2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9
7 * Copyright (C) 1999 VA Linux Systems
8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Stephane Eranian <eranian@hpl.hp.com>
12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13 * Bjorn Helgaas <bjorn.helgaas@hp.com>
15 * All EFI Runtime Services are not implemented yet as EFI only
16 * supports physical mode addressing on SoftSDV. This is to be fixed
17 * in a future version. --drummond 1999-07-20
19 * Implemented EFI runtime services and virtual mode calls. --davidm
21 * Goutham Rao: <goutham.rao@intel.com>
22 * Skip non-WB memory and ignore empty memory ranges.
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
47 static __initdata
unsigned long palo_phys
;
49 static __initdata efi_config_table_type_t arch_tables
[] = {
50 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID
, "PALO", &palo_phys
},
54 extern efi_status_t
efi_call_phys (void *, ...);
56 static efi_runtime_services_t
*runtime
;
57 static u64 mem_limit
= ~0UL, max_addr
= ~0UL, min_addr
= 0UL;
59 #define efi_call_virt(f, args...) (*(f))(args)
61 #define STUB_GET_TIME(prefix, adjust_arg) \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
65 struct ia64_fpreg fr[6]; \
66 efi_time_cap_t *atc = NULL; \
70 atc = adjust_arg(tc); \
71 ia64_save_scratch_fpregs(fr); \
72 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
73 adjust_arg(tm), atc); \
74 ia64_load_scratch_fpregs(fr); \
78 #define STUB_SET_TIME(prefix, adjust_arg) \
80 prefix##_set_time (efi_time_t *tm) \
82 struct ia64_fpreg fr[6]; \
85 ia64_save_scratch_fpregs(fr); \
86 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
88 ia64_load_scratch_fpregs(fr); \
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
97 struct ia64_fpreg fr[6]; \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix( \
102 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
103 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
104 ia64_load_scratch_fpregs(fr); \
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
109 static efi_status_t \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
112 struct ia64_fpreg fr[6]; \
113 efi_time_t *atm = NULL; \
117 atm = adjust_arg(tm); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix( \
120 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
122 ia64_load_scratch_fpregs(fr); \
126 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
129 unsigned long *data_size, void *data) \
131 struct ia64_fpreg fr[6]; \
136 aattr = adjust_arg(attr); \
137 ia64_save_scratch_fpregs(fr); \
138 ret = efi_call_##prefix( \
139 (efi_get_variable_t *) __va(runtime->get_variable), \
140 adjust_arg(name), adjust_arg(vendor), aattr, \
141 adjust_arg(data_size), adjust_arg(data)); \
142 ia64_load_scratch_fpregs(fr); \
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
147 static efi_status_t \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
149 efi_guid_t *vendor) \
151 struct ia64_fpreg fr[6]; \
154 ia64_save_scratch_fpregs(fr); \
155 ret = efi_call_##prefix( \
156 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
157 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
158 ia64_load_scratch_fpregs(fr); \
162 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
163 static efi_status_t \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
165 u32 attr, unsigned long data_size, \
168 struct ia64_fpreg fr[6]; \
171 ia64_save_scratch_fpregs(fr); \
172 ret = efi_call_##prefix( \
173 (efi_set_variable_t *) __va(runtime->set_variable), \
174 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
176 ia64_load_scratch_fpregs(fr); \
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
181 static efi_status_t \
182 prefix##_get_next_high_mono_count (u32 *count) \
184 struct ia64_fpreg fr[6]; \
187 ia64_save_scratch_fpregs(fr); \
188 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
189 __va(runtime->get_next_high_mono_count), \
190 adjust_arg(count)); \
191 ia64_load_scratch_fpregs(fr); \
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
197 prefix##_reset_system (int reset_type, efi_status_t status, \
198 unsigned long data_size, efi_char16_t *data) \
200 struct ia64_fpreg fr[6]; \
201 efi_char16_t *adata = NULL; \
204 adata = adjust_arg(data); \
206 ia64_save_scratch_fpregs(fr); \
208 (efi_reset_system_t *) __va(runtime->reset_system), \
209 reset_type, status, data_size, adata); \
210 /* should not return, but just in case... */ \
211 ia64_load_scratch_fpregs(fr); \
214 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
216 STUB_GET_TIME(phys
, phys_ptr
)
217 STUB_SET_TIME(phys
, phys_ptr
)
218 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
219 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
220 STUB_GET_VARIABLE(phys
, phys_ptr
)
221 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
222 STUB_SET_VARIABLE(phys
, phys_ptr
)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
224 STUB_RESET_SYSTEM(phys
, phys_ptr
)
228 STUB_GET_TIME(virt
, id
)
229 STUB_SET_TIME(virt
, id
)
230 STUB_GET_WAKEUP_TIME(virt
, id
)
231 STUB_SET_WAKEUP_TIME(virt
, id
)
232 STUB_GET_VARIABLE(virt
, id
)
233 STUB_GET_NEXT_VARIABLE(virt
, id
)
234 STUB_SET_VARIABLE(virt
, id
)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
236 STUB_RESET_SYSTEM(virt
, id
)
239 efi_gettimeofday (struct timespec
*ts
)
243 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
) {
244 memset(ts
, 0, sizeof(*ts
));
248 ts
->tv_sec
= mktime(tm
.year
, tm
.month
, tm
.day
,
249 tm
.hour
, tm
.minute
, tm
.second
);
250 ts
->tv_nsec
= tm
.nanosecond
;
254 is_memory_available (efi_memory_desc_t
*md
)
256 if (!(md
->attribute
& EFI_MEMORY_WB
))
260 case EFI_LOADER_CODE
:
261 case EFI_LOADER_DATA
:
262 case EFI_BOOT_SERVICES_CODE
:
263 case EFI_BOOT_SERVICES_DATA
:
264 case EFI_CONVENTIONAL_MEMORY
:
270 typedef struct kern_memdesc
{
276 static kern_memdesc_t
*kern_memmap
;
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
281 kmd_end(kern_memdesc_t
*kmd
)
283 return (kmd
->start
+ (kmd
->num_pages
<< EFI_PAGE_SHIFT
));
287 efi_md_end(efi_memory_desc_t
*md
)
289 return (md
->phys_addr
+ efi_md_size(md
));
293 efi_wb(efi_memory_desc_t
*md
)
295 return (md
->attribute
& EFI_MEMORY_WB
);
299 efi_uc(efi_memory_desc_t
*md
)
301 return (md
->attribute
& EFI_MEMORY_UC
);
305 walk (efi_freemem_callback_t callback
, void *arg
, u64 attr
)
308 u64 start
, end
, voff
;
310 voff
= (attr
== EFI_MEMORY_WB
) ? PAGE_OFFSET
: __IA64_UNCACHED_OFFSET
;
311 for (k
= kern_memmap
; k
->start
!= ~0UL; k
++) {
312 if (k
->attribute
!= attr
)
314 start
= PAGE_ALIGN(k
->start
);
315 end
= (k
->start
+ (k
->num_pages
<< EFI_PAGE_SHIFT
)) & PAGE_MASK
;
317 if ((*callback
)(start
+ voff
, end
+ voff
, arg
) < 0)
323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
324 * descriptor that has memory that is available for OS use.
327 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
329 walk(callback
, arg
, EFI_MEMORY_WB
);
333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
334 * descriptor that has memory that is available for uncached allocator.
337 efi_memmap_walk_uc (efi_freemem_callback_t callback
, void *arg
)
339 walk(callback
, arg
, EFI_MEMORY_UC
);
343 * Look for the PAL_CODE region reported by EFI and map it using an
344 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
345 * Abstraction Layer chapter 11 in ADAG
348 efi_get_pal_addr (void)
350 void *efi_map_start
, *efi_map_end
, *p
;
351 efi_memory_desc_t
*md
;
353 int pal_code_count
= 0;
356 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
357 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
358 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
360 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
362 if (md
->type
!= EFI_PAL_CODE
)
365 if (++pal_code_count
> 1) {
366 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, "
367 "dropped @ %llx\n", md
->phys_addr
);
371 * The only ITLB entry in region 7 that is used is the one
372 * installed by __start(). That entry covers a 64MB range.
374 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
375 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
378 * We must check that the PAL mapping won't overlap with the
381 * PAL code is guaranteed to be aligned on a power of 2 between
382 * 4k and 256KB and that only one ITR is needed to map it. This
383 * implies that the PAL code is always aligned on its size,
384 * i.e., the closest matching page size supported by the TLB.
385 * Therefore PAL code is guaranteed never to cross a 64MB unless
386 * it is bigger than 64MB (very unlikely!). So for now the
387 * following test is enough to determine whether or not we need
388 * a dedicated ITR for the PAL code.
390 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
391 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
396 if (efi_md_size(md
) > IA64_GRANULE_SIZE
)
397 panic("Whoa! PAL code size bigger than a granule!");
400 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
402 printk(KERN_INFO
"CPU %d: mapping PAL code "
403 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404 smp_processor_id(), md
->phys_addr
,
405 md
->phys_addr
+ efi_md_size(md
),
406 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
408 return __va(md
->phys_addr
);
410 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found\n",
416 static u8 __init
palo_checksum(u8
*buffer
, u32 length
)
419 u8
*end
= buffer
+ length
;
422 sum
= (u8
) (sum
+ *(buffer
++));
428 * Parse and handle PALO table which is published at:
429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
431 static void __init
handle_palo(unsigned long phys_addr
)
433 struct palo_table
*palo
= __va(phys_addr
);
436 if (strncmp(palo
->signature
, PALO_SIG
, sizeof(PALO_SIG
) - 1)) {
437 printk(KERN_INFO
"PALO signature incorrect.\n");
441 checksum
= palo_checksum((u8
*)palo
, palo
->length
);
443 printk(KERN_INFO
"PALO checksum incorrect.\n");
447 setup_ptcg_sem(palo
->max_tlb_purges
, NPTCG_FROM_PALO
);
451 efi_map_pal_code (void)
453 void *pal_vaddr
= efi_get_pal_addr ();
460 * Cannot write to CRx with PSR.ic=1
462 psr
= ia64_clear_ic();
463 ia64_itr(0x1, IA64_TR_PALCODE
,
464 GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
465 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
467 paravirt_dv_serialize_data();
468 ia64_set_psr(psr
); /* restore psr */
474 void *efi_map_start
, *efi_map_end
;
477 char *cp
, vendor
[100] = "unknown";
481 * It's too early to be able to use the standard kernel command line
484 for (cp
= boot_command_line
; *cp
; ) {
485 if (memcmp(cp
, "mem=", 4) == 0) {
486 mem_limit
= memparse(cp
+ 4, &cp
);
487 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
488 max_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
489 } else if (memcmp(cp
, "min_addr=", 9) == 0) {
490 min_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
492 while (*cp
!= ' ' && *cp
)
499 printk(KERN_INFO
"Ignoring memory below %lluMB\n",
501 if (max_addr
!= ~0UL)
502 printk(KERN_INFO
"Ignoring memory above %lluMB\n",
505 efi
.systab
= __va(ia64_boot_param
->efi_systab
);
508 * Verify the EFI Table
510 if (efi
.systab
== NULL
)
511 panic("Whoa! Can't find EFI system table.\n");
512 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
513 panic("Whoa! EFI system table signature incorrect\n");
514 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
515 printk(KERN_WARNING
"Warning: EFI system table version "
516 "%d.%02d, expected 1.00 or greater\n",
517 efi
.systab
->hdr
.revision
>> 16,
518 efi
.systab
->hdr
.revision
& 0xffff);
520 /* Show what we know for posterity */
521 c16
= __va(efi
.systab
->fw_vendor
);
523 for (i
= 0;i
< (int) sizeof(vendor
) - 1 && *c16
; ++i
)
528 printk(KERN_INFO
"EFI v%u.%.02u by %s:",
529 efi
.systab
->hdr
.revision
>> 16,
530 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
532 palo_phys
= EFI_INVALID_TABLE_ADDR
;
534 if (efi_config_init(arch_tables
) != 0)
537 if (palo_phys
!= EFI_INVALID_TABLE_ADDR
)
538 handle_palo(palo_phys
);
540 runtime
= __va(efi
.systab
->runtime
);
541 efi
.get_time
= phys_get_time
;
542 efi
.set_time
= phys_set_time
;
543 efi
.get_wakeup_time
= phys_get_wakeup_time
;
544 efi
.set_wakeup_time
= phys_set_wakeup_time
;
545 efi
.get_variable
= phys_get_variable
;
546 efi
.get_next_variable
= phys_get_next_variable
;
547 efi
.set_variable
= phys_set_variable
;
548 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
549 efi
.reset_system
= phys_reset_system
;
551 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
552 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
553 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
556 /* print EFI memory map: */
558 efi_memory_desc_t
*md
;
561 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
;
562 ++i
, p
+= efi_desc_size
)
568 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
570 if ((size
>> 40) > 0) {
573 } else if ((size
>> 30) > 0) {
576 } else if ((size
>> 20) > 0) {
584 printk("mem%02d: type=%2u, attr=0x%016lx, "
585 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
586 i
, md
->type
, md
->attribute
, md
->phys_addr
,
587 md
->phys_addr
+ efi_md_size(md
), size
, unit
);
593 efi_enter_virtual_mode();
597 efi_enter_virtual_mode (void)
599 void *efi_map_start
, *efi_map_end
, *p
;
600 efi_memory_desc_t
*md
;
604 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
605 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
606 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
608 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
610 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
612 * Some descriptors have multiple bits set, so the
613 * order of the tests is relevant.
615 if (md
->attribute
& EFI_MEMORY_WB
) {
616 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
617 } else if (md
->attribute
& EFI_MEMORY_UC
) {
618 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
619 } else if (md
->attribute
& EFI_MEMORY_WC
) {
621 md
->virt_addr
= ia64_remap(md
->phys_addr
,
629 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
630 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
632 } else if (md
->attribute
& EFI_MEMORY_WT
) {
634 md
->virt_addr
= ia64_remap(md
->phys_addr
,
642 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
643 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
649 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
650 ia64_boot_param
->efi_memmap_size
,
652 ia64_boot_param
->efi_memdesc_version
,
653 ia64_boot_param
->efi_memmap
);
654 if (status
!= EFI_SUCCESS
) {
655 printk(KERN_WARNING
"warning: unable to switch EFI into "
656 "virtual mode (status=%lu)\n", status
);
661 * Now that EFI is in virtual mode, we call the EFI functions more
664 efi
.get_time
= virt_get_time
;
665 efi
.set_time
= virt_set_time
;
666 efi
.get_wakeup_time
= virt_get_wakeup_time
;
667 efi
.set_wakeup_time
= virt_set_wakeup_time
;
668 efi
.get_variable
= virt_get_variable
;
669 efi
.get_next_variable
= virt_get_next_variable
;
670 efi
.set_variable
= virt_set_variable
;
671 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
672 efi
.reset_system
= virt_reset_system
;
676 * Walk the EFI memory map looking for the I/O port range. There can only be
677 * one entry of this type, other I/O port ranges should be described via ACPI.
680 efi_get_iobase (void)
682 void *efi_map_start
, *efi_map_end
, *p
;
683 efi_memory_desc_t
*md
;
686 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
687 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
688 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
690 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
692 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
693 if (md
->attribute
& EFI_MEMORY_UC
)
694 return md
->phys_addr
;
700 static struct kern_memdesc
*
701 kern_memory_descriptor (unsigned long phys_addr
)
703 struct kern_memdesc
*md
;
705 for (md
= kern_memmap
; md
->start
!= ~0UL; md
++) {
706 if (phys_addr
- md
->start
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
712 static efi_memory_desc_t
*
713 efi_memory_descriptor (unsigned long phys_addr
)
715 void *efi_map_start
, *efi_map_end
, *p
;
716 efi_memory_desc_t
*md
;
719 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
720 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
721 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
723 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
726 if (phys_addr
- md
->phys_addr
< efi_md_size(md
))
733 efi_memmap_intersects (unsigned long phys_addr
, unsigned long size
)
735 void *efi_map_start
, *efi_map_end
, *p
;
736 efi_memory_desc_t
*md
;
740 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
741 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
742 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
744 end
= phys_addr
+ size
;
746 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
748 if (md
->phys_addr
< end
&& efi_md_end(md
) > phys_addr
)
755 efi_mem_type (unsigned long phys_addr
)
757 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
765 efi_mem_attributes (unsigned long phys_addr
)
767 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
770 return md
->attribute
;
773 EXPORT_SYMBOL(efi_mem_attributes
);
776 efi_mem_attribute (unsigned long phys_addr
, unsigned long size
)
778 unsigned long end
= phys_addr
+ size
;
779 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
786 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
787 * the kernel that firmware needs this region mapped.
789 attr
= md
->attribute
& ~EFI_MEMORY_RUNTIME
;
791 unsigned long md_end
= efi_md_end(md
);
796 md
= efi_memory_descriptor(md_end
);
797 if (!md
|| (md
->attribute
& ~EFI_MEMORY_RUNTIME
) != attr
)
800 return 0; /* never reached */
804 kern_mem_attribute (unsigned long phys_addr
, unsigned long size
)
806 unsigned long end
= phys_addr
+ size
;
807 struct kern_memdesc
*md
;
811 * This is a hack for ioremap calls before we set up kern_memmap.
812 * Maybe we should do efi_memmap_init() earlier instead.
815 attr
= efi_mem_attribute(phys_addr
, size
);
816 if (attr
& EFI_MEMORY_WB
)
817 return EFI_MEMORY_WB
;
821 md
= kern_memory_descriptor(phys_addr
);
825 attr
= md
->attribute
;
827 unsigned long md_end
= kmd_end(md
);
832 md
= kern_memory_descriptor(md_end
);
833 if (!md
|| md
->attribute
!= attr
)
836 return 0; /* never reached */
838 EXPORT_SYMBOL(kern_mem_attribute
);
841 valid_phys_addr_range (phys_addr_t phys_addr
, unsigned long size
)
846 * /dev/mem reads and writes use copy_to_user(), which implicitly
847 * uses a granule-sized kernel identity mapping. It's really
848 * only safe to do this for regions in kern_memmap. For more
849 * details, see Documentation/ia64/aliasing.txt.
851 attr
= kern_mem_attribute(phys_addr
, size
);
852 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
858 valid_mmap_phys_addr_range (unsigned long pfn
, unsigned long size
)
860 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
863 attr
= efi_mem_attribute(phys_addr
, size
);
866 * /dev/mem mmap uses normal user pages, so we don't need the entire
867 * granule, but the entire region we're mapping must support the same
870 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
874 * Intel firmware doesn't tell us about all the MMIO regions, so
875 * in general we have to allow mmap requests. But if EFI *does*
876 * tell us about anything inside this region, we should deny it.
877 * The user can always map a smaller region to avoid the overlap.
879 if (efi_memmap_intersects(phys_addr
, size
))
886 phys_mem_access_prot(struct file
*file
, unsigned long pfn
, unsigned long size
,
889 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
893 * For /dev/mem mmap, we use user mappings, but if the region is
894 * in kern_memmap (and hence may be covered by a kernel mapping),
895 * we must use the same attribute as the kernel mapping.
897 attr
= kern_mem_attribute(phys_addr
, size
);
898 if (attr
& EFI_MEMORY_WB
)
899 return pgprot_cacheable(vma_prot
);
900 else if (attr
& EFI_MEMORY_UC
)
901 return pgprot_noncached(vma_prot
);
904 * Some chipsets don't support UC access to memory. If
905 * WB is supported, we prefer that.
907 if (efi_mem_attribute(phys_addr
, size
) & EFI_MEMORY_WB
)
908 return pgprot_cacheable(vma_prot
);
910 return pgprot_noncached(vma_prot
);
914 efi_uart_console_only(void)
917 char *s
, name
[] = "ConOut";
918 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
919 efi_char16_t
*utf16
, name_utf16
[32];
920 unsigned char data
[1024];
921 unsigned long size
= sizeof(data
);
922 struct efi_generic_dev_path
*hdr
, *end_addr
;
925 /* Convert to UTF-16 */
929 *utf16
++ = *s
++ & 0x7f;
932 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
933 if (status
!= EFI_SUCCESS
) {
934 printk(KERN_ERR
"No EFI %s variable?\n", name
);
938 hdr
= (struct efi_generic_dev_path
*) data
;
939 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
940 while (hdr
< end_addr
) {
941 if (hdr
->type
== EFI_DEV_MSG
&&
942 hdr
->sub_type
== EFI_DEV_MSG_UART
)
944 else if (hdr
->type
== EFI_DEV_END_PATH
||
945 hdr
->type
== EFI_DEV_END_PATH2
) {
948 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
952 hdr
= (struct efi_generic_dev_path
*)((u8
*) hdr
+ hdr
->length
);
954 printk(KERN_ERR
"Malformed %s value\n", name
);
959 * Look for the first granule aligned memory descriptor memory
960 * that is big enough to hold EFI memory map. Make sure this
961 * descriptor is atleast granule sized so it does not get trimmed
963 struct kern_memdesc
*
964 find_memmap_space (void)
966 u64 contig_low
=0, contig_high
=0;
968 void *efi_map_start
, *efi_map_end
, *p
, *q
;
969 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
970 u64 space_needed
, efi_desc_size
;
971 unsigned long total_mem
= 0;
973 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
974 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
975 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
978 * Worst case: we need 3 kernel descriptors for each efi descriptor
979 * (if every entry has a WB part in the middle, and UC head and tail),
980 * plus one for the end marker.
982 space_needed
= sizeof(kern_memdesc_t
) *
983 (3 * (ia64_boot_param
->efi_memmap_size
/efi_desc_size
) + 1);
985 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
990 if (pmd
== NULL
|| !efi_wb(pmd
) ||
991 efi_md_end(pmd
) != md
->phys_addr
) {
992 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
993 contig_high
= efi_md_end(md
);
994 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
995 q
+= efi_desc_size
) {
997 if (!efi_wb(check_md
))
999 if (contig_high
!= check_md
->phys_addr
)
1001 contig_high
= efi_md_end(check_md
);
1003 contig_high
= GRANULEROUNDDOWN(contig_high
);
1005 if (!is_memory_available(md
) || md
->type
== EFI_LOADER_DATA
)
1008 /* Round ends inward to granule boundaries */
1009 as
= max(contig_low
, md
->phys_addr
);
1010 ae
= min(contig_high
, efi_md_end(md
));
1012 /* keep within max_addr= and min_addr= command line arg */
1013 as
= max(as
, min_addr
);
1014 ae
= min(ae
, max_addr
);
1018 /* avoid going over mem= command line arg */
1019 if (total_mem
+ (ae
- as
) > mem_limit
)
1020 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1025 if (ae
- as
> space_needed
)
1028 if (p
>= efi_map_end
)
1029 panic("Can't allocate space for kernel memory descriptors");
1035 * Walk the EFI memory map and gather all memory available for kernel
1036 * to use. We can allocate partial granules only if the unavailable
1037 * parts exist, and are WB.
1040 efi_memmap_init(u64
*s
, u64
*e
)
1042 struct kern_memdesc
*k
, *prev
= NULL
;
1043 u64 contig_low
=0, contig_high
=0;
1045 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1046 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1048 unsigned long total_mem
= 0;
1050 k
= kern_memmap
= find_memmap_space();
1052 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1053 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1054 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1056 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1060 (md
->type
== EFI_CONVENTIONAL_MEMORY
||
1061 md
->type
== EFI_BOOT_SERVICES_DATA
)) {
1062 k
->attribute
= EFI_MEMORY_UC
;
1063 k
->start
= md
->phys_addr
;
1064 k
->num_pages
= md
->num_pages
;
1069 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1070 efi_md_end(pmd
) != md
->phys_addr
) {
1071 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1072 contig_high
= efi_md_end(md
);
1073 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1074 q
+= efi_desc_size
) {
1076 if (!efi_wb(check_md
))
1078 if (contig_high
!= check_md
->phys_addr
)
1080 contig_high
= efi_md_end(check_md
);
1082 contig_high
= GRANULEROUNDDOWN(contig_high
);
1084 if (!is_memory_available(md
))
1088 * Round ends inward to granule boundaries
1089 * Give trimmings to uncached allocator
1091 if (md
->phys_addr
< contig_low
) {
1092 lim
= min(efi_md_end(md
), contig_low
);
1094 if (k
> kern_memmap
&&
1095 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1096 kmd_end(k
-1) == md
->phys_addr
) {
1098 (lim
- md
->phys_addr
)
1101 k
->attribute
= EFI_MEMORY_UC
;
1102 k
->start
= md
->phys_addr
;
1103 k
->num_pages
= (lim
- md
->phys_addr
)
1112 if (efi_md_end(md
) > contig_high
) {
1113 lim
= max(md
->phys_addr
, contig_high
);
1115 if (lim
== md
->phys_addr
&& k
> kern_memmap
&&
1116 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1117 kmd_end(k
-1) == md
->phys_addr
) {
1118 (k
-1)->num_pages
+= md
->num_pages
;
1120 k
->attribute
= EFI_MEMORY_UC
;
1122 k
->num_pages
= (efi_md_end(md
) - lim
)
1129 ae
= efi_md_end(md
);
1131 /* keep within max_addr= and min_addr= command line arg */
1132 as
= max(as
, min_addr
);
1133 ae
= min(ae
, max_addr
);
1137 /* avoid going over mem= command line arg */
1138 if (total_mem
+ (ae
- as
) > mem_limit
)
1139 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1143 if (prev
&& kmd_end(prev
) == md
->phys_addr
) {
1144 prev
->num_pages
+= (ae
- as
) >> EFI_PAGE_SHIFT
;
1145 total_mem
+= ae
- as
;
1148 k
->attribute
= EFI_MEMORY_WB
;
1150 k
->num_pages
= (ae
- as
) >> EFI_PAGE_SHIFT
;
1151 total_mem
+= ae
- as
;
1154 k
->start
= ~0L; /* end-marker */
1156 /* reserve the memory we are using for kern_memmap */
1157 *s
= (u64
)kern_memmap
;
1164 efi_initialize_iomem_resources(struct resource
*code_resource
,
1165 struct resource
*data_resource
,
1166 struct resource
*bss_resource
)
1168 struct resource
*res
;
1169 void *efi_map_start
, *efi_map_end
, *p
;
1170 efi_memory_desc_t
*md
;
1173 unsigned long flags
;
1175 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1176 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1177 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1181 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1184 if (md
->num_pages
== 0) /* should not happen */
1187 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
1190 case EFI_MEMORY_MAPPED_IO
:
1191 case EFI_MEMORY_MAPPED_IO_PORT_SPACE
:
1194 case EFI_LOADER_CODE
:
1195 case EFI_LOADER_DATA
:
1196 case EFI_BOOT_SERVICES_DATA
:
1197 case EFI_BOOT_SERVICES_CODE
:
1198 case EFI_CONVENTIONAL_MEMORY
:
1199 if (md
->attribute
& EFI_MEMORY_WP
) {
1200 name
= "System ROM";
1201 flags
|= IORESOURCE_READONLY
;
1202 } else if (md
->attribute
== EFI_MEMORY_UC
)
1203 name
= "Uncached RAM";
1205 name
= "System RAM";
1208 case EFI_ACPI_MEMORY_NVS
:
1209 name
= "ACPI Non-volatile Storage";
1212 case EFI_UNUSABLE_MEMORY
:
1214 flags
|= IORESOURCE_DISABLED
;
1217 case EFI_RESERVED_TYPE
:
1218 case EFI_RUNTIME_SERVICES_CODE
:
1219 case EFI_RUNTIME_SERVICES_DATA
:
1220 case EFI_ACPI_RECLAIM_MEMORY
:
1226 if ((res
= kzalloc(sizeof(struct resource
),
1227 GFP_KERNEL
)) == NULL
) {
1229 "failed to allocate resource for iomem\n");
1234 res
->start
= md
->phys_addr
;
1235 res
->end
= md
->phys_addr
+ efi_md_size(md
) - 1;
1238 if (insert_resource(&iomem_resource
, res
) < 0)
1242 * We don't know which region contains
1243 * kernel data so we try it repeatedly and
1244 * let the resource manager test it.
1246 insert_resource(res
, code_resource
);
1247 insert_resource(res
, data_resource
);
1248 insert_resource(res
, bss_resource
);
1250 insert_resource(res
, &efi_memmap_res
);
1251 insert_resource(res
, &boot_param_res
);
1252 if (crashk_res
.end
> crashk_res
.start
)
1253 insert_resource(res
, &crashk_res
);
1260 /* find a block of memory aligned to 64M exclude reserved regions
1261 rsvd_regions are sorted
1263 unsigned long __init
1264 kdump_find_rsvd_region (unsigned long size
, struct rsvd_region
*r
, int n
)
1268 u64 alignment
= 1UL << _PAGE_SIZE_64M
;
1269 void *efi_map_start
, *efi_map_end
, *p
;
1270 efi_memory_desc_t
*md
;
1273 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1274 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1275 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1277 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1281 start
= ALIGN(md
->phys_addr
, alignment
);
1282 end
= efi_md_end(md
);
1283 for (i
= 0; i
< n
; i
++) {
1284 if (__pa(r
[i
].start
) >= start
&& __pa(r
[i
].end
) < end
) {
1285 if (__pa(r
[i
].start
) > start
+ size
)
1287 start
= ALIGN(__pa(r
[i
].end
), alignment
);
1289 __pa(r
[i
+1].start
) < start
+ size
)
1295 if (end
> start
+ size
)
1300 "Cannot reserve 0x%lx byte of memory for crashdump\n", size
);
1305 #ifdef CONFIG_CRASH_DUMP
1306 /* locate the size find a the descriptor at a certain address */
1307 unsigned long __init
1308 vmcore_find_descriptor_size (unsigned long address
)
1310 void *efi_map_start
, *efi_map_end
, *p
;
1311 efi_memory_desc_t
*md
;
1313 unsigned long ret
= 0;
1315 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1316 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1317 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1319 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1321 if (efi_wb(md
) && md
->type
== EFI_LOADER_DATA
1322 && md
->phys_addr
== address
) {
1323 ret
= efi_md_size(md
);
1329 printk(KERN_WARNING
"Cannot locate EFI vmcore descriptor\n");