usb: dwc3: replace %p with %pK
[linux/fpc-iii.git] / fs / dax.c
blob08a793c6158095bd65ce9cad2b2e85df89cca016
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
48 static int __init init_dax_wait_table(void)
50 int i;
52 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53 init_waitqueue_head(wait_table + i);
54 return 0;
56 fs_initcall(init_dax_wait_table);
58 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
60 struct request_queue *q = bdev->bd_queue;
61 long rc = -EIO;
63 dax->addr = ERR_PTR(-EIO);
64 if (blk_queue_enter(q, true) != 0)
65 return rc;
67 rc = bdev_direct_access(bdev, dax);
68 if (rc < 0) {
69 dax->addr = ERR_PTR(rc);
70 blk_queue_exit(q);
71 return rc;
73 return rc;
76 static void dax_unmap_atomic(struct block_device *bdev,
77 const struct blk_dax_ctl *dax)
79 if (IS_ERR(dax->addr))
80 return;
81 blk_queue_exit(bdev->bd_queue);
84 static int dax_is_pmd_entry(void *entry)
86 return (unsigned long)entry & RADIX_DAX_PMD;
89 static int dax_is_pte_entry(void *entry)
91 return !((unsigned long)entry & RADIX_DAX_PMD);
94 static int dax_is_zero_entry(void *entry)
96 return (unsigned long)entry & RADIX_DAX_HZP;
99 static int dax_is_empty_entry(void *entry)
101 return (unsigned long)entry & RADIX_DAX_EMPTY;
104 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
106 struct page *page = alloc_pages(GFP_KERNEL, 0);
107 struct blk_dax_ctl dax = {
108 .size = PAGE_SIZE,
109 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
111 long rc;
113 if (!page)
114 return ERR_PTR(-ENOMEM);
116 rc = dax_map_atomic(bdev, &dax);
117 if (rc < 0)
118 return ERR_PTR(rc);
119 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
120 dax_unmap_atomic(bdev, &dax);
121 return page;
125 * DAX radix tree locking
127 struct exceptional_entry_key {
128 struct address_space *mapping;
129 pgoff_t entry_start;
132 struct wait_exceptional_entry_queue {
133 wait_queue_t wait;
134 struct exceptional_entry_key key;
137 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
138 pgoff_t index, void *entry, struct exceptional_entry_key *key)
140 unsigned long hash;
143 * If 'entry' is a PMD, align the 'index' that we use for the wait
144 * queue to the start of that PMD. This ensures that all offsets in
145 * the range covered by the PMD map to the same bit lock.
147 if (dax_is_pmd_entry(entry))
148 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
150 key->mapping = mapping;
151 key->entry_start = index;
153 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
154 return wait_table + hash;
157 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
158 int sync, void *keyp)
160 struct exceptional_entry_key *key = keyp;
161 struct wait_exceptional_entry_queue *ewait =
162 container_of(wait, struct wait_exceptional_entry_queue, wait);
164 if (key->mapping != ewait->key.mapping ||
165 key->entry_start != ewait->key.entry_start)
166 return 0;
167 return autoremove_wake_function(wait, mode, sync, NULL);
171 * Check whether the given slot is locked. The function must be called with
172 * mapping->tree_lock held
174 static inline int slot_locked(struct address_space *mapping, void **slot)
176 unsigned long entry = (unsigned long)
177 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
178 return entry & RADIX_DAX_ENTRY_LOCK;
182 * Mark the given slot is locked. The function must be called with
183 * mapping->tree_lock held
185 static inline void *lock_slot(struct address_space *mapping, void **slot)
187 unsigned long entry = (unsigned long)
188 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
190 entry |= RADIX_DAX_ENTRY_LOCK;
191 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
192 return (void *)entry;
196 * Mark the given slot is unlocked. The function must be called with
197 * mapping->tree_lock held
199 static inline void *unlock_slot(struct address_space *mapping, void **slot)
201 unsigned long entry = (unsigned long)
202 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
205 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
206 return (void *)entry;
210 * Lookup entry in radix tree, wait for it to become unlocked if it is
211 * exceptional entry and return it. The caller must call
212 * put_unlocked_mapping_entry() when he decided not to lock the entry or
213 * put_locked_mapping_entry() when he locked the entry and now wants to
214 * unlock it.
216 * The function must be called with mapping->tree_lock held.
218 static void *get_unlocked_mapping_entry(struct address_space *mapping,
219 pgoff_t index, void ***slotp)
221 void *entry, **slot;
222 struct wait_exceptional_entry_queue ewait;
223 wait_queue_head_t *wq;
225 init_wait(&ewait.wait);
226 ewait.wait.func = wake_exceptional_entry_func;
228 for (;;) {
229 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
230 &slot);
231 if (!entry || !radix_tree_exceptional_entry(entry) ||
232 !slot_locked(mapping, slot)) {
233 if (slotp)
234 *slotp = slot;
235 return entry;
238 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
239 prepare_to_wait_exclusive(wq, &ewait.wait,
240 TASK_UNINTERRUPTIBLE);
241 spin_unlock_irq(&mapping->tree_lock);
242 schedule();
243 finish_wait(wq, &ewait.wait);
244 spin_lock_irq(&mapping->tree_lock);
248 static void dax_unlock_mapping_entry(struct address_space *mapping,
249 pgoff_t index)
251 void *entry, **slot;
253 spin_lock_irq(&mapping->tree_lock);
254 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
255 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
256 !slot_locked(mapping, slot))) {
257 spin_unlock_irq(&mapping->tree_lock);
258 return;
260 unlock_slot(mapping, slot);
261 spin_unlock_irq(&mapping->tree_lock);
262 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
265 static void put_locked_mapping_entry(struct address_space *mapping,
266 pgoff_t index, void *entry)
268 if (!radix_tree_exceptional_entry(entry)) {
269 unlock_page(entry);
270 put_page(entry);
271 } else {
272 dax_unlock_mapping_entry(mapping, index);
277 * Called when we are done with radix tree entry we looked up via
278 * get_unlocked_mapping_entry() and which we didn't lock in the end.
280 static void put_unlocked_mapping_entry(struct address_space *mapping,
281 pgoff_t index, void *entry)
283 if (!radix_tree_exceptional_entry(entry))
284 return;
286 /* We have to wake up next waiter for the radix tree entry lock */
287 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
291 * Find radix tree entry at given index. If it points to a page, return with
292 * the page locked. If it points to the exceptional entry, return with the
293 * radix tree entry locked. If the radix tree doesn't contain given index,
294 * create empty exceptional entry for the index and return with it locked.
296 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
297 * either return that locked entry or will return an error. This error will
298 * happen if there are any 4k entries (either zero pages or DAX entries)
299 * within the 2MiB range that we are requesting.
301 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
302 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
303 * insertion will fail if it finds any 4k entries already in the tree, and a
304 * 4k insertion will cause an existing 2MiB entry to be unmapped and
305 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
306 * well as 2MiB empty entries.
308 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
309 * real storage backing them. We will leave these real 2MiB DAX entries in
310 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
312 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
313 * persistent memory the benefit is doubtful. We can add that later if we can
314 * show it helps.
316 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
317 unsigned long size_flag)
319 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
320 void *entry, **slot;
322 restart:
323 spin_lock_irq(&mapping->tree_lock);
324 entry = get_unlocked_mapping_entry(mapping, index, &slot);
326 if (entry) {
327 if (size_flag & RADIX_DAX_PMD) {
328 if (!radix_tree_exceptional_entry(entry) ||
329 dax_is_pte_entry(entry)) {
330 put_unlocked_mapping_entry(mapping, index,
331 entry);
332 entry = ERR_PTR(-EEXIST);
333 goto out_unlock;
335 } else { /* trying to grab a PTE entry */
336 if (radix_tree_exceptional_entry(entry) &&
337 dax_is_pmd_entry(entry) &&
338 (dax_is_zero_entry(entry) ||
339 dax_is_empty_entry(entry))) {
340 pmd_downgrade = true;
345 /* No entry for given index? Make sure radix tree is big enough. */
346 if (!entry || pmd_downgrade) {
347 int err;
349 if (pmd_downgrade) {
351 * Make sure 'entry' remains valid while we drop
352 * mapping->tree_lock.
354 entry = lock_slot(mapping, slot);
357 spin_unlock_irq(&mapping->tree_lock);
359 * Besides huge zero pages the only other thing that gets
360 * downgraded are empty entries which don't need to be
361 * unmapped.
363 if (pmd_downgrade && dax_is_zero_entry(entry))
364 unmap_mapping_range(mapping,
365 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
367 err = radix_tree_preload(
368 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
369 if (err) {
370 if (pmd_downgrade)
371 put_locked_mapping_entry(mapping, index, entry);
372 return ERR_PTR(err);
374 spin_lock_irq(&mapping->tree_lock);
376 if (!entry) {
378 * We needed to drop the page_tree lock while calling
379 * radix_tree_preload() and we didn't have an entry to
380 * lock. See if another thread inserted an entry at
381 * our index during this time.
383 entry = __radix_tree_lookup(&mapping->page_tree, index,
384 NULL, &slot);
385 if (entry) {
386 radix_tree_preload_end();
387 spin_unlock_irq(&mapping->tree_lock);
388 goto restart;
392 if (pmd_downgrade) {
393 radix_tree_delete(&mapping->page_tree, index);
394 mapping->nrexceptional--;
395 dax_wake_mapping_entry_waiter(mapping, index, entry,
396 true);
399 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
401 err = __radix_tree_insert(&mapping->page_tree, index,
402 dax_radix_order(entry), entry);
403 radix_tree_preload_end();
404 if (err) {
405 spin_unlock_irq(&mapping->tree_lock);
407 * Our insertion of a DAX entry failed, most likely
408 * because we were inserting a PMD entry and it
409 * collided with a PTE sized entry at a different
410 * index in the PMD range. We haven't inserted
411 * anything into the radix tree and have no waiters to
412 * wake.
414 return ERR_PTR(err);
416 /* Good, we have inserted empty locked entry into the tree. */
417 mapping->nrexceptional++;
418 spin_unlock_irq(&mapping->tree_lock);
419 return entry;
421 /* Normal page in radix tree? */
422 if (!radix_tree_exceptional_entry(entry)) {
423 struct page *page = entry;
425 get_page(page);
426 spin_unlock_irq(&mapping->tree_lock);
427 lock_page(page);
428 /* Page got truncated? Retry... */
429 if (unlikely(page->mapping != mapping)) {
430 unlock_page(page);
431 put_page(page);
432 goto restart;
434 return page;
436 entry = lock_slot(mapping, slot);
437 out_unlock:
438 spin_unlock_irq(&mapping->tree_lock);
439 return entry;
443 * We do not necessarily hold the mapping->tree_lock when we call this
444 * function so it is possible that 'entry' is no longer a valid item in the
445 * radix tree. This is okay because all we really need to do is to find the
446 * correct waitqueue where tasks might be waiting for that old 'entry' and
447 * wake them.
449 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
450 pgoff_t index, void *entry, bool wake_all)
452 struct exceptional_entry_key key;
453 wait_queue_head_t *wq;
455 wq = dax_entry_waitqueue(mapping, index, entry, &key);
458 * Checking for locked entry and prepare_to_wait_exclusive() happens
459 * under mapping->tree_lock, ditto for entry handling in our callers.
460 * So at this point all tasks that could have seen our entry locked
461 * must be in the waitqueue and the following check will see them.
463 if (waitqueue_active(wq))
464 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
467 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
468 pgoff_t index, bool trunc)
470 int ret = 0;
471 void *entry;
472 struct radix_tree_root *page_tree = &mapping->page_tree;
474 spin_lock_irq(&mapping->tree_lock);
475 entry = get_unlocked_mapping_entry(mapping, index, NULL);
476 if (!entry || !radix_tree_exceptional_entry(entry))
477 goto out;
478 if (!trunc &&
479 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
481 goto out;
482 radix_tree_delete(page_tree, index);
483 mapping->nrexceptional--;
484 ret = 1;
485 out:
486 put_unlocked_mapping_entry(mapping, index, entry);
487 spin_unlock_irq(&mapping->tree_lock);
488 return ret;
491 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
492 * entry to get unlocked before deleting it.
494 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
496 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
499 * This gets called from truncate / punch_hole path. As such, the caller
500 * must hold locks protecting against concurrent modifications of the
501 * radix tree (usually fs-private i_mmap_sem for writing). Since the
502 * caller has seen exceptional entry for this index, we better find it
503 * at that index as well...
505 WARN_ON_ONCE(!ret);
506 return ret;
510 * Invalidate exceptional DAX entry if it is clean.
512 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
513 pgoff_t index)
515 return __dax_invalidate_mapping_entry(mapping, index, false);
519 * The user has performed a load from a hole in the file. Allocating
520 * a new page in the file would cause excessive storage usage for
521 * workloads with sparse files. We allocate a page cache page instead.
522 * We'll kick it out of the page cache if it's ever written to,
523 * otherwise it will simply fall out of the page cache under memory
524 * pressure without ever having been dirtied.
526 static int dax_load_hole(struct address_space *mapping, void **entry,
527 struct vm_fault *vmf)
529 struct page *page;
530 int ret;
532 /* Hole page already exists? Return it... */
533 if (!radix_tree_exceptional_entry(*entry)) {
534 page = *entry;
535 goto out;
538 /* This will replace locked radix tree entry with a hole page */
539 page = find_or_create_page(mapping, vmf->pgoff,
540 vmf->gfp_mask | __GFP_ZERO);
541 if (!page)
542 return VM_FAULT_OOM;
543 out:
544 vmf->page = page;
545 ret = finish_fault(vmf);
546 vmf->page = NULL;
547 *entry = page;
548 if (!ret) {
549 /* Grab reference for PTE that is now referencing the page */
550 get_page(page);
551 return VM_FAULT_NOPAGE;
553 return ret;
556 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
557 struct page *to, unsigned long vaddr)
559 struct blk_dax_ctl dax = {
560 .sector = sector,
561 .size = size,
563 void *vto;
565 if (dax_map_atomic(bdev, &dax) < 0)
566 return PTR_ERR(dax.addr);
567 vto = kmap_atomic(to);
568 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
569 kunmap_atomic(vto);
570 dax_unmap_atomic(bdev, &dax);
571 return 0;
575 * By this point grab_mapping_entry() has ensured that we have a locked entry
576 * of the appropriate size so we don't have to worry about downgrading PMDs to
577 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
578 * already in the tree, we will skip the insertion and just dirty the PMD as
579 * appropriate.
581 static void *dax_insert_mapping_entry(struct address_space *mapping,
582 struct vm_fault *vmf,
583 void *entry, sector_t sector,
584 unsigned long flags)
586 struct radix_tree_root *page_tree = &mapping->page_tree;
587 int error = 0;
588 bool hole_fill = false;
589 void *new_entry;
590 pgoff_t index = vmf->pgoff;
592 if (vmf->flags & FAULT_FLAG_WRITE)
593 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
595 /* Replacing hole page with block mapping? */
596 if (!radix_tree_exceptional_entry(entry)) {
597 hole_fill = true;
599 * Unmap the page now before we remove it from page cache below.
600 * The page is locked so it cannot be faulted in again.
602 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
603 PAGE_SIZE, 0);
604 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
605 if (error)
606 return ERR_PTR(error);
607 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
608 /* replacing huge zero page with PMD block mapping */
609 unmap_mapping_range(mapping,
610 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
613 spin_lock_irq(&mapping->tree_lock);
614 new_entry = dax_radix_locked_entry(sector, flags);
616 if (hole_fill) {
617 __delete_from_page_cache(entry, NULL);
618 /* Drop pagecache reference */
619 put_page(entry);
620 error = __radix_tree_insert(page_tree, index,
621 dax_radix_order(new_entry), new_entry);
622 if (error) {
623 new_entry = ERR_PTR(error);
624 goto unlock;
626 mapping->nrexceptional++;
627 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
629 * Only swap our new entry into the radix tree if the current
630 * entry is a zero page or an empty entry. If a normal PTE or
631 * PMD entry is already in the tree, we leave it alone. This
632 * means that if we are trying to insert a PTE and the
633 * existing entry is a PMD, we will just leave the PMD in the
634 * tree and dirty it if necessary.
636 struct radix_tree_node *node;
637 void **slot;
638 void *ret;
640 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
641 WARN_ON_ONCE(ret != entry);
642 __radix_tree_replace(page_tree, node, slot,
643 new_entry, NULL, NULL);
645 if (vmf->flags & FAULT_FLAG_WRITE)
646 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
647 unlock:
648 spin_unlock_irq(&mapping->tree_lock);
649 if (hole_fill) {
650 radix_tree_preload_end();
652 * We don't need hole page anymore, it has been replaced with
653 * locked radix tree entry now.
655 if (mapping->a_ops->freepage)
656 mapping->a_ops->freepage(entry);
657 unlock_page(entry);
658 put_page(entry);
660 return new_entry;
663 static inline unsigned long
664 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
666 unsigned long address;
668 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
669 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
670 return address;
673 /* Walk all mappings of a given index of a file and writeprotect them */
674 static void dax_mapping_entry_mkclean(struct address_space *mapping,
675 pgoff_t index, unsigned long pfn)
677 struct vm_area_struct *vma;
678 pte_t pte, *ptep = NULL;
679 pmd_t *pmdp = NULL;
680 spinlock_t *ptl;
681 bool changed;
683 i_mmap_lock_read(mapping);
684 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
685 unsigned long address;
687 cond_resched();
689 if (!(vma->vm_flags & VM_SHARED))
690 continue;
692 address = pgoff_address(index, vma);
693 changed = false;
694 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
695 continue;
697 if (pmdp) {
698 #ifdef CONFIG_FS_DAX_PMD
699 pmd_t pmd;
701 if (pfn != pmd_pfn(*pmdp))
702 goto unlock_pmd;
703 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
704 goto unlock_pmd;
706 flush_cache_page(vma, address, pfn);
707 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
708 pmd = pmd_wrprotect(pmd);
709 pmd = pmd_mkclean(pmd);
710 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
711 changed = true;
712 unlock_pmd:
713 spin_unlock(ptl);
714 #endif
715 } else {
716 if (pfn != pte_pfn(*ptep))
717 goto unlock_pte;
718 if (!pte_dirty(*ptep) && !pte_write(*ptep))
719 goto unlock_pte;
721 flush_cache_page(vma, address, pfn);
722 pte = ptep_clear_flush(vma, address, ptep);
723 pte = pte_wrprotect(pte);
724 pte = pte_mkclean(pte);
725 set_pte_at(vma->vm_mm, address, ptep, pte);
726 changed = true;
727 unlock_pte:
728 pte_unmap_unlock(ptep, ptl);
731 if (changed)
732 mmu_notifier_invalidate_page(vma->vm_mm, address);
734 i_mmap_unlock_read(mapping);
737 static int dax_writeback_one(struct block_device *bdev,
738 struct address_space *mapping, pgoff_t index, void *entry)
740 struct radix_tree_root *page_tree = &mapping->page_tree;
741 struct blk_dax_ctl dax;
742 void *entry2, **slot;
743 int ret = 0;
746 * A page got tagged dirty in DAX mapping? Something is seriously
747 * wrong.
749 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
750 return -EIO;
752 spin_lock_irq(&mapping->tree_lock);
753 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
754 /* Entry got punched out / reallocated? */
755 if (!entry2 || !radix_tree_exceptional_entry(entry2))
756 goto put_unlocked;
758 * Entry got reallocated elsewhere? No need to writeback. We have to
759 * compare sectors as we must not bail out due to difference in lockbit
760 * or entry type.
762 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
763 goto put_unlocked;
764 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
765 dax_is_zero_entry(entry))) {
766 ret = -EIO;
767 goto put_unlocked;
770 /* Another fsync thread may have already written back this entry */
771 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
772 goto put_unlocked;
773 /* Lock the entry to serialize with page faults */
774 entry = lock_slot(mapping, slot);
776 * We can clear the tag now but we have to be careful so that concurrent
777 * dax_writeback_one() calls for the same index cannot finish before we
778 * actually flush the caches. This is achieved as the calls will look
779 * at the entry only under tree_lock and once they do that they will
780 * see the entry locked and wait for it to unlock.
782 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
783 spin_unlock_irq(&mapping->tree_lock);
786 * Even if dax_writeback_mapping_range() was given a wbc->range_start
787 * in the middle of a PMD, the 'index' we are given will be aligned to
788 * the start index of the PMD, as will the sector we pull from
789 * 'entry'. This allows us to flush for PMD_SIZE and not have to
790 * worry about partial PMD writebacks.
792 dax.sector = dax_radix_sector(entry);
793 dax.size = PAGE_SIZE << dax_radix_order(entry);
796 * We cannot hold tree_lock while calling dax_map_atomic() because it
797 * eventually calls cond_resched().
799 ret = dax_map_atomic(bdev, &dax);
800 if (ret < 0) {
801 put_locked_mapping_entry(mapping, index, entry);
802 return ret;
805 if (WARN_ON_ONCE(ret < dax.size)) {
806 ret = -EIO;
807 goto unmap;
810 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
811 wb_cache_pmem(dax.addr, dax.size);
813 * After we have flushed the cache, we can clear the dirty tag. There
814 * cannot be new dirty data in the pfn after the flush has completed as
815 * the pfn mappings are writeprotected and fault waits for mapping
816 * entry lock.
818 spin_lock_irq(&mapping->tree_lock);
819 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
820 spin_unlock_irq(&mapping->tree_lock);
821 unmap:
822 dax_unmap_atomic(bdev, &dax);
823 put_locked_mapping_entry(mapping, index, entry);
824 return ret;
826 put_unlocked:
827 put_unlocked_mapping_entry(mapping, index, entry2);
828 spin_unlock_irq(&mapping->tree_lock);
829 return ret;
833 * Flush the mapping to the persistent domain within the byte range of [start,
834 * end]. This is required by data integrity operations to ensure file data is
835 * on persistent storage prior to completion of the operation.
837 int dax_writeback_mapping_range(struct address_space *mapping,
838 struct block_device *bdev, struct writeback_control *wbc)
840 struct inode *inode = mapping->host;
841 pgoff_t start_index, end_index;
842 pgoff_t indices[PAGEVEC_SIZE];
843 struct pagevec pvec;
844 bool done = false;
845 int i, ret = 0;
847 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
848 return -EIO;
850 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
851 return 0;
853 start_index = wbc->range_start >> PAGE_SHIFT;
854 end_index = wbc->range_end >> PAGE_SHIFT;
856 tag_pages_for_writeback(mapping, start_index, end_index);
858 pagevec_init(&pvec, 0);
859 while (!done) {
860 pvec.nr = find_get_entries_tag(mapping, start_index,
861 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
862 pvec.pages, indices);
864 if (pvec.nr == 0)
865 break;
867 for (i = 0; i < pvec.nr; i++) {
868 if (indices[i] > end_index) {
869 done = true;
870 break;
873 ret = dax_writeback_one(bdev, mapping, indices[i],
874 pvec.pages[i]);
875 if (ret < 0)
876 return ret;
878 start_index = indices[pvec.nr - 1] + 1;
880 return 0;
882 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
884 static int dax_insert_mapping(struct address_space *mapping,
885 struct block_device *bdev, sector_t sector, size_t size,
886 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
888 unsigned long vaddr = vmf->address;
889 struct blk_dax_ctl dax = {
890 .sector = sector,
891 .size = size,
893 void *ret;
894 void *entry = *entryp;
896 if (dax_map_atomic(bdev, &dax) < 0)
897 return PTR_ERR(dax.addr);
898 dax_unmap_atomic(bdev, &dax);
900 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
901 if (IS_ERR(ret))
902 return PTR_ERR(ret);
903 *entryp = ret;
905 return vm_insert_mixed(vma, vaddr, dax.pfn);
909 * dax_pfn_mkwrite - handle first write to DAX page
910 * @vmf: The description of the fault
912 int dax_pfn_mkwrite(struct vm_fault *vmf)
914 struct file *file = vmf->vma->vm_file;
915 struct address_space *mapping = file->f_mapping;
916 void *entry, **slot;
917 pgoff_t index = vmf->pgoff;
919 spin_lock_irq(&mapping->tree_lock);
920 entry = get_unlocked_mapping_entry(mapping, index, &slot);
921 if (!entry || !radix_tree_exceptional_entry(entry)) {
922 if (entry)
923 put_unlocked_mapping_entry(mapping, index, entry);
924 spin_unlock_irq(&mapping->tree_lock);
925 return VM_FAULT_NOPAGE;
927 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
928 entry = lock_slot(mapping, slot);
929 spin_unlock_irq(&mapping->tree_lock);
931 * If we race with somebody updating the PTE and finish_mkwrite_fault()
932 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
933 * the fault in either case.
935 finish_mkwrite_fault(vmf);
936 put_locked_mapping_entry(mapping, index, entry);
937 return VM_FAULT_NOPAGE;
939 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
941 static bool dax_range_is_aligned(struct block_device *bdev,
942 unsigned int offset, unsigned int length)
944 unsigned short sector_size = bdev_logical_block_size(bdev);
946 if (!IS_ALIGNED(offset, sector_size))
947 return false;
948 if (!IS_ALIGNED(length, sector_size))
949 return false;
951 return true;
954 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
955 unsigned int offset, unsigned int length)
957 struct blk_dax_ctl dax = {
958 .sector = sector,
959 .size = PAGE_SIZE,
962 if (dax_range_is_aligned(bdev, offset, length)) {
963 sector_t start_sector = dax.sector + (offset >> 9);
965 return blkdev_issue_zeroout(bdev, start_sector,
966 length >> 9, GFP_NOFS, true);
967 } else {
968 if (dax_map_atomic(bdev, &dax) < 0)
969 return PTR_ERR(dax.addr);
970 clear_pmem(dax.addr + offset, length);
971 dax_unmap_atomic(bdev, &dax);
973 return 0;
975 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
977 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
979 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
982 static loff_t
983 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
984 struct iomap *iomap)
986 struct iov_iter *iter = data;
987 loff_t end = pos + length, done = 0;
988 ssize_t ret = 0;
990 if (iov_iter_rw(iter) == READ) {
991 end = min(end, i_size_read(inode));
992 if (pos >= end)
993 return 0;
995 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
996 return iov_iter_zero(min(length, end - pos), iter);
999 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1000 return -EIO;
1003 * Write can allocate block for an area which has a hole page mapped
1004 * into page tables. We have to tear down these mappings so that data
1005 * written by write(2) is visible in mmap.
1007 if (iomap->flags & IOMAP_F_NEW) {
1008 invalidate_inode_pages2_range(inode->i_mapping,
1009 pos >> PAGE_SHIFT,
1010 (end - 1) >> PAGE_SHIFT);
1013 while (pos < end) {
1014 unsigned offset = pos & (PAGE_SIZE - 1);
1015 struct blk_dax_ctl dax = { 0 };
1016 ssize_t map_len;
1018 if (fatal_signal_pending(current)) {
1019 ret = -EINTR;
1020 break;
1023 dax.sector = dax_iomap_sector(iomap, pos);
1024 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1025 map_len = dax_map_atomic(iomap->bdev, &dax);
1026 if (map_len < 0) {
1027 ret = map_len;
1028 break;
1031 dax.addr += offset;
1032 map_len -= offset;
1033 if (map_len > end - pos)
1034 map_len = end - pos;
1036 if (iov_iter_rw(iter) == WRITE)
1037 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1038 else
1039 map_len = copy_to_iter(dax.addr, map_len, iter);
1040 dax_unmap_atomic(iomap->bdev, &dax);
1041 if (map_len <= 0) {
1042 ret = map_len ? map_len : -EFAULT;
1043 break;
1046 pos += map_len;
1047 length -= map_len;
1048 done += map_len;
1051 return done ? done : ret;
1055 * dax_iomap_rw - Perform I/O to a DAX file
1056 * @iocb: The control block for this I/O
1057 * @iter: The addresses to do I/O from or to
1058 * @ops: iomap ops passed from the file system
1060 * This function performs read and write operations to directly mapped
1061 * persistent memory. The callers needs to take care of read/write exclusion
1062 * and evicting any page cache pages in the region under I/O.
1064 ssize_t
1065 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1066 const struct iomap_ops *ops)
1068 struct address_space *mapping = iocb->ki_filp->f_mapping;
1069 struct inode *inode = mapping->host;
1070 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1071 unsigned flags = 0;
1073 if (iov_iter_rw(iter) == WRITE) {
1074 lockdep_assert_held_exclusive(&inode->i_rwsem);
1075 flags |= IOMAP_WRITE;
1076 } else {
1077 lockdep_assert_held(&inode->i_rwsem);
1080 while (iov_iter_count(iter)) {
1081 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1082 iter, dax_iomap_actor);
1083 if (ret <= 0)
1084 break;
1085 pos += ret;
1086 done += ret;
1089 iocb->ki_pos += done;
1090 return done ? done : ret;
1092 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1094 static int dax_fault_return(int error)
1096 if (error == 0)
1097 return VM_FAULT_NOPAGE;
1098 if (error == -ENOMEM)
1099 return VM_FAULT_OOM;
1100 return VM_FAULT_SIGBUS;
1103 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1104 const struct iomap_ops *ops)
1106 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1107 struct inode *inode = mapping->host;
1108 unsigned long vaddr = vmf->address;
1109 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1110 sector_t sector;
1111 struct iomap iomap = { 0 };
1112 unsigned flags = IOMAP_FAULT;
1113 int error, major = 0;
1114 int vmf_ret = 0;
1115 void *entry;
1118 * Check whether offset isn't beyond end of file now. Caller is supposed
1119 * to hold locks serializing us with truncate / punch hole so this is
1120 * a reliable test.
1122 if (pos >= i_size_read(inode))
1123 return VM_FAULT_SIGBUS;
1125 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1126 flags |= IOMAP_WRITE;
1128 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1129 if (IS_ERR(entry))
1130 return dax_fault_return(PTR_ERR(entry));
1133 * It is possible, particularly with mixed reads & writes to private
1134 * mappings, that we have raced with a PMD fault that overlaps with
1135 * the PTE we need to set up. If so just return and the fault will be
1136 * retried.
1138 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1139 vmf_ret = VM_FAULT_NOPAGE;
1140 goto unlock_entry;
1144 * Note that we don't bother to use iomap_apply here: DAX required
1145 * the file system block size to be equal the page size, which means
1146 * that we never have to deal with more than a single extent here.
1148 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1149 if (error) {
1150 vmf_ret = dax_fault_return(error);
1151 goto unlock_entry;
1153 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1154 error = -EIO; /* fs corruption? */
1155 goto error_finish_iomap;
1158 sector = dax_iomap_sector(&iomap, pos);
1160 if (vmf->cow_page) {
1161 switch (iomap.type) {
1162 case IOMAP_HOLE:
1163 case IOMAP_UNWRITTEN:
1164 clear_user_highpage(vmf->cow_page, vaddr);
1165 break;
1166 case IOMAP_MAPPED:
1167 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1168 vmf->cow_page, vaddr);
1169 break;
1170 default:
1171 WARN_ON_ONCE(1);
1172 error = -EIO;
1173 break;
1176 if (error)
1177 goto error_finish_iomap;
1179 __SetPageUptodate(vmf->cow_page);
1180 vmf_ret = finish_fault(vmf);
1181 if (!vmf_ret)
1182 vmf_ret = VM_FAULT_DONE_COW;
1183 goto finish_iomap;
1186 switch (iomap.type) {
1187 case IOMAP_MAPPED:
1188 if (iomap.flags & IOMAP_F_NEW) {
1189 count_vm_event(PGMAJFAULT);
1190 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1191 major = VM_FAULT_MAJOR;
1193 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1194 PAGE_SIZE, &entry, vmf->vma, vmf);
1195 /* -EBUSY is fine, somebody else faulted on the same PTE */
1196 if (error == -EBUSY)
1197 error = 0;
1198 break;
1199 case IOMAP_UNWRITTEN:
1200 case IOMAP_HOLE:
1201 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1202 vmf_ret = dax_load_hole(mapping, &entry, vmf);
1203 goto finish_iomap;
1205 /*FALLTHRU*/
1206 default:
1207 WARN_ON_ONCE(1);
1208 error = -EIO;
1209 break;
1212 error_finish_iomap:
1213 vmf_ret = dax_fault_return(error) | major;
1214 finish_iomap:
1215 if (ops->iomap_end) {
1216 int copied = PAGE_SIZE;
1218 if (vmf_ret & VM_FAULT_ERROR)
1219 copied = 0;
1221 * The fault is done by now and there's no way back (other
1222 * thread may be already happily using PTE we have installed).
1223 * Just ignore error from ->iomap_end since we cannot do much
1224 * with it.
1226 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1228 unlock_entry:
1229 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1230 return vmf_ret;
1233 #ifdef CONFIG_FS_DAX_PMD
1235 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1236 * more often than one might expect in the below functions.
1238 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1240 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1241 loff_t pos, void **entryp)
1243 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1244 struct block_device *bdev = iomap->bdev;
1245 struct inode *inode = mapping->host;
1246 struct blk_dax_ctl dax = {
1247 .sector = dax_iomap_sector(iomap, pos),
1248 .size = PMD_SIZE,
1250 long length = dax_map_atomic(bdev, &dax);
1251 void *ret = NULL;
1253 if (length < 0) /* dax_map_atomic() failed */
1254 goto fallback;
1255 if (length < PMD_SIZE)
1256 goto unmap_fallback;
1257 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1258 goto unmap_fallback;
1259 if (!pfn_t_devmap(dax.pfn))
1260 goto unmap_fallback;
1262 dax_unmap_atomic(bdev, &dax);
1264 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1265 RADIX_DAX_PMD);
1266 if (IS_ERR(ret))
1267 goto fallback;
1268 *entryp = ret;
1270 trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret);
1271 return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1272 dax.pfn, vmf->flags & FAULT_FLAG_WRITE);
1274 unmap_fallback:
1275 dax_unmap_atomic(bdev, &dax);
1276 fallback:
1277 trace_dax_pmd_insert_mapping_fallback(inode, vmf, length,
1278 dax.pfn, ret);
1279 return VM_FAULT_FALLBACK;
1282 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1283 void **entryp)
1285 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1286 unsigned long pmd_addr = vmf->address & PMD_MASK;
1287 struct inode *inode = mapping->host;
1288 struct page *zero_page;
1289 void *ret = NULL;
1290 spinlock_t *ptl;
1291 pmd_t pmd_entry;
1293 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1295 if (unlikely(!zero_page))
1296 goto fallback;
1298 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1299 RADIX_DAX_PMD | RADIX_DAX_HZP);
1300 if (IS_ERR(ret))
1301 goto fallback;
1302 *entryp = ret;
1304 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1305 if (!pmd_none(*(vmf->pmd))) {
1306 spin_unlock(ptl);
1307 goto fallback;
1310 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1311 pmd_entry = pmd_mkhuge(pmd_entry);
1312 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1313 spin_unlock(ptl);
1314 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1315 return VM_FAULT_NOPAGE;
1317 fallback:
1318 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1319 return VM_FAULT_FALLBACK;
1322 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1323 const struct iomap_ops *ops)
1325 struct vm_area_struct *vma = vmf->vma;
1326 struct address_space *mapping = vma->vm_file->f_mapping;
1327 unsigned long pmd_addr = vmf->address & PMD_MASK;
1328 bool write = vmf->flags & FAULT_FLAG_WRITE;
1329 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1330 struct inode *inode = mapping->host;
1331 int result = VM_FAULT_FALLBACK;
1332 struct iomap iomap = { 0 };
1333 pgoff_t max_pgoff, pgoff;
1334 void *entry;
1335 loff_t pos;
1336 int error;
1339 * Check whether offset isn't beyond end of file now. Caller is
1340 * supposed to hold locks serializing us with truncate / punch hole so
1341 * this is a reliable test.
1343 pgoff = linear_page_index(vma, pmd_addr);
1344 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1346 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1348 /* Fall back to PTEs if we're going to COW */
1349 if (write && !(vma->vm_flags & VM_SHARED))
1350 goto fallback;
1352 /* If the PMD would extend outside the VMA */
1353 if (pmd_addr < vma->vm_start)
1354 goto fallback;
1355 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1356 goto fallback;
1358 if (pgoff > max_pgoff) {
1359 result = VM_FAULT_SIGBUS;
1360 goto out;
1363 /* If the PMD would extend beyond the file size */
1364 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1365 goto fallback;
1368 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1369 * PMD or a HZP entry. If it can't (because a 4k page is already in
1370 * the tree, for instance), it will return -EEXIST and we just fall
1371 * back to 4k entries.
1373 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1374 if (IS_ERR(entry))
1375 goto fallback;
1378 * It is possible, particularly with mixed reads & writes to private
1379 * mappings, that we have raced with a PTE fault that overlaps with
1380 * the PMD we need to set up. If so just return and the fault will be
1381 * retried.
1383 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1384 !pmd_devmap(*vmf->pmd)) {
1385 result = 0;
1386 goto unlock_entry;
1390 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1391 * setting up a mapping, so really we're using iomap_begin() as a way
1392 * to look up our filesystem block.
1394 pos = (loff_t)pgoff << PAGE_SHIFT;
1395 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1396 if (error)
1397 goto unlock_entry;
1399 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1400 goto finish_iomap;
1402 switch (iomap.type) {
1403 case IOMAP_MAPPED:
1404 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1405 break;
1406 case IOMAP_UNWRITTEN:
1407 case IOMAP_HOLE:
1408 if (WARN_ON_ONCE(write))
1409 break;
1410 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1411 break;
1412 default:
1413 WARN_ON_ONCE(1);
1414 break;
1417 finish_iomap:
1418 if (ops->iomap_end) {
1419 int copied = PMD_SIZE;
1421 if (result == VM_FAULT_FALLBACK)
1422 copied = 0;
1424 * The fault is done by now and there's no way back (other
1425 * thread may be already happily using PMD we have installed).
1426 * Just ignore error from ->iomap_end since we cannot do much
1427 * with it.
1429 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1430 &iomap);
1432 unlock_entry:
1433 put_locked_mapping_entry(mapping, pgoff, entry);
1434 fallback:
1435 if (result == VM_FAULT_FALLBACK) {
1436 split_huge_pmd(vma, vmf->pmd, vmf->address);
1437 count_vm_event(THP_FAULT_FALLBACK);
1439 out:
1440 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1441 return result;
1443 #else
1444 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1445 const struct iomap_ops *ops)
1447 return VM_FAULT_FALLBACK;
1449 #endif /* CONFIG_FS_DAX_PMD */
1452 * dax_iomap_fault - handle a page fault on a DAX file
1453 * @vmf: The description of the fault
1454 * @ops: iomap ops passed from the file system
1456 * When a page fault occurs, filesystems may call this helper in
1457 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1458 * has done all the necessary locking for page fault to proceed
1459 * successfully.
1461 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1462 const struct iomap_ops *ops)
1464 switch (pe_size) {
1465 case PE_SIZE_PTE:
1466 return dax_iomap_pte_fault(vmf, ops);
1467 case PE_SIZE_PMD:
1468 return dax_iomap_pmd_fault(vmf, ops);
1469 default:
1470 return VM_FAULT_FALLBACK;
1473 EXPORT_SYMBOL_GPL(dax_iomap_fault);