1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
37 #include <asm/timer.h>
40 #include <asm/irq_regs.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
47 #include <asm/sections.h>
49 #include <asm/mdesc.h>
51 #include <asm/hypervisor.h>
56 int sparc64_multi_core __read_mostly
;
58 DEFINE_PER_CPU(cpumask_t
, cpu_sibling_map
) = CPU_MASK_NONE
;
59 cpumask_t cpu_core_map
[NR_CPUS
] __read_mostly
=
60 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map
);
63 EXPORT_SYMBOL(cpu_core_map
);
65 static cpumask_t smp_commenced_mask
;
67 void smp_info(struct seq_file
*m
)
71 seq_printf(m
, "State:\n");
72 for_each_online_cpu(i
)
73 seq_printf(m
, "CPU%d:\t\tonline\n", i
);
76 void smp_bogo(struct seq_file
*m
)
80 for_each_online_cpu(i
)
82 "Cpu%dClkTck\t: %016lx\n",
83 i
, cpu_data(i
).clock_tick
);
86 extern void setup_sparc64_timer(void);
88 static volatile unsigned long callin_flag
= 0;
92 int cpuid
= hard_smp_processor_id();
94 __local_per_cpu_offset
= __per_cpu_offset(cpuid
);
96 if (tlb_type
== hypervisor
)
97 sun4v_ktsb_register();
101 setup_sparc64_timer();
103 if (cheetah_pcache_forced_on
)
104 cheetah_enable_pcache();
107 __asm__
__volatile__("membar #Sync\n\t"
108 "flush %%g6" : : : "memory");
110 /* Clear this or we will die instantly when we
111 * schedule back to this idler...
113 current_thread_info()->new_child
= 0;
115 /* Attach to the address space of init_task. */
116 atomic_inc(&init_mm
.mm_count
);
117 current
->active_mm
= &init_mm
;
119 /* inform the notifiers about the new cpu */
120 notify_cpu_starting(cpuid
);
122 while (!cpumask_test_cpu(cpuid
, &smp_commenced_mask
))
125 set_cpu_online(cpuid
, true);
127 /* idle thread is expected to have preempt disabled */
132 cpu_startup_entry(CPUHP_ONLINE
);
137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 panic("SMP bolixed\n");
141 /* This tick register synchronization scheme is taken entirely from
142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
144 * The only change I've made is to rework it so that the master
145 * initiates the synchonization instead of the slave. -DaveM
149 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
151 #define NUM_ROUNDS 64 /* magic value */
152 #define NUM_ITERS 5 /* likewise */
154 static DEFINE_SPINLOCK(itc_sync_lock
);
155 static unsigned long go
[SLAVE
+ 1];
157 #define DEBUG_TICK_SYNC 0
159 static inline long get_delta (long *rt
, long *master
)
161 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
162 unsigned long tcenter
, t0
, t1
, tm
;
165 for (i
= 0; i
< NUM_ITERS
; i
++) {
166 t0
= tick_ops
->get_tick();
168 membar_safe("#StoreLoad");
169 while (!(tm
= go
[SLAVE
]))
173 t1
= tick_ops
->get_tick();
175 if (t1
- t0
< best_t1
- best_t0
)
176 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
179 *rt
= best_t1
- best_t0
;
180 *master
= best_tm
- best_t0
;
182 /* average best_t0 and best_t1 without overflow: */
183 tcenter
= (best_t0
/2 + best_t1
/2);
184 if (best_t0
% 2 + best_t1
% 2 == 2)
186 return tcenter
- best_tm
;
189 void smp_synchronize_tick_client(void)
191 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
192 unsigned long flags
, rt
, master_time_stamp
;
195 long rt
; /* roundtrip time */
196 long master
; /* master's timestamp */
197 long diff
; /* difference between midpoint and master's timestamp */
198 long lat
; /* estimate of itc adjustment latency */
207 local_irq_save(flags
);
209 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
210 delta
= get_delta(&rt
, &master_time_stamp
);
212 done
= 1; /* let's lock on to this... */
216 adjust_latency
+= -delta
;
217 adj
= -delta
+ adjust_latency
/4;
221 tick_ops
->add_tick(adj
);
225 t
[i
].master
= master_time_stamp
;
227 t
[i
].lat
= adjust_latency
/4;
231 local_irq_restore(flags
);
234 for (i
= 0; i
< NUM_ROUNDS
; i
++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
239 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta
, rt
);
244 static void smp_start_sync_tick_client(int cpu
);
246 static void smp_synchronize_one_tick(int cpu
)
248 unsigned long flags
, i
;
252 smp_start_sync_tick_client(cpu
);
254 /* wait for client to be ready */
258 /* now let the client proceed into his loop */
260 membar_safe("#StoreLoad");
262 spin_lock_irqsave(&itc_sync_lock
, flags
);
264 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
269 go
[SLAVE
] = tick_ops
->get_tick();
270 membar_safe("#StoreLoad");
273 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p
)
280 unsigned long val
= (unsigned long) p
;
282 return kern_base
+ (val
- KERNBASE
);
285 static void ldom_startcpu_cpuid(unsigned int cpu
, unsigned long thread_reg
,
288 extern unsigned long sparc64_ttable_tl0
;
289 extern unsigned long kern_locked_tte_data
;
290 struct hvtramp_descr
*hdesc
;
291 unsigned long trampoline_ra
;
292 struct trap_per_cpu
*tb
;
293 u64 tte_vaddr
, tte_data
;
294 unsigned long hv_err
;
297 hdesc
= kzalloc(sizeof(*hdesc
) +
298 (sizeof(struct hvtramp_mapping
) *
299 num_kernel_image_mappings
- 1),
302 printk(KERN_ERR
"ldom_startcpu_cpuid: Cannot allocate "
309 hdesc
->num_mappings
= num_kernel_image_mappings
;
311 tb
= &trap_block
[cpu
];
313 hdesc
->fault_info_va
= (unsigned long) &tb
->fault_info
;
314 hdesc
->fault_info_pa
= kimage_addr_to_ra(&tb
->fault_info
);
316 hdesc
->thread_reg
= thread_reg
;
318 tte_vaddr
= (unsigned long) KERNBASE
;
319 tte_data
= kern_locked_tte_data
;
321 for (i
= 0; i
< hdesc
->num_mappings
; i
++) {
322 hdesc
->maps
[i
].vaddr
= tte_vaddr
;
323 hdesc
->maps
[i
].tte
= tte_data
;
324 tte_vaddr
+= 0x400000;
325 tte_data
+= 0x400000;
328 trampoline_ra
= kimage_addr_to_ra(hv_cpu_startup
);
330 hv_err
= sun4v_cpu_start(cpu
, trampoline_ra
,
331 kimage_addr_to_ra(&sparc64_ttable_tl0
),
334 printk(KERN_ERR
"ldom_startcpu_cpuid: sun4v_cpu_start() "
335 "gives error %lu\n", hv_err
);
339 extern unsigned long sparc64_cpu_startup
;
341 /* The OBP cpu startup callback truncates the 3rd arg cookie to
342 * 32-bits (I think) so to be safe we have it read the pointer
343 * contained here so we work on >4GB machines. -DaveM
345 static struct thread_info
*cpu_new_thread
= NULL
;
347 static int smp_boot_one_cpu(unsigned int cpu
, struct task_struct
*idle
)
349 unsigned long entry
=
350 (unsigned long)(&sparc64_cpu_startup
);
351 unsigned long cookie
=
352 (unsigned long)(&cpu_new_thread
);
357 cpu_new_thread
= task_thread_info(idle
);
359 if (tlb_type
== hypervisor
) {
360 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
361 if (ldom_domaining_enabled
)
362 ldom_startcpu_cpuid(cpu
,
363 (unsigned long) cpu_new_thread
,
367 prom_startcpu_cpuid(cpu
, entry
, cookie
);
369 struct device_node
*dp
= of_find_node_by_cpuid(cpu
);
371 prom_startcpu(dp
->phandle
, entry
, cookie
);
374 for (timeout
= 0; timeout
< 50000; timeout
++) {
383 printk("Processor %d is stuck.\n", cpu
);
386 cpu_new_thread
= NULL
;
393 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
398 if (this_is_starfire
) {
399 /* map to real upaid */
400 cpu
= (((cpu
& 0x3c) << 1) |
401 ((cpu
& 0x40) >> 4) |
405 target
= (cpu
<< 14) | 0x70;
407 /* Ok, this is the real Spitfire Errata #54.
408 * One must read back from a UDB internal register
409 * after writes to the UDB interrupt dispatch, but
410 * before the membar Sync for that write.
411 * So we use the high UDB control register (ASI 0x7f,
412 * ADDR 0x20) for the dummy read. -DaveM
415 __asm__
__volatile__(
416 "wrpr %1, %2, %%pstate\n\t"
417 "stxa %4, [%0] %3\n\t"
418 "stxa %5, [%0+%8] %3\n\t"
420 "stxa %6, [%0+%8] %3\n\t"
422 "stxa %%g0, [%7] %3\n\t"
425 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
429 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
430 "r" (0x10), "0" (tmp
)
433 /* NOTE: PSTATE_IE is still clear. */
436 __asm__
__volatile__("ldxa [%%g0] %1, %0"
438 : "i" (ASI_INTR_DISPATCH_STAT
));
440 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
447 } while (result
& 0x1);
448 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
451 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
452 smp_processor_id(), result
);
459 static void spitfire_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
461 u64
*mondo
, data0
, data1
, data2
;
466 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
467 cpu_list
= __va(tb
->cpu_list_pa
);
468 mondo
= __va(tb
->cpu_mondo_block_pa
);
472 for (i
= 0; i
< cnt
; i
++)
473 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, cpu_list
[i
]);
476 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
477 * packet, but we have no use for that. However we do take advantage of
478 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480 static void cheetah_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
482 int nack_busy_id
, is_jbus
, need_more
;
483 u64
*mondo
, pstate
, ver
, busy_mask
;
486 cpu_list
= __va(tb
->cpu_list_pa
);
487 mondo
= __va(tb
->cpu_mondo_block_pa
);
489 /* Unfortunately, someone at Sun had the brilliant idea to make the
490 * busy/nack fields hard-coded by ITID number for this Ultra-III
491 * derivative processor.
493 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
494 is_jbus
= ((ver
>> 32) == __JALAPENO_ID
||
495 (ver
>> 32) == __SERRANO_ID
);
497 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
501 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
502 : : "r" (pstate
), "i" (PSTATE_IE
));
504 /* Setup the dispatch data registers. */
505 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
506 "stxa %1, [%4] %6\n\t"
507 "stxa %2, [%5] %6\n\t"
510 : "r" (mondo
[0]), "r" (mondo
[1]), "r" (mondo
[2]),
511 "r" (0x40), "r" (0x50), "r" (0x60),
519 for (i
= 0; i
< cnt
; i
++) {
526 target
= (nr
<< 14) | 0x70;
528 busy_mask
|= (0x1UL
<< (nr
* 2));
530 target
|= (nack_busy_id
<< 24);
531 busy_mask
|= (0x1UL
<<
534 __asm__
__volatile__(
535 "stxa %%g0, [%0] %1\n\t"
538 : "r" (target
), "i" (ASI_INTR_W
));
540 if (nack_busy_id
== 32) {
547 /* Now, poll for completion. */
549 u64 dispatch_stat
, nack_mask
;
552 stuck
= 100000 * nack_busy_id
;
553 nack_mask
= busy_mask
<< 1;
555 __asm__
__volatile__("ldxa [%%g0] %1, %0"
556 : "=r" (dispatch_stat
)
557 : "i" (ASI_INTR_DISPATCH_STAT
));
558 if (!(dispatch_stat
& (busy_mask
| nack_mask
))) {
559 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
561 if (unlikely(need_more
)) {
563 for (i
= 0; i
< cnt
; i
++) {
564 if (cpu_list
[i
] == 0xffff)
566 cpu_list
[i
] = 0xffff;
577 } while (dispatch_stat
& busy_mask
);
579 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
582 if (dispatch_stat
& busy_mask
) {
583 /* Busy bits will not clear, continue instead
584 * of freezing up on this cpu.
586 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
587 smp_processor_id(), dispatch_stat
);
589 int i
, this_busy_nack
= 0;
591 /* Delay some random time with interrupts enabled
592 * to prevent deadlock.
594 udelay(2 * nack_busy_id
);
596 /* Clear out the mask bits for cpus which did not
599 for (i
= 0; i
< cnt
; i
++) {
607 check_mask
= (0x2UL
<< (2*nr
));
609 check_mask
= (0x2UL
<<
611 if ((dispatch_stat
& check_mask
) == 0)
612 cpu_list
[i
] = 0xffff;
614 if (this_busy_nack
== 64)
623 /* Multi-cpu list version. */
624 static void hypervisor_xcall_deliver(struct trap_per_cpu
*tb
, int cnt
)
626 int retries
, this_cpu
, prev_sent
, i
, saw_cpu_error
;
627 unsigned long status
;
630 this_cpu
= smp_processor_id();
632 cpu_list
= __va(tb
->cpu_list_pa
);
638 int forward_progress
, n_sent
;
640 status
= sun4v_cpu_mondo_send(cnt
,
642 tb
->cpu_mondo_block_pa
);
644 /* HV_EOK means all cpus received the xcall, we're done. */
645 if (likely(status
== HV_EOK
))
648 /* First, see if we made any forward progress.
650 * The hypervisor indicates successful sends by setting
651 * cpu list entries to the value 0xffff.
654 for (i
= 0; i
< cnt
; i
++) {
655 if (likely(cpu_list
[i
] == 0xffff))
659 forward_progress
= 0;
660 if (n_sent
> prev_sent
)
661 forward_progress
= 1;
665 /* If we get a HV_ECPUERROR, then one or more of the cpus
666 * in the list are in error state. Use the cpu_state()
667 * hypervisor call to find out which cpus are in error state.
669 if (unlikely(status
== HV_ECPUERROR
)) {
670 for (i
= 0; i
< cnt
; i
++) {
678 err
= sun4v_cpu_state(cpu
);
679 if (err
== HV_CPU_STATE_ERROR
) {
680 saw_cpu_error
= (cpu
+ 1);
681 cpu_list
[i
] = 0xffff;
684 } else if (unlikely(status
!= HV_EWOULDBLOCK
))
685 goto fatal_mondo_error
;
687 /* Don't bother rewriting the CPU list, just leave the
688 * 0xffff and non-0xffff entries in there and the
689 * hypervisor will do the right thing.
691 * Only advance timeout state if we didn't make any
694 if (unlikely(!forward_progress
)) {
695 if (unlikely(++retries
> 10000))
696 goto fatal_mondo_timeout
;
698 /* Delay a little bit to let other cpus catch up
699 * on their cpu mondo queue work.
705 if (unlikely(saw_cpu_error
))
706 goto fatal_mondo_cpu_error
;
710 fatal_mondo_cpu_error
:
711 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo cpu error, some target cpus "
712 "(including %d) were in error state\n",
713 this_cpu
, saw_cpu_error
- 1);
717 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo timeout, no forward "
718 " progress after %d retries.\n",
720 goto dump_cpu_list_and_out
;
723 printk(KERN_CRIT
"CPU[%d]: Unexpected SUN4V mondo error %lu\n",
725 printk(KERN_CRIT
"CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
726 "mondo_block_pa(%lx)\n",
727 this_cpu
, cnt
, tb
->cpu_list_pa
, tb
->cpu_mondo_block_pa
);
729 dump_cpu_list_and_out
:
730 printk(KERN_CRIT
"CPU[%d]: CPU list [ ", this_cpu
);
731 for (i
= 0; i
< cnt
; i
++)
732 printk("%u ", cpu_list
[i
]);
736 static void (*xcall_deliver_impl
)(struct trap_per_cpu
*, int);
738 static void xcall_deliver(u64 data0
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
740 struct trap_per_cpu
*tb
;
741 int this_cpu
, i
, cnt
;
746 /* We have to do this whole thing with interrupts fully disabled.
747 * Otherwise if we send an xcall from interrupt context it will
748 * corrupt both our mondo block and cpu list state.
750 * One consequence of this is that we cannot use timeout mechanisms
751 * that depend upon interrupts being delivered locally. So, for
752 * example, we cannot sample jiffies and expect it to advance.
754 * Fortunately, udelay() uses %stick/%tick so we can use that.
756 local_irq_save(flags
);
758 this_cpu
= smp_processor_id();
759 tb
= &trap_block
[this_cpu
];
761 mondo
= __va(tb
->cpu_mondo_block_pa
);
767 cpu_list
= __va(tb
->cpu_list_pa
);
769 /* Setup the initial cpu list. */
771 for_each_cpu(i
, mask
) {
772 if (i
== this_cpu
|| !cpu_online(i
))
778 xcall_deliver_impl(tb
, cnt
);
780 local_irq_restore(flags
);
783 /* Send cross call to all processors mentioned in MASK_P
784 * except self. Really, there are only two cases currently,
785 * "cpu_online_mask" and "mm_cpumask(mm)".
787 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, const cpumask_t
*mask
)
789 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
791 xcall_deliver(data0
, data1
, data2
, mask
);
794 /* Send cross call to all processors except self. */
795 static void smp_cross_call(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
)
797 smp_cross_call_masked(func
, ctx
, data1
, data2
, cpu_online_mask
);
800 extern unsigned long xcall_sync_tick
;
802 static void smp_start_sync_tick_client(int cpu
)
804 xcall_deliver((u64
) &xcall_sync_tick
, 0, 0,
808 extern unsigned long xcall_call_function
;
810 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
812 xcall_deliver((u64
) &xcall_call_function
, 0, 0, mask
);
815 extern unsigned long xcall_call_function_single
;
817 void arch_send_call_function_single_ipi(int cpu
)
819 xcall_deliver((u64
) &xcall_call_function_single
, 0, 0,
823 void __irq_entry
smp_call_function_client(int irq
, struct pt_regs
*regs
)
825 clear_softint(1 << irq
);
826 generic_smp_call_function_interrupt();
829 void __irq_entry
smp_call_function_single_client(int irq
, struct pt_regs
*regs
)
831 clear_softint(1 << irq
);
832 generic_smp_call_function_single_interrupt();
835 static void tsb_sync(void *info
)
837 struct trap_per_cpu
*tp
= &trap_block
[raw_smp_processor_id()];
838 struct mm_struct
*mm
= info
;
840 /* It is not valid to test "current->active_mm == mm" here.
842 * The value of "current" is not changed atomically with
843 * switch_mm(). But that's OK, we just need to check the
844 * current cpu's trap block PGD physical address.
846 if (tp
->pgd_paddr
== __pa(mm
->pgd
))
847 tsb_context_switch(mm
);
850 void smp_tsb_sync(struct mm_struct
*mm
)
852 smp_call_function_many(mm_cpumask(mm
), tsb_sync
, mm
, 1);
855 extern unsigned long xcall_flush_tlb_mm
;
856 extern unsigned long xcall_flush_tlb_page
;
857 extern unsigned long xcall_flush_tlb_kernel_range
;
858 extern unsigned long xcall_fetch_glob_regs
;
859 extern unsigned long xcall_fetch_glob_pmu
;
860 extern unsigned long xcall_fetch_glob_pmu_n4
;
861 extern unsigned long xcall_receive_signal
;
862 extern unsigned long xcall_new_mmu_context_version
;
864 extern unsigned long xcall_kgdb_capture
;
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 extern unsigned long xcall_flush_dcache_page_cheetah
;
870 extern unsigned long xcall_flush_dcache_page_spitfire
;
872 #ifdef CONFIG_DEBUG_DCFLUSH
873 extern atomic_t dcpage_flushes
;
874 extern atomic_t dcpage_flushes_xcall
;
877 static inline void __local_flush_dcache_page(struct page
*page
)
879 #ifdef DCACHE_ALIASING_POSSIBLE
880 __flush_dcache_page(page_address(page
),
881 ((tlb_type
== spitfire
) &&
882 page_mapping(page
) != NULL
));
884 if (page_mapping(page
) != NULL
&&
885 tlb_type
== spitfire
)
886 __flush_icache_page(__pa(page_address(page
)));
890 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
894 if (tlb_type
== hypervisor
)
897 #ifdef CONFIG_DEBUG_DCFLUSH
898 atomic_inc(&dcpage_flushes
);
901 this_cpu
= get_cpu();
903 if (cpu
== this_cpu
) {
904 __local_flush_dcache_page(page
);
905 } else if (cpu_online(cpu
)) {
906 void *pg_addr
= page_address(page
);
909 if (tlb_type
== spitfire
) {
910 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
911 if (page_mapping(page
) != NULL
)
912 data0
|= ((u64
)1 << 32);
913 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
919 xcall_deliver(data0
, __pa(pg_addr
),
920 (u64
) pg_addr
, cpumask_of(cpu
));
921 #ifdef CONFIG_DEBUG_DCFLUSH
922 atomic_inc(&dcpage_flushes_xcall
);
930 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
935 if (tlb_type
== hypervisor
)
940 #ifdef CONFIG_DEBUG_DCFLUSH
941 atomic_inc(&dcpage_flushes
);
944 pg_addr
= page_address(page
);
945 if (tlb_type
== spitfire
) {
946 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
947 if (page_mapping(page
) != NULL
)
948 data0
|= ((u64
)1 << 32);
949 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
950 #ifdef DCACHE_ALIASING_POSSIBLE
951 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
955 xcall_deliver(data0
, __pa(pg_addr
),
956 (u64
) pg_addr
, cpu_online_mask
);
957 #ifdef CONFIG_DEBUG_DCFLUSH
958 atomic_inc(&dcpage_flushes_xcall
);
961 __local_flush_dcache_page(page
);
966 void __irq_entry
smp_new_mmu_context_version_client(int irq
, struct pt_regs
*regs
)
968 struct mm_struct
*mm
;
971 clear_softint(1 << irq
);
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
976 mm
= current
->active_mm
;
977 if (unlikely(!mm
|| (mm
== &init_mm
)))
980 spin_lock_irqsave(&mm
->context
.lock
, flags
);
982 if (unlikely(!CTX_VALID(mm
->context
)))
983 get_new_mmu_context(mm
);
985 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
987 load_secondary_context(mm
);
988 __flush_tlb_mm(CTX_HWBITS(mm
->context
),
992 void smp_new_mmu_context_version(void)
994 smp_cross_call(&xcall_new_mmu_context_version
, 0, 0, 0);
998 void kgdb_roundup_cpus(unsigned long flags
)
1000 smp_cross_call(&xcall_kgdb_capture
, 0, 0, 0);
1004 void smp_fetch_global_regs(void)
1006 smp_cross_call(&xcall_fetch_glob_regs
, 0, 0, 0);
1009 void smp_fetch_global_pmu(void)
1011 if (tlb_type
== hypervisor
&&
1012 sun4v_chip_type
>= SUN4V_CHIP_NIAGARA4
)
1013 smp_cross_call(&xcall_fetch_glob_pmu_n4
, 0, 0, 0);
1015 smp_cross_call(&xcall_fetch_glob_pmu
, 0, 0, 0);
1018 /* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1023 * The SMP TLB coherency scheme we use works as follows:
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 * space has (potentially) executed on, this is the heuristic
1027 * we use to avoid doing cross calls.
1029 * Also, for flushing from kswapd and also for clones, we
1030 * use cpu_vm_mask as the list of cpus to make run the TLB.
1032 * 2) TLB context numbers are shared globally across all processors
1033 * in the system, this allows us to play several games to avoid
1036 * One invariant is that when a cpu switches to a process, and
1037 * that processes tsk->active_mm->cpu_vm_mask does not have the
1038 * current cpu's bit set, that tlb context is flushed locally.
1040 * If the address space is non-shared (ie. mm->count == 1) we avoid
1041 * cross calls when we want to flush the currently running process's
1042 * tlb state. This is done by clearing all cpu bits except the current
1043 * processor's in current->mm->cpu_vm_mask and performing the
1044 * flush locally only. This will force any subsequent cpus which run
1045 * this task to flush the context from the local tlb if the process
1046 * migrates to another cpu (again).
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 * bullet for most cases and perform the cross call (but only to
1050 * the cpus listed in cpu_vm_mask).
1052 * The performance gain from "optimizing" away the cross call for threads is
1053 * questionable (in theory the big win for threads is the massive sharing of
1054 * address space state across processors).
1057 /* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1061 void smp_flush_tlb_mm(struct mm_struct
*mm
)
1063 u32 ctx
= CTX_HWBITS(mm
->context
);
1064 int cpu
= get_cpu();
1066 if (atomic_read(&mm
->mm_users
) == 1) {
1067 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1068 goto local_flush_and_out
;
1071 smp_cross_call_masked(&xcall_flush_tlb_mm
,
1075 local_flush_and_out
:
1076 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
1081 struct tlb_pending_info
{
1084 unsigned long *vaddrs
;
1087 static void tlb_pending_func(void *info
)
1089 struct tlb_pending_info
*t
= info
;
1091 __flush_tlb_pending(t
->ctx
, t
->nr
, t
->vaddrs
);
1094 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
1096 u32 ctx
= CTX_HWBITS(mm
->context
);
1097 struct tlb_pending_info info
;
1098 int cpu
= get_cpu();
1102 info
.vaddrs
= vaddrs
;
1104 if (mm
== current
->mm
&& atomic_read(&mm
->mm_users
) == 1)
1105 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1107 smp_call_function_many(mm_cpumask(mm
), tlb_pending_func
,
1110 __flush_tlb_pending(ctx
, nr
, vaddrs
);
1115 void smp_flush_tlb_page(struct mm_struct
*mm
, unsigned long vaddr
)
1117 unsigned long context
= CTX_HWBITS(mm
->context
);
1118 int cpu
= get_cpu();
1120 if (mm
== current
->mm
&& atomic_read(&mm
->mm_users
) == 1)
1121 cpumask_copy(mm_cpumask(mm
), cpumask_of(cpu
));
1123 smp_cross_call_masked(&xcall_flush_tlb_page
,
1126 __flush_tlb_page(context
, vaddr
);
1131 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
1134 end
= PAGE_ALIGN(end
);
1136 smp_cross_call(&xcall_flush_tlb_kernel_range
,
1139 __flush_tlb_kernel_range(start
, end
);
1144 /* #define CAPTURE_DEBUG */
1145 extern unsigned long xcall_capture
;
1147 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
1148 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
1149 static unsigned long penguins_are_doing_time
;
1151 void smp_capture(void)
1153 int result
= atomic_add_ret(1, &smp_capture_depth
);
1156 int ncpus
= num_online_cpus();
1158 #ifdef CAPTURE_DEBUG
1159 printk("CPU[%d]: Sending penguins to jail...",
1160 smp_processor_id());
1162 penguins_are_doing_time
= 1;
1163 atomic_inc(&smp_capture_registry
);
1164 smp_cross_call(&xcall_capture
, 0, 0, 0);
1165 while (atomic_read(&smp_capture_registry
) != ncpus
)
1167 #ifdef CAPTURE_DEBUG
1173 void smp_release(void)
1175 if (atomic_dec_and_test(&smp_capture_depth
)) {
1176 #ifdef CAPTURE_DEBUG
1177 printk("CPU[%d]: Giving pardon to "
1178 "imprisoned penguins\n",
1179 smp_processor_id());
1181 penguins_are_doing_time
= 0;
1182 membar_safe("#StoreLoad");
1183 atomic_dec(&smp_capture_registry
);
1187 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1190 extern void prom_world(int);
1192 void __irq_entry
smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
1194 clear_softint(1 << irq
);
1198 __asm__
__volatile__("flushw");
1200 atomic_inc(&smp_capture_registry
);
1201 membar_safe("#StoreLoad");
1202 while (penguins_are_doing_time
)
1204 atomic_dec(&smp_capture_registry
);
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 int setup_profiling_timer(unsigned int multiplier
)
1216 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1220 void smp_prepare_boot_cpu(void)
1224 void __init
smp_setup_processor_id(void)
1226 if (tlb_type
== spitfire
)
1227 xcall_deliver_impl
= spitfire_xcall_deliver
;
1228 else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1229 xcall_deliver_impl
= cheetah_xcall_deliver
;
1231 xcall_deliver_impl
= hypervisor_xcall_deliver
;
1234 void smp_fill_in_sib_core_maps(void)
1238 for_each_present_cpu(i
) {
1241 cpumask_clear(&cpu_core_map
[i
]);
1242 if (cpu_data(i
).core_id
== 0) {
1243 cpumask_set_cpu(i
, &cpu_core_map
[i
]);
1247 for_each_present_cpu(j
) {
1248 if (cpu_data(i
).core_id
==
1249 cpu_data(j
).core_id
)
1250 cpumask_set_cpu(j
, &cpu_core_map
[i
]);
1254 for_each_present_cpu(i
) {
1257 cpumask_clear(&per_cpu(cpu_sibling_map
, i
));
1258 if (cpu_data(i
).proc_id
== -1) {
1259 cpumask_set_cpu(i
, &per_cpu(cpu_sibling_map
, i
));
1263 for_each_present_cpu(j
) {
1264 if (cpu_data(i
).proc_id
==
1265 cpu_data(j
).proc_id
)
1266 cpumask_set_cpu(j
, &per_cpu(cpu_sibling_map
, i
));
1271 int __cpu_up(unsigned int cpu
, struct task_struct
*tidle
)
1273 int ret
= smp_boot_one_cpu(cpu
, tidle
);
1276 cpumask_set_cpu(cpu
, &smp_commenced_mask
);
1277 while (!cpu_online(cpu
))
1279 if (!cpu_online(cpu
)) {
1282 /* On SUN4V, writes to %tick and %stick are
1285 if (tlb_type
!= hypervisor
)
1286 smp_synchronize_one_tick(cpu
);
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 void cpu_play_dead(void)
1295 int cpu
= smp_processor_id();
1296 unsigned long pstate
;
1300 if (tlb_type
== hypervisor
) {
1301 struct trap_per_cpu
*tb
= &trap_block
[cpu
];
1303 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO
,
1304 tb
->cpu_mondo_pa
, 0);
1305 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO
,
1306 tb
->dev_mondo_pa
, 0);
1307 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR
,
1308 tb
->resum_mondo_pa
, 0);
1309 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR
,
1310 tb
->nonresum_mondo_pa
, 0);
1313 cpumask_clear_cpu(cpu
, &smp_commenced_mask
);
1314 membar_safe("#Sync");
1316 local_irq_disable();
1318 __asm__
__volatile__(
1319 "rdpr %%pstate, %0\n\t"
1320 "wrpr %0, %1, %%pstate"
1328 int __cpu_disable(void)
1330 int cpu
= smp_processor_id();
1334 for_each_cpu(i
, &cpu_core_map
[cpu
])
1335 cpumask_clear_cpu(cpu
, &cpu_core_map
[i
]);
1336 cpumask_clear(&cpu_core_map
[cpu
]);
1338 for_each_cpu(i
, &per_cpu(cpu_sibling_map
, cpu
))
1339 cpumask_clear_cpu(cpu
, &per_cpu(cpu_sibling_map
, i
));
1340 cpumask_clear(&per_cpu(cpu_sibling_map
, cpu
));
1349 /* Make sure no interrupts point to this cpu. */
1354 local_irq_disable();
1356 set_cpu_online(cpu
, false);
1363 void __cpu_die(unsigned int cpu
)
1367 for (i
= 0; i
< 100; i
++) {
1369 if (!cpumask_test_cpu(cpu
, &smp_commenced_mask
))
1373 if (cpumask_test_cpu(cpu
, &smp_commenced_mask
)) {
1374 printk(KERN_ERR
"CPU %u didn't die...\n", cpu
);
1376 #if defined(CONFIG_SUN_LDOMS)
1377 unsigned long hv_err
;
1381 hv_err
= sun4v_cpu_stop(cpu
);
1382 if (hv_err
== HV_EOK
) {
1383 set_cpu_present(cpu
, false);
1386 } while (--limit
> 0);
1388 printk(KERN_ERR
"sun4v_cpu_stop() fails err=%lu\n",
1396 void __init
smp_cpus_done(unsigned int max_cpus
)
1401 void smp_send_reschedule(int cpu
)
1403 if (cpu
== smp_processor_id()) {
1404 WARN_ON_ONCE(preemptible());
1405 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL
);
1407 xcall_deliver((u64
) &xcall_receive_signal
,
1408 0, 0, cpumask_of(cpu
));
1412 void __irq_entry
smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
1414 clear_softint(1 << irq
);
1418 /* This is a nop because we capture all other cpus
1419 * anyways when making the PROM active.
1421 void smp_send_stop(void)
1426 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1427 * @cpu: cpu to allocate for
1428 * @size: size allocation in bytes
1431 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1432 * does the right thing for NUMA regardless of the current
1436 * Pointer to the allocated area on success, NULL on failure.
1438 static void * __init
pcpu_alloc_bootmem(unsigned int cpu
, size_t size
,
1441 const unsigned long goal
= __pa(MAX_DMA_ADDRESS
);
1442 #ifdef CONFIG_NEED_MULTIPLE_NODES
1443 int node
= cpu_to_node(cpu
);
1446 if (!node_online(node
) || !NODE_DATA(node
)) {
1447 ptr
= __alloc_bootmem(size
, align
, goal
);
1448 pr_info("cpu %d has no node %d or node-local memory\n",
1450 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1451 cpu
, size
, __pa(ptr
));
1453 ptr
= __alloc_bootmem_node(NODE_DATA(node
),
1455 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1456 "%016lx\n", cpu
, size
, node
, __pa(ptr
));
1460 return __alloc_bootmem(size
, align
, goal
);
1464 static void __init
pcpu_free_bootmem(void *ptr
, size_t size
)
1466 free_bootmem(__pa(ptr
), size
);
1469 static int __init
pcpu_cpu_distance(unsigned int from
, unsigned int to
)
1471 if (cpu_to_node(from
) == cpu_to_node(to
))
1472 return LOCAL_DISTANCE
;
1474 return REMOTE_DISTANCE
;
1477 static void __init
pcpu_populate_pte(unsigned long addr
)
1479 pgd_t
*pgd
= pgd_offset_k(addr
);
1483 pud
= pud_offset(pgd
, addr
);
1484 if (pud_none(*pud
)) {
1487 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1488 pud_populate(&init_mm
, pud
, new);
1491 pmd
= pmd_offset(pud
, addr
);
1492 if (!pmd_present(*pmd
)) {
1495 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1496 pmd_populate_kernel(&init_mm
, pmd
, new);
1500 void __init
setup_per_cpu_areas(void)
1502 unsigned long delta
;
1506 if (pcpu_chosen_fc
!= PCPU_FC_PAGE
) {
1507 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
1508 PERCPU_DYNAMIC_RESERVE
, 4 << 20,
1513 pr_warning("PERCPU: %s allocator failed (%d), "
1514 "falling back to page size\n",
1515 pcpu_fc_names
[pcpu_chosen_fc
], rc
);
1518 rc
= pcpu_page_first_chunk(PERCPU_MODULE_RESERVE
,
1523 panic("cannot initialize percpu area (err=%d)", rc
);
1525 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
1526 for_each_possible_cpu(cpu
)
1527 __per_cpu_offset(cpu
) = delta
+ pcpu_unit_offsets
[cpu
];
1529 /* Setup %g5 for the boot cpu. */
1530 __local_per_cpu_offset
= __per_cpu_offset(smp_processor_id());
1532 of_fill_in_cpu_data();
1533 if (tlb_type
== hypervisor
)
1534 mdesc_fill_in_cpu_data(cpu_all_mask
);