4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
51 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
52 unsigned long bio_flags
,
53 struct writeback_control
*wbc
);
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
57 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
59 bh
->b_end_io
= handler
;
60 bh
->b_private
= private;
62 EXPORT_SYMBOL(init_buffer
);
64 inline void touch_buffer(struct buffer_head
*bh
)
66 trace_block_touch_buffer(bh
);
67 mark_page_accessed(bh
->b_page
);
69 EXPORT_SYMBOL(touch_buffer
);
71 void __lock_buffer(struct buffer_head
*bh
)
73 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void unlock_buffer(struct buffer_head
*bh
)
79 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
80 smp_mb__after_atomic();
81 wake_up_bit(&bh
->b_state
, BH_Lock
);
83 EXPORT_SYMBOL(unlock_buffer
);
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
90 void buffer_check_dirty_writeback(struct page
*page
,
91 bool *dirty
, bool *writeback
)
93 struct buffer_head
*head
, *bh
;
97 BUG_ON(!PageLocked(page
));
99 if (!page_has_buffers(page
))
102 if (PageWriteback(page
))
105 head
= page_buffers(page
);
108 if (buffer_locked(bh
))
111 if (buffer_dirty(bh
))
114 bh
= bh
->b_this_page
;
115 } while (bh
!= head
);
117 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
124 void __wait_on_buffer(struct buffer_head
* bh
)
126 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
128 EXPORT_SYMBOL(__wait_on_buffer
);
131 __clear_page_buffers(struct page
*page
)
133 ClearPagePrivate(page
);
134 set_page_private(page
, 0);
138 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
140 if (!test_bit(BH_Quiet
, &bh
->b_state
))
141 printk_ratelimited(KERN_ERR
142 "Buffer I/O error on dev %pg, logical block %llu%s\n",
143 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
147 * End-of-IO handler helper function which does not touch the bh after
149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150 * a race there is benign: unlock_buffer() only use the bh's address for
151 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
157 set_buffer_uptodate(bh
);
159 /* This happens, due to failed read-ahead attempts. */
160 clear_buffer_uptodate(bh
);
166 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
167 * unlock the buffer. This is what ll_rw_block uses too.
169 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
171 __end_buffer_read_notouch(bh
, uptodate
);
174 EXPORT_SYMBOL(end_buffer_read_sync
);
176 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
179 set_buffer_uptodate(bh
);
181 buffer_io_error(bh
, ", lost sync page write");
182 set_buffer_write_io_error(bh
);
183 clear_buffer_uptodate(bh
);
188 EXPORT_SYMBOL(end_buffer_write_sync
);
191 * Various filesystems appear to want __find_get_block to be non-blocking.
192 * But it's the page lock which protects the buffers. To get around this,
193 * we get exclusion from try_to_free_buffers with the blockdev mapping's
196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197 * may be quite high. This code could TryLock the page, and if that
198 * succeeds, there is no need to take private_lock. (But if
199 * private_lock is contended then so is mapping->tree_lock).
201 static struct buffer_head
*
202 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
204 struct inode
*bd_inode
= bdev
->bd_inode
;
205 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
206 struct buffer_head
*ret
= NULL
;
208 struct buffer_head
*bh
;
209 struct buffer_head
*head
;
213 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
214 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
218 spin_lock(&bd_mapping
->private_lock
);
219 if (!page_has_buffers(page
))
221 head
= page_buffers(page
);
224 if (!buffer_mapped(bh
))
226 else if (bh
->b_blocknr
== block
) {
231 bh
= bh
->b_this_page
;
232 } while (bh
!= head
);
234 /* we might be here because some of the buffers on this page are
235 * not mapped. This is due to various races between
236 * file io on the block device and getblk. It gets dealt with
237 * elsewhere, don't buffer_error if we had some unmapped buffers
240 printk("__find_get_block_slow() failed. "
241 "block=%llu, b_blocknr=%llu\n",
242 (unsigned long long)block
,
243 (unsigned long long)bh
->b_blocknr
);
244 printk("b_state=0x%08lx, b_size=%zu\n",
245 bh
->b_state
, bh
->b_size
);
246 printk("device %pg blocksize: %d\n", bdev
,
247 1 << bd_inode
->i_blkbits
);
250 spin_unlock(&bd_mapping
->private_lock
);
257 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
259 static void free_more_memory(void)
264 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
267 for_each_online_node(nid
) {
269 z
= first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
270 gfp_zone(GFP_NOFS
), NULL
);
272 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
278 * I/O completion handler for block_read_full_page() - pages
279 * which come unlocked at the end of I/O.
281 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
284 struct buffer_head
*first
;
285 struct buffer_head
*tmp
;
287 int page_uptodate
= 1;
289 BUG_ON(!buffer_async_read(bh
));
293 set_buffer_uptodate(bh
);
295 clear_buffer_uptodate(bh
);
296 buffer_io_error(bh
, ", async page read");
301 * Be _very_ careful from here on. Bad things can happen if
302 * two buffer heads end IO at almost the same time and both
303 * decide that the page is now completely done.
305 first
= page_buffers(page
);
306 local_irq_save(flags
);
307 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
308 clear_buffer_async_read(bh
);
312 if (!buffer_uptodate(tmp
))
314 if (buffer_async_read(tmp
)) {
315 BUG_ON(!buffer_locked(tmp
));
318 tmp
= tmp
->b_this_page
;
320 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
321 local_irq_restore(flags
);
324 * If none of the buffers had errors and they are all
325 * uptodate then we can set the page uptodate.
327 if (page_uptodate
&& !PageError(page
))
328 SetPageUptodate(page
);
333 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
334 local_irq_restore(flags
);
339 * Completion handler for block_write_full_page() - pages which are unlocked
340 * during I/O, and which have PageWriteback cleared upon I/O completion.
342 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
345 struct buffer_head
*first
;
346 struct buffer_head
*tmp
;
349 BUG_ON(!buffer_async_write(bh
));
353 set_buffer_uptodate(bh
);
355 buffer_io_error(bh
, ", lost async page write");
356 mapping_set_error(page
->mapping
, -EIO
);
357 set_buffer_write_io_error(bh
);
358 clear_buffer_uptodate(bh
);
362 first
= page_buffers(page
);
363 local_irq_save(flags
);
364 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
366 clear_buffer_async_write(bh
);
368 tmp
= bh
->b_this_page
;
370 if (buffer_async_write(tmp
)) {
371 BUG_ON(!buffer_locked(tmp
));
374 tmp
= tmp
->b_this_page
;
376 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
377 local_irq_restore(flags
);
378 end_page_writeback(page
);
382 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
383 local_irq_restore(flags
);
386 EXPORT_SYMBOL(end_buffer_async_write
);
389 * If a page's buffers are under async readin (end_buffer_async_read
390 * completion) then there is a possibility that another thread of
391 * control could lock one of the buffers after it has completed
392 * but while some of the other buffers have not completed. This
393 * locked buffer would confuse end_buffer_async_read() into not unlocking
394 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
395 * that this buffer is not under async I/O.
397 * The page comes unlocked when it has no locked buffer_async buffers
400 * PageLocked prevents anyone starting new async I/O reads any of
403 * PageWriteback is used to prevent simultaneous writeout of the same
406 * PageLocked prevents anyone from starting writeback of a page which is
407 * under read I/O (PageWriteback is only ever set against a locked page).
409 static void mark_buffer_async_read(struct buffer_head
*bh
)
411 bh
->b_end_io
= end_buffer_async_read
;
412 set_buffer_async_read(bh
);
415 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
416 bh_end_io_t
*handler
)
418 bh
->b_end_io
= handler
;
419 set_buffer_async_write(bh
);
422 void mark_buffer_async_write(struct buffer_head
*bh
)
424 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
426 EXPORT_SYMBOL(mark_buffer_async_write
);
430 * fs/buffer.c contains helper functions for buffer-backed address space's
431 * fsync functions. A common requirement for buffer-based filesystems is
432 * that certain data from the backing blockdev needs to be written out for
433 * a successful fsync(). For example, ext2 indirect blocks need to be
434 * written back and waited upon before fsync() returns.
436 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
437 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
438 * management of a list of dependent buffers at ->i_mapping->private_list.
440 * Locking is a little subtle: try_to_free_buffers() will remove buffers
441 * from their controlling inode's queue when they are being freed. But
442 * try_to_free_buffers() will be operating against the *blockdev* mapping
443 * at the time, not against the S_ISREG file which depends on those buffers.
444 * So the locking for private_list is via the private_lock in the address_space
445 * which backs the buffers. Which is different from the address_space
446 * against which the buffers are listed. So for a particular address_space,
447 * mapping->private_lock does *not* protect mapping->private_list! In fact,
448 * mapping->private_list will always be protected by the backing blockdev's
451 * Which introduces a requirement: all buffers on an address_space's
452 * ->private_list must be from the same address_space: the blockdev's.
454 * address_spaces which do not place buffers at ->private_list via these
455 * utility functions are free to use private_lock and private_list for
456 * whatever they want. The only requirement is that list_empty(private_list)
457 * be true at clear_inode() time.
459 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
460 * filesystems should do that. invalidate_inode_buffers() should just go
461 * BUG_ON(!list_empty).
463 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
464 * take an address_space, not an inode. And it should be called
465 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
468 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
469 * list if it is already on a list. Because if the buffer is on a list,
470 * it *must* already be on the right one. If not, the filesystem is being
471 * silly. This will save a ton of locking. But first we have to ensure
472 * that buffers are taken *off* the old inode's list when they are freed
473 * (presumably in truncate). That requires careful auditing of all
474 * filesystems (do it inside bforget()). It could also be done by bringing
479 * The buffer's backing address_space's private_lock must be held
481 static void __remove_assoc_queue(struct buffer_head
*bh
)
483 list_del_init(&bh
->b_assoc_buffers
);
484 WARN_ON(!bh
->b_assoc_map
);
485 if (buffer_write_io_error(bh
))
486 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
487 bh
->b_assoc_map
= NULL
;
490 int inode_has_buffers(struct inode
*inode
)
492 return !list_empty(&inode
->i_data
.private_list
);
496 * osync is designed to support O_SYNC io. It waits synchronously for
497 * all already-submitted IO to complete, but does not queue any new
498 * writes to the disk.
500 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
501 * you dirty the buffers, and then use osync_inode_buffers to wait for
502 * completion. Any other dirty buffers which are not yet queued for
503 * write will not be flushed to disk by the osync.
505 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
507 struct buffer_head
*bh
;
513 list_for_each_prev(p
, list
) {
515 if (buffer_locked(bh
)) {
519 if (!buffer_uptodate(bh
))
530 static void do_thaw_one(struct super_block
*sb
, void *unused
)
532 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
533 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
536 static void do_thaw_all(struct work_struct
*work
)
538 iterate_supers(do_thaw_one
, NULL
);
540 printk(KERN_WARNING
"Emergency Thaw complete\n");
544 * emergency_thaw_all -- forcibly thaw every frozen filesystem
546 * Used for emergency unfreeze of all filesystems via SysRq
548 void emergency_thaw_all(void)
550 struct work_struct
*work
;
552 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
554 INIT_WORK(work
, do_thaw_all
);
560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561 * @mapping: the mapping which wants those buffers written
563 * Starts I/O against the buffers at mapping->private_list, and waits upon
566 * Basically, this is a convenience function for fsync().
567 * @mapping is a file or directory which needs those buffers to be written for
568 * a successful fsync().
570 int sync_mapping_buffers(struct address_space
*mapping
)
572 struct address_space
*buffer_mapping
= mapping
->private_data
;
574 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
577 return fsync_buffers_list(&buffer_mapping
->private_lock
,
578 &mapping
->private_list
);
580 EXPORT_SYMBOL(sync_mapping_buffers
);
583 * Called when we've recently written block `bblock', and it is known that
584 * `bblock' was for a buffer_boundary() buffer. This means that the block at
585 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
586 * dirty, schedule it for IO. So that indirects merge nicely with their data.
588 void write_boundary_block(struct block_device
*bdev
,
589 sector_t bblock
, unsigned blocksize
)
591 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
593 if (buffer_dirty(bh
))
594 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
599 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
601 struct address_space
*mapping
= inode
->i_mapping
;
602 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
604 mark_buffer_dirty(bh
);
605 if (!mapping
->private_data
) {
606 mapping
->private_data
= buffer_mapping
;
608 BUG_ON(mapping
->private_data
!= buffer_mapping
);
610 if (!bh
->b_assoc_map
) {
611 spin_lock(&buffer_mapping
->private_lock
);
612 list_move_tail(&bh
->b_assoc_buffers
,
613 &mapping
->private_list
);
614 bh
->b_assoc_map
= mapping
;
615 spin_unlock(&buffer_mapping
->private_lock
);
618 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
621 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
624 * If warn is true, then emit a warning if the page is not uptodate and has
625 * not been truncated.
627 * The caller must hold lock_page_memcg().
629 static void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
634 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
635 if (page
->mapping
) { /* Race with truncate? */
636 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
637 account_page_dirtied(page
, mapping
);
638 radix_tree_tag_set(&mapping
->page_tree
,
639 page_index(page
), PAGECACHE_TAG_DIRTY
);
641 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
645 * Add a page to the dirty page list.
647 * It is a sad fact of life that this function is called from several places
648 * deeply under spinlocking. It may not sleep.
650 * If the page has buffers, the uptodate buffers are set dirty, to preserve
651 * dirty-state coherency between the page and the buffers. It the page does
652 * not have buffers then when they are later attached they will all be set
655 * The buffers are dirtied before the page is dirtied. There's a small race
656 * window in which a writepage caller may see the page cleanness but not the
657 * buffer dirtiness. That's fine. If this code were to set the page dirty
658 * before the buffers, a concurrent writepage caller could clear the page dirty
659 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
660 * page on the dirty page list.
662 * We use private_lock to lock against try_to_free_buffers while using the
663 * page's buffer list. Also use this to protect against clean buffers being
664 * added to the page after it was set dirty.
666 * FIXME: may need to call ->reservepage here as well. That's rather up to the
667 * address_space though.
669 int __set_page_dirty_buffers(struct page
*page
)
672 struct address_space
*mapping
= page_mapping(page
);
674 if (unlikely(!mapping
))
675 return !TestSetPageDirty(page
);
677 spin_lock(&mapping
->private_lock
);
678 if (page_has_buffers(page
)) {
679 struct buffer_head
*head
= page_buffers(page
);
680 struct buffer_head
*bh
= head
;
683 set_buffer_dirty(bh
);
684 bh
= bh
->b_this_page
;
685 } while (bh
!= head
);
688 * Lock out page->mem_cgroup migration to keep PageDirty
689 * synchronized with per-memcg dirty page counters.
691 lock_page_memcg(page
);
692 newly_dirty
= !TestSetPageDirty(page
);
693 spin_unlock(&mapping
->private_lock
);
696 __set_page_dirty(page
, mapping
, 1);
698 unlock_page_memcg(page
);
701 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
705 EXPORT_SYMBOL(__set_page_dirty_buffers
);
708 * Write out and wait upon a list of buffers.
710 * We have conflicting pressures: we want to make sure that all
711 * initially dirty buffers get waited on, but that any subsequently
712 * dirtied buffers don't. After all, we don't want fsync to last
713 * forever if somebody is actively writing to the file.
715 * Do this in two main stages: first we copy dirty buffers to a
716 * temporary inode list, queueing the writes as we go. Then we clean
717 * up, waiting for those writes to complete.
719 * During this second stage, any subsequent updates to the file may end
720 * up refiling the buffer on the original inode's dirty list again, so
721 * there is a chance we will end up with a buffer queued for write but
722 * not yet completed on that list. So, as a final cleanup we go through
723 * the osync code to catch these locked, dirty buffers without requeuing
724 * any newly dirty buffers for write.
726 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
728 struct buffer_head
*bh
;
729 struct list_head tmp
;
730 struct address_space
*mapping
;
732 struct blk_plug plug
;
734 INIT_LIST_HEAD(&tmp
);
735 blk_start_plug(&plug
);
738 while (!list_empty(list
)) {
739 bh
= BH_ENTRY(list
->next
);
740 mapping
= bh
->b_assoc_map
;
741 __remove_assoc_queue(bh
);
742 /* Avoid race with mark_buffer_dirty_inode() which does
743 * a lockless check and we rely on seeing the dirty bit */
745 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
746 list_add(&bh
->b_assoc_buffers
, &tmp
);
747 bh
->b_assoc_map
= mapping
;
748 if (buffer_dirty(bh
)) {
752 * Ensure any pending I/O completes so that
753 * write_dirty_buffer() actually writes the
754 * current contents - it is a noop if I/O is
755 * still in flight on potentially older
758 write_dirty_buffer(bh
, REQ_SYNC
);
761 * Kick off IO for the previous mapping. Note
762 * that we will not run the very last mapping,
763 * wait_on_buffer() will do that for us
764 * through sync_buffer().
773 blk_finish_plug(&plug
);
776 while (!list_empty(&tmp
)) {
777 bh
= BH_ENTRY(tmp
.prev
);
779 mapping
= bh
->b_assoc_map
;
780 __remove_assoc_queue(bh
);
781 /* Avoid race with mark_buffer_dirty_inode() which does
782 * a lockless check and we rely on seeing the dirty bit */
784 if (buffer_dirty(bh
)) {
785 list_add(&bh
->b_assoc_buffers
,
786 &mapping
->private_list
);
787 bh
->b_assoc_map
= mapping
;
791 if (!buffer_uptodate(bh
))
798 err2
= osync_buffers_list(lock
, list
);
806 * Invalidate any and all dirty buffers on a given inode. We are
807 * probably unmounting the fs, but that doesn't mean we have already
808 * done a sync(). Just drop the buffers from the inode list.
810 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
811 * assumes that all the buffers are against the blockdev. Not true
814 void invalidate_inode_buffers(struct inode
*inode
)
816 if (inode_has_buffers(inode
)) {
817 struct address_space
*mapping
= &inode
->i_data
;
818 struct list_head
*list
= &mapping
->private_list
;
819 struct address_space
*buffer_mapping
= mapping
->private_data
;
821 spin_lock(&buffer_mapping
->private_lock
);
822 while (!list_empty(list
))
823 __remove_assoc_queue(BH_ENTRY(list
->next
));
824 spin_unlock(&buffer_mapping
->private_lock
);
827 EXPORT_SYMBOL(invalidate_inode_buffers
);
830 * Remove any clean buffers from the inode's buffer list. This is called
831 * when we're trying to free the inode itself. Those buffers can pin it.
833 * Returns true if all buffers were removed.
835 int remove_inode_buffers(struct inode
*inode
)
839 if (inode_has_buffers(inode
)) {
840 struct address_space
*mapping
= &inode
->i_data
;
841 struct list_head
*list
= &mapping
->private_list
;
842 struct address_space
*buffer_mapping
= mapping
->private_data
;
844 spin_lock(&buffer_mapping
->private_lock
);
845 while (!list_empty(list
)) {
846 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
847 if (buffer_dirty(bh
)) {
851 __remove_assoc_queue(bh
);
853 spin_unlock(&buffer_mapping
->private_lock
);
859 * Create the appropriate buffers when given a page for data area and
860 * the size of each buffer.. Use the bh->b_this_page linked list to
861 * follow the buffers created. Return NULL if unable to create more
864 * The retry flag is used to differentiate async IO (paging, swapping)
865 * which may not fail from ordinary buffer allocations.
867 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
870 struct buffer_head
*bh
, *head
;
876 while ((offset
-= size
) >= 0) {
877 bh
= alloc_buffer_head(GFP_NOFS
);
881 bh
->b_this_page
= head
;
887 /* Link the buffer to its page */
888 set_bh_page(bh
, page
, offset
);
892 * In case anything failed, we just free everything we got.
898 head
= head
->b_this_page
;
899 free_buffer_head(bh
);
904 * Return failure for non-async IO requests. Async IO requests
905 * are not allowed to fail, so we have to wait until buffer heads
906 * become available. But we don't want tasks sleeping with
907 * partially complete buffers, so all were released above.
912 /* We're _really_ low on memory. Now we just
913 * wait for old buffer heads to become free due to
914 * finishing IO. Since this is an async request and
915 * the reserve list is empty, we're sure there are
916 * async buffer heads in use.
921 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
924 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
926 struct buffer_head
*bh
, *tail
;
931 bh
= bh
->b_this_page
;
933 tail
->b_this_page
= head
;
934 attach_page_buffers(page
, head
);
937 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
939 sector_t retval
= ~((sector_t
)0);
940 loff_t sz
= i_size_read(bdev
->bd_inode
);
943 unsigned int sizebits
= blksize_bits(size
);
944 retval
= (sz
>> sizebits
);
950 * Initialise the state of a blockdev page's buffers.
953 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
954 sector_t block
, int size
)
956 struct buffer_head
*head
= page_buffers(page
);
957 struct buffer_head
*bh
= head
;
958 int uptodate
= PageUptodate(page
);
959 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
962 if (!buffer_mapped(bh
)) {
963 init_buffer(bh
, NULL
, NULL
);
965 bh
->b_blocknr
= block
;
967 set_buffer_uptodate(bh
);
968 if (block
< end_block
)
969 set_buffer_mapped(bh
);
972 bh
= bh
->b_this_page
;
973 } while (bh
!= head
);
976 * Caller needs to validate requested block against end of device.
982 * Create the page-cache page that contains the requested block.
984 * This is used purely for blockdev mappings.
987 grow_dev_page(struct block_device
*bdev
, sector_t block
,
988 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
990 struct inode
*inode
= bdev
->bd_inode
;
992 struct buffer_head
*bh
;
994 int ret
= 0; /* Will call free_more_memory() */
997 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
1000 * XXX: __getblk_slow() can not really deal with failure and
1001 * will endlessly loop on improvised global reclaim. Prefer
1002 * looping in the allocator rather than here, at least that
1003 * code knows what it's doing.
1005 gfp_mask
|= __GFP_NOFAIL
;
1007 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
1011 BUG_ON(!PageLocked(page
));
1013 if (page_has_buffers(page
)) {
1014 bh
= page_buffers(page
);
1015 if (bh
->b_size
== size
) {
1016 end_block
= init_page_buffers(page
, bdev
,
1017 (sector_t
)index
<< sizebits
,
1021 if (!try_to_free_buffers(page
))
1026 * Allocate some buffers for this page
1028 bh
= alloc_page_buffers(page
, size
, 0);
1033 * Link the page to the buffers and initialise them. Take the
1034 * lock to be atomic wrt __find_get_block(), which does not
1035 * run under the page lock.
1037 spin_lock(&inode
->i_mapping
->private_lock
);
1038 link_dev_buffers(page
, bh
);
1039 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1041 spin_unlock(&inode
->i_mapping
->private_lock
);
1043 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1051 * Create buffers for the specified block device block's page. If
1052 * that page was dirty, the buffers are set dirty also.
1055 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1063 } while ((size
<< sizebits
) < PAGE_SIZE
);
1065 index
= block
>> sizebits
;
1068 * Check for a block which wants to lie outside our maximum possible
1069 * pagecache index. (this comparison is done using sector_t types).
1071 if (unlikely(index
!= block
>> sizebits
)) {
1072 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1074 __func__
, (unsigned long long)block
,
1079 /* Create a page with the proper size buffers.. */
1080 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1083 static struct buffer_head
*
1084 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1085 unsigned size
, gfp_t gfp
)
1087 /* Size must be multiple of hard sectorsize */
1088 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1089 (size
< 512 || size
> PAGE_SIZE
))) {
1090 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1092 printk(KERN_ERR
"logical block size: %d\n",
1093 bdev_logical_block_size(bdev
));
1100 struct buffer_head
*bh
;
1103 bh
= __find_get_block(bdev
, block
, size
);
1107 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1116 * The relationship between dirty buffers and dirty pages:
1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119 * the page is tagged dirty in its radix tree.
1121 * At all times, the dirtiness of the buffers represents the dirtiness of
1122 * subsections of the page. If the page has buffers, the page dirty bit is
1123 * merely a hint about the true dirty state.
1125 * When a page is set dirty in its entirety, all its buffers are marked dirty
1126 * (if the page has buffers).
1128 * When a buffer is marked dirty, its page is dirtied, but the page's other
1131 * Also. When blockdev buffers are explicitly read with bread(), they
1132 * individually become uptodate. But their backing page remains not
1133 * uptodate - even if all of its buffers are uptodate. A subsequent
1134 * block_read_full_page() against that page will discover all the uptodate
1135 * buffers, will set the page uptodate and will perform no I/O.
1139 * mark_buffer_dirty - mark a buffer_head as needing writeout
1140 * @bh: the buffer_head to mark dirty
1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143 * backing page dirty, then tag the page as dirty in its address_space's radix
1144 * tree and then attach the address_space's inode to its superblock's dirty
1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1148 * mapping->tree_lock and mapping->host->i_lock.
1150 void mark_buffer_dirty(struct buffer_head
*bh
)
1152 WARN_ON_ONCE(!buffer_uptodate(bh
));
1154 trace_block_dirty_buffer(bh
);
1157 * Very *carefully* optimize the it-is-already-dirty case.
1159 * Don't let the final "is it dirty" escape to before we
1160 * perhaps modified the buffer.
1162 if (buffer_dirty(bh
)) {
1164 if (buffer_dirty(bh
))
1168 if (!test_set_buffer_dirty(bh
)) {
1169 struct page
*page
= bh
->b_page
;
1170 struct address_space
*mapping
= NULL
;
1172 lock_page_memcg(page
);
1173 if (!TestSetPageDirty(page
)) {
1174 mapping
= page_mapping(page
);
1176 __set_page_dirty(page
, mapping
, 0);
1178 unlock_page_memcg(page
);
1180 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1183 EXPORT_SYMBOL(mark_buffer_dirty
);
1186 * Decrement a buffer_head's reference count. If all buffers against a page
1187 * have zero reference count, are clean and unlocked, and if the page is clean
1188 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190 * a page but it ends up not being freed, and buffers may later be reattached).
1192 void __brelse(struct buffer_head
* buf
)
1194 if (atomic_read(&buf
->b_count
)) {
1198 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1200 EXPORT_SYMBOL(__brelse
);
1203 * bforget() is like brelse(), except it discards any
1204 * potentially dirty data.
1206 void __bforget(struct buffer_head
*bh
)
1208 clear_buffer_dirty(bh
);
1209 if (bh
->b_assoc_map
) {
1210 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1212 spin_lock(&buffer_mapping
->private_lock
);
1213 list_del_init(&bh
->b_assoc_buffers
);
1214 bh
->b_assoc_map
= NULL
;
1215 spin_unlock(&buffer_mapping
->private_lock
);
1219 EXPORT_SYMBOL(__bforget
);
1221 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1224 if (buffer_uptodate(bh
)) {
1229 bh
->b_end_io
= end_buffer_read_sync
;
1230 submit_bh(REQ_OP_READ
, 0, bh
);
1232 if (buffer_uptodate(bh
))
1240 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1241 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1242 * refcount elevated by one when they're in an LRU. A buffer can only appear
1243 * once in a particular CPU's LRU. A single buffer can be present in multiple
1244 * CPU's LRUs at the same time.
1246 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247 * sb_find_get_block().
1249 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1250 * a local interrupt disable for that.
1253 #define BH_LRU_SIZE 16
1256 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1259 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1262 #define bh_lru_lock() local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1265 #define bh_lru_lock() preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1269 static inline void check_irqs_on(void)
1271 #ifdef irqs_disabled
1272 BUG_ON(irqs_disabled());
1277 * The LRU management algorithm is dopey-but-simple. Sorry.
1279 static void bh_lru_install(struct buffer_head
*bh
)
1281 struct buffer_head
*evictee
= NULL
;
1285 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1286 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1292 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1293 struct buffer_head
*bh2
=
1294 __this_cpu_read(bh_lrus
.bhs
[in
]);
1299 if (out
>= BH_LRU_SIZE
) {
1300 BUG_ON(evictee
!= NULL
);
1307 while (out
< BH_LRU_SIZE
)
1309 memcpy(this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1318 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1320 static struct buffer_head
*
1321 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1323 struct buffer_head
*ret
= NULL
;
1328 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1329 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1331 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1332 bh
->b_size
== size
) {
1335 __this_cpu_write(bh_lrus
.bhs
[i
],
1336 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1339 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1351 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1352 * it in the LRU and mark it as accessed. If it is not present then return
1355 struct buffer_head
*
1356 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1358 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1361 /* __find_get_block_slow will mark the page accessed */
1362 bh
= __find_get_block_slow(bdev
, block
);
1370 EXPORT_SYMBOL(__find_get_block
);
1373 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1374 * which corresponds to the passed block_device, block and size. The
1375 * returned buffer has its reference count incremented.
1377 * __getblk_gfp() will lock up the machine if grow_dev_page's
1378 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1380 struct buffer_head
*
1381 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1382 unsigned size
, gfp_t gfp
)
1384 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1388 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1391 EXPORT_SYMBOL(__getblk_gfp
);
1394 * Do async read-ahead on a buffer..
1396 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1398 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1400 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1404 EXPORT_SYMBOL(__breadahead
);
1407 * __bread_gfp() - reads a specified block and returns the bh
1408 * @bdev: the block_device to read from
1409 * @block: number of block
1410 * @size: size (in bytes) to read
1411 * @gfp: page allocation flag
1413 * Reads a specified block, and returns buffer head that contains it.
1414 * The page cache can be allocated from non-movable area
1415 * not to prevent page migration if you set gfp to zero.
1416 * It returns NULL if the block was unreadable.
1418 struct buffer_head
*
1419 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1420 unsigned size
, gfp_t gfp
)
1422 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1424 if (likely(bh
) && !buffer_uptodate(bh
))
1425 bh
= __bread_slow(bh
);
1428 EXPORT_SYMBOL(__bread_gfp
);
1431 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432 * This doesn't race because it runs in each cpu either in irq
1433 * or with preempt disabled.
1435 static void invalidate_bh_lru(void *arg
)
1437 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1440 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1444 put_cpu_var(bh_lrus
);
1447 static bool has_bh_in_lru(int cpu
, void *dummy
)
1449 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1452 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1460 void invalidate_bh_lrus(void)
1462 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1466 void set_bh_page(struct buffer_head
*bh
,
1467 struct page
*page
, unsigned long offset
)
1470 BUG_ON(offset
>= PAGE_SIZE
);
1471 if (PageHighMem(page
))
1473 * This catches illegal uses and preserves the offset:
1475 bh
->b_data
= (char *)(0 + offset
);
1477 bh
->b_data
= page_address(page
) + offset
;
1479 EXPORT_SYMBOL(set_bh_page
);
1482 * Called when truncating a buffer on a page completely.
1485 /* Bits that are cleared during an invalidate */
1486 #define BUFFER_FLAGS_DISCARD \
1487 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488 1 << BH_Delay | 1 << BH_Unwritten)
1490 static void discard_buffer(struct buffer_head
* bh
)
1492 unsigned long b_state
, b_state_old
;
1495 clear_buffer_dirty(bh
);
1497 b_state
= bh
->b_state
;
1499 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1500 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1501 if (b_state_old
== b_state
)
1503 b_state
= b_state_old
;
1509 * block_invalidatepage - invalidate part or all of a buffer-backed page
1511 * @page: the page which is affected
1512 * @offset: start of the range to invalidate
1513 * @length: length of the range to invalidate
1515 * block_invalidatepage() is called when all or part of the page has become
1516 * invalidated by a truncate operation.
1518 * block_invalidatepage() does not have to release all buffers, but it must
1519 * ensure that no dirty buffer is left outside @offset and that no I/O
1520 * is underway against any of the blocks which are outside the truncation
1521 * point. Because the caller is about to free (and possibly reuse) those
1524 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1525 unsigned int length
)
1527 struct buffer_head
*head
, *bh
, *next
;
1528 unsigned int curr_off
= 0;
1529 unsigned int stop
= length
+ offset
;
1531 BUG_ON(!PageLocked(page
));
1532 if (!page_has_buffers(page
))
1536 * Check for overflow
1538 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1540 head
= page_buffers(page
);
1543 unsigned int next_off
= curr_off
+ bh
->b_size
;
1544 next
= bh
->b_this_page
;
1547 * Are we still fully in range ?
1549 if (next_off
> stop
)
1553 * is this block fully invalidated?
1555 if (offset
<= curr_off
)
1557 curr_off
= next_off
;
1559 } while (bh
!= head
);
1562 * We release buffers only if the entire page is being invalidated.
1563 * The get_block cached value has been unconditionally invalidated,
1564 * so real IO is not possible anymore.
1567 try_to_release_page(page
, 0);
1571 EXPORT_SYMBOL(block_invalidatepage
);
1575 * We attach and possibly dirty the buffers atomically wrt
1576 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1577 * is already excluded via the page lock.
1579 void create_empty_buffers(struct page
*page
,
1580 unsigned long blocksize
, unsigned long b_state
)
1582 struct buffer_head
*bh
, *head
, *tail
;
1584 head
= alloc_page_buffers(page
, blocksize
, 1);
1587 bh
->b_state
|= b_state
;
1589 bh
= bh
->b_this_page
;
1591 tail
->b_this_page
= head
;
1593 spin_lock(&page
->mapping
->private_lock
);
1594 if (PageUptodate(page
) || PageDirty(page
)) {
1597 if (PageDirty(page
))
1598 set_buffer_dirty(bh
);
1599 if (PageUptodate(page
))
1600 set_buffer_uptodate(bh
);
1601 bh
= bh
->b_this_page
;
1602 } while (bh
!= head
);
1604 attach_page_buffers(page
, head
);
1605 spin_unlock(&page
->mapping
->private_lock
);
1607 EXPORT_SYMBOL(create_empty_buffers
);
1610 * clean_bdev_aliases: clean a range of buffers in block device
1611 * @bdev: Block device to clean buffers in
1612 * @block: Start of a range of blocks to clean
1613 * @len: Number of blocks to clean
1615 * We are taking a range of blocks for data and we don't want writeback of any
1616 * buffer-cache aliases starting from return from this function and until the
1617 * moment when something will explicitly mark the buffer dirty (hopefully that
1618 * will not happen until we will free that block ;-) We don't even need to mark
1619 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1620 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1621 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1622 * would confuse anyone who might pick it with bread() afterwards...
1624 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1625 * writeout I/O going on against recently-freed buffers. We don't wait on that
1626 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1627 * need to. That happens here.
1629 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1631 struct inode
*bd_inode
= bdev
->bd_inode
;
1632 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1633 struct pagevec pvec
;
1634 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1637 struct buffer_head
*bh
;
1638 struct buffer_head
*head
;
1640 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1641 pagevec_init(&pvec
, 0);
1642 while (index
<= end
&& pagevec_lookup(&pvec
, bd_mapping
, index
,
1643 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1)) {
1644 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
1645 struct page
*page
= pvec
.pages
[i
];
1647 index
= page
->index
;
1650 if (!page_has_buffers(page
))
1653 * We use page lock instead of bd_mapping->private_lock
1654 * to pin buffers here since we can afford to sleep and
1655 * it scales better than a global spinlock lock.
1658 /* Recheck when the page is locked which pins bhs */
1659 if (!page_has_buffers(page
))
1661 head
= page_buffers(page
);
1664 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1666 if (bh
->b_blocknr
>= block
+ len
)
1668 clear_buffer_dirty(bh
);
1670 clear_buffer_req(bh
);
1672 bh
= bh
->b_this_page
;
1673 } while (bh
!= head
);
1677 pagevec_release(&pvec
);
1682 EXPORT_SYMBOL(clean_bdev_aliases
);
1685 * Size is a power-of-two in the range 512..PAGE_SIZE,
1686 * and the case we care about most is PAGE_SIZE.
1688 * So this *could* possibly be written with those
1689 * constraints in mind (relevant mostly if some
1690 * architecture has a slow bit-scan instruction)
1692 static inline int block_size_bits(unsigned int blocksize
)
1694 return ilog2(blocksize
);
1697 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1699 BUG_ON(!PageLocked(page
));
1701 if (!page_has_buffers(page
))
1702 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1703 return page_buffers(page
);
1707 * NOTE! All mapped/uptodate combinations are valid:
1709 * Mapped Uptodate Meaning
1711 * No No "unknown" - must do get_block()
1712 * No Yes "hole" - zero-filled
1713 * Yes No "allocated" - allocated on disk, not read in
1714 * Yes Yes "valid" - allocated and up-to-date in memory.
1716 * "Dirty" is valid only with the last case (mapped+uptodate).
1720 * While block_write_full_page is writing back the dirty buffers under
1721 * the page lock, whoever dirtied the buffers may decide to clean them
1722 * again at any time. We handle that by only looking at the buffer
1723 * state inside lock_buffer().
1725 * If block_write_full_page() is called for regular writeback
1726 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727 * locked buffer. This only can happen if someone has written the buffer
1728 * directly, with submit_bh(). At the address_space level PageWriteback
1729 * prevents this contention from occurring.
1731 * If block_write_full_page() is called with wbc->sync_mode ==
1732 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1733 * causes the writes to be flagged as synchronous writes.
1735 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1736 get_block_t
*get_block
, struct writeback_control
*wbc
,
1737 bh_end_io_t
*handler
)
1741 sector_t last_block
;
1742 struct buffer_head
*bh
, *head
;
1743 unsigned int blocksize
, bbits
;
1744 int nr_underway
= 0;
1745 int write_flags
= wbc_to_write_flags(wbc
);
1747 head
= create_page_buffers(page
, inode
,
1748 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1751 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1752 * here, and the (potentially unmapped) buffers may become dirty at
1753 * any time. If a buffer becomes dirty here after we've inspected it
1754 * then we just miss that fact, and the page stays dirty.
1756 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757 * handle that here by just cleaning them.
1761 blocksize
= bh
->b_size
;
1762 bbits
= block_size_bits(blocksize
);
1764 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1765 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1768 * Get all the dirty buffers mapped to disk addresses and
1769 * handle any aliases from the underlying blockdev's mapping.
1772 if (block
> last_block
) {
1774 * mapped buffers outside i_size will occur, because
1775 * this page can be outside i_size when there is a
1776 * truncate in progress.
1779 * The buffer was zeroed by block_write_full_page()
1781 clear_buffer_dirty(bh
);
1782 set_buffer_uptodate(bh
);
1783 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1785 WARN_ON(bh
->b_size
!= blocksize
);
1786 err
= get_block(inode
, block
, bh
, 1);
1789 clear_buffer_delay(bh
);
1790 if (buffer_new(bh
)) {
1791 /* blockdev mappings never come here */
1792 clear_buffer_new(bh
);
1793 clean_bdev_bh_alias(bh
);
1796 bh
= bh
->b_this_page
;
1798 } while (bh
!= head
);
1801 if (!buffer_mapped(bh
))
1804 * If it's a fully non-blocking write attempt and we cannot
1805 * lock the buffer then redirty the page. Note that this can
1806 * potentially cause a busy-wait loop from writeback threads
1807 * and kswapd activity, but those code paths have their own
1808 * higher-level throttling.
1810 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1812 } else if (!trylock_buffer(bh
)) {
1813 redirty_page_for_writepage(wbc
, page
);
1816 if (test_clear_buffer_dirty(bh
)) {
1817 mark_buffer_async_write_endio(bh
, handler
);
1821 } while ((bh
= bh
->b_this_page
) != head
);
1824 * The page and its buffers are protected by PageWriteback(), so we can
1825 * drop the bh refcounts early.
1827 BUG_ON(PageWriteback(page
));
1828 set_page_writeback(page
);
1831 struct buffer_head
*next
= bh
->b_this_page
;
1832 if (buffer_async_write(bh
)) {
1833 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
, 0, wbc
);
1837 } while (bh
!= head
);
1842 if (nr_underway
== 0) {
1844 * The page was marked dirty, but the buffers were
1845 * clean. Someone wrote them back by hand with
1846 * ll_rw_block/submit_bh. A rare case.
1848 end_page_writeback(page
);
1851 * The page and buffer_heads can be released at any time from
1859 * ENOSPC, or some other error. We may already have added some
1860 * blocks to the file, so we need to write these out to avoid
1861 * exposing stale data.
1862 * The page is currently locked and not marked for writeback
1865 /* Recovery: lock and submit the mapped buffers */
1867 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1868 !buffer_delay(bh
)) {
1870 mark_buffer_async_write_endio(bh
, handler
);
1873 * The buffer may have been set dirty during
1874 * attachment to a dirty page.
1876 clear_buffer_dirty(bh
);
1878 } while ((bh
= bh
->b_this_page
) != head
);
1880 BUG_ON(PageWriteback(page
));
1881 mapping_set_error(page
->mapping
, err
);
1882 set_page_writeback(page
);
1884 struct buffer_head
*next
= bh
->b_this_page
;
1885 if (buffer_async_write(bh
)) {
1886 clear_buffer_dirty(bh
);
1887 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
, 0, wbc
);
1891 } while (bh
!= head
);
1895 EXPORT_SYMBOL(__block_write_full_page
);
1898 * If a page has any new buffers, zero them out here, and mark them uptodate
1899 * and dirty so they'll be written out (in order to prevent uninitialised
1900 * block data from leaking). And clear the new bit.
1902 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1904 unsigned int block_start
, block_end
;
1905 struct buffer_head
*head
, *bh
;
1907 BUG_ON(!PageLocked(page
));
1908 if (!page_has_buffers(page
))
1911 bh
= head
= page_buffers(page
);
1914 block_end
= block_start
+ bh
->b_size
;
1916 if (buffer_new(bh
)) {
1917 if (block_end
> from
&& block_start
< to
) {
1918 if (!PageUptodate(page
)) {
1919 unsigned start
, size
;
1921 start
= max(from
, block_start
);
1922 size
= min(to
, block_end
) - start
;
1924 zero_user(page
, start
, size
);
1925 set_buffer_uptodate(bh
);
1928 clear_buffer_new(bh
);
1929 mark_buffer_dirty(bh
);
1933 block_start
= block_end
;
1934 bh
= bh
->b_this_page
;
1935 } while (bh
!= head
);
1937 EXPORT_SYMBOL(page_zero_new_buffers
);
1940 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1941 struct iomap
*iomap
)
1943 loff_t offset
= block
<< inode
->i_blkbits
;
1945 bh
->b_bdev
= iomap
->bdev
;
1948 * Block points to offset in file we need to map, iomap contains
1949 * the offset at which the map starts. If the map ends before the
1950 * current block, then do not map the buffer and let the caller
1953 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1955 switch (iomap
->type
) {
1958 * If the buffer is not up to date or beyond the current EOF,
1959 * we need to mark it as new to ensure sub-block zeroing is
1960 * executed if necessary.
1962 if (!buffer_uptodate(bh
) ||
1963 (offset
>= i_size_read(inode
)))
1966 case IOMAP_DELALLOC
:
1967 if (!buffer_uptodate(bh
) ||
1968 (offset
>= i_size_read(inode
)))
1970 set_buffer_uptodate(bh
);
1971 set_buffer_mapped(bh
);
1972 set_buffer_delay(bh
);
1974 case IOMAP_UNWRITTEN
:
1976 * For unwritten regions, we always need to ensure that
1977 * sub-block writes cause the regions in the block we are not
1978 * writing to are zeroed. Set the buffer as new to ensure this.
1981 set_buffer_unwritten(bh
);
1984 if (offset
>= i_size_read(inode
))
1986 bh
->b_blocknr
= (iomap
->blkno
>> (inode
->i_blkbits
- 9)) +
1987 ((offset
- iomap
->offset
) >> inode
->i_blkbits
);
1988 set_buffer_mapped(bh
);
1993 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1994 get_block_t
*get_block
, struct iomap
*iomap
)
1996 unsigned from
= pos
& (PAGE_SIZE
- 1);
1997 unsigned to
= from
+ len
;
1998 struct inode
*inode
= page
->mapping
->host
;
1999 unsigned block_start
, block_end
;
2002 unsigned blocksize
, bbits
;
2003 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
2005 BUG_ON(!PageLocked(page
));
2006 BUG_ON(from
> PAGE_SIZE
);
2007 BUG_ON(to
> PAGE_SIZE
);
2010 head
= create_page_buffers(page
, inode
, 0);
2011 blocksize
= head
->b_size
;
2012 bbits
= block_size_bits(blocksize
);
2014 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2016 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
2017 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
2018 block_end
= block_start
+ blocksize
;
2019 if (block_end
<= from
|| block_start
>= to
) {
2020 if (PageUptodate(page
)) {
2021 if (!buffer_uptodate(bh
))
2022 set_buffer_uptodate(bh
);
2027 clear_buffer_new(bh
);
2028 if (!buffer_mapped(bh
)) {
2029 WARN_ON(bh
->b_size
!= blocksize
);
2031 err
= get_block(inode
, block
, bh
, 1);
2035 iomap_to_bh(inode
, block
, bh
, iomap
);
2038 if (buffer_new(bh
)) {
2039 clean_bdev_bh_alias(bh
);
2040 if (PageUptodate(page
)) {
2041 clear_buffer_new(bh
);
2042 set_buffer_uptodate(bh
);
2043 mark_buffer_dirty(bh
);
2046 if (block_end
> to
|| block_start
< from
)
2047 zero_user_segments(page
,
2053 if (PageUptodate(page
)) {
2054 if (!buffer_uptodate(bh
))
2055 set_buffer_uptodate(bh
);
2058 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2059 !buffer_unwritten(bh
) &&
2060 (block_start
< from
|| block_end
> to
)) {
2061 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2066 * If we issued read requests - let them complete.
2068 while(wait_bh
> wait
) {
2069 wait_on_buffer(*--wait_bh
);
2070 if (!buffer_uptodate(*wait_bh
))
2074 page_zero_new_buffers(page
, from
, to
);
2078 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2079 get_block_t
*get_block
)
2081 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2083 EXPORT_SYMBOL(__block_write_begin
);
2085 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2086 unsigned from
, unsigned to
)
2088 unsigned block_start
, block_end
;
2091 struct buffer_head
*bh
, *head
;
2093 bh
= head
= page_buffers(page
);
2094 blocksize
= bh
->b_size
;
2098 block_end
= block_start
+ blocksize
;
2099 if (block_end
<= from
|| block_start
>= to
) {
2100 if (!buffer_uptodate(bh
))
2103 set_buffer_uptodate(bh
);
2104 mark_buffer_dirty(bh
);
2106 clear_buffer_new(bh
);
2108 block_start
= block_end
;
2109 bh
= bh
->b_this_page
;
2110 } while (bh
!= head
);
2113 * If this is a partial write which happened to make all buffers
2114 * uptodate then we can optimize away a bogus readpage() for
2115 * the next read(). Here we 'discover' whether the page went
2116 * uptodate as a result of this (potentially partial) write.
2119 SetPageUptodate(page
);
2124 * block_write_begin takes care of the basic task of block allocation and
2125 * bringing partial write blocks uptodate first.
2127 * The filesystem needs to handle block truncation upon failure.
2129 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2130 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2132 pgoff_t index
= pos
>> PAGE_SHIFT
;
2136 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2140 status
= __block_write_begin(page
, pos
, len
, get_block
);
2141 if (unlikely(status
)) {
2150 EXPORT_SYMBOL(block_write_begin
);
2152 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2153 loff_t pos
, unsigned len
, unsigned copied
,
2154 struct page
*page
, void *fsdata
)
2156 struct inode
*inode
= mapping
->host
;
2159 start
= pos
& (PAGE_SIZE
- 1);
2161 if (unlikely(copied
< len
)) {
2163 * The buffers that were written will now be uptodate, so we
2164 * don't have to worry about a readpage reading them and
2165 * overwriting a partial write. However if we have encountered
2166 * a short write and only partially written into a buffer, it
2167 * will not be marked uptodate, so a readpage might come in and
2168 * destroy our partial write.
2170 * Do the simplest thing, and just treat any short write to a
2171 * non uptodate page as a zero-length write, and force the
2172 * caller to redo the whole thing.
2174 if (!PageUptodate(page
))
2177 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2179 flush_dcache_page(page
);
2181 /* This could be a short (even 0-length) commit */
2182 __block_commit_write(inode
, page
, start
, start
+copied
);
2186 EXPORT_SYMBOL(block_write_end
);
2188 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2189 loff_t pos
, unsigned len
, unsigned copied
,
2190 struct page
*page
, void *fsdata
)
2192 struct inode
*inode
= mapping
->host
;
2193 loff_t old_size
= inode
->i_size
;
2194 int i_size_changed
= 0;
2196 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2199 * No need to use i_size_read() here, the i_size
2200 * cannot change under us because we hold i_mutex.
2202 * But it's important to update i_size while still holding page lock:
2203 * page writeout could otherwise come in and zero beyond i_size.
2205 if (pos
+copied
> inode
->i_size
) {
2206 i_size_write(inode
, pos
+copied
);
2214 pagecache_isize_extended(inode
, old_size
, pos
);
2216 * Don't mark the inode dirty under page lock. First, it unnecessarily
2217 * makes the holding time of page lock longer. Second, it forces lock
2218 * ordering of page lock and transaction start for journaling
2222 mark_inode_dirty(inode
);
2226 EXPORT_SYMBOL(generic_write_end
);
2229 * block_is_partially_uptodate checks whether buffers within a page are
2232 * Returns true if all buffers which correspond to a file portion
2233 * we want to read are uptodate.
2235 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2236 unsigned long count
)
2238 unsigned block_start
, block_end
, blocksize
;
2240 struct buffer_head
*bh
, *head
;
2243 if (!page_has_buffers(page
))
2246 head
= page_buffers(page
);
2247 blocksize
= head
->b_size
;
2248 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2250 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2256 block_end
= block_start
+ blocksize
;
2257 if (block_end
> from
&& block_start
< to
) {
2258 if (!buffer_uptodate(bh
)) {
2262 if (block_end
>= to
)
2265 block_start
= block_end
;
2266 bh
= bh
->b_this_page
;
2267 } while (bh
!= head
);
2271 EXPORT_SYMBOL(block_is_partially_uptodate
);
2274 * Generic "read page" function for block devices that have the normal
2275 * get_block functionality. This is most of the block device filesystems.
2276 * Reads the page asynchronously --- the unlock_buffer() and
2277 * set/clear_buffer_uptodate() functions propagate buffer state into the
2278 * page struct once IO has completed.
2280 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2282 struct inode
*inode
= page
->mapping
->host
;
2283 sector_t iblock
, lblock
;
2284 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2285 unsigned int blocksize
, bbits
;
2287 int fully_mapped
= 1;
2289 head
= create_page_buffers(page
, inode
, 0);
2290 blocksize
= head
->b_size
;
2291 bbits
= block_size_bits(blocksize
);
2293 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2294 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2300 if (buffer_uptodate(bh
))
2303 if (!buffer_mapped(bh
)) {
2307 if (iblock
< lblock
) {
2308 WARN_ON(bh
->b_size
!= blocksize
);
2309 err
= get_block(inode
, iblock
, bh
, 0);
2313 if (!buffer_mapped(bh
)) {
2314 zero_user(page
, i
* blocksize
, blocksize
);
2316 set_buffer_uptodate(bh
);
2320 * get_block() might have updated the buffer
2323 if (buffer_uptodate(bh
))
2327 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2330 SetPageMappedToDisk(page
);
2334 * All buffers are uptodate - we can set the page uptodate
2335 * as well. But not if get_block() returned an error.
2337 if (!PageError(page
))
2338 SetPageUptodate(page
);
2343 /* Stage two: lock the buffers */
2344 for (i
= 0; i
< nr
; i
++) {
2347 mark_buffer_async_read(bh
);
2351 * Stage 3: start the IO. Check for uptodateness
2352 * inside the buffer lock in case another process reading
2353 * the underlying blockdev brought it uptodate (the sct fix).
2355 for (i
= 0; i
< nr
; i
++) {
2357 if (buffer_uptodate(bh
))
2358 end_buffer_async_read(bh
, 1);
2360 submit_bh(REQ_OP_READ
, 0, bh
);
2364 EXPORT_SYMBOL(block_read_full_page
);
2366 /* utility function for filesystems that need to do work on expanding
2367 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2368 * deal with the hole.
2370 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2372 struct address_space
*mapping
= inode
->i_mapping
;
2377 err
= inode_newsize_ok(inode
, size
);
2381 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2382 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2387 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2393 EXPORT_SYMBOL(generic_cont_expand_simple
);
2395 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2396 loff_t pos
, loff_t
*bytes
)
2398 struct inode
*inode
= mapping
->host
;
2399 unsigned int blocksize
= i_blocksize(inode
);
2402 pgoff_t index
, curidx
;
2404 unsigned zerofrom
, offset
, len
;
2407 index
= pos
>> PAGE_SHIFT
;
2408 offset
= pos
& ~PAGE_MASK
;
2410 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2411 zerofrom
= curpos
& ~PAGE_MASK
;
2412 if (zerofrom
& (blocksize
-1)) {
2413 *bytes
|= (blocksize
-1);
2416 len
= PAGE_SIZE
- zerofrom
;
2418 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2419 AOP_FLAG_UNINTERRUPTIBLE
,
2423 zero_user(page
, zerofrom
, len
);
2424 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2431 balance_dirty_pages_ratelimited(mapping
);
2433 if (unlikely(fatal_signal_pending(current
))) {
2439 /* page covers the boundary, find the boundary offset */
2440 if (index
== curidx
) {
2441 zerofrom
= curpos
& ~PAGE_MASK
;
2442 /* if we will expand the thing last block will be filled */
2443 if (offset
<= zerofrom
) {
2446 if (zerofrom
& (blocksize
-1)) {
2447 *bytes
|= (blocksize
-1);
2450 len
= offset
- zerofrom
;
2452 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2453 AOP_FLAG_UNINTERRUPTIBLE
,
2457 zero_user(page
, zerofrom
, len
);
2458 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2470 * For moronic filesystems that do not allow holes in file.
2471 * We may have to extend the file.
2473 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2474 loff_t pos
, unsigned len
, unsigned flags
,
2475 struct page
**pagep
, void **fsdata
,
2476 get_block_t
*get_block
, loff_t
*bytes
)
2478 struct inode
*inode
= mapping
->host
;
2479 unsigned int blocksize
= i_blocksize(inode
);
2480 unsigned int zerofrom
;
2483 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2487 zerofrom
= *bytes
& ~PAGE_MASK
;
2488 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2489 *bytes
|= (blocksize
-1);
2493 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2495 EXPORT_SYMBOL(cont_write_begin
);
2497 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2499 struct inode
*inode
= page
->mapping
->host
;
2500 __block_commit_write(inode
,page
,from
,to
);
2503 EXPORT_SYMBOL(block_commit_write
);
2506 * block_page_mkwrite() is not allowed to change the file size as it gets
2507 * called from a page fault handler when a page is first dirtied. Hence we must
2508 * be careful to check for EOF conditions here. We set the page up correctly
2509 * for a written page which means we get ENOSPC checking when writing into
2510 * holes and correct delalloc and unwritten extent mapping on filesystems that
2511 * support these features.
2513 * We are not allowed to take the i_mutex here so we have to play games to
2514 * protect against truncate races as the page could now be beyond EOF. Because
2515 * truncate writes the inode size before removing pages, once we have the
2516 * page lock we can determine safely if the page is beyond EOF. If it is not
2517 * beyond EOF, then the page is guaranteed safe against truncation until we
2520 * Direct callers of this function should protect against filesystem freezing
2521 * using sb_start_pagefault() - sb_end_pagefault() functions.
2523 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2524 get_block_t get_block
)
2526 struct page
*page
= vmf
->page
;
2527 struct inode
*inode
= file_inode(vma
->vm_file
);
2533 size
= i_size_read(inode
);
2534 if ((page
->mapping
!= inode
->i_mapping
) ||
2535 (page_offset(page
) > size
)) {
2536 /* We overload EFAULT to mean page got truncated */
2541 /* page is wholly or partially inside EOF */
2542 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2543 end
= size
& ~PAGE_MASK
;
2547 ret
= __block_write_begin(page
, 0, end
, get_block
);
2549 ret
= block_commit_write(page
, 0, end
);
2551 if (unlikely(ret
< 0))
2553 set_page_dirty(page
);
2554 wait_for_stable_page(page
);
2560 EXPORT_SYMBOL(block_page_mkwrite
);
2563 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2564 * immediately, while under the page lock. So it needs a special end_io
2565 * handler which does not touch the bh after unlocking it.
2567 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2569 __end_buffer_read_notouch(bh
, uptodate
);
2573 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2574 * the page (converting it to circular linked list and taking care of page
2577 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2579 struct buffer_head
*bh
;
2581 BUG_ON(!PageLocked(page
));
2583 spin_lock(&page
->mapping
->private_lock
);
2586 if (PageDirty(page
))
2587 set_buffer_dirty(bh
);
2588 if (!bh
->b_this_page
)
2589 bh
->b_this_page
= head
;
2590 bh
= bh
->b_this_page
;
2591 } while (bh
!= head
);
2592 attach_page_buffers(page
, head
);
2593 spin_unlock(&page
->mapping
->private_lock
);
2597 * On entry, the page is fully not uptodate.
2598 * On exit the page is fully uptodate in the areas outside (from,to)
2599 * The filesystem needs to handle block truncation upon failure.
2601 int nobh_write_begin(struct address_space
*mapping
,
2602 loff_t pos
, unsigned len
, unsigned flags
,
2603 struct page
**pagep
, void **fsdata
,
2604 get_block_t
*get_block
)
2606 struct inode
*inode
= mapping
->host
;
2607 const unsigned blkbits
= inode
->i_blkbits
;
2608 const unsigned blocksize
= 1 << blkbits
;
2609 struct buffer_head
*head
, *bh
;
2613 unsigned block_in_page
;
2614 unsigned block_start
, block_end
;
2615 sector_t block_in_file
;
2618 int is_mapped_to_disk
= 1;
2620 index
= pos
>> PAGE_SHIFT
;
2621 from
= pos
& (PAGE_SIZE
- 1);
2624 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2630 if (page_has_buffers(page
)) {
2631 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2637 if (PageMappedToDisk(page
))
2641 * Allocate buffers so that we can keep track of state, and potentially
2642 * attach them to the page if an error occurs. In the common case of
2643 * no error, they will just be freed again without ever being attached
2644 * to the page (which is all OK, because we're under the page lock).
2646 * Be careful: the buffer linked list is a NULL terminated one, rather
2647 * than the circular one we're used to.
2649 head
= alloc_page_buffers(page
, blocksize
, 0);
2655 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2658 * We loop across all blocks in the page, whether or not they are
2659 * part of the affected region. This is so we can discover if the
2660 * page is fully mapped-to-disk.
2662 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2663 block_start
< PAGE_SIZE
;
2664 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2667 block_end
= block_start
+ blocksize
;
2670 if (block_start
>= to
)
2672 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2676 if (!buffer_mapped(bh
))
2677 is_mapped_to_disk
= 0;
2679 clean_bdev_bh_alias(bh
);
2680 if (PageUptodate(page
)) {
2681 set_buffer_uptodate(bh
);
2684 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2685 zero_user_segments(page
, block_start
, from
,
2689 if (buffer_uptodate(bh
))
2690 continue; /* reiserfs does this */
2691 if (block_start
< from
|| block_end
> to
) {
2693 bh
->b_end_io
= end_buffer_read_nobh
;
2694 submit_bh(REQ_OP_READ
, 0, bh
);
2701 * The page is locked, so these buffers are protected from
2702 * any VM or truncate activity. Hence we don't need to care
2703 * for the buffer_head refcounts.
2705 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2707 if (!buffer_uptodate(bh
))
2714 if (is_mapped_to_disk
)
2715 SetPageMappedToDisk(page
);
2717 *fsdata
= head
; /* to be released by nobh_write_end */
2724 * Error recovery is a bit difficult. We need to zero out blocks that
2725 * were newly allocated, and dirty them to ensure they get written out.
2726 * Buffers need to be attached to the page at this point, otherwise
2727 * the handling of potential IO errors during writeout would be hard
2728 * (could try doing synchronous writeout, but what if that fails too?)
2730 attach_nobh_buffers(page
, head
);
2731 page_zero_new_buffers(page
, from
, to
);
2740 EXPORT_SYMBOL(nobh_write_begin
);
2742 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2743 loff_t pos
, unsigned len
, unsigned copied
,
2744 struct page
*page
, void *fsdata
)
2746 struct inode
*inode
= page
->mapping
->host
;
2747 struct buffer_head
*head
= fsdata
;
2748 struct buffer_head
*bh
;
2749 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2751 if (unlikely(copied
< len
) && head
)
2752 attach_nobh_buffers(page
, head
);
2753 if (page_has_buffers(page
))
2754 return generic_write_end(file
, mapping
, pos
, len
,
2755 copied
, page
, fsdata
);
2757 SetPageUptodate(page
);
2758 set_page_dirty(page
);
2759 if (pos
+copied
> inode
->i_size
) {
2760 i_size_write(inode
, pos
+copied
);
2761 mark_inode_dirty(inode
);
2769 head
= head
->b_this_page
;
2770 free_buffer_head(bh
);
2775 EXPORT_SYMBOL(nobh_write_end
);
2778 * nobh_writepage() - based on block_full_write_page() except
2779 * that it tries to operate without attaching bufferheads to
2782 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2783 struct writeback_control
*wbc
)
2785 struct inode
* const inode
= page
->mapping
->host
;
2786 loff_t i_size
= i_size_read(inode
);
2787 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2791 /* Is the page fully inside i_size? */
2792 if (page
->index
< end_index
)
2795 /* Is the page fully outside i_size? (truncate in progress) */
2796 offset
= i_size
& (PAGE_SIZE
-1);
2797 if (page
->index
>= end_index
+1 || !offset
) {
2799 * The page may have dirty, unmapped buffers. For example,
2800 * they may have been added in ext3_writepage(). Make them
2801 * freeable here, so the page does not leak.
2804 /* Not really sure about this - do we need this ? */
2805 if (page
->mapping
->a_ops
->invalidatepage
)
2806 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2809 return 0; /* don't care */
2813 * The page straddles i_size. It must be zeroed out on each and every
2814 * writepage invocation because it may be mmapped. "A file is mapped
2815 * in multiples of the page size. For a file that is not a multiple of
2816 * the page size, the remaining memory is zeroed when mapped, and
2817 * writes to that region are not written out to the file."
2819 zero_user_segment(page
, offset
, PAGE_SIZE
);
2821 ret
= mpage_writepage(page
, get_block
, wbc
);
2823 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2824 end_buffer_async_write
);
2827 EXPORT_SYMBOL(nobh_writepage
);
2829 int nobh_truncate_page(struct address_space
*mapping
,
2830 loff_t from
, get_block_t
*get_block
)
2832 pgoff_t index
= from
>> PAGE_SHIFT
;
2833 unsigned offset
= from
& (PAGE_SIZE
-1);
2836 unsigned length
, pos
;
2837 struct inode
*inode
= mapping
->host
;
2839 struct buffer_head map_bh
;
2842 blocksize
= i_blocksize(inode
);
2843 length
= offset
& (blocksize
- 1);
2845 /* Block boundary? Nothing to do */
2849 length
= blocksize
- length
;
2850 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2852 page
= grab_cache_page(mapping
, index
);
2857 if (page_has_buffers(page
)) {
2861 return block_truncate_page(mapping
, from
, get_block
);
2864 /* Find the buffer that contains "offset" */
2866 while (offset
>= pos
) {
2871 map_bh
.b_size
= blocksize
;
2873 err
= get_block(inode
, iblock
, &map_bh
, 0);
2876 /* unmapped? It's a hole - nothing to do */
2877 if (!buffer_mapped(&map_bh
))
2880 /* Ok, it's mapped. Make sure it's up-to-date */
2881 if (!PageUptodate(page
)) {
2882 err
= mapping
->a_ops
->readpage(NULL
, page
);
2888 if (!PageUptodate(page
)) {
2892 if (page_has_buffers(page
))
2895 zero_user(page
, offset
, length
);
2896 set_page_dirty(page
);
2905 EXPORT_SYMBOL(nobh_truncate_page
);
2907 int block_truncate_page(struct address_space
*mapping
,
2908 loff_t from
, get_block_t
*get_block
)
2910 pgoff_t index
= from
>> PAGE_SHIFT
;
2911 unsigned offset
= from
& (PAGE_SIZE
-1);
2914 unsigned length
, pos
;
2915 struct inode
*inode
= mapping
->host
;
2917 struct buffer_head
*bh
;
2920 blocksize
= i_blocksize(inode
);
2921 length
= offset
& (blocksize
- 1);
2923 /* Block boundary? Nothing to do */
2927 length
= blocksize
- length
;
2928 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2930 page
= grab_cache_page(mapping
, index
);
2935 if (!page_has_buffers(page
))
2936 create_empty_buffers(page
, blocksize
, 0);
2938 /* Find the buffer that contains "offset" */
2939 bh
= page_buffers(page
);
2941 while (offset
>= pos
) {
2942 bh
= bh
->b_this_page
;
2948 if (!buffer_mapped(bh
)) {
2949 WARN_ON(bh
->b_size
!= blocksize
);
2950 err
= get_block(inode
, iblock
, bh
, 0);
2953 /* unmapped? It's a hole - nothing to do */
2954 if (!buffer_mapped(bh
))
2958 /* Ok, it's mapped. Make sure it's up-to-date */
2959 if (PageUptodate(page
))
2960 set_buffer_uptodate(bh
);
2962 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2964 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2966 /* Uhhuh. Read error. Complain and punt. */
2967 if (!buffer_uptodate(bh
))
2971 zero_user(page
, offset
, length
);
2972 mark_buffer_dirty(bh
);
2981 EXPORT_SYMBOL(block_truncate_page
);
2984 * The generic ->writepage function for buffer-backed address_spaces
2986 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2987 struct writeback_control
*wbc
)
2989 struct inode
* const inode
= page
->mapping
->host
;
2990 loff_t i_size
= i_size_read(inode
);
2991 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2994 /* Is the page fully inside i_size? */
2995 if (page
->index
< end_index
)
2996 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2997 end_buffer_async_write
);
2999 /* Is the page fully outside i_size? (truncate in progress) */
3000 offset
= i_size
& (PAGE_SIZE
-1);
3001 if (page
->index
>= end_index
+1 || !offset
) {
3003 * The page may have dirty, unmapped buffers. For example,
3004 * they may have been added in ext3_writepage(). Make them
3005 * freeable here, so the page does not leak.
3007 do_invalidatepage(page
, 0, PAGE_SIZE
);
3009 return 0; /* don't care */
3013 * The page straddles i_size. It must be zeroed out on each and every
3014 * writepage invocation because it may be mmapped. "A file is mapped
3015 * in multiples of the page size. For a file that is not a multiple of
3016 * the page size, the remaining memory is zeroed when mapped, and
3017 * writes to that region are not written out to the file."
3019 zero_user_segment(page
, offset
, PAGE_SIZE
);
3020 return __block_write_full_page(inode
, page
, get_block
, wbc
,
3021 end_buffer_async_write
);
3023 EXPORT_SYMBOL(block_write_full_page
);
3025 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
3026 get_block_t
*get_block
)
3028 struct buffer_head tmp
;
3029 struct inode
*inode
= mapping
->host
;
3032 tmp
.b_size
= i_blocksize(inode
);
3033 get_block(inode
, block
, &tmp
, 0);
3034 return tmp
.b_blocknr
;
3036 EXPORT_SYMBOL(generic_block_bmap
);
3038 static void end_bio_bh_io_sync(struct bio
*bio
)
3040 struct buffer_head
*bh
= bio
->bi_private
;
3042 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
3043 set_bit(BH_Quiet
, &bh
->b_state
);
3045 bh
->b_end_io(bh
, !bio
->bi_error
);
3050 * This allows us to do IO even on the odd last sectors
3051 * of a device, even if the block size is some multiple
3052 * of the physical sector size.
3054 * We'll just truncate the bio to the size of the device,
3055 * and clear the end of the buffer head manually.
3057 * Truly out-of-range accesses will turn into actual IO
3058 * errors, this only handles the "we need to be able to
3059 * do IO at the final sector" case.
3061 void guard_bio_eod(int op
, struct bio
*bio
)
3064 struct bio_vec
*bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
3065 unsigned truncated_bytes
;
3067 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
3072 * If the *whole* IO is past the end of the device,
3073 * let it through, and the IO layer will turn it into
3076 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3079 maxsector
-= bio
->bi_iter
.bi_sector
;
3080 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3083 /* Uhhuh. We've got a bio that straddles the device size! */
3084 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3086 /* Truncate the bio.. */
3087 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3088 bvec
->bv_len
-= truncated_bytes
;
3090 /* ..and clear the end of the buffer for reads */
3091 if (op
== REQ_OP_READ
) {
3092 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3097 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3098 unsigned long bio_flags
, struct writeback_control
*wbc
)
3102 BUG_ON(!buffer_locked(bh
));
3103 BUG_ON(!buffer_mapped(bh
));
3104 BUG_ON(!bh
->b_end_io
);
3105 BUG_ON(buffer_delay(bh
));
3106 BUG_ON(buffer_unwritten(bh
));
3109 * Only clear out a write error when rewriting
3111 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3112 clear_buffer_write_io_error(bh
);
3115 * from here on down, it's all bio -- do the initial mapping,
3116 * submit_bio -> generic_make_request may further map this bio around
3118 bio
= bio_alloc(GFP_NOIO
, 1);
3121 wbc_init_bio(wbc
, bio
);
3122 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3125 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3126 bio
->bi_bdev
= bh
->b_bdev
;
3128 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3129 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3131 bio
->bi_end_io
= end_bio_bh_io_sync
;
3132 bio
->bi_private
= bh
;
3133 bio
->bi_flags
|= bio_flags
;
3135 /* Take care of bh's that straddle the end of the device */
3136 guard_bio_eod(op
, bio
);
3138 if (buffer_meta(bh
))
3139 op_flags
|= REQ_META
;
3140 if (buffer_prio(bh
))
3141 op_flags
|= REQ_PRIO
;
3142 bio_set_op_attrs(bio
, op
, op_flags
);
3148 int _submit_bh(int op
, int op_flags
, struct buffer_head
*bh
,
3149 unsigned long bio_flags
)
3151 return submit_bh_wbc(op
, op_flags
, bh
, bio_flags
, NULL
);
3153 EXPORT_SYMBOL_GPL(_submit_bh
);
3155 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3157 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3159 EXPORT_SYMBOL(submit_bh
);
3162 * ll_rw_block: low-level access to block devices (DEPRECATED)
3163 * @op: whether to %READ or %WRITE
3164 * @op_flags: req_flag_bits
3165 * @nr: number of &struct buffer_heads in the array
3166 * @bhs: array of pointers to &struct buffer_head
3168 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3169 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3170 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3173 * This function drops any buffer that it cannot get a lock on (with the
3174 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3175 * request, and any buffer that appears to be up-to-date when doing read
3176 * request. Further it marks as clean buffers that are processed for
3177 * writing (the buffer cache won't assume that they are actually clean
3178 * until the buffer gets unlocked).
3180 * ll_rw_block sets b_end_io to simple completion handler that marks
3181 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3184 * All of the buffers must be for the same device, and must also be a
3185 * multiple of the current approved size for the device.
3187 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3191 for (i
= 0; i
< nr
; i
++) {
3192 struct buffer_head
*bh
= bhs
[i
];
3194 if (!trylock_buffer(bh
))
3197 if (test_clear_buffer_dirty(bh
)) {
3198 bh
->b_end_io
= end_buffer_write_sync
;
3200 submit_bh(op
, op_flags
, bh
);
3204 if (!buffer_uptodate(bh
)) {
3205 bh
->b_end_io
= end_buffer_read_sync
;
3207 submit_bh(op
, op_flags
, bh
);
3214 EXPORT_SYMBOL(ll_rw_block
);
3216 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3219 if (!test_clear_buffer_dirty(bh
)) {
3223 bh
->b_end_io
= end_buffer_write_sync
;
3225 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3227 EXPORT_SYMBOL(write_dirty_buffer
);
3230 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3231 * and then start new I/O and then wait upon it. The caller must have a ref on
3234 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3238 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3240 if (test_clear_buffer_dirty(bh
)) {
3242 bh
->b_end_io
= end_buffer_write_sync
;
3243 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3245 if (!ret
&& !buffer_uptodate(bh
))
3252 EXPORT_SYMBOL(__sync_dirty_buffer
);
3254 int sync_dirty_buffer(struct buffer_head
*bh
)
3256 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3258 EXPORT_SYMBOL(sync_dirty_buffer
);
3261 * try_to_free_buffers() checks if all the buffers on this particular page
3262 * are unused, and releases them if so.
3264 * Exclusion against try_to_free_buffers may be obtained by either
3265 * locking the page or by holding its mapping's private_lock.
3267 * If the page is dirty but all the buffers are clean then we need to
3268 * be sure to mark the page clean as well. This is because the page
3269 * may be against a block device, and a later reattachment of buffers
3270 * to a dirty page will set *all* buffers dirty. Which would corrupt
3271 * filesystem data on the same device.
3273 * The same applies to regular filesystem pages: if all the buffers are
3274 * clean then we set the page clean and proceed. To do that, we require
3275 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3278 * try_to_free_buffers() is non-blocking.
3280 static inline int buffer_busy(struct buffer_head
*bh
)
3282 return atomic_read(&bh
->b_count
) |
3283 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3287 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3289 struct buffer_head
*head
= page_buffers(page
);
3290 struct buffer_head
*bh
;
3294 if (buffer_write_io_error(bh
) && page
->mapping
)
3295 mapping_set_error(page
->mapping
, -EIO
);
3296 if (buffer_busy(bh
))
3298 bh
= bh
->b_this_page
;
3299 } while (bh
!= head
);
3302 struct buffer_head
*next
= bh
->b_this_page
;
3304 if (bh
->b_assoc_map
)
3305 __remove_assoc_queue(bh
);
3307 } while (bh
!= head
);
3308 *buffers_to_free
= head
;
3309 __clear_page_buffers(page
);
3315 int try_to_free_buffers(struct page
*page
)
3317 struct address_space
* const mapping
= page
->mapping
;
3318 struct buffer_head
*buffers_to_free
= NULL
;
3321 BUG_ON(!PageLocked(page
));
3322 if (PageWriteback(page
))
3325 if (mapping
== NULL
) { /* can this still happen? */
3326 ret
= drop_buffers(page
, &buffers_to_free
);
3330 spin_lock(&mapping
->private_lock
);
3331 ret
= drop_buffers(page
, &buffers_to_free
);
3334 * If the filesystem writes its buffers by hand (eg ext3)
3335 * then we can have clean buffers against a dirty page. We
3336 * clean the page here; otherwise the VM will never notice
3337 * that the filesystem did any IO at all.
3339 * Also, during truncate, discard_buffer will have marked all
3340 * the page's buffers clean. We discover that here and clean
3343 * private_lock must be held over this entire operation in order
3344 * to synchronise against __set_page_dirty_buffers and prevent the
3345 * dirty bit from being lost.
3348 cancel_dirty_page(page
);
3349 spin_unlock(&mapping
->private_lock
);
3351 if (buffers_to_free
) {
3352 struct buffer_head
*bh
= buffers_to_free
;
3355 struct buffer_head
*next
= bh
->b_this_page
;
3356 free_buffer_head(bh
);
3358 } while (bh
!= buffers_to_free
);
3362 EXPORT_SYMBOL(try_to_free_buffers
);
3365 * There are no bdflush tunables left. But distributions are
3366 * still running obsolete flush daemons, so we terminate them here.
3368 * Use of bdflush() is deprecated and will be removed in a future kernel.
3369 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3371 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3373 static int msg_count
;
3375 if (!capable(CAP_SYS_ADMIN
))
3378 if (msg_count
< 5) {
3381 "warning: process `%s' used the obsolete bdflush"
3382 " system call\n", current
->comm
);
3383 printk(KERN_INFO
"Fix your initscripts?\n");
3392 * Buffer-head allocation
3394 static struct kmem_cache
*bh_cachep __read_mostly
;
3397 * Once the number of bh's in the machine exceeds this level, we start
3398 * stripping them in writeback.
3400 static unsigned long max_buffer_heads
;
3402 int buffer_heads_over_limit
;
3404 struct bh_accounting
{
3405 int nr
; /* Number of live bh's */
3406 int ratelimit
; /* Limit cacheline bouncing */
3409 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3411 static void recalc_bh_state(void)
3416 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3418 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3419 for_each_online_cpu(i
)
3420 tot
+= per_cpu(bh_accounting
, i
).nr
;
3421 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3424 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3426 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3428 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3430 __this_cpu_inc(bh_accounting
.nr
);
3436 EXPORT_SYMBOL(alloc_buffer_head
);
3438 void free_buffer_head(struct buffer_head
*bh
)
3440 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3441 kmem_cache_free(bh_cachep
, bh
);
3443 __this_cpu_dec(bh_accounting
.nr
);
3447 EXPORT_SYMBOL(free_buffer_head
);
3449 static int buffer_exit_cpu_dead(unsigned int cpu
)
3452 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3454 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3458 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3459 per_cpu(bh_accounting
, cpu
).nr
= 0;
3464 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3465 * @bh: struct buffer_head
3467 * Return true if the buffer is up-to-date and false,
3468 * with the buffer locked, if not.
3470 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3472 if (!buffer_uptodate(bh
)) {
3474 if (!buffer_uptodate(bh
))
3480 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3483 * bh_submit_read - Submit a locked buffer for reading
3484 * @bh: struct buffer_head
3486 * Returns zero on success and -EIO on error.
3488 int bh_submit_read(struct buffer_head
*bh
)
3490 BUG_ON(!buffer_locked(bh
));
3492 if (buffer_uptodate(bh
)) {
3498 bh
->b_end_io
= end_buffer_read_sync
;
3499 submit_bh(REQ_OP_READ
, 0, bh
);
3501 if (buffer_uptodate(bh
))
3505 EXPORT_SYMBOL(bh_submit_read
);
3507 void __init
buffer_init(void)
3509 unsigned long nrpages
;
3512 bh_cachep
= kmem_cache_create("buffer_head",
3513 sizeof(struct buffer_head
), 0,
3514 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3519 * Limit the bh occupancy to 10% of ZONE_NORMAL
3521 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3522 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3523 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3524 NULL
, buffer_exit_cpu_dead
);