x86, cpufeature: If we disable CLFLUSH, we should disable CLFLUSHOPT
[linux/fpc-iii.git] / arch / sparc / kernel / smp_64.c
blobb085311dcd0ea9f81840e1fc2550c4f870e984eb
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
54 #include "cpumap.h"
56 int sparc64_multi_core __read_mostly;
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
65 static cpumask_t smp_commenced_mask;
67 void smp_info(struct seq_file *m)
69 int i;
71 seq_printf(m, "State:\n");
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
76 void smp_bogo(struct seq_file *m)
78 int i;
80 for_each_online_cpu(i)
81 seq_printf(m,
82 "Cpu%dClkTck\t: %016lx\n",
83 i, cpu_data(i).clock_tick);
86 extern void setup_sparc64_timer(void);
88 static volatile unsigned long callin_flag = 0;
90 void smp_callin(void)
92 int cpuid = hard_smp_processor_id();
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
99 __flush_tlb_all();
101 setup_sparc64_timer();
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
106 callin_flag = 1;
107 __asm__ __volatile__("membar #Sync\n\t"
108 "flush %%g6" : : : "memory");
110 /* Clear this or we will die instantly when we
111 * schedule back to this idler...
113 current_thread_info()->new_child = 0;
115 /* Attach to the address space of init_task. */
116 atomic_inc(&init_mm.mm_count);
117 current->active_mm = &init_mm;
119 /* inform the notifiers about the new cpu */
120 notify_cpu_starting(cpuid);
122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 rmb();
125 set_cpu_online(cpuid, true);
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
130 local_irq_enable();
132 cpu_startup_entry(CPUHP_ONLINE);
135 void cpu_panic(void)
137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 panic("SMP bolixed\n");
141 /* This tick register synchronization scheme is taken entirely from
142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144 * The only change I've made is to rework it so that the master
145 * initiates the synchonization instead of the slave. -DaveM
148 #define MASTER 0
149 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
151 #define NUM_ROUNDS 64 /* magic value */
152 #define NUM_ITERS 5 /* likewise */
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
157 #define DEBUG_TICK_SYNC 0
159 static inline long get_delta (long *rt, long *master)
161 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 unsigned long tcenter, t0, t1, tm;
163 unsigned long i;
165 for (i = 0; i < NUM_ITERS; i++) {
166 t0 = tick_ops->get_tick();
167 go[MASTER] = 1;
168 membar_safe("#StoreLoad");
169 while (!(tm = go[SLAVE]))
170 rmb();
171 go[SLAVE] = 0;
172 wmb();
173 t1 = tick_ops->get_tick();
175 if (t1 - t0 < best_t1 - best_t0)
176 best_t0 = t0, best_t1 = t1, best_tm = tm;
179 *rt = best_t1 - best_t0;
180 *master = best_tm - best_t0;
182 /* average best_t0 and best_t1 without overflow: */
183 tcenter = (best_t0/2 + best_t1/2);
184 if (best_t0 % 2 + best_t1 % 2 == 2)
185 tcenter++;
186 return tcenter - best_tm;
189 void smp_synchronize_tick_client(void)
191 long i, delta, adj, adjust_latency = 0, done = 0;
192 unsigned long flags, rt, master_time_stamp;
193 #if DEBUG_TICK_SYNC
194 struct {
195 long rt; /* roundtrip time */
196 long master; /* master's timestamp */
197 long diff; /* difference between midpoint and master's timestamp */
198 long lat; /* estimate of itc adjustment latency */
199 } t[NUM_ROUNDS];
200 #endif
202 go[MASTER] = 1;
204 while (go[MASTER])
205 rmb();
207 local_irq_save(flags);
209 for (i = 0; i < NUM_ROUNDS; i++) {
210 delta = get_delta(&rt, &master_time_stamp);
211 if (delta == 0)
212 done = 1; /* let's lock on to this... */
214 if (!done) {
215 if (i > 0) {
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
218 } else
219 adj = -delta;
221 tick_ops->add_tick(adj);
223 #if DEBUG_TICK_SYNC
224 t[i].rt = rt;
225 t[i].master = master_time_stamp;
226 t[i].diff = delta;
227 t[i].lat = adjust_latency/4;
228 #endif
231 local_irq_restore(flags);
233 #if DEBUG_TICK_SYNC
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta, rt);
244 static void smp_start_sync_tick_client(int cpu);
246 static void smp_synchronize_one_tick(int cpu)
248 unsigned long flags, i;
250 go[MASTER] = 0;
252 smp_start_sync_tick_client(cpu);
254 /* wait for client to be ready */
255 while (!go[MASTER])
256 rmb();
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
260 membar_safe("#StoreLoad");
262 spin_lock_irqsave(&itc_sync_lock, flags);
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
266 rmb();
267 go[MASTER] = 0;
268 wmb();
269 go[SLAVE] = tick_ops->get_tick();
270 membar_safe("#StoreLoad");
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p)
280 unsigned long val = (unsigned long) p;
282 return kern_base + (val - KERNBASE);
285 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
286 void **descrp)
288 extern unsigned long sparc64_ttable_tl0;
289 extern unsigned long kern_locked_tte_data;
290 struct hvtramp_descr *hdesc;
291 unsigned long trampoline_ra;
292 struct trap_per_cpu *tb;
293 u64 tte_vaddr, tte_data;
294 unsigned long hv_err;
295 int i;
297 hdesc = kzalloc(sizeof(*hdesc) +
298 (sizeof(struct hvtramp_mapping) *
299 num_kernel_image_mappings - 1),
300 GFP_KERNEL);
301 if (!hdesc) {
302 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
303 "hvtramp_descr.\n");
304 return;
306 *descrp = hdesc;
308 hdesc->cpu = cpu;
309 hdesc->num_mappings = num_kernel_image_mappings;
311 tb = &trap_block[cpu];
313 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
314 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316 hdesc->thread_reg = thread_reg;
318 tte_vaddr = (unsigned long) KERNBASE;
319 tte_data = kern_locked_tte_data;
321 for (i = 0; i < hdesc->num_mappings; i++) {
322 hdesc->maps[i].vaddr = tte_vaddr;
323 hdesc->maps[i].tte = tte_data;
324 tte_vaddr += 0x400000;
325 tte_data += 0x400000;
328 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
331 kimage_addr_to_ra(&sparc64_ttable_tl0),
332 __pa(hdesc));
333 if (hv_err)
334 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
335 "gives error %lu\n", hv_err);
337 #endif
339 extern unsigned long sparc64_cpu_startup;
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342 * 32-bits (I think) so to be safe we have it read the pointer
343 * contained here so we work on >4GB machines. -DaveM
345 static struct thread_info *cpu_new_thread = NULL;
347 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349 unsigned long entry =
350 (unsigned long)(&sparc64_cpu_startup);
351 unsigned long cookie =
352 (unsigned long)(&cpu_new_thread);
353 void *descr = NULL;
354 int timeout, ret;
356 callin_flag = 0;
357 cpu_new_thread = task_thread_info(idle);
359 if (tlb_type == hypervisor) {
360 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
361 if (ldom_domaining_enabled)
362 ldom_startcpu_cpuid(cpu,
363 (unsigned long) cpu_new_thread,
364 &descr);
365 else
366 #endif
367 prom_startcpu_cpuid(cpu, entry, cookie);
368 } else {
369 struct device_node *dp = of_find_node_by_cpuid(cpu);
371 prom_startcpu(dp->phandle, entry, cookie);
374 for (timeout = 0; timeout < 50000; timeout++) {
375 if (callin_flag)
376 break;
377 udelay(100);
380 if (callin_flag) {
381 ret = 0;
382 } else {
383 printk("Processor %d is stuck.\n", cpu);
384 ret = -ENODEV;
386 cpu_new_thread = NULL;
388 kfree(descr);
390 return ret;
393 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395 u64 result, target;
396 int stuck, tmp;
398 if (this_is_starfire) {
399 /* map to real upaid */
400 cpu = (((cpu & 0x3c) << 1) |
401 ((cpu & 0x40) >> 4) |
402 (cpu & 0x3));
405 target = (cpu << 14) | 0x70;
406 again:
407 /* Ok, this is the real Spitfire Errata #54.
408 * One must read back from a UDB internal register
409 * after writes to the UDB interrupt dispatch, but
410 * before the membar Sync for that write.
411 * So we use the high UDB control register (ASI 0x7f,
412 * ADDR 0x20) for the dummy read. -DaveM
414 tmp = 0x40;
415 __asm__ __volatile__(
416 "wrpr %1, %2, %%pstate\n\t"
417 "stxa %4, [%0] %3\n\t"
418 "stxa %5, [%0+%8] %3\n\t"
419 "add %0, %8, %0\n\t"
420 "stxa %6, [%0+%8] %3\n\t"
421 "membar #Sync\n\t"
422 "stxa %%g0, [%7] %3\n\t"
423 "membar #Sync\n\t"
424 "mov 0x20, %%g1\n\t"
425 "ldxa [%%g1] 0x7f, %%g0\n\t"
426 "membar #Sync"
427 : "=r" (tmp)
428 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
429 "r" (data0), "r" (data1), "r" (data2), "r" (target),
430 "r" (0x10), "0" (tmp)
431 : "g1");
433 /* NOTE: PSTATE_IE is still clear. */
434 stuck = 100000;
435 do {
436 __asm__ __volatile__("ldxa [%%g0] %1, %0"
437 : "=r" (result)
438 : "i" (ASI_INTR_DISPATCH_STAT));
439 if (result == 0) {
440 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
441 : : "r" (pstate));
442 return;
444 stuck -= 1;
445 if (stuck == 0)
446 break;
447 } while (result & 0x1);
448 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
449 : : "r" (pstate));
450 if (stuck == 0) {
451 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
452 smp_processor_id(), result);
453 } else {
454 udelay(2);
455 goto again;
459 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461 u64 *mondo, data0, data1, data2;
462 u16 *cpu_list;
463 u64 pstate;
464 int i;
466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467 cpu_list = __va(tb->cpu_list_pa);
468 mondo = __va(tb->cpu_mondo_block_pa);
469 data0 = mondo[0];
470 data1 = mondo[1];
471 data2 = mondo[2];
472 for (i = 0; i < cnt; i++)
473 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
476 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
477 * packet, but we have no use for that. However we do take advantage of
478 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482 int nack_busy_id, is_jbus, need_more;
483 u64 *mondo, pstate, ver, busy_mask;
484 u16 *cpu_list;
486 cpu_list = __va(tb->cpu_list_pa);
487 mondo = __va(tb->cpu_mondo_block_pa);
489 /* Unfortunately, someone at Sun had the brilliant idea to make the
490 * busy/nack fields hard-coded by ITID number for this Ultra-III
491 * derivative processor.
493 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
494 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
495 (ver >> 32) == __SERRANO_ID);
497 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499 retry:
500 need_more = 0;
501 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
502 : : "r" (pstate), "i" (PSTATE_IE));
504 /* Setup the dispatch data registers. */
505 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
506 "stxa %1, [%4] %6\n\t"
507 "stxa %2, [%5] %6\n\t"
508 "membar #Sync\n\t"
509 : /* no outputs */
510 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
511 "r" (0x40), "r" (0x50), "r" (0x60),
512 "i" (ASI_INTR_W));
514 nack_busy_id = 0;
515 busy_mask = 0;
517 int i;
519 for (i = 0; i < cnt; i++) {
520 u64 target, nr;
522 nr = cpu_list[i];
523 if (nr == 0xffff)
524 continue;
526 target = (nr << 14) | 0x70;
527 if (is_jbus) {
528 busy_mask |= (0x1UL << (nr * 2));
529 } else {
530 target |= (nack_busy_id << 24);
531 busy_mask |= (0x1UL <<
532 (nack_busy_id * 2));
534 __asm__ __volatile__(
535 "stxa %%g0, [%0] %1\n\t"
536 "membar #Sync\n\t"
537 : /* no outputs */
538 : "r" (target), "i" (ASI_INTR_W));
539 nack_busy_id++;
540 if (nack_busy_id == 32) {
541 need_more = 1;
542 break;
547 /* Now, poll for completion. */
549 u64 dispatch_stat, nack_mask;
550 long stuck;
552 stuck = 100000 * nack_busy_id;
553 nack_mask = busy_mask << 1;
554 do {
555 __asm__ __volatile__("ldxa [%%g0] %1, %0"
556 : "=r" (dispatch_stat)
557 : "i" (ASI_INTR_DISPATCH_STAT));
558 if (!(dispatch_stat & (busy_mask | nack_mask))) {
559 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
560 : : "r" (pstate));
561 if (unlikely(need_more)) {
562 int i, this_cnt = 0;
563 for (i = 0; i < cnt; i++) {
564 if (cpu_list[i] == 0xffff)
565 continue;
566 cpu_list[i] = 0xffff;
567 this_cnt++;
568 if (this_cnt == 32)
569 break;
571 goto retry;
573 return;
575 if (!--stuck)
576 break;
577 } while (dispatch_stat & busy_mask);
579 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
580 : : "r" (pstate));
582 if (dispatch_stat & busy_mask) {
583 /* Busy bits will not clear, continue instead
584 * of freezing up on this cpu.
586 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
587 smp_processor_id(), dispatch_stat);
588 } else {
589 int i, this_busy_nack = 0;
591 /* Delay some random time with interrupts enabled
592 * to prevent deadlock.
594 udelay(2 * nack_busy_id);
596 /* Clear out the mask bits for cpus which did not
597 * NACK us.
599 for (i = 0; i < cnt; i++) {
600 u64 check_mask, nr;
602 nr = cpu_list[i];
603 if (nr == 0xffff)
604 continue;
606 if (is_jbus)
607 check_mask = (0x2UL << (2*nr));
608 else
609 check_mask = (0x2UL <<
610 this_busy_nack);
611 if ((dispatch_stat & check_mask) == 0)
612 cpu_list[i] = 0xffff;
613 this_busy_nack += 2;
614 if (this_busy_nack == 64)
615 break;
618 goto retry;
623 /* Multi-cpu list version. */
624 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
626 int retries, this_cpu, prev_sent, i, saw_cpu_error;
627 unsigned long status;
628 u16 *cpu_list;
630 this_cpu = smp_processor_id();
632 cpu_list = __va(tb->cpu_list_pa);
634 saw_cpu_error = 0;
635 retries = 0;
636 prev_sent = 0;
637 do {
638 int forward_progress, n_sent;
640 status = sun4v_cpu_mondo_send(cnt,
641 tb->cpu_list_pa,
642 tb->cpu_mondo_block_pa);
644 /* HV_EOK means all cpus received the xcall, we're done. */
645 if (likely(status == HV_EOK))
646 break;
648 /* First, see if we made any forward progress.
650 * The hypervisor indicates successful sends by setting
651 * cpu list entries to the value 0xffff.
653 n_sent = 0;
654 for (i = 0; i < cnt; i++) {
655 if (likely(cpu_list[i] == 0xffff))
656 n_sent++;
659 forward_progress = 0;
660 if (n_sent > prev_sent)
661 forward_progress = 1;
663 prev_sent = n_sent;
665 /* If we get a HV_ECPUERROR, then one or more of the cpus
666 * in the list are in error state. Use the cpu_state()
667 * hypervisor call to find out which cpus are in error state.
669 if (unlikely(status == HV_ECPUERROR)) {
670 for (i = 0; i < cnt; i++) {
671 long err;
672 u16 cpu;
674 cpu = cpu_list[i];
675 if (cpu == 0xffff)
676 continue;
678 err = sun4v_cpu_state(cpu);
679 if (err == HV_CPU_STATE_ERROR) {
680 saw_cpu_error = (cpu + 1);
681 cpu_list[i] = 0xffff;
684 } else if (unlikely(status != HV_EWOULDBLOCK))
685 goto fatal_mondo_error;
687 /* Don't bother rewriting the CPU list, just leave the
688 * 0xffff and non-0xffff entries in there and the
689 * hypervisor will do the right thing.
691 * Only advance timeout state if we didn't make any
692 * forward progress.
694 if (unlikely(!forward_progress)) {
695 if (unlikely(++retries > 10000))
696 goto fatal_mondo_timeout;
698 /* Delay a little bit to let other cpus catch up
699 * on their cpu mondo queue work.
701 udelay(2 * cnt);
703 } while (1);
705 if (unlikely(saw_cpu_error))
706 goto fatal_mondo_cpu_error;
708 return;
710 fatal_mondo_cpu_error:
711 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
712 "(including %d) were in error state\n",
713 this_cpu, saw_cpu_error - 1);
714 return;
716 fatal_mondo_timeout:
717 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
718 " progress after %d retries.\n",
719 this_cpu, retries);
720 goto dump_cpu_list_and_out;
722 fatal_mondo_error:
723 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
724 this_cpu, status);
725 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
726 "mondo_block_pa(%lx)\n",
727 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
729 dump_cpu_list_and_out:
730 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
731 for (i = 0; i < cnt; i++)
732 printk("%u ", cpu_list[i]);
733 printk("]\n");
736 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
738 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
740 struct trap_per_cpu *tb;
741 int this_cpu, i, cnt;
742 unsigned long flags;
743 u16 *cpu_list;
744 u64 *mondo;
746 /* We have to do this whole thing with interrupts fully disabled.
747 * Otherwise if we send an xcall from interrupt context it will
748 * corrupt both our mondo block and cpu list state.
750 * One consequence of this is that we cannot use timeout mechanisms
751 * that depend upon interrupts being delivered locally. So, for
752 * example, we cannot sample jiffies and expect it to advance.
754 * Fortunately, udelay() uses %stick/%tick so we can use that.
756 local_irq_save(flags);
758 this_cpu = smp_processor_id();
759 tb = &trap_block[this_cpu];
761 mondo = __va(tb->cpu_mondo_block_pa);
762 mondo[0] = data0;
763 mondo[1] = data1;
764 mondo[2] = data2;
765 wmb();
767 cpu_list = __va(tb->cpu_list_pa);
769 /* Setup the initial cpu list. */
770 cnt = 0;
771 for_each_cpu(i, mask) {
772 if (i == this_cpu || !cpu_online(i))
773 continue;
774 cpu_list[cnt++] = i;
777 if (cnt)
778 xcall_deliver_impl(tb, cnt);
780 local_irq_restore(flags);
783 /* Send cross call to all processors mentioned in MASK_P
784 * except self. Really, there are only two cases currently,
785 * "cpu_online_mask" and "mm_cpumask(mm)".
787 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
789 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
791 xcall_deliver(data0, data1, data2, mask);
794 /* Send cross call to all processors except self. */
795 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
797 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
800 extern unsigned long xcall_sync_tick;
802 static void smp_start_sync_tick_client(int cpu)
804 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
805 cpumask_of(cpu));
808 extern unsigned long xcall_call_function;
810 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
812 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
815 extern unsigned long xcall_call_function_single;
817 void arch_send_call_function_single_ipi(int cpu)
819 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
820 cpumask_of(cpu));
823 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
825 clear_softint(1 << irq);
826 generic_smp_call_function_interrupt();
829 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
831 clear_softint(1 << irq);
832 generic_smp_call_function_single_interrupt();
835 static void tsb_sync(void *info)
837 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
838 struct mm_struct *mm = info;
840 /* It is not valid to test "current->active_mm == mm" here.
842 * The value of "current" is not changed atomically with
843 * switch_mm(). But that's OK, we just need to check the
844 * current cpu's trap block PGD physical address.
846 if (tp->pgd_paddr == __pa(mm->pgd))
847 tsb_context_switch(mm);
850 void smp_tsb_sync(struct mm_struct *mm)
852 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
855 extern unsigned long xcall_flush_tlb_mm;
856 extern unsigned long xcall_flush_tlb_page;
857 extern unsigned long xcall_flush_tlb_kernel_range;
858 extern unsigned long xcall_fetch_glob_regs;
859 extern unsigned long xcall_fetch_glob_pmu;
860 extern unsigned long xcall_fetch_glob_pmu_n4;
861 extern unsigned long xcall_receive_signal;
862 extern unsigned long xcall_new_mmu_context_version;
863 #ifdef CONFIG_KGDB
864 extern unsigned long xcall_kgdb_capture;
865 #endif
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 extern unsigned long xcall_flush_dcache_page_cheetah;
869 #endif
870 extern unsigned long xcall_flush_dcache_page_spitfire;
872 #ifdef CONFIG_DEBUG_DCFLUSH
873 extern atomic_t dcpage_flushes;
874 extern atomic_t dcpage_flushes_xcall;
875 #endif
877 static inline void __local_flush_dcache_page(struct page *page)
879 #ifdef DCACHE_ALIASING_POSSIBLE
880 __flush_dcache_page(page_address(page),
881 ((tlb_type == spitfire) &&
882 page_mapping(page) != NULL));
883 #else
884 if (page_mapping(page) != NULL &&
885 tlb_type == spitfire)
886 __flush_icache_page(__pa(page_address(page)));
887 #endif
890 void smp_flush_dcache_page_impl(struct page *page, int cpu)
892 int this_cpu;
894 if (tlb_type == hypervisor)
895 return;
897 #ifdef CONFIG_DEBUG_DCFLUSH
898 atomic_inc(&dcpage_flushes);
899 #endif
901 this_cpu = get_cpu();
903 if (cpu == this_cpu) {
904 __local_flush_dcache_page(page);
905 } else if (cpu_online(cpu)) {
906 void *pg_addr = page_address(page);
907 u64 data0 = 0;
909 if (tlb_type == spitfire) {
910 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
911 if (page_mapping(page) != NULL)
912 data0 |= ((u64)1 << 32);
913 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
916 #endif
918 if (data0) {
919 xcall_deliver(data0, __pa(pg_addr),
920 (u64) pg_addr, cpumask_of(cpu));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922 atomic_inc(&dcpage_flushes_xcall);
923 #endif
927 put_cpu();
930 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932 void *pg_addr;
933 u64 data0;
935 if (tlb_type == hypervisor)
936 return;
938 preempt_disable();
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 atomic_inc(&dcpage_flushes);
942 #endif
943 data0 = 0;
944 pg_addr = page_address(page);
945 if (tlb_type == spitfire) {
946 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
947 if (page_mapping(page) != NULL)
948 data0 |= ((u64)1 << 32);
949 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
952 #endif
954 if (data0) {
955 xcall_deliver(data0, __pa(pg_addr),
956 (u64) pg_addr, cpu_online_mask);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 atomic_inc(&dcpage_flushes_xcall);
959 #endif
961 __local_flush_dcache_page(page);
963 preempt_enable();
966 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
968 struct mm_struct *mm;
969 unsigned long flags;
971 clear_softint(1 << irq);
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
976 mm = current->active_mm;
977 if (unlikely(!mm || (mm == &init_mm)))
978 return;
980 spin_lock_irqsave(&mm->context.lock, flags);
982 if (unlikely(!CTX_VALID(mm->context)))
983 get_new_mmu_context(mm);
985 spin_unlock_irqrestore(&mm->context.lock, flags);
987 load_secondary_context(mm);
988 __flush_tlb_mm(CTX_HWBITS(mm->context),
989 SECONDARY_CONTEXT);
992 void smp_new_mmu_context_version(void)
994 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
997 #ifdef CONFIG_KGDB
998 void kgdb_roundup_cpus(unsigned long flags)
1000 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002 #endif
1004 void smp_fetch_global_regs(void)
1006 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1009 void smp_fetch_global_pmu(void)
1011 if (tlb_type == hypervisor &&
1012 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014 else
1015 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1018 /* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1023 * The SMP TLB coherency scheme we use works as follows:
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 * space has (potentially) executed on, this is the heuristic
1027 * we use to avoid doing cross calls.
1029 * Also, for flushing from kswapd and also for clones, we
1030 * use cpu_vm_mask as the list of cpus to make run the TLB.
1032 * 2) TLB context numbers are shared globally across all processors
1033 * in the system, this allows us to play several games to avoid
1034 * cross calls.
1036 * One invariant is that when a cpu switches to a process, and
1037 * that processes tsk->active_mm->cpu_vm_mask does not have the
1038 * current cpu's bit set, that tlb context is flushed locally.
1040 * If the address space is non-shared (ie. mm->count == 1) we avoid
1041 * cross calls when we want to flush the currently running process's
1042 * tlb state. This is done by clearing all cpu bits except the current
1043 * processor's in current->mm->cpu_vm_mask and performing the
1044 * flush locally only. This will force any subsequent cpus which run
1045 * this task to flush the context from the local tlb if the process
1046 * migrates to another cpu (again).
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 * bullet for most cases and perform the cross call (but only to
1050 * the cpus listed in cpu_vm_mask).
1052 * The performance gain from "optimizing" away the cross call for threads is
1053 * questionable (in theory the big win for threads is the massive sharing of
1054 * address space state across processors).
1057 /* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1063 u32 ctx = CTX_HWBITS(mm->context);
1064 int cpu = get_cpu();
1066 if (atomic_read(&mm->mm_users) == 1) {
1067 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068 goto local_flush_and_out;
1071 smp_cross_call_masked(&xcall_flush_tlb_mm,
1072 ctx, 0, 0,
1073 mm_cpumask(mm));
1075 local_flush_and_out:
1076 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1078 put_cpu();
1081 struct tlb_pending_info {
1082 unsigned long ctx;
1083 unsigned long nr;
1084 unsigned long *vaddrs;
1087 static void tlb_pending_func(void *info)
1089 struct tlb_pending_info *t = info;
1091 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1094 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1096 u32 ctx = CTX_HWBITS(mm->context);
1097 struct tlb_pending_info info;
1098 int cpu = get_cpu();
1100 info.ctx = ctx;
1101 info.nr = nr;
1102 info.vaddrs = vaddrs;
1104 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106 else
1107 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108 &info, 1);
1110 __flush_tlb_pending(ctx, nr, vaddrs);
1112 put_cpu();
1115 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1117 unsigned long context = CTX_HWBITS(mm->context);
1118 int cpu = get_cpu();
1120 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122 else
1123 smp_cross_call_masked(&xcall_flush_tlb_page,
1124 context, vaddr, 0,
1125 mm_cpumask(mm));
1126 __flush_tlb_page(context, vaddr);
1128 put_cpu();
1131 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1133 start &= PAGE_MASK;
1134 end = PAGE_ALIGN(end);
1135 if (start != end) {
1136 smp_cross_call(&xcall_flush_tlb_kernel_range,
1137 0, start, end);
1139 __flush_tlb_kernel_range(start, end);
1143 /* CPU capture. */
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture;
1147 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time;
1151 void smp_capture(void)
1153 int result = atomic_add_ret(1, &smp_capture_depth);
1155 if (result == 1) {
1156 int ncpus = num_online_cpus();
1158 #ifdef CAPTURE_DEBUG
1159 printk("CPU[%d]: Sending penguins to jail...",
1160 smp_processor_id());
1161 #endif
1162 penguins_are_doing_time = 1;
1163 atomic_inc(&smp_capture_registry);
1164 smp_cross_call(&xcall_capture, 0, 0, 0);
1165 while (atomic_read(&smp_capture_registry) != ncpus)
1166 rmb();
1167 #ifdef CAPTURE_DEBUG
1168 printk("done\n");
1169 #endif
1173 void smp_release(void)
1175 if (atomic_dec_and_test(&smp_capture_depth)) {
1176 #ifdef CAPTURE_DEBUG
1177 printk("CPU[%d]: Giving pardon to "
1178 "imprisoned penguins\n",
1179 smp_processor_id());
1180 #endif
1181 penguins_are_doing_time = 0;
1182 membar_safe("#StoreLoad");
1183 atomic_dec(&smp_capture_registry);
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1190 extern void prom_world(int);
1192 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1194 clear_softint(1 << irq);
1196 preempt_disable();
1198 __asm__ __volatile__("flushw");
1199 prom_world(1);
1200 atomic_inc(&smp_capture_registry);
1201 membar_safe("#StoreLoad");
1202 while (penguins_are_doing_time)
1203 rmb();
1204 atomic_dec(&smp_capture_registry);
1205 prom_world(0);
1207 preempt_enable();
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier)
1213 return -EINVAL;
1216 void __init smp_prepare_cpus(unsigned int max_cpus)
1220 void smp_prepare_boot_cpu(void)
1224 void __init smp_setup_processor_id(void)
1226 if (tlb_type == spitfire)
1227 xcall_deliver_impl = spitfire_xcall_deliver;
1228 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229 xcall_deliver_impl = cheetah_xcall_deliver;
1230 else
1231 xcall_deliver_impl = hypervisor_xcall_deliver;
1234 void smp_fill_in_sib_core_maps(void)
1236 unsigned int i;
1238 for_each_present_cpu(i) {
1239 unsigned int j;
1241 cpumask_clear(&cpu_core_map[i]);
1242 if (cpu_data(i).core_id == 0) {
1243 cpumask_set_cpu(i, &cpu_core_map[i]);
1244 continue;
1247 for_each_present_cpu(j) {
1248 if (cpu_data(i).core_id ==
1249 cpu_data(j).core_id)
1250 cpumask_set_cpu(j, &cpu_core_map[i]);
1254 for_each_present_cpu(i) {
1255 unsigned int j;
1257 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1258 if (cpu_data(i).proc_id == -1) {
1259 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1260 continue;
1263 for_each_present_cpu(j) {
1264 if (cpu_data(i).proc_id ==
1265 cpu_data(j).proc_id)
1266 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1271 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1273 int ret = smp_boot_one_cpu(cpu, tidle);
1275 if (!ret) {
1276 cpumask_set_cpu(cpu, &smp_commenced_mask);
1277 while (!cpu_online(cpu))
1278 mb();
1279 if (!cpu_online(cpu)) {
1280 ret = -ENODEV;
1281 } else {
1282 /* On SUN4V, writes to %tick and %stick are
1283 * not allowed.
1285 if (tlb_type != hypervisor)
1286 smp_synchronize_one_tick(cpu);
1289 return ret;
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 void cpu_play_dead(void)
1295 int cpu = smp_processor_id();
1296 unsigned long pstate;
1298 idle_task_exit();
1300 if (tlb_type == hypervisor) {
1301 struct trap_per_cpu *tb = &trap_block[cpu];
1303 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1304 tb->cpu_mondo_pa, 0);
1305 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1306 tb->dev_mondo_pa, 0);
1307 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1308 tb->resum_mondo_pa, 0);
1309 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1310 tb->nonresum_mondo_pa, 0);
1313 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1314 membar_safe("#Sync");
1316 local_irq_disable();
1318 __asm__ __volatile__(
1319 "rdpr %%pstate, %0\n\t"
1320 "wrpr %0, %1, %%pstate"
1321 : "=r" (pstate)
1322 : "i" (PSTATE_IE));
1324 while (1)
1325 barrier();
1328 int __cpu_disable(void)
1330 int cpu = smp_processor_id();
1331 cpuinfo_sparc *c;
1332 int i;
1334 for_each_cpu(i, &cpu_core_map[cpu])
1335 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1336 cpumask_clear(&cpu_core_map[cpu]);
1338 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1339 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1340 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1342 c = &cpu_data(cpu);
1344 c->core_id = 0;
1345 c->proc_id = -1;
1347 smp_wmb();
1349 /* Make sure no interrupts point to this cpu. */
1350 fixup_irqs();
1352 local_irq_enable();
1353 mdelay(1);
1354 local_irq_disable();
1356 set_cpu_online(cpu, false);
1358 cpu_map_rebuild();
1360 return 0;
1363 void __cpu_die(unsigned int cpu)
1365 int i;
1367 for (i = 0; i < 100; i++) {
1368 smp_rmb();
1369 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1370 break;
1371 msleep(100);
1373 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1374 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1375 } else {
1376 #if defined(CONFIG_SUN_LDOMS)
1377 unsigned long hv_err;
1378 int limit = 100;
1380 do {
1381 hv_err = sun4v_cpu_stop(cpu);
1382 if (hv_err == HV_EOK) {
1383 set_cpu_present(cpu, false);
1384 break;
1386 } while (--limit > 0);
1387 if (limit <= 0) {
1388 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1389 hv_err);
1391 #endif
1394 #endif
1396 void __init smp_cpus_done(unsigned int max_cpus)
1398 pcr_arch_init();
1401 void smp_send_reschedule(int cpu)
1403 if (cpu == smp_processor_id()) {
1404 WARN_ON_ONCE(preemptible());
1405 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1406 } else {
1407 xcall_deliver((u64) &xcall_receive_signal,
1408 0, 0, cpumask_of(cpu));
1412 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1414 clear_softint(1 << irq);
1415 scheduler_ipi();
1418 /* This is a nop because we capture all other cpus
1419 * anyways when making the PROM active.
1421 void smp_send_stop(void)
1426 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1427 * @cpu: cpu to allocate for
1428 * @size: size allocation in bytes
1429 * @align: alignment
1431 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1432 * does the right thing for NUMA regardless of the current
1433 * configuration.
1435 * RETURNS:
1436 * Pointer to the allocated area on success, NULL on failure.
1438 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1439 size_t align)
1441 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1442 #ifdef CONFIG_NEED_MULTIPLE_NODES
1443 int node = cpu_to_node(cpu);
1444 void *ptr;
1446 if (!node_online(node) || !NODE_DATA(node)) {
1447 ptr = __alloc_bootmem(size, align, goal);
1448 pr_info("cpu %d has no node %d or node-local memory\n",
1449 cpu, node);
1450 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1451 cpu, size, __pa(ptr));
1452 } else {
1453 ptr = __alloc_bootmem_node(NODE_DATA(node),
1454 size, align, goal);
1455 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1456 "%016lx\n", cpu, size, node, __pa(ptr));
1458 return ptr;
1459 #else
1460 return __alloc_bootmem(size, align, goal);
1461 #endif
1464 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1466 free_bootmem(__pa(ptr), size);
1469 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1471 if (cpu_to_node(from) == cpu_to_node(to))
1472 return LOCAL_DISTANCE;
1473 else
1474 return REMOTE_DISTANCE;
1477 static void __init pcpu_populate_pte(unsigned long addr)
1479 pgd_t *pgd = pgd_offset_k(addr);
1480 pud_t *pud;
1481 pmd_t *pmd;
1483 pud = pud_offset(pgd, addr);
1484 if (pud_none(*pud)) {
1485 pmd_t *new;
1487 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1488 pud_populate(&init_mm, pud, new);
1491 pmd = pmd_offset(pud, addr);
1492 if (!pmd_present(*pmd)) {
1493 pte_t *new;
1495 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1496 pmd_populate_kernel(&init_mm, pmd, new);
1500 void __init setup_per_cpu_areas(void)
1502 unsigned long delta;
1503 unsigned int cpu;
1504 int rc = -EINVAL;
1506 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1507 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1508 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1509 pcpu_cpu_distance,
1510 pcpu_alloc_bootmem,
1511 pcpu_free_bootmem);
1512 if (rc)
1513 pr_warning("PERCPU: %s allocator failed (%d), "
1514 "falling back to page size\n",
1515 pcpu_fc_names[pcpu_chosen_fc], rc);
1517 if (rc < 0)
1518 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1519 pcpu_alloc_bootmem,
1520 pcpu_free_bootmem,
1521 pcpu_populate_pte);
1522 if (rc < 0)
1523 panic("cannot initialize percpu area (err=%d)", rc);
1525 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1526 for_each_possible_cpu(cpu)
1527 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1529 /* Setup %g5 for the boot cpu. */
1530 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1532 of_fill_in_cpu_data();
1533 if (tlb_type == hypervisor)
1534 mdesc_fill_in_cpu_data(cpu_all_mask);