
4976 } else {
4977 offset = 0;
4978 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4981 if (start + min_len > eb->len) {
4982 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4983 "wanted %lu %lu\n",
4984 eb->start, eb->len, start, min_len);
4985 return -EINVAL;
4988 p = extent_buffer_page(eb, i);
4989 kaddr = page_address(p);
4990 *map = kaddr + offset;
4991 *map_len = PAGE_CACHE_SIZE - offset;
4992 return 0;
4995 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4996 unsigned long start,
4997 unsigned long len)
4999 size_t cur;
5000 size_t offset;
5001 struct page *page;
5002 char *kaddr;
5003 char *ptr = (char *)ptrv;
5004 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5005 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5006 int ret = 0;
5008 WARN_ON(start > eb->len);
5009 WARN_ON(start + len > eb->start + eb->len);
5011 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5013 while (len > 0) {
5014 page = extent_buffer_page(eb, i);
5016 cur = min(len, (PAGE_CACHE_SIZE - offset));
5018 kaddr = page_address(page);
5019 ret = memcmp(ptr, kaddr + offset, cur);
5020 if (ret)
5021 break;
5023 ptr += cur;
5024 len -= cur;
5025 offset = 0;
5026 i++;
5028 return ret;
5031 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5032 unsigned long start, unsigned long len)
5034 size_t cur;
5035 size_t offset;
5036 struct page *page;
5037 char *kaddr;
5038 char *src = (char *)srcv;
5039 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5040 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5042 WARN_ON(start > eb->len);
5043 WARN_ON(start + len > eb->start + eb->len);
5045 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5047 while (len > 0) {
5048 page = extent_buffer_page(eb, i);
5049 WARN_ON(!PageUptodate(page));
5051 cur = min(len, PAGE_CACHE_SIZE - offset);
5052 kaddr = page_address(page);
5053 memcpy(kaddr + offset, src, cur);
5055 src += cur;
5056 len -= cur;
5057 offset = 0;
5058 i++;
5062 void memset_extent_buffer(struct extent_buffer *eb, char c,
5063 unsigned long start, unsigned long len)
5065 size_t cur;
5066 size_t offset;
5067 struct page *page;
5068 char *kaddr;
5069 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5070 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5072 WARN_ON(start > eb->len);
5073 WARN_ON(start + len > eb->start + eb->len);
5075 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5077 while (len > 0) {
5078 page = extent_buffer_page(eb, i);
5079 WARN_ON(!PageUptodate(page));
5081 cur = min(len, PAGE_CACHE_SIZE - offset);
5082 kaddr = page_address(page);
5083 memset(kaddr + offset, c, cur);
5085 len -= cur;
5086 offset = 0;
5087 i++;
5091 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5092 unsigned long dst_offset, unsigned long src_offset,
5093 unsigned long len)
5095 u64 dst_len = dst->len;
5096 size_t cur;
5097 size_t offset;
5098 struct page *page;
5099 char *kaddr;
5100 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5101 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5103 WARN_ON(src->len != dst_len);
5105 offset = (start_offset + dst_offset) &
5106 (PAGE_CACHE_SIZE - 1);
5108 while (len > 0) {
5109 page = extent_buffer_page(dst, i);
5110 WARN_ON(!PageUptodate(page));
5112 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5114 kaddr = page_address(page);
5115 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5117 src_offset += cur;
5118 len -= cur;
5119 offset = 0;
5120 i++;
5124 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5126 unsigned long distance = (src > dst) ? src - dst : dst - src;
5127 return distance < len;
5130 static void copy_pages(struct page *dst_page, struct page *src_page,
5131 unsigned long dst_off, unsigned long src_off,
5132 unsigned long len)
5134 char *dst_kaddr = page_address(dst_page);
5135 char *src_kaddr;
5136 int must_memmove = 0;
5138 if (dst_page != src_page) {
5139 src_kaddr = page_address(src_page);
5140 } else {
5141 src_kaddr = dst_kaddr;
5142 if (areas_overlap(src_off, dst_off, len))
5143 must_memmove = 1;
5146 if (must_memmove)
5147 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5148 else
5149 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5152 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5153 unsigned long src_offset, unsigned long len)
5155 size_t cur;
5156 size_t dst_off_in_page;
5157 size_t src_off_in_page;
5158 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5159 unsigned long dst_i;
5160 unsigned long src_i;
5162 if (src_offset + len > dst->len) {
5163 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5164 "len %lu dst len %lu\n", src_offset, len, dst->len);
5165 BUG_ON(1);
5167 if (dst_offset + len > dst->len) {
5168 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5169 "len %lu dst len %lu\n", dst_offset, len, dst->len);
5170 BUG_ON(1);
5173 while (len > 0) {
5174 dst_off_in_page = (start_offset + dst_offset) &
5175 (PAGE_CACHE_SIZE - 1);
5176 src_off_in_page = (start_offset + src_offset) &
5177 (PAGE_CACHE_SIZE - 1);
5179 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5180 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5182 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5183 src_off_in_page));
5184 cur = min_t(unsigned long, cur,
5185 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5187 copy_pages(extent_buffer_page(dst, dst_i),
5188 extent_buffer_page(dst, src_i),
5189 dst_off_in_page, src_off_in_page, cur);
5191 src_offset += cur;
5192 dst_offset += cur;
5193 len -= cur;
5197 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5198 unsigned long src_offset, unsigned long len)
5200 size_t cur;
5201 size_t dst_off_in_page;
5202 size_t src_off_in_page;
5203 unsigned long dst_end = dst_offset + len - 1;
5204 unsigned long src_end = src_offset + len - 1;
5205 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5206 unsigned long dst_i;
5207 unsigned long src_i;
5209 if (src_offset + len > dst->len) {
5210 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5211 "len %lu len %lu\n", src_offset, len, dst->len);
5212 BUG_ON(1);
5214 if (dst_offset + len > dst->len) {
5215 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5216 "len %lu len %lu\n", dst_offset, len, dst->len);
5217 BUG_ON(1);
5219 if (dst_offset < src_offset) {
5220 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5221 return;
5223 while (len > 0) {
5224 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5225 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5227 dst_off_in_page = (start_offset + dst_end) &
5228 (PAGE_CACHE_SIZE - 1);
5229 src_off_in_page = (start_offset + src_end) &
5230 (PAGE_CACHE_SIZE - 1);
5232 cur = min_t(unsigned long, len, src_off_in_page + 1);
5233 cur = min(cur, dst_off_in_page + 1);
5234 copy_pages(extent_buffer_page(dst, dst_i),
5235 extent_buffer_page(dst, src_i),
5236 dst_off_in_page - cur + 1,
5237 src_off_in_page - cur + 1, cur);
5239 dst_end -= cur;
5240 src_end -= cur;
5241 len -= cur;
5245 int try_release_extent_buffer(struct page *page)
5247 struct extent_buffer *eb;
5250 * We need to make sure noboody is attaching this page to an eb right
5251 * now.
5253 spin_lock(&page->mapping->private_lock);
5254 if (!PagePrivate(page)) {
5255 spin_unlock(&page->mapping->private_lock);
5256 return 1;
5259 eb = (struct extent_buffer *)page->private;
5260 BUG_ON(!eb);
5263 * This is a little awful but should be ok, we need to make sure that
5264 * the eb doesn't disappear out from under us while we're looking at
5265 * this page.
5267 spin_lock(&eb->refs_lock);
5268 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5269 spin_unlock(&eb->refs_lock);
5270 spin_unlock(&page->mapping->private_lock);
5271 return 0;
5273 spin_unlock(&page->mapping->private_lock);
5276 * If tree ref isn't set then we know the ref on this eb is a real ref,
5277 * so just return, this page will likely be freed soon anyway.
5279 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5280 spin_unlock(&eb->refs_lock);
5281 return 0;
5284 return release_extent_buffer(eb);