x86, cpufeature: If we disable CLFLUSH, we should disable CLFLUSHOPT
[linux/fpc-iii.git] / drivers / md / persistent-data / dm-btree-remove.c
blobb88757cd0d1d93728d27d1c1366edf0c45479daf
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
11 #include <linux/export.h>
14 * Removing an entry from a btree
15 * ==============================
17 * A very important constraint for our btree is that no node, except the
18 * root, may have fewer than a certain number of entries.
19 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
21 * Ensuring this is complicated by the way we want to only ever hold the
22 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23 * fashion.
25 * Each node may have a left or right sibling. When decending the spine,
26 * if a node contains only MIN_ENTRIES then we try and increase this to at
27 * least MIN_ENTRIES + 1. We do this in the following ways:
29 * [A] No siblings => this can only happen if the node is the root, in which
30 * case we copy the childs contents over the root.
32 * [B] No left sibling
33 * ==> rebalance(node, right sibling)
35 * [C] No right sibling
36 * ==> rebalance(left sibling, node)
38 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39 * ==> delete node adding it's contents to left and right
41 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42 * ==> rebalance(left, node, right)
44 * After these operations it's possible that the our original node no
45 * longer contains the desired sub tree. For this reason this rebalancing
46 * is performed on the children of the current node. This also avoids
47 * having a special case for the root.
49 * Once this rebalancing has occurred we can then step into the child node
50 * for internal nodes. Or delete the entry for leaf nodes.
54 * Some little utilities for moving node data around.
56 static void node_shift(struct btree_node *n, int shift)
58 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59 uint32_t value_size = le32_to_cpu(n->header.value_size);
61 if (shift < 0) {
62 shift = -shift;
63 BUG_ON(shift > nr_entries);
64 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
65 memmove(key_ptr(n, 0),
66 key_ptr(n, shift),
67 (nr_entries - shift) * sizeof(__le64));
68 memmove(value_ptr(n, 0),
69 value_ptr(n, shift),
70 (nr_entries - shift) * value_size);
71 } else {
72 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73 memmove(key_ptr(n, shift),
74 key_ptr(n, 0),
75 nr_entries * sizeof(__le64));
76 memmove(value_ptr(n, shift),
77 value_ptr(n, 0),
78 nr_entries * value_size);
82 static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
84 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85 uint32_t value_size = le32_to_cpu(left->header.value_size);
86 BUG_ON(value_size != le32_to_cpu(right->header.value_size));
88 if (shift < 0) {
89 shift = -shift;
90 BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91 memcpy(key_ptr(left, nr_left),
92 key_ptr(right, 0),
93 shift * sizeof(__le64));
94 memcpy(value_ptr(left, nr_left),
95 value_ptr(right, 0),
96 shift * value_size);
97 } else {
98 BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99 memcpy(key_ptr(right, 0),
100 key_ptr(left, nr_left - shift),
101 shift * sizeof(__le64));
102 memcpy(value_ptr(right, 0),
103 value_ptr(left, nr_left - shift),
104 shift * value_size);
109 * Delete a specific entry from a leaf node.
111 static void delete_at(struct btree_node *n, unsigned index)
113 unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114 unsigned nr_to_copy = nr_entries - (index + 1);
115 uint32_t value_size = le32_to_cpu(n->header.value_size);
116 BUG_ON(index >= nr_entries);
118 if (nr_to_copy) {
119 memmove(key_ptr(n, index),
120 key_ptr(n, index + 1),
121 nr_to_copy * sizeof(__le64));
123 memmove(value_ptr(n, index),
124 value_ptr(n, index + 1),
125 nr_to_copy * value_size);
128 n->header.nr_entries = cpu_to_le32(nr_entries - 1);
131 static unsigned merge_threshold(struct btree_node *n)
133 return le32_to_cpu(n->header.max_entries) / 3;
136 struct child {
137 unsigned index;
138 struct dm_block *block;
139 struct btree_node *n;
142 static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
143 struct btree_node *parent,
144 unsigned index, struct child *result)
146 int r, inc;
147 dm_block_t root;
149 result->index = index;
150 root = value64(parent, index);
152 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
153 &result->block, &inc);
154 if (r)
155 return r;
157 result->n = dm_block_data(result->block);
159 if (inc)
160 inc_children(info->tm, result->n, vt);
162 *((__le64 *) value_ptr(parent, index)) =
163 cpu_to_le64(dm_block_location(result->block));
165 return 0;
168 static int exit_child(struct dm_btree_info *info, struct child *c)
170 return dm_tm_unlock(info->tm, c->block);
173 static void shift(struct btree_node *left, struct btree_node *right, int count)
175 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
176 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
177 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
178 uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
180 BUG_ON(max_entries != r_max_entries);
181 BUG_ON(nr_left - count > max_entries);
182 BUG_ON(nr_right + count > max_entries);
184 if (!count)
185 return;
187 if (count > 0) {
188 node_shift(right, count);
189 node_copy(left, right, count);
190 } else {
191 node_copy(left, right, count);
192 node_shift(right, count);
195 left->header.nr_entries = cpu_to_le32(nr_left - count);
196 right->header.nr_entries = cpu_to_le32(nr_right + count);
199 static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
200 struct child *l, struct child *r)
202 struct btree_node *left = l->n;
203 struct btree_node *right = r->n;
204 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
205 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
206 unsigned threshold = 2 * merge_threshold(left) + 1;
208 if (nr_left + nr_right < threshold) {
210 * Merge
212 node_copy(left, right, -nr_right);
213 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
214 delete_at(parent, r->index);
217 * We need to decrement the right block, but not it's
218 * children, since they're still referenced by left.
220 dm_tm_dec(info->tm, dm_block_location(r->block));
221 } else {
223 * Rebalance.
225 unsigned target_left = (nr_left + nr_right) / 2;
226 shift(left, right, nr_left - target_left);
227 *key_ptr(parent, r->index) = right->keys[0];
231 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
232 struct dm_btree_value_type *vt, unsigned left_index)
234 int r;
235 struct btree_node *parent;
236 struct child left, right;
238 parent = dm_block_data(shadow_current(s));
240 r = init_child(info, vt, parent, left_index, &left);
241 if (r)
242 return r;
244 r = init_child(info, vt, parent, left_index + 1, &right);
245 if (r) {
246 exit_child(info, &left);
247 return r;
250 __rebalance2(info, parent, &left, &right);
252 r = exit_child(info, &left);
253 if (r) {
254 exit_child(info, &right);
255 return r;
258 return exit_child(info, &right);
262 * We dump as many entries from center as possible into left, then the rest
263 * in right, then rebalance2. This wastes some cpu, but I want something
264 * simple atm.
266 static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
267 struct child *l, struct child *c, struct child *r,
268 struct btree_node *left, struct btree_node *center, struct btree_node *right,
269 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
271 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
272 unsigned shift = min(max_entries - nr_left, nr_center);
274 BUG_ON(nr_left + shift > max_entries);
275 node_copy(left, center, -shift);
276 left->header.nr_entries = cpu_to_le32(nr_left + shift);
278 if (shift != nr_center) {
279 shift = nr_center - shift;
280 BUG_ON((nr_right + shift) > max_entries);
281 node_shift(right, shift);
282 node_copy(center, right, shift);
283 right->header.nr_entries = cpu_to_le32(nr_right + shift);
285 *key_ptr(parent, r->index) = right->keys[0];
287 delete_at(parent, c->index);
288 r->index--;
290 dm_tm_dec(info->tm, dm_block_location(c->block));
291 __rebalance2(info, parent, l, r);
295 * Redistributes entries among 3 sibling nodes.
297 static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
298 struct child *l, struct child *c, struct child *r,
299 struct btree_node *left, struct btree_node *center, struct btree_node *right,
300 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
302 int s;
303 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
304 unsigned target = (nr_left + nr_center + nr_right) / 3;
305 BUG_ON(target > max_entries);
307 if (nr_left < nr_right) {
308 s = nr_left - target;
310 if (s < 0 && nr_center < -s) {
311 /* not enough in central node */
312 shift(left, center, nr_center);
313 s = nr_center - target;
314 shift(left, right, s);
315 nr_right += s;
316 } else
317 shift(left, center, s);
319 shift(center, right, target - nr_right);
321 } else {
322 s = target - nr_right;
323 if (s > 0 && nr_center < s) {
324 /* not enough in central node */
325 shift(center, right, nr_center);
326 s = target - nr_center;
327 shift(left, right, s);
328 nr_left -= s;
329 } else
330 shift(center, right, s);
332 shift(left, center, nr_left - target);
335 *key_ptr(parent, c->index) = center->keys[0];
336 *key_ptr(parent, r->index) = right->keys[0];
339 static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
340 struct child *l, struct child *c, struct child *r)
342 struct btree_node *left = l->n;
343 struct btree_node *center = c->n;
344 struct btree_node *right = r->n;
346 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
347 uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
348 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
350 unsigned threshold = merge_threshold(left) * 4 + 1;
352 BUG_ON(left->header.max_entries != center->header.max_entries);
353 BUG_ON(center->header.max_entries != right->header.max_entries);
355 if ((nr_left + nr_center + nr_right) < threshold)
356 delete_center_node(info, parent, l, c, r, left, center, right,
357 nr_left, nr_center, nr_right);
358 else
359 redistribute3(info, parent, l, c, r, left, center, right,
360 nr_left, nr_center, nr_right);
363 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
364 struct dm_btree_value_type *vt, unsigned left_index)
366 int r;
367 struct btree_node *parent = dm_block_data(shadow_current(s));
368 struct child left, center, right;
371 * FIXME: fill out an array?
373 r = init_child(info, vt, parent, left_index, &left);
374 if (r)
375 return r;
377 r = init_child(info, vt, parent, left_index + 1, &center);
378 if (r) {
379 exit_child(info, &left);
380 return r;
383 r = init_child(info, vt, parent, left_index + 2, &right);
384 if (r) {
385 exit_child(info, &left);
386 exit_child(info, &center);
387 return r;
390 __rebalance3(info, parent, &left, &center, &right);
392 r = exit_child(info, &left);
393 if (r) {
394 exit_child(info, &center);
395 exit_child(info, &right);
396 return r;
399 r = exit_child(info, &center);
400 if (r) {
401 exit_child(info, &right);
402 return r;
405 r = exit_child(info, &right);
406 if (r)
407 return r;
409 return 0;
412 static int get_nr_entries(struct dm_transaction_manager *tm,
413 dm_block_t b, uint32_t *result)
415 int r;
416 struct dm_block *block;
417 struct btree_node *n;
419 r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
420 if (r)
421 return r;
423 n = dm_block_data(block);
424 *result = le32_to_cpu(n->header.nr_entries);
426 return dm_tm_unlock(tm, block);
429 static int rebalance_children(struct shadow_spine *s,
430 struct dm_btree_info *info,
431 struct dm_btree_value_type *vt, uint64_t key)
433 int i, r, has_left_sibling, has_right_sibling;
434 uint32_t child_entries;
435 struct btree_node *n;
437 n = dm_block_data(shadow_current(s));
439 if (le32_to_cpu(n->header.nr_entries) == 1) {
440 struct dm_block *child;
441 dm_block_t b = value64(n, 0);
443 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
444 if (r)
445 return r;
447 memcpy(n, dm_block_data(child),
448 dm_bm_block_size(dm_tm_get_bm(info->tm)));
449 r = dm_tm_unlock(info->tm, child);
450 if (r)
451 return r;
453 dm_tm_dec(info->tm, dm_block_location(child));
454 return 0;
457 i = lower_bound(n, key);
458 if (i < 0)
459 return -ENODATA;
461 r = get_nr_entries(info->tm, value64(n, i), &child_entries);
462 if (r)
463 return r;
465 has_left_sibling = i > 0;
466 has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
468 if (!has_left_sibling)
469 r = rebalance2(s, info, vt, i);
471 else if (!has_right_sibling)
472 r = rebalance2(s, info, vt, i - 1);
474 else
475 r = rebalance3(s, info, vt, i - 1);
477 return r;
480 static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
482 int i = lower_bound(n, key);
484 if ((i < 0) ||
485 (i >= le32_to_cpu(n->header.nr_entries)) ||
486 (le64_to_cpu(n->keys[i]) != key))
487 return -ENODATA;
489 *index = i;
491 return 0;
495 * Prepares for removal from one level of the hierarchy. The caller must
496 * call delete_at() to remove the entry at index.
498 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
499 struct dm_btree_value_type *vt, dm_block_t root,
500 uint64_t key, unsigned *index)
502 int i = *index, r;
503 struct btree_node *n;
505 for (;;) {
506 r = shadow_step(s, root, vt);
507 if (r < 0)
508 break;
511 * We have to patch up the parent node, ugly, but I don't
512 * see a way to do this automatically as part of the spine
513 * op.
515 if (shadow_has_parent(s)) {
516 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
517 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
518 &location, sizeof(__le64));
521 n = dm_block_data(shadow_current(s));
523 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
524 return do_leaf(n, key, index);
526 r = rebalance_children(s, info, vt, key);
527 if (r)
528 break;
530 n = dm_block_data(shadow_current(s));
531 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
532 return do_leaf(n, key, index);
534 i = lower_bound(n, key);
537 * We know the key is present, or else
538 * rebalance_children would have returned
539 * -ENODATA
541 root = value64(n, i);
544 return r;
547 static struct dm_btree_value_type le64_type = {
548 .context = NULL,
549 .size = sizeof(__le64),
550 .inc = NULL,
551 .dec = NULL,
552 .equal = NULL
555 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
556 uint64_t *keys, dm_block_t *new_root)
558 unsigned level, last_level = info->levels - 1;
559 int index = 0, r = 0;
560 struct shadow_spine spine;
561 struct btree_node *n;
563 init_shadow_spine(&spine, info);
564 for (level = 0; level < info->levels; level++) {
565 r = remove_raw(&spine, info,
566 (level == last_level ?
567 &info->value_type : &le64_type),
568 root, keys[level], (unsigned *)&index);
569 if (r < 0)
570 break;
572 n = dm_block_data(shadow_current(&spine));
573 if (level != last_level) {
574 root = value64(n, index);
575 continue;
578 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
580 if (info->value_type.dec)
581 info->value_type.dec(info->value_type.context,
582 value_ptr(n, index));
584 delete_at(n, index);
587 *new_root = shadow_root(&spine);
588 exit_shadow_spine(&spine);
590 return r;
592 EXPORT_SYMBOL_GPL(dm_btree_remove);