1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
32 #include <asm/fpu-internal.h>
34 #include <linux/numa.h>
40 #include <asm/microcode.h>
41 #include <asm/microcode_intel.h>
43 #ifdef CONFIG_X86_LOCAL_APIC
44 #include <asm/uv/uv.h>
49 /* all of these masks are initialized in setup_cpu_local_masks() */
50 cpumask_var_t cpu_initialized_mask
;
51 cpumask_var_t cpu_callout_mask
;
52 cpumask_var_t cpu_callin_mask
;
54 /* representing cpus for which sibling maps can be computed */
55 cpumask_var_t cpu_sibling_setup_mask
;
57 /* correctly size the local cpu masks */
58 void __init
setup_cpu_local_masks(void)
60 alloc_bootmem_cpumask_var(&cpu_initialized_mask
);
61 alloc_bootmem_cpumask_var(&cpu_callin_mask
);
62 alloc_bootmem_cpumask_var(&cpu_callout_mask
);
63 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask
);
66 static void default_init(struct cpuinfo_x86
*c
)
69 cpu_detect_cache_sizes(c
);
71 /* Not much we can do here... */
72 /* Check if at least it has cpuid */
73 if (c
->cpuid_level
== -1) {
74 /* No cpuid. It must be an ancient CPU */
76 strcpy(c
->x86_model_id
, "486");
78 strcpy(c
->x86_model_id
, "386");
83 static const struct cpu_dev default_cpu
= {
84 .c_init
= default_init
,
85 .c_vendor
= "Unknown",
86 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
89 static const struct cpu_dev
*this_cpu
= &default_cpu
;
91 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
94 * We need valid kernel segments for data and code in long mode too
95 * IRET will check the segment types kkeil 2000/10/28
96 * Also sysret mandates a special GDT layout
98 * TLS descriptors are currently at a different place compared to i386.
99 * Hopefully nobody expects them at a fixed place (Wine?)
101 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
102 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
108 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
109 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
113 * Segments used for calling PnP BIOS have byte granularity.
114 * They code segments and data segments have fixed 64k limits,
115 * the transfer segment sizes are set at run time.
118 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
120 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
122 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
124 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(0x0092, 0, 0),
126 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(0x0092, 0, 0),
128 * The APM segments have byte granularity and their bases
129 * are set at run time. All have 64k limits.
132 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
134 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
136 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
138 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 GDT_STACK_CANARY_INIT
143 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
145 static int __init
x86_xsave_setup(char *s
)
147 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
148 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
149 setup_clear_cpu_cap(X86_FEATURE_AVX
);
150 setup_clear_cpu_cap(X86_FEATURE_AVX2
);
153 __setup("noxsave", x86_xsave_setup
);
155 static int __init
x86_xsaveopt_setup(char *s
)
157 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
160 __setup("noxsaveopt", x86_xsaveopt_setup
);
163 static int cachesize_override
= -1;
164 static int disable_x86_serial_nr
= 1;
166 static int __init
cachesize_setup(char *str
)
168 get_option(&str
, &cachesize_override
);
171 __setup("cachesize=", cachesize_setup
);
173 static int __init
x86_fxsr_setup(char *s
)
175 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
176 setup_clear_cpu_cap(X86_FEATURE_XMM
);
179 __setup("nofxsr", x86_fxsr_setup
);
181 static int __init
x86_sep_setup(char *s
)
183 setup_clear_cpu_cap(X86_FEATURE_SEP
);
186 __setup("nosep", x86_sep_setup
);
188 /* Standard macro to see if a specific flag is changeable */
189 static inline int flag_is_changeable_p(u32 flag
)
194 * Cyrix and IDT cpus allow disabling of CPUID
195 * so the code below may return different results
196 * when it is executed before and after enabling
197 * the CPUID. Add "volatile" to not allow gcc to
198 * optimize the subsequent calls to this function.
200 asm volatile ("pushfl \n\t"
211 : "=&r" (f1
), "=&r" (f2
)
214 return ((f1
^f2
) & flag
) != 0;
217 /* Probe for the CPUID instruction */
218 int have_cpuid_p(void)
220 return flag_is_changeable_p(X86_EFLAGS_ID
);
223 static void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
225 unsigned long lo
, hi
;
227 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
230 /* Disable processor serial number: */
232 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
234 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
236 printk(KERN_NOTICE
"CPU serial number disabled.\n");
237 clear_cpu_cap(c
, X86_FEATURE_PN
);
239 /* Disabling the serial number may affect the cpuid level */
240 c
->cpuid_level
= cpuid_eax(0);
243 static int __init
x86_serial_nr_setup(char *s
)
245 disable_x86_serial_nr
= 0;
248 __setup("serialnumber", x86_serial_nr_setup
);
250 static inline int flag_is_changeable_p(u32 flag
)
254 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
259 static __init
int setup_disable_smep(char *arg
)
261 setup_clear_cpu_cap(X86_FEATURE_SMEP
);
264 __setup("nosmep", setup_disable_smep
);
266 static __always_inline
void setup_smep(struct cpuinfo_x86
*c
)
268 if (cpu_has(c
, X86_FEATURE_SMEP
))
269 set_in_cr4(X86_CR4_SMEP
);
272 static __init
int setup_disable_smap(char *arg
)
274 setup_clear_cpu_cap(X86_FEATURE_SMAP
);
277 __setup("nosmap", setup_disable_smap
);
279 static __always_inline
void setup_smap(struct cpuinfo_x86
*c
)
281 unsigned long eflags
;
283 /* This should have been cleared long ago */
284 raw_local_save_flags(eflags
);
285 BUG_ON(eflags
& X86_EFLAGS_AC
);
287 if (cpu_has(c
, X86_FEATURE_SMAP
)) {
288 #ifdef CONFIG_X86_SMAP
289 set_in_cr4(X86_CR4_SMAP
);
291 clear_in_cr4(X86_CR4_SMAP
);
297 * Some CPU features depend on higher CPUID levels, which may not always
298 * be available due to CPUID level capping or broken virtualization
299 * software. Add those features to this table to auto-disable them.
301 struct cpuid_dependent_feature
{
306 static const struct cpuid_dependent_feature
307 cpuid_dependent_features
[] = {
308 { X86_FEATURE_MWAIT
, 0x00000005 },
309 { X86_FEATURE_DCA
, 0x00000009 },
310 { X86_FEATURE_XSAVE
, 0x0000000d },
314 static void filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
316 const struct cpuid_dependent_feature
*df
;
318 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
320 if (!cpu_has(c
, df
->feature
))
323 * Note: cpuid_level is set to -1 if unavailable, but
324 * extended_extended_level is set to 0 if unavailable
325 * and the legitimate extended levels are all negative
326 * when signed; hence the weird messing around with
329 if (!((s32
)df
->level
< 0 ?
330 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
331 (s32
)df
->level
> (s32
)c
->cpuid_level
))
334 clear_cpu_cap(c
, df
->feature
);
339 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
340 x86_cap_flags
[df
->feature
], df
->level
);
345 * Naming convention should be: <Name> [(<Codename>)]
346 * This table only is used unless init_<vendor>() below doesn't set it;
347 * in particular, if CPUID levels 0x80000002..4 are supported, this
351 /* Look up CPU names by table lookup. */
352 static const char *table_lookup_model(struct cpuinfo_x86
*c
)
355 const struct legacy_cpu_model_info
*info
;
357 if (c
->x86_model
>= 16)
358 return NULL
; /* Range check */
363 info
= this_cpu
->legacy_models
;
365 while (info
->family
) {
366 if (info
->family
== c
->x86
)
367 return info
->model_names
[c
->x86_model
];
371 return NULL
; /* Not found */
374 __u32 cpu_caps_cleared
[NCAPINTS
];
375 __u32 cpu_caps_set
[NCAPINTS
];
377 void load_percpu_segment(int cpu
)
380 loadsegment(fs
, __KERNEL_PERCPU
);
383 wrmsrl(MSR_GS_BASE
, (unsigned long)per_cpu(irq_stack_union
.gs_base
, cpu
));
385 load_stack_canary_segment();
389 * Current gdt points %fs at the "master" per-cpu area: after this,
390 * it's on the real one.
392 void switch_to_new_gdt(int cpu
)
394 struct desc_ptr gdt_descr
;
396 gdt_descr
.address
= (long)get_cpu_gdt_table(cpu
);
397 gdt_descr
.size
= GDT_SIZE
- 1;
398 load_gdt(&gdt_descr
);
399 /* Reload the per-cpu base */
401 load_percpu_segment(cpu
);
404 static const struct cpu_dev
*cpu_devs
[X86_VENDOR_NUM
] = {};
406 static void get_model_name(struct cpuinfo_x86
*c
)
411 if (c
->extended_cpuid_level
< 0x80000004)
414 v
= (unsigned int *)c
->x86_model_id
;
415 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
416 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
417 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
418 c
->x86_model_id
[48] = 0;
421 * Intel chips right-justify this string for some dumb reason;
422 * undo that brain damage:
424 p
= q
= &c
->x86_model_id
[0];
430 while (q
<= &c
->x86_model_id
[48])
431 *q
++ = '\0'; /* Zero-pad the rest */
435 void cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
437 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
439 n
= c
->extended_cpuid_level
;
441 if (n
>= 0x80000005) {
442 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
443 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
445 /* On K8 L1 TLB is inclusive, so don't count it */
450 if (n
< 0x80000006) /* Some chips just has a large L1. */
453 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
457 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
459 /* do processor-specific cache resizing */
460 if (this_cpu
->legacy_cache_size
)
461 l2size
= this_cpu
->legacy_cache_size(c
, l2size
);
463 /* Allow user to override all this if necessary. */
464 if (cachesize_override
!= -1)
465 l2size
= cachesize_override
;
468 return; /* Again, no L2 cache is possible */
471 c
->x86_cache_size
= l2size
;
474 u16 __read_mostly tlb_lli_4k
[NR_INFO
];
475 u16 __read_mostly tlb_lli_2m
[NR_INFO
];
476 u16 __read_mostly tlb_lli_4m
[NR_INFO
];
477 u16 __read_mostly tlb_lld_4k
[NR_INFO
];
478 u16 __read_mostly tlb_lld_2m
[NR_INFO
];
479 u16 __read_mostly tlb_lld_4m
[NR_INFO
];
480 u16 __read_mostly tlb_lld_1g
[NR_INFO
];
483 * tlb_flushall_shift shows the balance point in replacing cr3 write
484 * with multiple 'invlpg'. It will do this replacement when
485 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
486 * If tlb_flushall_shift is -1, means the replacement will be disabled.
488 s8 __read_mostly tlb_flushall_shift
= -1;
490 void cpu_detect_tlb(struct cpuinfo_x86
*c
)
492 if (this_cpu
->c_detect_tlb
)
493 this_cpu
->c_detect_tlb(c
);
495 printk(KERN_INFO
"Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
496 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
497 "tlb_flushall_shift: %d\n",
498 tlb_lli_4k
[ENTRIES
], tlb_lli_2m
[ENTRIES
],
499 tlb_lli_4m
[ENTRIES
], tlb_lld_4k
[ENTRIES
],
500 tlb_lld_2m
[ENTRIES
], tlb_lld_4m
[ENTRIES
],
501 tlb_lld_1g
[ENTRIES
], tlb_flushall_shift
);
504 void detect_ht(struct cpuinfo_x86
*c
)
507 u32 eax
, ebx
, ecx
, edx
;
508 int index_msb
, core_bits
;
511 if (!cpu_has(c
, X86_FEATURE_HT
))
514 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
517 if (cpu_has(c
, X86_FEATURE_XTOPOLOGY
))
520 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
522 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
524 if (smp_num_siblings
== 1) {
525 printk_once(KERN_INFO
"CPU0: Hyper-Threading is disabled\n");
529 if (smp_num_siblings
<= 1)
532 index_msb
= get_count_order(smp_num_siblings
);
533 c
->phys_proc_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
);
535 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
537 index_msb
= get_count_order(smp_num_siblings
);
539 core_bits
= get_count_order(c
->x86_max_cores
);
541 c
->cpu_core_id
= apic
->phys_pkg_id(c
->initial_apicid
, index_msb
) &
542 ((1 << core_bits
) - 1);
545 if (!printed
&& (c
->x86_max_cores
* smp_num_siblings
) > 1) {
546 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
548 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
555 static void get_cpu_vendor(struct cpuinfo_x86
*c
)
557 char *v
= c
->x86_vendor_id
;
560 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
564 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
565 (cpu_devs
[i
]->c_ident
[1] &&
566 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
568 this_cpu
= cpu_devs
[i
];
569 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
575 "CPU: vendor_id '%s' unknown, using generic init.\n" \
576 "CPU: Your system may be unstable.\n", v
);
578 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
579 this_cpu
= &default_cpu
;
582 void cpu_detect(struct cpuinfo_x86
*c
)
584 /* Get vendor name */
585 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
586 (unsigned int *)&c
->x86_vendor_id
[0],
587 (unsigned int *)&c
->x86_vendor_id
[8],
588 (unsigned int *)&c
->x86_vendor_id
[4]);
591 /* Intel-defined flags: level 0x00000001 */
592 if (c
->cpuid_level
>= 0x00000001) {
593 u32 junk
, tfms
, cap0
, misc
;
595 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
596 c
->x86
= (tfms
>> 8) & 0xf;
597 c
->x86_model
= (tfms
>> 4) & 0xf;
598 c
->x86_mask
= tfms
& 0xf;
601 c
->x86
+= (tfms
>> 20) & 0xff;
603 c
->x86_model
+= ((tfms
>> 16) & 0xf) << 4;
605 if (cap0
& (1<<19)) {
606 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
607 c
->x86_cache_alignment
= c
->x86_clflush_size
;
612 void get_cpu_cap(struct cpuinfo_x86
*c
)
617 /* Intel-defined flags: level 0x00000001 */
618 if (c
->cpuid_level
>= 0x00000001) {
619 u32 capability
, excap
;
621 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
622 c
->x86_capability
[0] = capability
;
623 c
->x86_capability
[4] = excap
;
626 /* Additional Intel-defined flags: level 0x00000007 */
627 if (c
->cpuid_level
>= 0x00000007) {
628 u32 eax
, ebx
, ecx
, edx
;
630 cpuid_count(0x00000007, 0, &eax
, &ebx
, &ecx
, &edx
);
632 c
->x86_capability
[9] = ebx
;
635 /* AMD-defined flags: level 0x80000001 */
636 xlvl
= cpuid_eax(0x80000000);
637 c
->extended_cpuid_level
= xlvl
;
639 if ((xlvl
& 0xffff0000) == 0x80000000) {
640 if (xlvl
>= 0x80000001) {
641 c
->x86_capability
[1] = cpuid_edx(0x80000001);
642 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
646 if (c
->extended_cpuid_level
>= 0x80000008) {
647 u32 eax
= cpuid_eax(0x80000008);
649 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
650 c
->x86_phys_bits
= eax
& 0xff;
653 else if (cpu_has(c
, X86_FEATURE_PAE
) || cpu_has(c
, X86_FEATURE_PSE36
))
654 c
->x86_phys_bits
= 36;
657 if (c
->extended_cpuid_level
>= 0x80000007)
658 c
->x86_power
= cpuid_edx(0x80000007);
660 init_scattered_cpuid_features(c
);
663 static void identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
669 * First of all, decide if this is a 486 or higher
670 * It's a 486 if we can modify the AC flag
672 if (flag_is_changeable_p(X86_EFLAGS_AC
))
677 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
678 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
679 c
->x86_vendor_id
[0] = 0;
680 cpu_devs
[i
]->c_identify(c
);
681 if (c
->x86_vendor_id
[0]) {
690 * Do minimum CPU detection early.
691 * Fields really needed: vendor, cpuid_level, family, model, mask,
693 * The others are not touched to avoid unwanted side effects.
695 * WARNING: this function is only called on the BP. Don't add code here
696 * that is supposed to run on all CPUs.
698 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
701 c
->x86_clflush_size
= 64;
702 c
->x86_phys_bits
= 36;
703 c
->x86_virt_bits
= 48;
705 c
->x86_clflush_size
= 32;
706 c
->x86_phys_bits
= 32;
707 c
->x86_virt_bits
= 32;
709 c
->x86_cache_alignment
= c
->x86_clflush_size
;
711 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
712 c
->extended_cpuid_level
= 0;
715 identify_cpu_without_cpuid(c
);
717 /* cyrix could have cpuid enabled via c_identify()*/
726 if (this_cpu
->c_early_init
)
727 this_cpu
->c_early_init(c
);
730 filter_cpuid_features(c
, false);
732 if (this_cpu
->c_bsp_init
)
733 this_cpu
->c_bsp_init(c
);
735 setup_force_cpu_cap(X86_FEATURE_ALWAYS
);
738 void __init
early_cpu_init(void)
740 const struct cpu_dev
*const *cdev
;
743 #ifdef CONFIG_PROCESSOR_SELECT
744 printk(KERN_INFO
"KERNEL supported cpus:\n");
747 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
748 const struct cpu_dev
*cpudev
= *cdev
;
750 if (count
>= X86_VENDOR_NUM
)
752 cpu_devs
[count
] = cpudev
;
755 #ifdef CONFIG_PROCESSOR_SELECT
759 for (j
= 0; j
< 2; j
++) {
760 if (!cpudev
->c_ident
[j
])
762 printk(KERN_INFO
" %s %s\n", cpudev
->c_vendor
,
768 early_identify_cpu(&boot_cpu_data
);
772 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
773 * unfortunately, that's not true in practice because of early VIA
774 * chips and (more importantly) broken virtualizers that are not easy
775 * to detect. In the latter case it doesn't even *fail* reliably, so
776 * probing for it doesn't even work. Disable it completely on 32-bit
777 * unless we can find a reliable way to detect all the broken cases.
778 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
780 static void detect_nopl(struct cpuinfo_x86
*c
)
783 clear_cpu_cap(c
, X86_FEATURE_NOPL
);
785 set_cpu_cap(c
, X86_FEATURE_NOPL
);
789 static void generic_identify(struct cpuinfo_x86
*c
)
791 c
->extended_cpuid_level
= 0;
794 identify_cpu_without_cpuid(c
);
796 /* cyrix could have cpuid enabled via c_identify()*/
806 if (c
->cpuid_level
>= 0x00000001) {
807 c
->initial_apicid
= (cpuid_ebx(1) >> 24) & 0xFF;
809 # ifdef CONFIG_X86_HT
810 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
812 c
->apicid
= c
->initial_apicid
;
815 c
->phys_proc_id
= c
->initial_apicid
;
818 get_model_name(c
); /* Default name */
824 * This does the hard work of actually picking apart the CPU stuff...
826 static void identify_cpu(struct cpuinfo_x86
*c
)
830 c
->loops_per_jiffy
= loops_per_jiffy
;
831 c
->x86_cache_size
= -1;
832 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
833 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
834 c
->x86_vendor_id
[0] = '\0'; /* Unset */
835 c
->x86_model_id
[0] = '\0'; /* Unset */
836 c
->x86_max_cores
= 1;
837 c
->x86_coreid_bits
= 0;
839 c
->x86_clflush_size
= 64;
840 c
->x86_phys_bits
= 36;
841 c
->x86_virt_bits
= 48;
843 c
->cpuid_level
= -1; /* CPUID not detected */
844 c
->x86_clflush_size
= 32;
845 c
->x86_phys_bits
= 32;
846 c
->x86_virt_bits
= 32;
848 c
->x86_cache_alignment
= c
->x86_clflush_size
;
849 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
853 if (this_cpu
->c_identify
)
854 this_cpu
->c_identify(c
);
856 /* Clear/Set all flags overriden by options, after probe */
857 for (i
= 0; i
< NCAPINTS
; i
++) {
858 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
859 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
863 c
->apicid
= apic
->phys_pkg_id(c
->initial_apicid
, 0);
867 * Vendor-specific initialization. In this section we
868 * canonicalize the feature flags, meaning if there are
869 * features a certain CPU supports which CPUID doesn't
870 * tell us, CPUID claiming incorrect flags, or other bugs,
871 * we handle them here.
873 * At the end of this section, c->x86_capability better
874 * indicate the features this CPU genuinely supports!
876 if (this_cpu
->c_init
)
879 /* Disable the PN if appropriate */
880 squash_the_stupid_serial_number(c
);
882 /* Set up SMEP/SMAP */
887 * The vendor-specific functions might have changed features.
888 * Now we do "generic changes."
891 /* Filter out anything that depends on CPUID levels we don't have */
892 filter_cpuid_features(c
, true);
894 /* If the model name is still unset, do table lookup. */
895 if (!c
->x86_model_id
[0]) {
897 p
= table_lookup_model(c
);
899 strcpy(c
->x86_model_id
, p
);
902 sprintf(c
->x86_model_id
, "%02x/%02x",
903 c
->x86
, c
->x86_model
);
914 * Clear/Set all flags overriden by options, need do it
915 * before following smp all cpus cap AND.
917 for (i
= 0; i
< NCAPINTS
; i
++) {
918 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
919 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
923 * On SMP, boot_cpu_data holds the common feature set between
924 * all CPUs; so make sure that we indicate which features are
925 * common between the CPUs. The first time this routine gets
926 * executed, c == &boot_cpu_data.
928 if (c
!= &boot_cpu_data
) {
929 /* AND the already accumulated flags with these */
930 for (i
= 0; i
< NCAPINTS
; i
++)
931 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
933 /* OR, i.e. replicate the bug flags */
934 for (i
= NCAPINTS
; i
< NCAPINTS
+ NBUGINTS
; i
++)
935 c
->x86_capability
[i
] |= boot_cpu_data
.x86_capability
[i
];
938 /* Init Machine Check Exception if available. */
941 select_idle_routine(c
);
944 numa_add_cpu(smp_processor_id());
949 static void vgetcpu_set_mode(void)
951 if (cpu_has(&boot_cpu_data
, X86_FEATURE_RDTSCP
))
952 vgetcpu_mode
= VGETCPU_RDTSCP
;
954 vgetcpu_mode
= VGETCPU_LSL
;
958 void __init
identify_boot_cpu(void)
960 identify_cpu(&boot_cpu_data
);
961 init_amd_e400_c1e_mask();
968 cpu_detect_tlb(&boot_cpu_data
);
971 void identify_secondary_cpu(struct cpuinfo_x86
*c
)
973 BUG_ON(c
== &boot_cpu_data
);
986 static const struct msr_range msr_range_array
[] = {
987 { 0x00000000, 0x00000418},
988 { 0xc0000000, 0xc000040b},
989 { 0xc0010000, 0xc0010142},
990 { 0xc0011000, 0xc001103b},
993 static void __print_cpu_msr(void)
995 unsigned index_min
, index_max
;
1000 for (i
= 0; i
< ARRAY_SIZE(msr_range_array
); i
++) {
1001 index_min
= msr_range_array
[i
].min
;
1002 index_max
= msr_range_array
[i
].max
;
1004 for (index
= index_min
; index
< index_max
; index
++) {
1005 if (rdmsrl_safe(index
, &val
))
1007 printk(KERN_INFO
" MSR%08x: %016llx\n", index
, val
);
1012 static int show_msr
;
1014 static __init
int setup_show_msr(char *arg
)
1018 get_option(&arg
, &num
);
1024 __setup("show_msr=", setup_show_msr
);
1026 static __init
int setup_noclflush(char *arg
)
1028 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH
);
1029 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT
);
1032 __setup("noclflush", setup_noclflush
);
1034 void print_cpu_info(struct cpuinfo_x86
*c
)
1036 const char *vendor
= NULL
;
1038 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
1039 vendor
= this_cpu
->c_vendor
;
1041 if (c
->cpuid_level
>= 0)
1042 vendor
= c
->x86_vendor_id
;
1045 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
1046 printk(KERN_CONT
"%s ", vendor
);
1048 if (c
->x86_model_id
[0])
1049 printk(KERN_CONT
"%s", strim(c
->x86_model_id
));
1051 printk(KERN_CONT
"%d86", c
->x86
);
1053 printk(KERN_CONT
" (fam: %02x, model: %02x", c
->x86
, c
->x86_model
);
1055 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1056 printk(KERN_CONT
", stepping: %02x)\n", c
->x86_mask
);
1058 printk(KERN_CONT
")\n");
1063 void print_cpu_msr(struct cpuinfo_x86
*c
)
1065 if (c
->cpu_index
< show_msr
)
1069 static __init
int setup_disablecpuid(char *arg
)
1073 if (get_option(&arg
, &bit
) && bit
< NCAPINTS
*32)
1074 setup_clear_cpu_cap(bit
);
1080 __setup("clearcpuid=", setup_disablecpuid
);
1082 #ifdef CONFIG_X86_64
1083 struct desc_ptr idt_descr
= { NR_VECTORS
* 16 - 1, (unsigned long) idt_table
};
1084 struct desc_ptr debug_idt_descr
= { NR_VECTORS
* 16 - 1,
1085 (unsigned long) debug_idt_table
};
1087 DEFINE_PER_CPU_FIRST(union irq_stack_union
,
1088 irq_stack_union
) __aligned(PAGE_SIZE
) __visible
;
1091 * The following four percpu variables are hot. Align current_task to
1092 * cacheline size such that all four fall in the same cacheline.
1094 DEFINE_PER_CPU(struct task_struct
*, current_task
) ____cacheline_aligned
=
1096 EXPORT_PER_CPU_SYMBOL(current_task
);
1098 DEFINE_PER_CPU(unsigned long, kernel_stack
) =
1099 (unsigned long)&init_thread_union
- KERNEL_STACK_OFFSET
+ THREAD_SIZE
;
1100 EXPORT_PER_CPU_SYMBOL(kernel_stack
);
1102 DEFINE_PER_CPU(char *, irq_stack_ptr
) =
1103 init_per_cpu_var(irq_stack_union
.irq_stack
) + IRQ_STACK_SIZE
- 64;
1105 DEFINE_PER_CPU(unsigned int, irq_count
) __visible
= -1;
1107 DEFINE_PER_CPU(int, __preempt_count
) = INIT_PREEMPT_COUNT
;
1108 EXPORT_PER_CPU_SYMBOL(__preempt_count
);
1110 DEFINE_PER_CPU(struct task_struct
*, fpu_owner_task
);
1113 * Special IST stacks which the CPU switches to when it calls
1114 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1115 * limit), all of them are 4K, except the debug stack which
1118 static const unsigned int exception_stack_sizes
[N_EXCEPTION_STACKS
] = {
1119 [0 ... N_EXCEPTION_STACKS
- 1] = EXCEPTION_STKSZ
,
1120 [DEBUG_STACK
- 1] = DEBUG_STKSZ
1123 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1124 [(N_EXCEPTION_STACKS
- 1) * EXCEPTION_STKSZ
+ DEBUG_STKSZ
]);
1126 /* May not be marked __init: used by software suspend */
1127 void syscall_init(void)
1130 * LSTAR and STAR live in a bit strange symbiosis.
1131 * They both write to the same internal register. STAR allows to
1132 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1134 wrmsrl(MSR_STAR
, ((u64
)__USER32_CS
)<<48 | ((u64
)__KERNEL_CS
)<<32);
1135 wrmsrl(MSR_LSTAR
, system_call
);
1136 wrmsrl(MSR_CSTAR
, ignore_sysret
);
1138 #ifdef CONFIG_IA32_EMULATION
1139 syscall32_cpu_init();
1142 /* Flags to clear on syscall */
1143 wrmsrl(MSR_SYSCALL_MASK
,
1144 X86_EFLAGS_TF
|X86_EFLAGS_DF
|X86_EFLAGS_IF
|
1145 X86_EFLAGS_IOPL
|X86_EFLAGS_AC
);
1149 * Copies of the original ist values from the tss are only accessed during
1150 * debugging, no special alignment required.
1152 DEFINE_PER_CPU(struct orig_ist
, orig_ist
);
1154 static DEFINE_PER_CPU(unsigned long, debug_stack_addr
);
1155 DEFINE_PER_CPU(int, debug_stack_usage
);
1157 int is_debug_stack(unsigned long addr
)
1159 return __get_cpu_var(debug_stack_usage
) ||
1160 (addr
<= __get_cpu_var(debug_stack_addr
) &&
1161 addr
> (__get_cpu_var(debug_stack_addr
) - DEBUG_STKSZ
));
1164 DEFINE_PER_CPU(u32
, debug_idt_ctr
);
1166 void debug_stack_set_zero(void)
1168 this_cpu_inc(debug_idt_ctr
);
1172 void debug_stack_reset(void)
1174 if (WARN_ON(!this_cpu_read(debug_idt_ctr
)))
1176 if (this_cpu_dec_return(debug_idt_ctr
) == 0)
1180 #else /* CONFIG_X86_64 */
1182 DEFINE_PER_CPU(struct task_struct
*, current_task
) = &init_task
;
1183 EXPORT_PER_CPU_SYMBOL(current_task
);
1184 DEFINE_PER_CPU(int, __preempt_count
) = INIT_PREEMPT_COUNT
;
1185 EXPORT_PER_CPU_SYMBOL(__preempt_count
);
1186 DEFINE_PER_CPU(struct task_struct
*, fpu_owner_task
);
1188 #ifdef CONFIG_CC_STACKPROTECTOR
1189 DEFINE_PER_CPU_ALIGNED(struct stack_canary
, stack_canary
);
1192 #endif /* CONFIG_X86_64 */
1195 * Clear all 6 debug registers:
1197 static void clear_all_debug_regs(void)
1201 for (i
= 0; i
< 8; i
++) {
1202 /* Ignore db4, db5 */
1203 if ((i
== 4) || (i
== 5))
1212 * Restore debug regs if using kgdbwait and you have a kernel debugger
1213 * connection established.
1215 static void dbg_restore_debug_regs(void)
1217 if (unlikely(kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
))
1218 arch_kgdb_ops
.correct_hw_break();
1220 #else /* ! CONFIG_KGDB */
1221 #define dbg_restore_debug_regs()
1222 #endif /* ! CONFIG_KGDB */
1225 * cpu_init() initializes state that is per-CPU. Some data is already
1226 * initialized (naturally) in the bootstrap process, such as the GDT
1227 * and IDT. We reload them nevertheless, this function acts as a
1228 * 'CPU state barrier', nothing should get across.
1229 * A lot of state is already set up in PDA init for 64 bit
1231 #ifdef CONFIG_X86_64
1235 struct orig_ist
*oist
;
1236 struct task_struct
*me
;
1237 struct tss_struct
*t
;
1243 * Load microcode on this cpu if a valid microcode is available.
1244 * This is early microcode loading procedure.
1248 cpu
= stack_smp_processor_id();
1249 t
= &per_cpu(init_tss
, cpu
);
1250 oist
= &per_cpu(orig_ist
, cpu
);
1253 if (this_cpu_read(numa_node
) == 0 &&
1254 early_cpu_to_node(cpu
) != NUMA_NO_NODE
)
1255 set_numa_node(early_cpu_to_node(cpu
));
1260 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
))
1261 panic("CPU#%d already initialized!\n", cpu
);
1263 pr_debug("Initializing CPU#%d\n", cpu
);
1265 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1268 * Initialize the per-CPU GDT with the boot GDT,
1269 * and set up the GDT descriptor:
1272 switch_to_new_gdt(cpu
);
1277 memset(me
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
1280 wrmsrl(MSR_FS_BASE
, 0);
1281 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
1288 * set up and load the per-CPU TSS
1290 if (!oist
->ist
[0]) {
1291 char *estacks
= per_cpu(exception_stacks
, cpu
);
1293 for (v
= 0; v
< N_EXCEPTION_STACKS
; v
++) {
1294 estacks
+= exception_stack_sizes
[v
];
1295 oist
->ist
[v
] = t
->x86_tss
.ist
[v
] =
1296 (unsigned long)estacks
;
1297 if (v
== DEBUG_STACK
-1)
1298 per_cpu(debug_stack_addr
, cpu
) = (unsigned long)estacks
;
1302 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1305 * <= is required because the CPU will access up to
1306 * 8 bits beyond the end of the IO permission bitmap.
1308 for (i
= 0; i
<= IO_BITMAP_LONGS
; i
++)
1309 t
->io_bitmap
[i
] = ~0UL;
1311 atomic_inc(&init_mm
.mm_count
);
1312 me
->active_mm
= &init_mm
;
1314 enter_lazy_tlb(&init_mm
, me
);
1316 load_sp0(t
, ¤t
->thread
);
1317 set_tss_desc(cpu
, t
);
1319 load_LDT(&init_mm
.context
);
1321 clear_all_debug_regs();
1322 dbg_restore_debug_regs();
1334 int cpu
= smp_processor_id();
1335 struct task_struct
*curr
= current
;
1336 struct tss_struct
*t
= &per_cpu(init_tss
, cpu
);
1337 struct thread_struct
*thread
= &curr
->thread
;
1339 show_ucode_info_early();
1341 if (cpumask_test_and_set_cpu(cpu
, cpu_initialized_mask
)) {
1342 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
1347 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
1349 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
1350 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
1353 switch_to_new_gdt(cpu
);
1356 * Set up and load the per-CPU TSS and LDT
1358 atomic_inc(&init_mm
.mm_count
);
1359 curr
->active_mm
= &init_mm
;
1361 enter_lazy_tlb(&init_mm
, curr
);
1363 load_sp0(t
, thread
);
1364 set_tss_desc(cpu
, t
);
1366 load_LDT(&init_mm
.context
);
1368 t
->x86_tss
.io_bitmap_base
= offsetof(struct tss_struct
, io_bitmap
);
1370 #ifdef CONFIG_DOUBLEFAULT
1371 /* Set up doublefault TSS pointer in the GDT */
1372 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
1375 clear_all_debug_regs();
1376 dbg_restore_debug_regs();
1382 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1383 void warn_pre_alternatives(void)
1385 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1387 EXPORT_SYMBOL_GPL(warn_pre_alternatives
);
1390 inline bool __static_cpu_has_safe(u16 bit
)
1392 return boot_cpu_has(bit
);
1394 EXPORT_SYMBOL_GPL(__static_cpu_has_safe
);