x86, cpufeature: If we disable CLFLUSH, we should disable CLFLUSHOPT
[linux/fpc-iii.git] / drivers / spi / spi-ep93xx.c
blob1bfaed6e4073cb3d536a9d1baf5be2227324a555
1 /*
2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
36 #define SSPCR0 0x0000
37 #define SSPCR0_MODE_SHIFT 6
38 #define SSPCR0_SCR_SHIFT 8
40 #define SSPCR1 0x0004
41 #define SSPCR1_RIE BIT(0)
42 #define SSPCR1_TIE BIT(1)
43 #define SSPCR1_RORIE BIT(2)
44 #define SSPCR1_LBM BIT(3)
45 #define SSPCR1_SSE BIT(4)
46 #define SSPCR1_MS BIT(5)
47 #define SSPCR1_SOD BIT(6)
49 #define SSPDR 0x0008
51 #define SSPSR 0x000c
52 #define SSPSR_TFE BIT(0)
53 #define SSPSR_TNF BIT(1)
54 #define SSPSR_RNE BIT(2)
55 #define SSPSR_RFF BIT(3)
56 #define SSPSR_BSY BIT(4)
57 #define SSPCPSR 0x0010
59 #define SSPIIR 0x0014
60 #define SSPIIR_RIS BIT(0)
61 #define SSPIIR_TIS BIT(1)
62 #define SSPIIR_RORIS BIT(2)
63 #define SSPICR SSPIIR
65 /* timeout in milliseconds */
66 #define SPI_TIMEOUT 5
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE 8
70 /**
71 * struct ep93xx_spi - EP93xx SPI controller structure
72 * @pdev: pointer to platform device
73 * @clk: clock for the controller
74 * @regs_base: pointer to ioremap()'d registers
75 * @sspdr_phys: physical address of the SSPDR register
76 * @min_rate: minimum clock rate (in Hz) supported by the controller
77 * @max_rate: maximum clock rate (in Hz) supported by the controller
78 * @wait: wait here until given transfer is completed
79 * @current_msg: message that is currently processed (or %NULL if none)
80 * @tx: current byte in transfer to transmit
81 * @rx: current byte in transfer to receive
82 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
83 * frame decreases this level and sending one frame increases it.
84 * @dma_rx: RX DMA channel
85 * @dma_tx: TX DMA channel
86 * @dma_rx_data: RX parameters passed to the DMA engine
87 * @dma_tx_data: TX parameters passed to the DMA engine
88 * @rx_sgt: sg table for RX transfers
89 * @tx_sgt: sg table for TX transfers
90 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
91 * the client
93 struct ep93xx_spi {
94 const struct platform_device *pdev;
95 struct clk *clk;
96 void __iomem *regs_base;
97 unsigned long sspdr_phys;
98 unsigned long min_rate;
99 unsigned long max_rate;
100 struct completion wait;
101 struct spi_message *current_msg;
102 size_t tx;
103 size_t rx;
104 size_t fifo_level;
105 struct dma_chan *dma_rx;
106 struct dma_chan *dma_tx;
107 struct ep93xx_dma_data dma_rx_data;
108 struct ep93xx_dma_data dma_tx_data;
109 struct sg_table rx_sgt;
110 struct sg_table tx_sgt;
111 void *zeropage;
115 * struct ep93xx_spi_chip - SPI device hardware settings
116 * @spi: back pointer to the SPI device
117 * @ops: private chip operations
119 struct ep93xx_spi_chip {
120 const struct spi_device *spi;
121 struct ep93xx_spi_chip_ops *ops;
124 /* converts bits per word to CR0.DSS value */
125 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
127 static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
128 u16 reg, u8 value)
130 writeb(value, espi->regs_base + reg);
133 static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
135 return readb(spi->regs_base + reg);
138 static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
139 u16 reg, u16 value)
141 writew(value, espi->regs_base + reg);
144 static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
146 return readw(spi->regs_base + reg);
149 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
151 u8 regval;
152 int err;
154 err = clk_enable(espi->clk);
155 if (err)
156 return err;
158 regval = ep93xx_spi_read_u8(espi, SSPCR1);
159 regval |= SSPCR1_SSE;
160 ep93xx_spi_write_u8(espi, SSPCR1, regval);
162 return 0;
165 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
167 u8 regval;
169 regval = ep93xx_spi_read_u8(espi, SSPCR1);
170 regval &= ~SSPCR1_SSE;
171 ep93xx_spi_write_u8(espi, SSPCR1, regval);
173 clk_disable(espi->clk);
176 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
178 u8 regval;
180 regval = ep93xx_spi_read_u8(espi, SSPCR1);
181 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
182 ep93xx_spi_write_u8(espi, SSPCR1, regval);
185 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
187 u8 regval;
189 regval = ep93xx_spi_read_u8(espi, SSPCR1);
190 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
191 ep93xx_spi_write_u8(espi, SSPCR1, regval);
195 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
196 * @espi: ep93xx SPI controller struct
197 * @rate: desired SPI output clock rate
198 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
199 * @div_scr: pointer to return the scr divider
201 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
202 unsigned long rate,
203 u8 *div_cpsr, u8 *div_scr)
205 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
206 int cpsr, scr;
209 * Make sure that max value is between values supported by the
210 * controller. Note that minimum value is already checked in
211 * ep93xx_spi_transfer_one_message().
213 rate = clamp(rate, espi->min_rate, espi->max_rate);
216 * Calculate divisors so that we can get speed according the
217 * following formula:
218 * rate = spi_clock_rate / (cpsr * (1 + scr))
220 * cpsr must be even number and starts from 2, scr can be any number
221 * between 0 and 255.
223 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
224 for (scr = 0; scr <= 255; scr++) {
225 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
226 *div_scr = (u8)scr;
227 *div_cpsr = (u8)cpsr;
228 return 0;
233 return -EINVAL;
236 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
238 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
239 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
241 if (chip->ops && chip->ops->cs_control)
242 chip->ops->cs_control(spi, value);
246 * ep93xx_spi_setup() - setup an SPI device
247 * @spi: SPI device to setup
249 * This function sets up SPI device mode, speed etc. Can be called multiple
250 * times for a single device. Returns %0 in case of success, negative error in
251 * case of failure. When this function returns success, the device is
252 * deselected.
254 static int ep93xx_spi_setup(struct spi_device *spi)
256 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
257 struct ep93xx_spi_chip *chip;
259 chip = spi_get_ctldata(spi);
260 if (!chip) {
261 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
262 spi->modalias);
264 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
265 if (!chip)
266 return -ENOMEM;
268 chip->spi = spi;
269 chip->ops = spi->controller_data;
271 if (chip->ops && chip->ops->setup) {
272 int ret = chip->ops->setup(spi);
273 if (ret) {
274 kfree(chip);
275 return ret;
279 spi_set_ctldata(spi, chip);
282 ep93xx_spi_cs_control(spi, false);
283 return 0;
287 * ep93xx_spi_cleanup() - cleans up master controller specific state
288 * @spi: SPI device to cleanup
290 * This function releases master controller specific state for given @spi
291 * device.
293 static void ep93xx_spi_cleanup(struct spi_device *spi)
295 struct ep93xx_spi_chip *chip;
297 chip = spi_get_ctldata(spi);
298 if (chip) {
299 if (chip->ops && chip->ops->cleanup)
300 chip->ops->cleanup(spi);
301 spi_set_ctldata(spi, NULL);
302 kfree(chip);
307 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
308 * @espi: ep93xx SPI controller struct
309 * @chip: chip specific settings
310 * @speed_hz: transfer speed
311 * @bits_per_word: transfer bits_per_word
313 static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
314 const struct ep93xx_spi_chip *chip,
315 u32 speed_hz, u8 bits_per_word)
317 u8 dss = bits_per_word_to_dss(bits_per_word);
318 u8 div_cpsr = 0;
319 u8 div_scr = 0;
320 u16 cr0;
321 int err;
323 err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
324 if (err)
325 return err;
327 cr0 = div_scr << SSPCR0_SCR_SHIFT;
328 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
329 cr0 |= dss;
331 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
332 chip->spi->mode, div_cpsr, div_scr, dss);
333 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
335 ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
336 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
338 return 0;
341 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
343 if (t->bits_per_word > 8) {
344 u16 tx_val = 0;
346 if (t->tx_buf)
347 tx_val = ((u16 *)t->tx_buf)[espi->tx];
348 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
349 espi->tx += sizeof(tx_val);
350 } else {
351 u8 tx_val = 0;
353 if (t->tx_buf)
354 tx_val = ((u8 *)t->tx_buf)[espi->tx];
355 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
356 espi->tx += sizeof(tx_val);
360 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
362 if (t->bits_per_word > 8) {
363 u16 rx_val;
365 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
366 if (t->rx_buf)
367 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
368 espi->rx += sizeof(rx_val);
369 } else {
370 u8 rx_val;
372 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
373 if (t->rx_buf)
374 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
375 espi->rx += sizeof(rx_val);
380 * ep93xx_spi_read_write() - perform next RX/TX transfer
381 * @espi: ep93xx SPI controller struct
383 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
384 * called several times, the whole transfer will be completed. Returns
385 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
387 * When this function is finished, RX FIFO should be empty and TX FIFO should be
388 * full.
390 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
392 struct spi_message *msg = espi->current_msg;
393 struct spi_transfer *t = msg->state;
395 /* read as long as RX FIFO has frames in it */
396 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
397 ep93xx_do_read(espi, t);
398 espi->fifo_level--;
401 /* write as long as TX FIFO has room */
402 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
403 ep93xx_do_write(espi, t);
404 espi->fifo_level++;
407 if (espi->rx == t->len)
408 return 0;
410 return -EINPROGRESS;
413 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
416 * Now everything is set up for the current transfer. We prime the TX
417 * FIFO, enable interrupts, and wait for the transfer to complete.
419 if (ep93xx_spi_read_write(espi)) {
420 ep93xx_spi_enable_interrupts(espi);
421 wait_for_completion(&espi->wait);
426 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
427 * @espi: ep93xx SPI controller struct
428 * @dir: DMA transfer direction
430 * Function configures the DMA, maps the buffer and prepares the DMA
431 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
432 * in case of failure.
434 static struct dma_async_tx_descriptor *
435 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
437 struct spi_transfer *t = espi->current_msg->state;
438 struct dma_async_tx_descriptor *txd;
439 enum dma_slave_buswidth buswidth;
440 struct dma_slave_config conf;
441 struct scatterlist *sg;
442 struct sg_table *sgt;
443 struct dma_chan *chan;
444 const void *buf, *pbuf;
445 size_t len = t->len;
446 int i, ret, nents;
448 if (t->bits_per_word > 8)
449 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
450 else
451 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
453 memset(&conf, 0, sizeof(conf));
454 conf.direction = dir;
456 if (dir == DMA_DEV_TO_MEM) {
457 chan = espi->dma_rx;
458 buf = t->rx_buf;
459 sgt = &espi->rx_sgt;
461 conf.src_addr = espi->sspdr_phys;
462 conf.src_addr_width = buswidth;
463 } else {
464 chan = espi->dma_tx;
465 buf = t->tx_buf;
466 sgt = &espi->tx_sgt;
468 conf.dst_addr = espi->sspdr_phys;
469 conf.dst_addr_width = buswidth;
472 ret = dmaengine_slave_config(chan, &conf);
473 if (ret)
474 return ERR_PTR(ret);
477 * We need to split the transfer into PAGE_SIZE'd chunks. This is
478 * because we are using @espi->zeropage to provide a zero RX buffer
479 * for the TX transfers and we have only allocated one page for that.
481 * For performance reasons we allocate a new sg_table only when
482 * needed. Otherwise we will re-use the current one. Eventually the
483 * last sg_table is released in ep93xx_spi_release_dma().
486 nents = DIV_ROUND_UP(len, PAGE_SIZE);
487 if (nents != sgt->nents) {
488 sg_free_table(sgt);
490 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
491 if (ret)
492 return ERR_PTR(ret);
495 pbuf = buf;
496 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
497 size_t bytes = min_t(size_t, len, PAGE_SIZE);
499 if (buf) {
500 sg_set_page(sg, virt_to_page(pbuf), bytes,
501 offset_in_page(pbuf));
502 } else {
503 sg_set_page(sg, virt_to_page(espi->zeropage),
504 bytes, 0);
507 pbuf += bytes;
508 len -= bytes;
511 if (WARN_ON(len)) {
512 dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
513 return ERR_PTR(-EINVAL);
516 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
517 if (!nents)
518 return ERR_PTR(-ENOMEM);
520 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
521 if (!txd) {
522 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
523 return ERR_PTR(-ENOMEM);
525 return txd;
529 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
530 * @espi: ep93xx SPI controller struct
531 * @dir: DMA transfer direction
533 * Function finishes with the DMA transfer. After this, the DMA buffer is
534 * unmapped.
536 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
537 enum dma_transfer_direction dir)
539 struct dma_chan *chan;
540 struct sg_table *sgt;
542 if (dir == DMA_DEV_TO_MEM) {
543 chan = espi->dma_rx;
544 sgt = &espi->rx_sgt;
545 } else {
546 chan = espi->dma_tx;
547 sgt = &espi->tx_sgt;
550 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
553 static void ep93xx_spi_dma_callback(void *callback_param)
555 complete(callback_param);
558 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
560 struct spi_message *msg = espi->current_msg;
561 struct dma_async_tx_descriptor *rxd, *txd;
563 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
564 if (IS_ERR(rxd)) {
565 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
566 msg->status = PTR_ERR(rxd);
567 return;
570 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
571 if (IS_ERR(txd)) {
572 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
573 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
574 msg->status = PTR_ERR(txd);
575 return;
578 /* We are ready when RX is done */
579 rxd->callback = ep93xx_spi_dma_callback;
580 rxd->callback_param = &espi->wait;
582 /* Now submit both descriptors and wait while they finish */
583 dmaengine_submit(rxd);
584 dmaengine_submit(txd);
586 dma_async_issue_pending(espi->dma_rx);
587 dma_async_issue_pending(espi->dma_tx);
589 wait_for_completion(&espi->wait);
591 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
592 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
596 * ep93xx_spi_process_transfer() - processes one SPI transfer
597 * @espi: ep93xx SPI controller struct
598 * @msg: current message
599 * @t: transfer to process
601 * This function processes one SPI transfer given in @t. Function waits until
602 * transfer is complete (may sleep) and updates @msg->status based on whether
603 * transfer was successfully processed or not.
605 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
606 struct spi_message *msg,
607 struct spi_transfer *t)
609 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
610 int err;
612 msg->state = t;
614 err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
615 if (err) {
616 dev_err(&espi->pdev->dev,
617 "failed to setup chip for transfer\n");
618 msg->status = err;
619 return;
622 espi->rx = 0;
623 espi->tx = 0;
626 * There is no point of setting up DMA for the transfers which will
627 * fit into the FIFO and can be transferred with a single interrupt.
628 * So in these cases we will be using PIO and don't bother for DMA.
630 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
631 ep93xx_spi_dma_transfer(espi);
632 else
633 ep93xx_spi_pio_transfer(espi);
636 * In case of error during transmit, we bail out from processing
637 * the message.
639 if (msg->status)
640 return;
642 msg->actual_length += t->len;
645 * After this transfer is finished, perform any possible
646 * post-transfer actions requested by the protocol driver.
648 if (t->delay_usecs) {
649 set_current_state(TASK_UNINTERRUPTIBLE);
650 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
652 if (t->cs_change) {
653 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
655 * In case protocol driver is asking us to drop the
656 * chipselect briefly, we let the scheduler to handle
657 * any "delay" here.
659 ep93xx_spi_cs_control(msg->spi, false);
660 cond_resched();
661 ep93xx_spi_cs_control(msg->spi, true);
667 * ep93xx_spi_process_message() - process one SPI message
668 * @espi: ep93xx SPI controller struct
669 * @msg: message to process
671 * This function processes a single SPI message. We go through all transfers in
672 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
673 * asserted during the whole message (unless per transfer cs_change is set).
675 * @msg->status contains %0 in case of success or negative error code in case of
676 * failure.
678 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
679 struct spi_message *msg)
681 unsigned long timeout;
682 struct spi_transfer *t;
683 int err;
686 * Enable the SPI controller and its clock.
688 err = ep93xx_spi_enable(espi);
689 if (err) {
690 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
691 msg->status = err;
692 return;
696 * Just to be sure: flush any data from RX FIFO.
698 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
699 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
700 if (time_after(jiffies, timeout)) {
701 dev_warn(&espi->pdev->dev,
702 "timeout while flushing RX FIFO\n");
703 msg->status = -ETIMEDOUT;
704 return;
706 ep93xx_spi_read_u16(espi, SSPDR);
710 * We explicitly handle FIFO level. This way we don't have to check TX
711 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
713 espi->fifo_level = 0;
716 * Assert the chipselect.
718 ep93xx_spi_cs_control(msg->spi, true);
720 list_for_each_entry(t, &msg->transfers, transfer_list) {
721 ep93xx_spi_process_transfer(espi, msg, t);
722 if (msg->status)
723 break;
727 * Now the whole message is transferred (or failed for some reason). We
728 * deselect the device and disable the SPI controller.
730 ep93xx_spi_cs_control(msg->spi, false);
731 ep93xx_spi_disable(espi);
734 static int ep93xx_spi_transfer_one_message(struct spi_master *master,
735 struct spi_message *msg)
737 struct ep93xx_spi *espi = spi_master_get_devdata(master);
738 struct spi_transfer *t;
740 /* first validate each transfer */
741 list_for_each_entry(t, &msg->transfers, transfer_list) {
742 if (t->speed_hz < espi->min_rate)
743 return -EINVAL;
746 msg->state = NULL;
747 msg->status = 0;
748 msg->actual_length = 0;
750 espi->current_msg = msg;
751 ep93xx_spi_process_message(espi, msg);
752 espi->current_msg = NULL;
754 spi_finalize_current_message(master);
756 return 0;
759 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
761 struct ep93xx_spi *espi = dev_id;
762 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
765 * If we got ROR (receive overrun) interrupt we know that something is
766 * wrong. Just abort the message.
768 if (unlikely(irq_status & SSPIIR_RORIS)) {
769 /* clear the overrun interrupt */
770 ep93xx_spi_write_u8(espi, SSPICR, 0);
771 dev_warn(&espi->pdev->dev,
772 "receive overrun, aborting the message\n");
773 espi->current_msg->status = -EIO;
774 } else {
776 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
777 * simply execute next data transfer.
779 if (ep93xx_spi_read_write(espi)) {
781 * In normal case, there still is some processing left
782 * for current transfer. Let's wait for the next
783 * interrupt then.
785 return IRQ_HANDLED;
790 * Current transfer is finished, either with error or with success. In
791 * any case we disable interrupts and notify the worker to handle
792 * any post-processing of the message.
794 ep93xx_spi_disable_interrupts(espi);
795 complete(&espi->wait);
796 return IRQ_HANDLED;
799 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
801 if (ep93xx_dma_chan_is_m2p(chan))
802 return false;
804 chan->private = filter_param;
805 return true;
808 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
810 dma_cap_mask_t mask;
811 int ret;
813 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
814 if (!espi->zeropage)
815 return -ENOMEM;
817 dma_cap_zero(mask);
818 dma_cap_set(DMA_SLAVE, mask);
820 espi->dma_rx_data.port = EP93XX_DMA_SSP;
821 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
822 espi->dma_rx_data.name = "ep93xx-spi-rx";
824 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
825 &espi->dma_rx_data);
826 if (!espi->dma_rx) {
827 ret = -ENODEV;
828 goto fail_free_page;
831 espi->dma_tx_data.port = EP93XX_DMA_SSP;
832 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
833 espi->dma_tx_data.name = "ep93xx-spi-tx";
835 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
836 &espi->dma_tx_data);
837 if (!espi->dma_tx) {
838 ret = -ENODEV;
839 goto fail_release_rx;
842 return 0;
844 fail_release_rx:
845 dma_release_channel(espi->dma_rx);
846 espi->dma_rx = NULL;
847 fail_free_page:
848 free_page((unsigned long)espi->zeropage);
850 return ret;
853 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
855 if (espi->dma_rx) {
856 dma_release_channel(espi->dma_rx);
857 sg_free_table(&espi->rx_sgt);
859 if (espi->dma_tx) {
860 dma_release_channel(espi->dma_tx);
861 sg_free_table(&espi->tx_sgt);
864 if (espi->zeropage)
865 free_page((unsigned long)espi->zeropage);
868 static int ep93xx_spi_probe(struct platform_device *pdev)
870 struct spi_master *master;
871 struct ep93xx_spi_info *info;
872 struct ep93xx_spi *espi;
873 struct resource *res;
874 int irq;
875 int error;
877 info = dev_get_platdata(&pdev->dev);
879 irq = platform_get_irq(pdev, 0);
880 if (irq < 0) {
881 dev_err(&pdev->dev, "failed to get irq resources\n");
882 return -EBUSY;
885 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
886 if (!res) {
887 dev_err(&pdev->dev, "unable to get iomem resource\n");
888 return -ENODEV;
891 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
892 if (!master)
893 return -ENOMEM;
895 master->setup = ep93xx_spi_setup;
896 master->transfer_one_message = ep93xx_spi_transfer_one_message;
897 master->cleanup = ep93xx_spi_cleanup;
898 master->bus_num = pdev->id;
899 master->num_chipselect = info->num_chipselect;
900 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
901 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
903 platform_set_drvdata(pdev, master);
905 espi = spi_master_get_devdata(master);
907 espi->clk = devm_clk_get(&pdev->dev, NULL);
908 if (IS_ERR(espi->clk)) {
909 dev_err(&pdev->dev, "unable to get spi clock\n");
910 error = PTR_ERR(espi->clk);
911 goto fail_release_master;
914 init_completion(&espi->wait);
917 * Calculate maximum and minimum supported clock rates
918 * for the controller.
920 espi->max_rate = clk_get_rate(espi->clk) / 2;
921 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
922 espi->pdev = pdev;
924 espi->sspdr_phys = res->start + SSPDR;
926 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
927 if (IS_ERR(espi->regs_base)) {
928 error = PTR_ERR(espi->regs_base);
929 goto fail_release_master;
932 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
933 0, "ep93xx-spi", espi);
934 if (error) {
935 dev_err(&pdev->dev, "failed to request irq\n");
936 goto fail_release_master;
939 if (info->use_dma && ep93xx_spi_setup_dma(espi))
940 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
942 /* make sure that the hardware is disabled */
943 ep93xx_spi_write_u8(espi, SSPCR1, 0);
945 error = devm_spi_register_master(&pdev->dev, master);
946 if (error) {
947 dev_err(&pdev->dev, "failed to register SPI master\n");
948 goto fail_free_dma;
951 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
952 (unsigned long)res->start, irq);
954 return 0;
956 fail_free_dma:
957 ep93xx_spi_release_dma(espi);
958 fail_release_master:
959 spi_master_put(master);
961 return error;
964 static int ep93xx_spi_remove(struct platform_device *pdev)
966 struct spi_master *master = platform_get_drvdata(pdev);
967 struct ep93xx_spi *espi = spi_master_get_devdata(master);
969 ep93xx_spi_release_dma(espi);
971 return 0;
974 static struct platform_driver ep93xx_spi_driver = {
975 .driver = {
976 .name = "ep93xx-spi",
977 .owner = THIS_MODULE,
979 .probe = ep93xx_spi_probe,
980 .remove = ep93xx_spi_remove,
982 module_platform_driver(ep93xx_spi_driver);
984 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
985 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
986 MODULE_LICENSE("GPL");
987 MODULE_ALIAS("platform:ep93xx-spi");